
REASONING ABOUT
PARALLEL PROGRAMS

WITH LOCAL VARIABLES

Stephen Brookes

Carnegie Mellon University
School of Computer Science

MFPS’94

1

SHARED VARIABLE
PARALLELISM

• Parallel imperative programs
reading and writing shared memory

• C1‖C2 modelled by interleaving of
atomic actions

• Synchronization using conditional atomic
action: await B then C

Coarseness Assumption

Assignment and boolean expressions
are atomic.

2

OPERATIONAL SEMANTICS

〈C1, s〉 → 〈C ′1, s′〉
〈C1‖C2, s〉 → 〈C ′1‖C2, s

′〉

〈C2, s〉 → 〈C ′2, s′〉
〈C1‖C2, s〉 → 〈C1‖C ′2, s′〉

〈C1, s〉term 〈C2, s〉term

〈C1‖C2, s〉term

〈B, s〉 →∗ tt 〈C, s〉 →∗ 〈C ′, s′〉term

〈await B then C, s〉 → 〈skip, s′〉

cf. Hennessy and Plotkin (1979)

3

PROGRAM BEHAVIOR

• Partial correctness:

M[[C]] = {(s, s′) | 〈C, s〉 →∗ 〈C ′, s′〉term}

• Strong correctness:

M[[C]] = {(s, s′) | 〈C, s〉 →∗ 〈C ′, s′〉term}
∪{(s,⊥) | 〈C, s〉 →ω}

• Total correctness:
M[[C]] = {(s, s′) | 〈C, s〉 →∗ 〈C ′, s′〉term}

∪{(s, s′) | s′ ∈ S⊥ & 〈C, s〉 →ω}

• Deadlock:

M[[C]] = {(s, s′) | 〈C, s〉 →∗ 〈C ′, s′〉dead}

4

FULL ABSTRACTION

Milner (1977):
A semantics is fully abstract if two

phrases have the same meaning precisely
when they induce the same behavior in
all program contexts.

• A natural criterion for judging merit
of a semantics.

• Often difficult to achieve.

• A fully abstract semantics supports
compositional reasoning.

• Failure of full abstraction may suggest:

– defective semantic model

– missing language features

5

TRACE SEMANTICS

Transitions: Σ = S × S
Transition traces: Σ∞ = Σ+ ∪ Σω

Trace semantics: T [[C]] ⊆ Σ∞

• A trace represents a sequence of snapshots
taken during computation, allowing
for possible interruption.

• Operational definition:

T [[C]] = {(s0, s
′
0)(s1, s

′
1) . . . (sk, s

′
k) |

〈C, s0〉 →∗ 〈C1, s
′
0〉 &

〈C1, s1〉 →∗ 〈C2, s
′
1〉 &

. &
〈Ck, sk〉 →∗ 〈C ′, s′k〉term}

• Partial correctness behavior corresponds
to “interference-free” subset:

M[[C]] = {(s, s′) | (s, s′) ∈ T [[C]]}.

6

PROPERTIES

• T [[C]] is closed under stuttering:

αβ ∈ T [[C]] ⇒ α(s, s)β ∈ T [[C]].

• T [[C]] is closed under mumbling:

α(s, s′)(s′, s′′)β ∈ T [[C]] ⇒ α(s, s′′)β ∈ T [[C]].

DEFINITION

For T ⊆ (S × S)+ let T † be smallest
closed set including T .

FACT

Closed sets of traces, ordered by
inclusion, form a complete lattice.

7

DENOTATIONAL
SEMANTICS

T [[skip]] = {(s, s) | s ∈ S}†

T [[I :=E]] = {(s, [s|I = n]) | (s, n) ∈ E [[E]]}†

T [[C1;C2]] = T [[C1]]; T [[C2]]

= {αβ | α ∈ T [[C1]] & β ∈ T [[C2]]}†

T [[C1‖C2]] = T [[C1]]‖T [[C2]]

=
⋃{α‖β | α ∈ T [[C1]] & β ∈ T [[C2]]}†

T [[await B then C]] =

{(s, s′) ∈ T [[C]] | (s,tt) ∈ B[[B]]}†

T [[if B then C1 else C2]] =

T [[B]]; T [[C1]] ∪ T [[¬B]]; T [[C2]]

T [[while B do C]] = (T [[B]]; T [[C]])∗; T [[¬B]]

where T [[B]] = {(s, s) | (s,tt) ∈ B[[B]]}.

8

PROPERTIES

• Sequential and parallel composition
are continuous operations on closed
sets of traces.

• Loop semantics can be expressed as
a least fixed point:

T [[while B do C]] =
µT.(T [[B]]; T [[C]];T ∪ T [[¬B]])

• Denotational and operational definitions
of T coincide.

9

INFINITE TRACES

• Let Σ be S × S.

• T [[C]] ⊆ Σ∞ = Σ∗ ∪ Σω

• T [[C]] is closed under stuttering and
mumbling.

• Extend concatenation to infinite traces:

αβ = α if α is infinite.

• Loop semantics as an “operational”
fixed point:

T [[while B do C]] =
(T [[B]]; T [[C]])∗; T [[¬B]]
∪ (T [[B]]; T [[C]])ω

• Full abstraction for strong correctness.

10

FAIR PARALLELISM

“No parallel component is delayed forever”

• T [[C1‖C2]] = T [[C1]]‖T [[C2]]

• T1‖T2 =
⋃{α‖β | α ∈ T1 & β ∈ T2}†

• α‖β = {γ | (α, β, γ) ∈ fairmerge}
• fairmerge = (L∗RR∗L)ω ∪ (L ∪R)∗A,

where

L = {(σ, ε, σ) | σ ∈ Σ}
R = {(ε, σ, σ) | σ ∈ Σ}
A = {(ε, α, α), (α, ε, α) | α ∈ Σ∗ ∪ Σω}
cf. Park (1979)

• Fair parallel composition is a
continuous function on closed sets
of traces.

11

RELATED WORK

• Abrahamson (1979), Park (1979):

– no stuttering or mumbling

– not fully abstract

• de Boer, Kok, Palamidessi, Rutten
(1991):

– only restricted mumbling

– different language and behavior

– ignores fairness

• Abadi, Plotkin (1993):

– finite traces, stuttering, mumbling

– closed under prefix

– full abstraction for safety properties

– ignores fairness

12

FURTHER RESEARCH

• Connection with logic:

– generalized Hoare logics

– safety and liveness

– modal logics (e.g. LTL, CTL,
µ-calculus)

• Laws of program equivalence, for:

– program transformation, derivation

– parallelization

– simplification of program proofs

• Full abstraction for fairly
communicating processes

– Hoare’s CSP

– Milner’s CCS with value-passing

13

