
Electronic Notes in Theoretical Computer Science 20 (2008)
URL: http://www.elsevier.nl/locate/entcs/volume20.html 20 pages

Reasoning about recursive processes:
Expansion is not always fair.

Stephen Brookes

Department of Computer Science
Carnegie Mellon University
Pittsburgh, PA 15213, USA

Abstract

When reasoning about parallel programs we would like to combine fixed-point laws
for unrolling recursion with expansion laws for parallel composition. Algebraic
manipulation using this combination is dangerous, because of the need to stay
faithful to the assumption that parallel processes are executed fairly. We give an
example of a finite-state parallel system in which the combination of fixed-point laws
with a Milner-style expansion law causes a mismatch with fair parallel composition.
Similar difficulties are well known in the literature, and it is traditional to conclude
that the problem is caused by the unbounded non-determinism and inherent lack
of continuity associated with fairness. Rather than laying the blame on fairness, we
propose a new form of fair expansion for processes. Every finite-state process has
a fair expansion, which characterizes its behavior when run for an arbitrary finite
number of steps. We show that fair expansion interacts smoothly with recursion
and with parallel composition. We provide a fair expansion rule for obtaining a
valid expansion for a parallel system from fair expansions for its components. We
establish a theorem on the recursive characterization of parallel compositions of
recursive processes, in what amounts to a fair parallel generalization of Bekic’s
theorem concerning simultaneous recursive definitions. We also discuss how to
incorporate local variables.

1 Introduction

When reasoning about safety and liveness properties of parallel networks it is
vital to use a semantic model that assumes (weakly) fair execution, building
in the guarantee that every process that has not terminated will eventually be
scheduled for activity. This form of fairness is a convenient abstraction from
network implementation details; reasonable schedulers using simple strategies
such as “round-robin” do provide such guarantees. The assumption of fairness
permits us to ignore irrelevant, unavailable, and imponderable book-keeping
information about scheduling order. Moreover, many liveness properties do

c©2008 Published by Elsevier Science B. V.



Brookes

not hold unless fairness is assumed. For example, the fact that the Alternat-
ing Bit protocol properly transmits data from sender to receiver, despite the
lossiness of the transmission medium, depends crucially on fair interaction [12].

Reasoning about parallel systems tends to be complicated because of the
potentially complex patterns of interaction between processes running concur-
rently. A natural way to simplify the task and help to avoid a combinatorial ex-
plosion is to use algebraic laws of program equivalence. Such laws can stream-
line proofs of correctness, and can be applied without the need for detailed
analysis of the actual semantics of a network. For example, Kahn’s elegant
and simple stream-based semantics for deterministic dataflow networks relies
on elementary fixed-point theorems due to Scott, Bekic, and Vuillemin [9,5].
Fairness also plays a crucial role here: Kahn’s semantics is only sound if the
processes in a network are assumed to be executed fairly [5].

Several specification languages and calculi have been proposed for rea-
soning about concurrent systems, including Milner’s CCS [12] and Hoare’s
CSP [7]. The semantics of CCS involves synchronization trees and employs
(strong or weak) bisimulation as the notion of program equivalence [12]. The
traditional semantics for CSP is based on failure sets and divergence traces [8].
Milner introduced an expansion theorem for reducing parallel compositions of
CCS processes to a simpler form involving non-deterministic choice. Expan-
sion laws have also been used by Roscoe et al as the basis for the development
of the FDR model checker for finite-state CSP programs [6,16,1]. In each of
these cases there is a variety of useful algebraic laws of process equivalence,
sound with respect to the relevant semantic model. However, in neither of
these cases was fairness built into the semantic framework, nor do the process
equivalence laws accurately reflect fair execution.

As we have argued above, fairness is a vital assumption and we need a
methodology for reasoning about processes that incorporates fairness. We
would like to be able to combine laws concerning recursive process definition
with laws specific to fair parallelism and be assured that “everything works
out”. By analogy, when reasoning about Kahn-style networks we can expand
or contract recursive definitions for the individual nodes of a network and be
sure that the semantics of the overall network remains unchanged: the fixed
point obtained as the semantics of an “expanded” network coincides with the
fixed point of the equations describing the original network. We would like
to obtain similar guarantees in a more general setting. However, näıve use
of expansion and recursion laws is dangerous, because of the need to remain
faithful to the underlying fairness assumption. To put it crudely, expansion
isn’t fair. We give an example of a finite-state parallel system in which the
combination of fixed-point laws, a Milner-style expansion law, and fair parallel
composition leads to operationally misleading conclusions. Specifically, the
result is an expansion which holds equally well in an unfair semantics and in
a fair semantics, so that it fails to capture the process’s intended behavior.

It has been traditional to point to the unbounded non-determinism and

2



Brookes

inherent lack of continuity engendered by fairness as the cause of these difficul-
ties. Thus, it has been argued, fairness does not fit conveniently into standard
fixed-point theory, so this kind of mismatch between fairness and recursion is
only to be expected. Our response to this mismatch is different, since we re-
gard fairness as a fundamental concept which must be incorporated smoothly
in the semantics of parallel programs. Of course we also wish to retain the
traditional treatment of recursion. Rather than laying the blame on fairness,
we propose a new form of fair expansion for processes.

