
A race-detecting 
semantics for 

concurrent 
programs

Stephen Brookes
Carnegie Mellon University



Concurrency
• processes read and write to shared state

• synchronize via conditional critical regions

• mutually exclusive use of resources



Race condition
• Concurrent write to identifier                

being read or written by another 
process

Depends on granularity...

x:=1 || x:=2
What’s the value of x?



• Ignore races semantically

• Assume known granularity

Solution?

[[x:=1 || x:=2]] = {x:=1 x:=2, x:=2 x:=1}
x ∈ {1, 2}High-level

[[x:=1 || x:=2]] = 
         (x.0:=1 x.1:=0)||(x.0:=0 x.1:=1)

x ∈ {0, 1, 2, 3}Low-level



Solution?
• Avoid races syntactically

• Rules for critical variables

• Semantics just for race-free programs
Owicki-Gries



Solution?
• Avoid races syntactically

• Rules for critical variables

• Semantics just for race-free programs
Owicki-Gries

disqualifiedx:=1 || x:=2



Solution?
• Avoid races syntactically

• Rules for critical variables

• Semantics just for race-free programs
Owicki-Gries

with r do x:=1 || with r do x:=2
x  ∈  {1, 2}

disqualifiedx:=1 || x:=2



Problems

• Granular semantics

• combinatorial explosion

• too specific, not uniform

• Race-avoiding syntax

• static constraints have limits

• too draconian

with the traditional approaches



Solution
• Semantics with race-detection

• potential race treated as catastrophic
cf. Reynolds



Outline
• Trace semantics

• process denotes set of action traces

• High-level model

• granularity of integer operations

• Low-level semantics

• granularity of word operations

• Granularity Theorem

• high-level consistent with low-level



Actions  

• idle

• read

• write

• resource

• error
i ∈ Ide identifiers
r ∈ Res resource names
v ∈ V integers

λ

δ
i=v
i:=v

try(r), acq(r), rel(r)
abort

High-level model



Traces

• Sequences of actions

• Concatenation

α, β ∈ Tr

α abort β = α abort 
αδβ = αβ



• Global store

• maps identifiers to integers

• Resources

• each process owns a finite set

• must be disjoint

State

changes dynamically...

s

A



• State enables certain actions

• Action has an effect

Effects

(s, A) ⇒ (s’, A’)
λ

(s, A) ⇒ abort
λ



Effects
(s, A) ⇒ (s, A)

δ

(s, A) ⇒ (s, A)
i=v

(s, A) ⇒ ([s|i:v], A)
i:=v

if (i,v) ∈ s

if i ∈ dom(s)



Effects

(s, A) ⇒ abort
abort

abort ⇒ abort
λ

(s, A) ⇒ abort
i=v

if i ∉ dom(s)

(s, A) ⇒ abort
i:=v

if i ∉ dom(s)



Effects

(s, A) ⇒ (s, A)
try(r)

(s, A) ⇒ (s, A∪{r})
acq(r)

if r ∉ A

(s, A) ⇒ (s, A - {r})
rel(r)

if r ∈ A



Semantics
of expressions

[[e]] ⊆ Tr × V

[[i]] = {(i=v, v) | v∈ V}

[[e+e’]] = {(ρρ’, v+v’) |

(ρ, v) ∈ [[e]] & (ρ’, v’) ∈ [[e’]]}



Semantics
of commands

mutex fairmerge
with race-detection

[[c]] ⊆ Tr 

[[i:=e]] = {ρ i:=v | (ρ,v) ∈ [[e]]}

[[c ; c’]] =  [[c]] [[c’]]

[[c || c’]] =  [[c]] ∅||∅ [[c’]]



Mutual exclusion
• At most one process holds each 

only includes

and

(acq(r) x:=1 rel(r)) || (acq(r) x:=2 rel(r))

acq(r) x:=2 rel(r) acq(r) x:=1 rel(r)

acq(r) x:=1 rel(r) acq(r) x:=2 rel(r)



Mutex fairmerge

to maintain disjoint sets of resources

each process constrained by the other

= {λ1 γ | (A1, A2) λ1−−→ (A′
1, A2) & γ ∈ αA′

1
‖A2 (λ2 β)}

(λ1 α)A1‖A2 (λ2 β)

