REASONING ABOUT
PARALLEL PROGRAMS
WITH LOCAL VARIABLES

Stephen Brookes

Carnegie Mellon University
School of Computer Science

MFPS94

SHARED VARIABLE
PARALLELISM

e Parallel imperative programs
reading and writing shared memory

e ('1]|Cy modelled by interleaving of
atomic actions

e Synchronization using conditional atomic
action: await B then C

Coarseness Assumption

Assignment and boolean expressions
are atomic.

OPERATIONAL SEMANTICS

(C1, s) — (C1,§")
(C1|Cy, 8) — (C1||Ca,)

(Cy, s) — (C3, §)
(C1|Cy, 8y — (C1]|C5, ")

(C1, s)term (Co, s)term
(C1]|Cy, s)term

(B,s) =*tt (C,s) =" (C', s)term

(await B then C,s) — (skip, s')

cf. Hennessy and Plotkin (1979)

3

PROGRAM BEHAVIOR

e Partial correctness:

M[CT = {(s,5')]| (C,s) —*(C’, s')term}

e Strong correctness:
M[CT = {(s,5')]| (C,s) —=*(C’, s')term}
U{(s, L) [(C,s) =%}

e Total correctness:
MIC] = {(s,5') | (C,s) = (C’, s')term}
U{(s,s") | s € 5 & (C,s) =¥}

e Deadlock:
MIC] = {(s,5") | (C,s) —=* ({C’, s")dead}

4

FULL ABSTRACTION

Milner (1977):

A semantics is fully abstract it two
phrases have the same meaning precisely
when they induce the same behavior in
all program contexts.

e A natural criterion for judging merit
of a semantics.

e Often difficult to achieve.

o A fully abstract semantics supports
compositional reasoning.

e Failure of full abstraction may suggest:

— defective semantic model

— missing language features

TRACE SEMANTICS

Transitions: > =S x S
Transition traces: 1° = ST U X¥
Trace semantics: 7[C]| C X

e A trace represents a sequence of snapshots
taken during computation, allowing
for possible interruption.

e Operational definition:
T1CT = {(s0, s0)(51,81) - - - (8 5%) |
(C, s9) —=* (O, s0) &
(C1,51) =" (Co,81) &

e Partial correctness behavior corresponds
to “interference-free” subset:

MICT = {(s,5) | (s,5") € T[CT}.

6

PROPERTIES

e 7|C] is closed under stuttering:
af e T[C] = afs,s)B e T[C].

e 7|C] is closed under mumbling;
als,s')(s', "B eT[C] = als,s")3eT[C].

DEFINITION

For T C (S x S)* let T be smallest
closed set including T

FACT

Closed sets of traces, ordered by
inclusion, form a complete lattice.

DENOTATIONAL
SEMANTICS

T[skip] = {(s,5) | s S}
T[I=E] = {(s,[s|/I =n]) | (s,n) « E[E]}

T[Cy; Co] = T[CH]; T[C]
={afB | acT[C] & B T[Co]}

T[Ch|Ce] = TICT]CY]
= Wallf | acT[C1] & B e T[Co]}

7 [await B then C] =
{(5,8) e T[C] | (s,tt) e B[B]}

T [if B then (] else (5] =
T[B]; T[C,]uUT[-B];T[C,]

T[while B do C] = (T[B]; T[C])"; T[~B]

where T[B] = {(s,s) | (s,tt) e B[B]}.

PROPERTIES

e Sequential and parallel composition
are continuous operations on closed
sets of traces.

e Loop semantics can be expressed as
a least fixed point:

7 [while B do C] =
pI(T|B); T|C[;T U T[-B])

e Denotational and operational definitions
of 7 coincide.

INFINITE TRACES

o lct XY be S xS.
e 7|C] CE>*=¥"UX¥

e 7|C] is closed under stuttering and
mumbling.

e Fxtend concatenation to infinite traces:
af = a if « is infinite.

e Loop semantics as an “operational”
fixed point:

7 [while B do C] =
(T1Bl;T|C))" T[—-B]
U (T[B]; T[C])~

e Full abstraction for strong correctness.

10

FAIR PARALLELISM

“No parallel component is delayed forever”

o T|Ch||Co] = T[CH][|T]CA]
o T\ Ty =u{al|B| a el & e}

o af|f={v](a,B,7) € fairmerge}

o fairmerge = (L"RR*L)* U (LU R)*A,
where
L=A{(o,e,0) | 0 e¥}
R={(e,0,0)| 0¥}
A={(e,a,a),(a,e,a) | aeX*UX¥}
cf. Park (1979)

e Fair parallel composition is a
continuous function on closed sets
of traces.

11

RELATED WORK
e Abrahamson (1979), Park (1979):

—no stuttering or mumbling
—not fully abstract

e de Boer, Kok, Palamidessi, Rutten
(1991):
— only restricted mumbling
— different language and behavior

— ignores fairness

e Abadi, Plotkin (1993):

— finite traces, stuttering, mumbling
— closed under prefix
— tull abstraction for safety properties

— ignores fairness

12

FURTHER RESEARCH

e Connection with logic:

— generalized Hoare logics

— safety and liveness

—modal logics (e.g. LTL, CTL,

p-calculus)

e Laws of program equivalence, for:

— program transformation, derivation
— parallelization

— simplification of program proots

e Full abstraction for fairly
communicating processes

— Hoare’s CSP
— Milner’s CCS with value-passing

13