Whereas a Milner-style expansion reveals the initial atomic actions of a
process, we use more general “prefix expansions” which specify a finite initial
portion of a process’s behavior. Prefix expansions are “closed under expan-
sion”, in the sense that we may freely perform expansions in any context
without affecting the semantics of the system being analyzed. A fair expan-
sion is a prefix expansion that reveals the process’s potential behavior when
run for an arbitrary finite number of steps. Every finite-state process has a fair
expansion so that such expansions provide a widely applicable specification
framework. We show that fair expansion interacts smoothly with recursion
and with fair parallel composition. We provide a rule for generating a valid
expansion for a network from fair expansions of its components. We state a
theorem on the recursive characterization of parallel compositions of recur-
sive processes, in what amounts to a fair parallel generalization of Bekic’s
theorem concerning simultaneous recursive definitions. We also show how a
localized form of expansion can be obtained for a process which has local or
private variables. This leads to a theorem concerning the solution to recur-
sive process definitions in which each process is equipped with local variables.
We illustrate the utility of our ideas and results by examining some simple
examples.

2 Syntax and semantics

We use a CSP-like syntax for processes [7,4,5]; such notation was also used
by Kahn [9,10] for deterministic dataflow networks, and we generalize to al-
low non-determinism. Unlike Hoare’s CSP [7], but as in Kahn networks, we
assume that communication is asynchronous: a process performing output
never blocks, and a process attempting an input waits if the relevant channel
is empty. Also unlike CSP, processes may share state. We assume (weak) fair-
ness: in a parallel composition, each non-terminated process will eventually
be scheduled.

Our semantic model uses “transition traces” [13,2–5]. We provide here
a brief summary of the main technical details and concepts, which should
provide sufficient background for the rest of the paper 1 .

1 In fact we begin with a simpler, less abstract form of trace semantics than was used
in [2–5], working with traces in which each step represents a single atomic action. This
permits a more straightforward account of recursion. Later we will show how to adapt our

3



Brookes

A finite transition trace of a process P has the form

(s0, s
′
0)(s1, s

′
1) . . . (sn, s

′
n)

and represents a computation of P starting in state s0, ending in s′n, during
which the process’s “environment” makes a sequence of interruptions. The
environment represents the rest of the network, i.e. the effect of other processes
executing concurrently. Each step (si, s

′
i) represents the effect of an atomic

action performed by P , and each interference step from s′i−1 to si represents
the effect of a finite sequence of atomic actions by the environment. An infinite
transition trace of form

(s0, s
′
0)(s1, s

′
1) . . . (sn, s

′
n) . . .

represents an infinite interactive computation of the same nature, assuming
fair interaction between the process and environment.

Trace semantics can be defined denotationally[13,2–5]. Each program con-
struct determines a monotone function on the complete lattice of trace sets
(ordered by set inclusion). The traces of P‖Q are fair merges of traces of P
and Q. The traces of P ;Q are obtained by concatenation. The traces of a
recursively defined process are obtained as the greatest fixed point of the cor-
responding function on trace sets [17,2,3], whereas taking the least fixed point
yields only the finite traces of the recursive process. We will write tr(P ) for
the trace set of P .

Note our use of a single unifying semantic framework for shared-variable
programs and communicating processes. We incorporate channels directly
into the state, so that an input or output action is modelled as a particular
kind of state change. The potential for deadlock is modelled by a form of
infinite stuttering. We avoid the traditional reliance on channel names in the
internal structure of traces, in contrast with Hoare-style traces. Although our
semantics is “only” trace-theoretic it still permits reasoning about deadlock.

Trace semantics supports compositional analysis of safety and liveness
properties. Thus when two processes have the same trace sets one may be
substituted for the other in any network without affecting the correctness of
the overall network.

3 Expansion and recursion

We now turn to finite-state processes. The results here may prove relevant
to model-checking for finite-state networks, although we do not explore the
potential for implementation of these ideas in this paper.

Using a Milner-style CCS-like notation, a finite-state process can be pre-
sented as a “summation” including a “branch” for each atomic action initially

ideas to the fully abstract trace semantics of [2], in which each step represents an arbitrary
finite sequence of atomic actions.

4



Brookes

possible for the process, leading to a representation of the process’s behavior
after this action.

Definition 3.1 (Initial expansion)
An initial expansion for process P has the form

P =
n∑

i=1

ai;Pi,

where each ai is an “atomic” expression representing a single atomic action
such as an input or output, an expression evaluation, or an assignment, and
each Pi is a process. For a finite-state process P each of the processes Pi will
also be finite-state.

We use the term initial expansion, or Milner-style expansion, rather than
simply “expansion”, to avoid confusion with what follows.

Although originally phrased in terms of CCS synchronization trees [12],
with equality interpreted as bisimulation [14], this kind of initial expansion for-
mula can also be used in the trace-theoretic setting, with equality interpreted
as trace equivalence. We say that the expansion formula P =

∑n
i=1 ai;Pi is

sound (or valid) if the traces of P are accurately represented as the union of
the traces of the branches, i.e. if

tr(P ) =
n⋃

i=1

{αiβi | αi ∈ tr(ai) & βi ∈ tr(Pi)}.