∪ {λ2 γ | (A2, A1) λ2−−→ (A′
2, A1) & γ ∈ (λ1α)A1‖A′

2
β}

Traditional Definition



Race-detecting 
mutex fairmerge

otherwise

= {λ1 γ | (A1, A2) λ1−−→ (A′
1, A2) & γ ∈ αA′

1
‖A2 (λ2 β)}

∪ {λ2 γ | (A2, A1) λ2−−→ (A′
2, A1) & γ ∈ (λ1α)A1‖A′

2
β}

if       and       interfereλ1 λ2

(λ1 α)A1‖A2 (λ2 β) = {abort}

Definition



Interference

λ1 " λ2

free(λ1) ∩ writes(λ2) "= {}

free(λ2) ∩ writes(λ1) "= {}

if 

or 

Definition

concurrent write to identifier
being used by other process

λ1 "# λ2



Semantics

mutex fairmerge
with

race detection

[[c || c’]] =  [[c]] ∅||∅ [[c’]]



Example
[[x := x+1 || x := x+1]] 

= {x=v abort | v ∈ V }



Semantics

critical region protected by resource

[[with r when b do c]] = 

wait* enter   ∪  waitω  

wait  = acq(r) [[b]]    rel(r)  ∪ {try(r)}false

enter  = acq(r) [[b]]    [[c]] rel(r)true



Semantics

traces sequential for r

hide actions on r

[[resource r in c]] = 

{ α\r  |  α ∈ [[c]]r} 

[[c]]r
α\r 

statically scoped local resource



Examples
[[with r do x := x+1]] = 

try(r)∞ {acq(r) x=v x:=v+1 rel(r) | v ∈ V } 

[[resource r in (...) || (...)]] = 

[[x := x+1 ; x := x+1]]



Respect for 
resources

If  α∈[[c]]  and

(s, ∅) ⇒ (s’, A’)
α

then  A’= ∅  

Lemma



Race-free programs
Definition

c is race-free from s

iff

s ⇒ abort
α

¬ ∃α∈[[c]].



Low-level model
• Word size M

• Integer represented as list of words

• Word-level actions

i.len=n
i.len:=n
i.0=w, ..., i.n=w
i.0:=w, ..., i.n:=w

0 ≤ w < 2M



Low-level states
• Global store 

• maps identifiers to lists of words

• Each process has set of resources

• pairwise disjoint

s

 A



Low-level 
semantics

of expressions

[[i]] =  
{(i.len=n i.0=w0 ... i.n=wn, [w0 ,... ,wn]) | 

n≥0 & w0 ,... ,wn ∈ W }

[[e+e’]] = {(ρρ’, L⊕L’) |

(ρ, L) ∈ [[e]] & (ρ’, L’) ∈ [[e’]]}
word-level arithmetic



Low-level 
semantics

of commands

[[i:=e]] = {ρ i.len:=n i.0:=w0 ... i.n:=wn

| (ρ,[w0 ,... ,wn]) ∈ [[e]]}



Interference
at low level

writes(i.j:=v) = {i.j}
writes(i.len:=n) = {}
writes(i.j=v) = {}

reads(i.j:=v) = {}
reads(i.len:=n) = {}
reads(i.j=v) = {i.j}



Representation

• Word lists represent integers

• Low-level states represent high-level states

iff

for all identifiers i

[w0,w1,...,wn]M = w0 + 2Mw1 + ... + 2nMwn

slow ≈ shigh

[slow(i)]M = shigh(i)

Definitions



Granularity Theorem
• Every high-level error-free computation 

simulates a low-level computation

α
shigh ⇒ s’high

≈

slow

β
slow ⇒ s’low

≈

s’high

For all α∈[[c]]high, shigh , s’high, slow

IMPLIES

for some β∈[[c]]low,  s’low

(1)



Granularity Theorem
• Every low-level computation is (weakly) 

simulated by a high-level computation

β
slow ⇒ s’low

≈

shigh

αshigh ⇒ s’high

≈

s’low

shigh ⇒ abort
α

IMPLIES

OR

For all β∈[[c]]low, shigh , s’low, slow 

for some α∈[[c]]high,  s’high

(2)



Race-free case
• Simulation both ways if c is race-free

β
slow ⇒ s’low

≈
shigh

αshigh ⇒ s’high

≈

s’low

IFF



More concrete
• Low-level state = store + heap

• Effect of i.len:=n includes allocation         
and/or deallocation of heap cells

• Results still go through



Further work
• Soundness of Owicki-Gries logic

• Ideas extend to include pointers

• concurrent separation logic

to appear at 
CONCUR ‘04

O’Hearn, Brookes


