On the Kahn Principle
and Fair Networks

Stephen Brookes

Department of Computer Science
Carnegie Mellon University

MEPS
May 1998

KAHN NETWORKS

A model of deterministic systems. . .

e data as streams

— V'° = finite and infinite sequences

— ordered by prefix

e nodes as deterministic processes
— processes communicate asynchronously on
buffered channels

— each process computes a continuous
input-output function

— VXX V= VX
e Kahn's principle

— mutually recursive functions

— network behavior is least fixed point

EXAMPLE

filter(p, a, b) =
local z in
while true do

(a?z; if x mod p # 0 then blx);

sift(a, out) =
local b, p in
begin
a’p; out!p:
filter(p, a, b) || sift(b, out)
end

nats(k, a) = alk; nats(k + 1, a)

primes(out) =
local a in (nats(2,a) || sieve(a, out))

3

ADVANTAGES

e Language combines Algol and CSP
— restricted subset
e Simple network calculus

— cascade, feedback
— Juxtaposition
— recursion
e Supports network analysis
— safety: every output is prime

— liveness: every prime will be out-
put eventually

e Describes causality

— f(e) = € and f(v) # € implies

Iput causes output

4

OPERATIONAL
JUSTIFICATION

Nodes are computing stations
e finite work in finite time
e compute output from input

e deterministic

Continuity matches intuition
(1) more input = no less output
(2) finite output needs finite input

(3) infinite output appears as the limit
of its finite prefixes

LIMITATIONS

e Deterministic
— limited applicability
— no shared input or output
— visible channels unidirectional

— node waits on at most one input

e Non-homogeneous

— nodes are sequential
— sequential composition is non-monotone
— semantics of nodes given separately

— prevents hierarchical analysis

e Doesn'’t easily generalize to
non-deterministic case

— Brock-Ackerman anomaly

— problems with fairness

NON-DETERMINISM

e Sharing output channels

merge(left, right, out) =
local z,y in
while true do left’z; outlx
| while true do right?y; outly

e Sharing input channels

split(in, left, right) =
local z in
while true do in’x; leftlx
| while true do in?x; rightlx

e Bi-directional channels

local z,y in
while true do (a?z||b7y; aly|blx)

GENERALIZING KAHN

Traditional aims:

e as simple as possible
e retain spirit of continuity

e least fixed point

Examples:

e stream relations, hiatons, scenarios
e [/O automata

e sets of continuous functions

Typical limitations:

e only continuous operations
e fairness absent or restricted

e operational justification

8

BROCK-ACKERMAN (1)

local x,y in (:7x; olz; i7y; oly)
local x,y in (:7x;i7y; olz; oly)

str| Py # str|Ps]

= local l/,r’,i in
D(LU) | D(r, o) | M || [-]

local z in (172;1'2;1'12)

= merge(l',r’, 1)

str{S[P]] = str]S[P5]]

BROCK-ACKERMAN (2)

T|—] = local h,r,0in
=1 || spray || times5

spray = local z in
while true do (07z;b!z; h!z)

timesb5 = local z in
while true do (h7z;r!(5 X 2))

str{S[P1]] = str]S[P]]
str{T[S|PL]] # str|T'[S[P]]

Stream relations are not compositional
for non-deterministic networks

10

IS CONTINUITY FAIR?

B:

B =

B>|< —

local z in
while true do (a’z;b!x)

local z in
while true do (skip or (a’z;blz))

local z,n in
n:="7;for i:=1 to n do (a’z;blx)

STREAM BEHAVIORS

str| B

| =A{(p,p) | p eV}
str]B']

str] By

={(p,0) o <p&p,oecV>}
= {(p,p) | peV*} not continuous

No operational justification for

1mposing continuity

11

OPERATIONAL
CONSIDERATIONS

e Rationale

(1) more input = no less output

(2) finite output needs finite input

(3) infinite output occurs as limit of
finite prefixes

e Non-deterministic case
— (1), (2) hold, but not (3)

— cach finite prefix might come from
a different computation

— continuity rules out fairness

— continuity confuses causality

Operational justification fails

12

A PROBLEM WITH
SEQUENCING

Two deterministic processes:

sink(a,b) = local x in a’x
source(a,b) = bl0

Theilr stream functions:

strlsink] = {(p,€) | p e V°°}
strlsource] = {(p,0) | pe V>}

Not compositional:

str|sink] = str[skip]
str|sink; source|(e) = €
str[skip; source(e) = 0

13

ASSESSMENT

For non-deterministic networks:
e fairness is fundamental

— abstracts from network details

e continuity is not operationally
justifiable

e stream relations blur causality and
cannot be composed

e stimulus-response behavior is
important

— need a more intensional model

but we’d still like to stay faithful to
Kahn’s Principle. ..