This kind of expansion generalizes to mutually recursive process definitions
as follows. The notation rec (p1, . . . pk). (Q1, . . . , Qk) represents a tuple of k
processes, defined by mutual recursion; each of the process variables p1, . . . , pk

may appear in Q1, . . . , Qk. An expansion for such a term has the form

rec (p1, . . . , pk). (Q1, . . . , Qk) = rec (p1, . . . , pk). (

n1∑
i1=1

ai1 ;Pi1 , . . . ,

nk∑
ik=1

aik ;Pik)

where we allow p1, . . . , pk to occur free in the Pij . The soundness criterion for
such an expansion is the obvious generalization of the above.

It is convenient to present recursive definitions via sets of equations. For
example the equations

p = a!0; p+ b!0; q q = c!1; q

correspond to the term rec (p, q). (a!0; p + b!0; q, c!1; q). Taking the greatest
fixed-point of the corresponding functional yields the trace sets

tr(p) = (a!0)∗; b!0; (c!1)ω + (a!0)ω tr(q) = (c!1)ω,

where we take the liberty of writing a!0 (and so on) to denote the correspond-
ing trace set tr(a!0). This is consistent with the above expansion, since the

5



Brookes

trace sets given by these formulae do satisfy the intended equations:

tr(p) = a!0; tr(p) + b!0; tr(q) tr(q) = c!1; tr(q).

The standard fixed-point theorem for reasoning about recursive definitions
asserts that

rec p.P = P [(rec p.P )/p].

This law is valid in our semantics, since

tr(rec p.P ) = tr(P [(rec p.P )/p]).

Similarly, greatest fixed-point induction is a valid rule of inference: whenever
P = F (P ) it follows that P ⊆ rec p. F (p).

Milner introduced an expansion law for “reducing” parallel composition
to non-deterministic choice [12], producing an initial expansion for P‖Q from
initial expansions for P and Q. Milner’s original law was designed to model
a synchronizing form of parallel composition, and was sound with respect to
bisimulation. We deal here with asynchronous processes and trace equivalence.
The appropriate asynchronous expansion law for our setting is the following.

Theorem 3.2 (Asynchronous expansion law)
If P =

∑n
i=1 ai;Pi and Q =

∑m
j=1 bj;Qj are valid, then

P‖Q =
n∑

i=1

ai; (Pi‖Q) +
m∑

j=1

bj; (P‖Qj)

is valid.

This expansion law is sound in our fair semantics. If the traces of P and
Q are accurately characterized by the given expansions for P and Q, then the
traces of P‖Q coincide with the traces of the expanded form given here. The
assumption that the ai and bj represent atomic actions is crucial: if the ai

had non-trivial computations (and therefore had non-trivial traces of length
greater than 1) the rule would cease to be sound.

4 Expansion isn’t always fair

As we have remarked, the Milner-style asynchronous expansion law is a sound
rule of inference when parallel composition is interpreted as fair merge of trace
sets. It is tempting to believe that the presence of summands coming from P as
well as summands coming from Q on the right-hand side “builds in” fairness.
However, it is easy to see that this is not the case: the above expansion rule
is still sound if we interpret parallel composition unfairly on both sides of the
equation. In this sense, the Milner-style expansion law does not encapsulate
fairness.

As a result of this insensitivity to the distinction between fair and unfair
execution, we need to be careful when combining recursion and expansion.

6



Brookes

This is illustrated by the following example. Let p and q be defined by

p = a!0; p q = a!1; q.

Thus tr(p) = (a!0)ω and tr(q) = (a!1)ω. The above equations amount to an
initial expansion for these processes. Since we assume fair execution, tr(p‖q)
consists of the traces containing output of an infinite number of 0’s and an
infinite number of 1’s on channel a. Using the fixed-point property (in the
forwards direction), the asynchronous expansion law, and the fixed-point prop-
erty again (backwards), we can derive the following initial expansion for p‖q
from the above equations:

p‖q = (a!0; p)‖(a!1; q)

= a!0; (p‖(a!1; q)) + a!1; ((a!0; p)‖q)

= a!0; (p‖q) + a!1; (p‖q).

Since each step in this derivation is semantically sound, so is the conclusion:
p‖q is a fixed-point of the corresponding functional. Indeed, every trace of
p‖q does begin either with a!0 or with a!1, and the subsequent behavior is the
same as that of p‖q. However, the corresponding recursion r = a!0; r + a!1; r
does not have a unique fixed-point. Its greatest fixed-point is (a!0 + a!1)ω,
which includes traces such as (a!0)ω that do not represent fair executions
of p‖q. In fact this greatest fixed-point really represents the unfair parallel
composition of p and q. The least fixed-point is the empty set, which also
fails to represent the intended behavior. Thus the expansion equation does
not uniquely characterize the intended trace set.

This simple example is symptomatic of a pervasive problem: we find that
a process satisfies a recursive equation and we seek assurance that this fully
and uniquely characterizes the process. This kind of problem arises frequently
when trying to show that a process p defined as the greatest fixed-point of
a functional F coincides with the process or specification q defined as the
greatest fixed-point of a functional G. Showing that p = G(p) is insufficient
to allow the conclusion that p = q; it may be difficult to show the “converse”,
i.e. that q = F (q); and the functions F and G may not have unique fixed-
points.

There is a problem, then, with the interaction between fair parallelism,
recursive definitions, and Milner-style expansions 2 . Since the fairmerge rela-
tion on trace sets can be characterized as a greatest fixed-point [2], so that one
might reasonably expect fair parallelism to interact smoothly with recursion,
we will focus our attention on the form of expansion chosen for processes.

