A race-detecting
semantics for
concurrent

programs

Stephen Brookes
Carnegie Mellon University:-

Concurrency

® processes read and write to shared state
® synchronize via conditional critical regions

® mutually exclusive use of resources

. A
Lot
~

Race condition’= ¢

® Concurrent write to identifier

being read or written by another
process

x:=11l x:=2

What's the value of x!

Depends on granularity...

Solution?

® Ignore races semantically

® Assume known granularity

fx:=1 1l x:=2]| ={x:=1 x:=2, x:=2 x:=1}

High-level xe {l1,2}

Nx:=1 Il x:=2]| =

(x.0:=1 x.1:=0)ll(x.0:=0 x.1:=1)
Low-level xe {0,1,2,3}

Solution?

® Avoid races syntactically

® Rules for critical variables Owicki-Gries

® Semantics just for race-free programs

Solution?

® Avoid races syntactically

® Rules for critical variables Owicki-Gries

® Semantics just for race-free programs

x:=11l x:=2 disqualified

Solution?

® Avoid races syntactically

® Rules for critical variables Owicki-Gries

® Semantics just for race-free programs

x:=11l x:=2 disqualified

with » do x:=/ [l with r do x:=2
x € {1,2}

Problems

with the traditional approaches

® Granular semantics
® combinatorial explosion

® too specific, not uniform

® Race-avoiding syntax

® static constraints have limits

® too draconian

Solution

® Semantics with race-detection

® potential race treated as catastrophic
cf. Reynolds

Outline

® Irace semantics

® process denotes set of action traces

e High-level model

® cranularity of integer operations

® Low-level semantics

® granularity of word operations

® Granularity Theorem

® high-level consistent with low-level

Actions \

High-level model

idle 0
read 1=V

write 1:=V
resource try(r), acq(r), rel(r)

1 ¢ Ide 1dentifiers
r ¢ Res resource names
veV Integers

Traces

® Sequences of actions

® Concatenation

xoB = P
X abort B = & abort

X, B eTr

State

® Global store s

® maps identifiers to integers

® Resources

® cach process owns a finite set A

® must be disjoint

changes dynamically...

Effects

@ State enables certain actions
® Action has an effect

(5,4) 2 (s, A)

A
(s,A) = abort

Effects

(s,A) = (5, A)

(5,A) = (5,4)

if (1,v) €Es

(s,4) = ([sliv], A)

if i € dom(s)

Effects

(s,A) = abort ifie

[:=V
(s,A) = abort ific

abo
(s,A) = abort

A
abort = abort

Effects

try(r)
(s,A) = (s,A)

acq(r)
(s,A) = (s,AU{r}) ifre

rel(r)
(S)A) = (S)A - {7’}) ifreA

Semantics

of expressions

fe] € TrxV

1 = {(i=v,v) | vE V}

[e+e'll = {(pp’, v+Vv') |
(p,v) Ellell & (p’,v') E e’}

Semantics

of commands

Nc]] € Tr

[i:=ell = {p i:=v | (p,v) € [le]l}

lcsc'll = llcll ']

[cll el = [l I, [T

mutex fairmerge
with race-detection

Mutual exclusion

® At most one process holds each

(acq(r) x:=1 rel(r)) || (acq(r) x:=2 rel(r))
only includes
acq(r) x:=1 rel(r) acq(r) x:=2 rel(r)

and
acq(r) x:=2 rel(r) acq(r) x:=1 rel(r)

Mutex fairmerge

Traditional Definition

()\1 CV>A1 A ()\2 ﬁ)

My] (A, Ay) 2o (A Ay) &y eaula,(XB)}
U {7y | (Ag, Ay) 22 (A5, Ay) & v e (M) 4|4, B

each process constrained by the other

to maintain disjoint sets of resources

Race-detecting
mutex fairmerge

Definition

()\1 &)Al A ()\2 6) = {abort}

if A\ and \o interfere

(Alv AQ) AL (A/D AZ) & ¥ € @AﬁHz‘b ()‘2 6)}
(Ag, Ay) 2 (A5, A1) & v e (M) 4[] 4, B}

otherwise

Interference

Definition

)\1[><I)\2

if
free(A\) N writes(Ag) # 4}

or

free(Xo) N writes(Ay) # {}

concurrent write to identifier
being used by other process

Semantics

[cll ¢l = [l I, [T

mutex fairmerge
with
race detection

Example

Nx :=x+1 1l x:=x+1]
= {x=vabort vEV}

Semantics
[[with » when b do c]] =

: 0
wait™ enter U wait

wait = acq(r) [bI. . rel(r) U {try(r)}

false

enter = acq(r) [[b]]true Ncll rel(r)

critical region protected by resource

Semantics

[resource r In c]| =
{oVv | o0& [[C]]r}

Lcll

- traces sequential for r

o\ hide actions on r

statically scoped local resource

Examples

[with r do x :=x+1]] =
tr)’(’")oo {acq(r) x=v x:=v+1 rel(r) [vE V }

[resource 7 in (...) Il (...)]] =

lx :=x+1;x:=x+1]

Respect for
resources

Lemma

If aellc]] and

(s, D) = (s',A)

then A’=

Race-free programs

Definition

cis race-free from s

iff

o
- Jaellc]l. § = abort

Low-level model

® Word size M

® |nteger represented as list of words

® \Word-level actions

i.len=n

i.len:=n

1.0=w, ..., l.n=w
1.0:=w, ..., 1.n:=w

0 <w<2M

L ow-level states

® Global store S
® maps identifiers to lists of words
® Each process has set of resources A

® pairwise disjoint

L ow-level
semantics

of expressions

L]l =

{Gilen=ni1.0=w, ...i.n=w,[w, ,..,w])]|

0
n=>0 & Wy e W EW }

[e+e'll = 1(pp’, LOL')
(0, L) Ellell & (p', L) E [T}

word-level arithmetic

|l ow-level
semantics

of commands

[i:=ell = {p ilen:=ni.0:=w), ... in:=w

(p,[W, ,... . w]) E llell}

Interference

at low level

writes(1.5:=v) = {1.5}
writes(t.len:=n) = {}
writes(1.j=v) = {}

reads(t.len:=n) = {}

(
(

Teadsgi.jzzv) = {}
(

reads(t.j=v) = {i.j}

Representation

Definitions

® Word lists represent integers

[WoW e,]y = W, + My w4 2y

® Low-level states represent high-level states

*low " “high
iff
10w a1 = Shigh()
for all identifiers i

Granularity Theorem

® Every high-level error-free computation
simulates a low-level computation

/4

4
§ = s “high
high high
IMPLIES

{(

S Slow

for some BE[[C]]ZOW’ Sow

Granularity Theoremo

® Every low-level computation is (weakly)
simulated by a high-level computation

For all B€[[c]] s/

low’ hzgh low’ Slow

X
:S,

8 hiah high

Shigh l l
’

((IMPLIES

) =B> S/ OR

low

o
S ioh — abort

for some X€|c]

high? hzgh

Race-free case

® Simulation both ways if ¢ is race-free

8 piah

((

5

/

\)

high

X

— 2K

/
high
((
/

low

More concrete

® |ow-level state = store + heap

® Effect of i.len:=n includes allocation
and/or deallocation of heap cells

® Results still go through

Further work

® Soundness of Owicki-Gries logic
® |deas extend to include pointers

® concurrent separation logic

O’Hearn, Brookes

to appear at
CONCUR ‘04

Oh Come on-

how fatal
Can 1t be?