14

FAIR NETWORKS

e nodes are non-deterministic
— asynchronous communication
e nodes and networks are processes
— hierarchical network structure
e processes denote trace sets
— stream relations extended in time
e fair parallel execution
— a reasonable abstraction
e fixed point characterization

— fair parallel composition

— recursive process definitions
e operational justification

— trace sets match operational semantics

15

ADVANTAGES

e compositional
— no anomalies
e supports network analysis

— safety and liveness properties

— stimulus-response
e homogeneous

— supports hierarchical analysis
e dynamic networks

— recursion

— nested parallelism
e fairness incorporated
— vital for liveness
e can extract stream relation

— agrees with Kahn interpretation in deter-
ministic cases

16

TRACES

e A state is a tuple w = (v, p) giving
the values of variables and contents
of channels

e A trace is a sequence
of state changes

(wp, wh) (wi, wy) ... {wn, w) ...

recording a fair interaction

e A step (w;,w;) models a finite se-

quence of atomic actions

INTUITION

communication = state change
interference = action by environment
unrequited input = busy wait

17

CATEGORY of WORLDS
e Objects: countable sets
W = (Vix---xVp)x(H{ x---xHJ)

e Morphisms: expansions

h=(f,Q):W—W
where f: W' — W
QCW xWwW

INTUITION

e A world W is a set of states with the
same “shape”

e A morphism A : W — W' is an
“expansion”

18

FUNCTORIAL SEMANTICS

Types as functors
[proc]W = PT((W x W)>)

[chan|7||W = (V; — (W — W)) put
x (W — (W x Vi)option) get

Phrases as natural transtormations
e When m - P : proc

traces|P|W : [x]|W — [proc|W
e When i : W — W' and v’ = [r]hu
[proc]h(traces[P]Wu) = traces[P]W v/

INTUITION

Naturality enforces
locality constraints

19

TRACE SEMANTICS

e A process denotes a total trace set

— total relation, extended in time

— complete recipe for interaction

e Trace sets are closed
afcet&weW = alw,w)fet stuttering

alw,w) (w, v et = alw,w")F et mumbling

CAVEAT

Trace sets are not prefix-closed
and not closed under limit

A trace represents an
entire computation

20

DOMAINS

Total trace sets form a domain
e ordered by reverse inclusion
e measures non-determinism

e not an information order

Traces form a domain
e ordered by prefix

e irrelevant and misleading

Powerdomains not needed
e cannot deal with fairness
e induce wrong ordering

e too complex

21

SEMANTIC DEFINITIONS

Assume W =V x V*
e skip has traces of form
(wo, wo) - - - (W, W)

e h'x has traces of form
((v,np), (n, p))

<<U07 6)7 (U()a €)> e <(U/€7 6)7 (vka €>> e

e 1!0 has traces of form

(v, 0), (v,00))

e sequential composition

concatenation

e parallel composition

fair merge

22

PARALLEL COMPOSITION
h!l || while true do h!0 = (h!0)*A!1(Al0)¥

FAIRMERGE
fairmergeq € P(A™ x A% x A™)

fairmergey = vR. both - R U one
= both* - one U both”

where

both = {(O&,ﬂ,@ﬁ>,< ;

e} ﬁaﬁ@) ‘ o, € A+}
one = {(a,€,a), (€, 5,0) |

a, e A}
fairmerge is natural

23

CHOICE

An external choice
(a?x — P)O(b7x — Py)
can
e input on a and behave like P;
e input on b and behave like P

e busy-wait while a and b are empty

An internal choice
(a?r — P) M (b7x — Py)

can busy-wait if either a or b is empty

24

LOCAL CHANNELS

The traces of
local h : chan|7] in P

at world W are projected from the traces
of P at W x VX in which

e initially h = ¢

e /1 is never changed externally

EXAMPLES
e local h in (hle|h?x) = x:=e

e local hin (hl0; P) = P
if h does not occur free in P

e local hin (h?x; P) = while true do skip
because of unrequited input

25

RECURSION

Recursive process definitions
B=a’r;bx; B

correspond to guarded functions on
total trace sets,

F(t)={a?v;blv;a|veV & a et}
with least solutions
B ={a;blv | veV}¥

obtained by iteration

Generalizes to mutually recursive famailies

26

STREAM RELATIONS

For a trace set T" over V:* x V' let
rel(T) C V°° x V° be

rel(T) = {(p,0) | p={pn), o= (on) &

((po, €), (0, 00))
((0op1,€), (01,01))

............ e T}
EXAMPLES
rel(traces|B]) = {(p,p) | p € V°}
= str|B]

rel(traces[primes]) = str[primes]
rel(traces|ABP|) = str|B]

27

ANOMALIES?

e Brock-Ackerman

— traces| P]| # traces|Ps]
— traces|S|P1]|] # traces[S[P]]

e Sequential composition

— traces|sink] # traces|skip]

e Buffers
— traces|B] # traces|B'] # traces| B]

28

LAWS

e Symmetry

local Ay in
local ho in P
= local h9 in
local Ay in P

e Scope contraction

local hin (P||) =
(local h in Py)|| P

when A not free in P

e Functional laws

(Az.P)(Q) = P|Q/x]
rec x.P = Plrec x.P/x]

29

FEEDBACK

feedback(N,i,0) = local i in [i/0|N

JUXTAPOSITION

justapose(N1, No) = Np||No

CASCADE

cascade(Ny, No) =
local i in

[h/oIN || [/1] N

30

CONCLUSION

Trace semantics
e can handle non-determinism

— bi-directional channels
— shared channels

— fair parallelism
e generalizes stream functions
e is faithful to Kahn’s spirit
e validates natural laws
e provides a unifying semantic model

— shared-variable parallelism

— non-deterministic networks

— CGSP

e is operationally justified

31

FURTHER WORK
e Applications

— security protocols

— deadlock analysis
e Methodology
— unification of paradigms
— exploiting fairness
e Concurrent objects
— private state + methods
e Language design
— Parallel Algol, Idealized CSP
e Full abstraction

e Connection with game semantics

32

ALTERNATING BIT

ABP =

local send, trans, reply, ack in
Accept(0) || Medium || Replying(1)

o Medium 1s non-deterministic

— may lose or replicate
— cannot lose forever

— cannot replicate forever
o ABP is deterministic

— behaves like a buffer
e [Fairness is crucial

— guarantees liveness

33