The problem stems from the decision to use an expansion form based on

2 Such problems are dealt with in a different manner in Parrow’s work on fair process alge-
bras [15]; using Milner-style expansion laws and bisimulation as the behavioral equivalence,
Parrow incorporates fairness “on top of” an unfair semantics by means of an infinitary
restriction operator.

7



Brookes

initial actions. In contrast, the fairmerge relation is most naturally described
in terms of letting each process run for an arbitrary finite number of steps at
a time. Intuitively, a Milner-style expansion is too “shallow”, and we propose
instead a “deep” form of expansion. Again, the issue here is not soundness:
Milner’s expansion law, and the usual fixed-point laws, are all semantically
sound. But we want to provide a form of expansion, and a methodology for
reasoning about parallel composition, which accurately encapsulates fairness.

5 Fair expansion

We now propose a form of expansion in which the branches incorporate “steps”
based on finite prefixes of traces, rather than initial atomic actions. Bearing
in mind our desire to stay faithful to fair execution, we therefore make the
following definition.

Definition 5.1 (Fair expansion)
A fair expansion for a process P is a summation of the form

P =
n∑

i=1

Ai;Pi

where each Ai denotes a set of (non-empty) finite traces, and the following
conditions hold:

(i) tr(P ) =
⋃n

i=1{αiβi | αi ∈ tr(Ai) & βi ∈ tr(Pi)}
(ii) ∀α ∈ tr(P ). ∀β ≤fin α. ∃i. β ∈ tr(Ai) & α after β ∈ tr(Pi).

The first condition says that the traces are accurately described by the
expanded form. The second says that every finite prefix β of a trace of P
belongs to one of the Ai, and its suffix belongs to the corresponding Pi. (When
β ≤ α we write α after β to denote this suffix.) Intuitively, this means that
the branches Ai (i = 1, . . . , n) are “deep” enough to account for all possible
finite partial runs of P .

As before, we generalize to mutually recursive process definitions: a for-
mula of the form

rec (p1, . . . , pk). (Q1, . . . , Qk) = rec (p1, . . . , pk). (

n1∑
i1=1

Ai1 ;Pi1 , . . . ,

nk∑
ik=1

Aik ;Pik),

where we allow p1, . . . , pk to occur free in the Pij , is a fair expansion if the
obvious generalized version of the above criteria hold, for the tuples of trace
sets obtained by solving the corresponding fixed-point equations.

Returning again to the example, the formula

rec (p, q). (a!0; p, a!1; q) = rec (p, q). (a!0; a!0; p, a!1; a!1; q)

is not a fair expansion, since (for instance) the first component process has
traces beginning with arbitrarily long sequences of outputs, and these prefixes

8



Brookes

are not all traces of (a!0; a!0). Instead, the formula

rec (p, q). (a!0; p, a!1; q) = rec (p, q). ((a!0)+; p, (a!1)+; q)

is a fair expansion, which may be written equivalently in equational form as

p = (a!0)+; p q = (a!1)+; q

Every non-empty finite partial run of the first process belongs to (a!0)+, and
similarly for the second process and (a!1)+; thus the criteria for “deepness” of
the expansion branches are met.

Every finite-state process has a fair expansion. Moreover, fair expansions
for the parallel components of a network can be used to derive a valid expan-
sion for the entire network, as shown by the following fair expansion law.

Theorem 5.2 (Fair expansion law)
If P =

∑n
i=1Ai;Pi and Q =

∑m
j=1Bj;Qj are fair expansions, then

P‖Q =
n∑

i=1

m∑
j=1

(Ai‖Bj); (Pi‖Qj)

is a valid expansion.

Proof Assume that the expansion formulas given for P and Q are fair:

(i) tr(P ) =
⋃n

i=1 tr(Ai); tr(Pi)

(ii) ∀α ∈ tr(P ). ∀α′ ≤fin α. ∃i. α′ ∈ tr(Ai) & α afterα′ ∈ tr(Pi)

(iii) tr(Q) =
⋃m

j=1 tr(Bj); tr(Qj)

(iv) ∀β ∈ tr(Q). ∀β′ ≤fin β. ∃j. β′ ∈ tr(Bj) & β after β′ ∈ tr(Qj)

We need to show that

• tr(P‖Q) =
⋃n

i=1

⋃m
j=1 tr(Ai‖Bj); tr(Pi‖Qj)

Inclusion from right to left is easy, i.e.

tr(P‖Q) ⊇
n⋃

i=1

m⋃
j=1

tr(Ai‖Bj); tr(Pi‖Qj),

although it is worth commenting that this does rely on the built-in assumption
that the Ai and Bj contain only non-empty and finite traces.

To show inclusion from left to right, suppose γ ∈ tr(P )‖tr(Q). Thus γ is a
fair merge of a trace α ∈ tr(P ) with a trace β ∈ tr(Q). By (i) and (iii), there
are i, j such that α ∈ tr(Ai;Pi), β ∈ tr(Bj;Qj). By (ii), (iv), and the definition
of fairmerge some sufficiently long prefix of γ is a fair merge of a trace from
Ai with a trace from Bj, and the rest of γ is a fair merge of a trace of Pi with
a trace of Pj. Thus γ belongs to tr(Ai‖Bj); tr(Pi‖Qj), as required. 2

Note the differences between the fair expansion law and the Milner-style
law discussed earlier. Here the Ai and Bj denote (non-empty) sets of finite
traces, and so do the Ai‖Bj, whereas in the earlier kind of expansion the ai

represent atomic actions, which amount to trace sets containing only traces

9



Brookes

of length 1. Intuitively, our expansion law is sound because of the built-in
property that the Ai and Bj are “sufficiently deep” to account for all finite
prefixes of all traces of P and Q, respectively.

Again revisiting the example, letting P = rec p.a!0; p and Q = rec q.a!1; q,
we have fair expansions

P = (a!0)+;P

Q = (a!1)+;Q,

so we can conclude that

P‖Q = (a!0)+‖(a!1)+; (P‖Q)

is a valid expansion. Note that the greatest fixed-point of the corresponding
functional is ((a!0)+‖(a!1)+)ω, and this is indeed the trace set for (a!0)ω‖(a!1)ω.
Thus we obtain an expansion for P‖Q which accurately captures the intended
behavior and embodies fair parallel interaction: this expansion is not valid in
an unfair semantics.

We do not propose fair expansions as canonical: a process will typically
have many distinct fair expansions. For example, in addition to the fair expan-
sion given above, rec p. a!0; p also has the fair expansion p = (a!0)+; (a!0)+; p.
Nevertheless all fair expansions for a given process are semantically equivalent,
since they all denote the same trace set. The differences concern the choice
of Ai, and there is typically no canonical choice. It might be interesting to
find syntactic constraints on the structure of an expansion sufficient to en-
sure that every process has a unique fair expansion obeying the constraints.
Such a form of expansion might then serve as a normal form, so that to prove
equivalence of two processes it would suffice to show that they have the same
normal form. In contrast, Milner-style expansions are unique, modulo the
order in which the summands are listed (and number of times each summand
is included). However, the lack of canonicity can also be regarded as a virtue:
unlike initial expansions, prefix expansions are closed under expansion, in the
following sense.

Theorem 5.3 If P =
∑n

i=1Ai;Pi is a valid expansion and, for each i ∈ 1 . . . n,
Pi =

∑ni

j=1Bij ;Qij is a valid expansion, so is

P =
n∑

i=1

ni∑
j=1

(Ai;Bij );Qij .

Proof Immediate by associativity of trace concatenation. 2

Although this property might seem too trite to bother with, it does give
the guarantee that we can freely substitute expanded forms into calculations
involving processes without concern: whatever expansion we arrive at will still
qualify as valid.

The fair expansion law shows how to derive a valid expansion for P‖Q
from fair expansions for P and Q. Although the parallel composition of two

10



Brookes

fair expansions will not generally be fair itself, it will be “almost fair”, in that
every finite prefix of a trace of the process extends to a trace belonging to one
of the Ai‖Bj with suffix belonging to Pi‖Qj. This is enough to guarantee that
the expansion obtained for P‖Q will characterize this process uniquely, in the
sense that it captures the essence of fair parallel interaction between P and
Q. Obviously a fair expansion is also almost fair, but the converse may fail.
The property of “almost fairness” is crucial in justifying what follows below
concerning the interaction between recursion and parallel composition, but
it is worth noting that the notion of almost fair expansion is strictly weaker
than the notion of fair expansion. The problem is that parallel composition
of almost fair expansions for P and for Q may produce an invalid expansion
for P‖Q. To see this consider the following almost fair expansions for P =
rec p.a!0; p and Q = rec q.a!1; q:

P = (a!0; a!0)+;P Q = (a!1; a!1)+;Q.

These expansions are almost fair because every non-empty prefix of a trace
of P either is or extends by an additional step to a trace in (a!0; a!0)+, and
similarly for Q. Parallel composition according to the fair expansion law would
produce the expansion

P‖Q = (a!0; a!0)+‖(a!1; a!1)+;P‖Q,

but this is not a valid expansion, since P‖Q has the trace

a!0; a!1(a!0; a!0; a!1; a!1)ω,

which has no non-trivial finite prefix belonging to (a!0; a!0)+‖(a!1; a!1)+, since
none of its non-empty prefixes contains an even number of 0’s and an even
number of 1’s. It follows that this trace does not belong to the expanded
process, and hence that the expansion is invalid.

To demonstrate the way fair expansion interacts with recursion we now
establish a theorem concerning the fair parallel composition of recursively
defined processes. We state here a specialized version, assuming that the
processes are described according to a particular (and common) tail-recursive
template.

Theorem 5.4 (Parallel recursion law)
Suppose the following is a fair recursive expansion for the
processes variables p1, . . . , pn:

p1 = A11; p1 + A12; p2 + · · · + A1n; pn

p2 = A21; p1 + A22; p2 + · · · + A2n; pn

. . .

pn = An1; p1 + An2; p2 + · · · + Ann; pn.

11



Brookes

Let pij (i, j = 1, . . . , n) be the processes defined recursively by the n2 equations

pij =
∑

i′,j′∈1...n

(Aii′‖Ajj′); pi′j′ (i, j = 1 . . . n).

Then for each i and j we have pi‖pj = pij.

Proof Let > denote the tuple of length n2 all of whose components are equal
to the set of all possible traces; this is the maximal element of the lattice of
trace sets. Let F be the functional corresponding to the equations for the
pij It is easy to show that the greatest fixed-point of F is the tuple whose
components are given by

pij =
∞⋂

k=0

F k(>) =
⋃

i1,i2,...

⋃
j1,j2,...

((Aii1‖Ajj1); (Ai1i2‖Aj1j2); . . .),

where each ik and jk ranges over the index set {1, . . . , n}. Similarly the pro-
cesses pi have trace sets

pi =
⋃

i1,i2,...

(A1i1 ;Ai1i2 ; . . .).

It is easy to see from these characterizations that every trace of pij is also a
possible trace for pi‖pj. For the converse inclusion we argue as in the proof of
the fair expansion law, this time to show that for all k ≥ 0 we have

(p1‖p1, . . . , pi‖pj, . . . , pn‖pn) ⊆ F k(>).

The base case holds trivially. For the inductive step, suppose that the above
inclusion holds for k = m. Using the fair expansion law on the given fair
expansions for the pi we deduce that

pi‖pj =
∑

i′,j′∈1...n

(Aii′‖Ajj′); (pi′‖pj′)

is a valid expansion, for each i and j. By definition of F , monotonicity of F ,
and the induction hypothesis it follows that

(p1‖p1, . . . , pi‖pj, . . . , pn‖pn) = F (p1‖p1, . . . , pi‖pj, . . . , pn‖pn)

⊆ F (Fm(top))

= Fm+1(>),

as required. 2

This theorem expresses a parallel composition of two fixed-points as a
(component of) another fixed-point. This kind of result proves very helpful
in analyzing network designs in which component processes are recursively
defined. The theorem can be viewed as a fair parallel generalization of Bekic’s
Theorem on multiple fixed-points. Despite its apparent simplicity, this result
is worth noting because it provides justification for algebraic reasoning based
on expanding processes inside recursive network descriptions, since we obtain

12



Brookes

the guarantee that the overall network’s behavior, characterized as a greatest
fixed-point, is unaffected by such changes. Thus our theorem is also in the
spirit of Kahn’s work on dataflow networks.

The example discussed earlier is a special case of this theorem, and can be
formulated as (rec p. a!0; p) ‖ (rec q. a!1; q) = rec r. ((a!0)+‖(a!1)+); r.

5.1 Regular expansions

We call an expansion P =
∑n

i=1Ai;Pi regular if each of the Ai is a regular
expression 3 and each Pi is again a regular fair expansion.

Similarly we refer to a set of expansion equations as regular if each of the
Aij is a regular expression and each of the Pij is regular.

The range of applicability of this kind of expansion is suggested by the
following result, whose proof is straightforward and relies on elementary formal
language theory.

Theorem 5.5 Every finite-state process has a regular fair expansion.

Note that the fair expansion law preserves regularity: if the expansions for
P and Q are regular, so is the expansion obtained for P‖Q. This is because
the class of regular languages is closed under shuffle, which coincides with
fair merge. We can appeal to algebraic laws concerning regular languages in
proving inclusions or equivalences between the terms Ai‖Bj occurring in such
expansions of different processes [11].

Similarly if we have compose regular expansions we obtain another regular
expansion.

6 Dealing with local variables

Local variables can be used to delimit the scope of interaction between parallel
processes, for example to model a channel of interaction shared by certain
processes but inaccessible to others. The notation local h in P denotes a
process P equipped with a local variable h; processes outside this scope do not
affect h. When the type of h indicates that it is a communication channel, the
traces of local h in P are obtained by projection (ignoring the h-component)
from traces of P in which initially h is empty and the contents of h are never
altered across step boundaries, since the environment has no access to h.
Similarly, when x is an integer-valued local variable and n is an integer, we
write local x = n in P for the process whose traces are obtained by projection
(ignoring the x-component) from traces of P in which initially the value of x
is n and the value of x is never changed across step boundaries. We also find it
useful to employ similar notation for local channels, writing local h = ρ in P ,

3 A regular expression is built up from atomic actions like h!v and h?v using the usual
operations of concatenation, iteration, and union. We also permit the use of parallel com-
position, and we write A+ = AA∗. In ω-regular expressions we use Aω for infinite iteration.

13



Brookes

where ρ is a finite sequence of data assumed to be the initial contents of the
channel; this coincides with the above definition when we take ρ to be the
empty sequence.

The ideas introduced earlier in this paper can be extended to incorporate
local variable declarations. Here we will discuss briefly how to deal with
systems in which local variables take on only a bounded number of values, so
that each process is finite-state.

In order to provide a form of expansion theorem coping with local variables
we first need to introduce some notation. When A is a set of finite traces we
say that a Hoare-style formula {x = v}A{x = v′} is valid if every trace in
A which is interference-free for x and starts from a state in which x = v
ends in a state satisfying x = v′. We write ` {x = v}A{x = v′} to indicate
validity. We also write local x = v in A to denote the traces obtained from
A by projecting out the local variable x. We then obtain the following Local
Expansion Theorem:

Theorem 6.1 (Local expansion law)
If P =

∑n
i=1Ai;Pi is a valid expansion and for each i we have

` {x = v}Ai{x = vi}

A′i =def local x=v in Ai,

then

local x=v in P =
n∑

i=1

A′i; local x=vi in Pi

is valid.

We also obtain the following Local Recursion Theorem, in which we assume
that the pi and qi are distinct process variables.

Theorem 6.2 (Local recursion theorem)
If

pi =

ni∑
j=1

Aij; pj (1 ≤ i ≤ n)

is a valid recursive expansion and for each i and j we have

` {x = vi}Aij{x = vj}

A′ij =def local x = vi in Aij,

then

qi =

ni∑
j=1

A′ij; qj (1 ≤ i ≤ n)

is valid. The fixed-points satisfy qi = local x = vi in pi.

14



Brookes

7 Example: a mutual exclusion protocol

As an example to illustrate our methodology, consider the following semaphore-
based algorithm for achieving mutual exclusion:

local sem = true in (P0‖P1),

where

P0 = while true do

(await sem then sem:=false;

crit0;

sem:=true;

noncrit0)

P1 = while true do

(await sem then sem:=false;

crit1;

sem:=true;

noncrit1)

and where criti and noncriti represent critical and non-critical sections of
code, respectively, and sem does not occur free in any of this code. The
intention is to permit P0 and P1 to keep iterating through their loop bodies
while preventing simultaneous occurrence of crit0 and crit1. It is easy to see
intuitively that this mutual exclusion property is guaranteed by the way the
two processes use the semaphore variable sem. However, the algorithm also
permits starvation, since it is possible for one process to get stuck waiting
forever for the semaphore to be released while the other process keeps running
on and on. We now sketch how this intuition can be supported by formal
analysis using expansions.

The two processes have fair expansions of the following shape:

P0 = cycle0;P0 + . . .+ wait;P0

P1 = cycle1;P1 + . . .+ wait;P1

Here cyclei represents Pi going all the way through its loop body a non-zero
number of times, and wait represents a non-zero number of idle steps in which
the value of s is false. The omitted terms involve cases where Pi gets part
way through an iteration of its loop body; we do not need to discuss these

15



Brookes

cases to demonstrate the potential for starvation. Let us write

grab = {(s, s′) ∈ tr(sem:=false) | s ` sem = true}

idle = {(s, s) | s ` sems = false}

rel = tr(sem:=true)

so that tr(await sem then sem:=false) = idle∗; grab ∪ idleω. Then

cycle0 = (idle∗; grab; crit0; rel; noncrit0)
+

cycle1 = (idle∗; grab; crit1; rel; noncrit1)
+

wait = idle+

We thus obtain a valid expansion for P0‖P1 with the following shape:

P0‖P1 = (cycle0‖cycle1);P0‖P1 +

(cycle0‖wait);P0‖P1 +

(wait‖cycle1);P0‖P1 +

(wait‖wait);P0‖P1 + . . .

When we focus on the traces in which sem is interference-free and is assumed
to start with the value true we see that:

• local sem = true in (cycle0‖wait) = (crit0; noncrit0)
+‖stut+

• ` {sem = true}(cycle0 ‖wait){sem = true}
where stut is the set of trivial one-step “stutter” traces which make no change
to the state. Hence, using the Local Expansion Theorem, there is a valid
expansion with the following shape:

local sem = true in (P0‖P1)

= (crit0; noncrit0)
+‖stut+; local sem = true in (P0‖P1)

+ . . .

It thus follows that

local s = true in (P0‖P1) ⊇ ((crit0; noncrit0)
+‖stut+)ω

= (crit0; noncrit0)
ω‖stutω

showing that it is possible for P1 to suffer starvation. Of course a symmetric
possibility also exists for P0.

8 Imposing closure

So far we have worked with traces built from atomic steps. This version of
trace semantics is closely correlated with a standard operational semantics:

16



Brookes

every step in every trace can be shown to correspond with a transition justi-
fied operationally. However, as we argued in [2], this yields a model in which
certain fundamental laws of process equivalence fail to hold. Notably, the pro-
cesses P ; skip and skip;P denote different trace sets from that of P , although
it is reasonable to expect that these three processes should be indistinguish-
able. This problem can be solved by imposing two natural closure conditions
– stuttering and mumbling – on trace sets, as described in [2]. This leads to a
semantics in which a process denotes a closed set of traces, and each step in
a trace represents the effect of a finite sequence of atomic actions performed
by the process, rather than representing a single atomic action. Every step in
such a trace corresponds with a finite sequence of operationally justified transi-
tions, and this semantics validates the equivalence of P , P ; skip, and skip;P .
In addition this semantics validates a number of natural laws of equivalence
which can be extremely useful in mitigating the analysis of parallel systems.
We now sketch how to incorporate closure into the fair expansion framework.

Let tr†(P ) denote the closure of the trace set of P . The expansion laws and
recursion theorems given above can be recast into this framework, using tr†

instead of tr in the definitions and theorems. In particular, we can interpret
validity of an expansion in terms of tr†, so that P =

∑n
i=1Ai;Pi is valid if

tr†(P ) =
n⋃

i=1

{αiβi | αi ∈ tr(Ai) & βi ∈ tr(Pi)}†.

We then say that an expansion is fair if

(i) tr†(P ) =
⋃n

i=1{αiβi | αi ∈ tr(Ai) & βi ∈ tr(Pi)}†

(ii) ∀α ∈ tr†(P ). ∀β ≤fin α. ∃i. β ∈ tr†(Ai) & α after β ∈ tr†(Pi).

Revisiting the mutual exclusion example, we see that the two processes
have fair closed expansions

P0 = cycle†0;P0 + . . .+ wait†;P0

P1 = cycle†1;P1 + . . .+ wait†;P1

where

cycle†0 = (grab; crit0; rel; noncrit0)
+

cycle†1 = (grab; crit1; rel; noncrit1)
+

wait† = idle+

Taking the closure here allows us to elide the stuttering steps. We thus obtain

17



Brookes

a valid closed expansion for P0‖P1 with the following shape:

P0‖P1 = (cycle†0‖cycle
†
1);P0‖P1 +

(cycle†0‖wait†);P0‖P1 +

(wait†‖cycle†1);P0‖P1 +

(wait†‖wait†);P0‖P1 + . . .

Forming the local expansion as before but taking closures again permits us to
absorb the stutters, so that we end up with an expansion of shape

local sem = true in (P0‖P1)

= (crit0; noncrit0)
+; local sem = true in (P0‖P1)

+ . . .

from which it follows that

local s = true in (P0‖P1) ⊇ (crit0; noncrit0)
ω.

Closed trace semantics validates certain laws which can be used to justify
common parallel programming idioms or “design patterns”. For instance the
following law shows correctness of a form of barrier synchronization, in which
processes periodically synchronize so as to stay “in phase” with each other:

local req, ack in (P1; req!?; ack??; P2)‖(Q1; ack!?; req??; Q2)

= (P1‖Q1); local req, ack in (P2‖Q2),

provided req and ack do not occur free in P1 or Q1.

The value ? is used here as a “token” solely to enforce synchronization. Note
that the local channels are used in a simple manner: the system’s design
ensures that the number of messages on each of these channels is bounded, so
that when the Pi and Qi are finite-state so is the entire system.

Barrier synchronization can also be used to enforce synchronization be-
tween recursive processes. If P1 and P2 are finite-state and do not use channels
req and ack, and the process variables p, q do not occur in P1, P2 respectively,
the network

local req, ack in (rec p. P1; req!?; ack??; p)‖(rec q. P2; ack!?; req??; q)

can be proven equal to the recursive process rec r. (P1‖P2); r by means of the
fair expansion law and the local expansion law.

9 Future Directions

If we allow the unconstrained use of integer- or channel-valued local variables
it is easy to define processes which “count” or otherwise retain “memory”
and therefore are not finite-state. For example, linking together two 1-place

18



Brookes

buffer processes (each of which is finite-state) then localizing their channel of
communication produces an unbounded buffer, since the number of data items
held in the local channel can grow without bound. To deal with such processes
we can introduce countable families of mutually recursive process definitions.

We also intend to demonstrate the wider utility of these ideas and results
by applying them to some examples from the literature. Fair expansion should
be a powerful tool in analyzing networks built from finite-state processes, and
we intend to investigate the possibility of implementing an automated model-
checker based on our ideas.

19



Brookes

References

[1] Blamey, S., The soundness and completeness of axioms for CSP processes, in:
Topology and category theory in computer science, Reed, M. and Roscoe, A.W.,
and Wachter, R. (editors), Oxford University Press, 1991.

[2] Brookes, S., Full abstraction for a shared-variable parallel language, LICS’93,
IEEE Computer Society Press (1993), 98–109. Full version in: Information and
Computation, vol 127, No. 2, Academic Press (June 1996).

[3] Brookes, S., The essence of Parallel Algol, LICS’96, IEEE Computer Society
Press (1996) 164–173. Full version to appear: Information and Computation,
1998.

[4] Brookes, S., Idealized CSP: Combining Procedures with Communicating
Processes, MFPS’97, Pittsburgh, March 1997. ENTCS 6, Elsevier Science. URL:
http://www.elsevier.nl/locate/entcs/volume6.html.

[5] Brookes, S., On the Kahn Principle and Fair Networks, MFPS’98, Queen Mary
Westfield College, May 1998. Submitted to Theoretical Computer Science.

[6] Formal Systems (Europe), Ltd., Failures-Divergence Refinement: FDR2
Manual, 1997.

[7] Hoare, C. A. R., Communicating Sequential Processes, Comm. ACM, 21(8):666–
677 (1978).

[8] Hoare, C. A. R., Communicating Sequential Processes, Prentice-Hall
(1985).

[9] Kahn, G., The semantics of a simple language for parallel programming,
Information Processing ’74, North Holland, 1974.

[10] Kahn, G. and MacQueen, D. B., Coroutines and Networks of Parallel Processes,
Information Processing ’77, North Holland, 1977.

[11] Milner, R., A Complete Inference System for a Class of Regular Behaviors, J.
Comp. Syst. Sci. 28 (1984), pp. 439-466.

[12] Milner, R., Communication and Concurrency, Prentice-Hall (1989).

[13] Park, D., On the semantics of fair parallelism. In D. Bjørner, editor, Abstract
Software Specifications, Springer-Verlag LNCS vol. 86 (1979), 504–526.

[14] Park, D., Concurrency and Automata on Infinite Sequences, LNCS vol. 104,
Springer-Verlag (1980).

[15] Parrow, J., Fairness Properties in Process Algebra, Ph.D. thesis, Uppsala
University (1985).

[16] Roscoe, A.W., The Theory and Practice of Concurrency, Prentice-Hall,
1998.

[17] Tarski, A., A lattice-theoretical fixpoint theorem and its applications, Pacific
Journal of Mathematics, vol. 5, 1955.

20


