CONCURRENT OBJECTS
IN IDEALIZED CSP

Stephen Brookes

Department of Computer Science
Carnegie Mellon University

July 1998

IDEALIZED CSP

communicating processes

+
call-by-name A-calculus

e simply typed

¢ = var|t| | chan|7]
| exp|r] | comm
| 6—0 | Ox¢
7 = int | bool | unit

¢ asynchronous communication

channels as unbounded buffers

e fair parallel execution

abstracts from network details

CONNECTIONS

e generalizes CSP

— fairness
— nested parallelism
— dynamic process creation

— asynchronous communication
e generalizes Idealized Algol

— typed channels

— communicating processes
e generalizes Kahn networks
— non-determinism and fairness
e supports concurrent objects
— parallel methods

— shared or private state

SYNTAX

e Input

mF h:chan|r| 7k X :var|r]|
7 h?X : comm

e Output
mF h:chan|r| 7+ E:exp|r]
7 hlE : comm

e Parallel composition

7P :comm wF P :comm

T P1HP2 . COIMIn

e Local declaration

D7 w7 P:comm

mF local D in P : comm

4

CATEGORY of WORLDS
Oles, Reynolds
e Objects: countable sets of states
Vix--xVexH{ x---H
e Morphisms:
(f,Q): W =X
—function f from X to W

— equivalence relation () on X

—each ()-class isomorphic to W

ADAPTATION

e channels as components of state

e communication as state change

EXPANSIONS

e The expansion morphism
—xV: W -WxV
is given by

XV =(fst:WxV =W, Q)
(wp, vo)Q(wr,v1) <= vy =1

e Used to model local variables
and local channels

e Every morphism is an expansion,
modulo isomorphism

SEMANTICS

e Types denote functors from worlds
to domains, [/]: W — D

e Judgements 7+ P : § denote
natural transformations

[P] - [=] — [6]
i.,e. when h: W — X,

w IV rgw
[7]h [01h
X IX
commutes.

Naturality enforces locality

COMMANDS

[comm]W = o (W x W)™)
e Commands denote closed trace sets

afect&weW = alw,w)fet
a(w,w)(w , whpfet = alw,w")Fet

e A trace (wg, w))(wy,w]) ... (wn,w)) ...
models a fair interaction

/

e A step (w;,w;) represents a

finite sequence of atomic actions

CHANNELS

An “object-oriented” semantics:

e sender
give : W — (W x Vi)option
® receiver

take : Ve — (W — W)

satisfying

give(take v w) =
case give w of
none : some(w, v)
some(w’,v') : some(take v w', V')

PARALLEL COMPOSITION

Fair merge of traces

[P [Po]Wu =
{a ’ E|O41 c [[Pl]]Wu, 9 € [[PQ]]W’LL.
(a1, a9,) € fcw'rmergew><W}Jr
where
fairmerge 4 = both’y - oney U both%

bothy = {(a, 8,af), (av, 5, Ba) | @, f € A

ones = {(a,6,0), (6, a,0) | a € A%}

fairmerge is natural

10

LOCAL CHANNELS

The traces of
local h : chan|r| in P

at I are projected from the traces
of P at W x V' in which

e initially h = ¢

e contents of i never change across
step boundaries

EXAMPLES

e local / in (R!0; P)=P
if h not free in P

e local / in (h?7x; P) = while true do skip

11

LAWS

e Symmetry

local hq in local h9 in P
= local h9 in local h; in P

e Scope contraction

local h in (P||P)
= (local h in P)|| P

if h not free in P

... Justifies graphical notation for
networks of processes

12

LOCAL LAWS

e Local output

local h = p in Pi||(hlv; P))
= local h = pv in P|| P

if h! not free in P
e Local input
local h =wvp in Pi||(h7x; P)
= local h = p in Pj||(x:=v; P))

if h” not free in Py

... help when channels are uni-directional

13

FAIRNESS LAWS

e Fair prefix

local h in (h?x; P)||(Q1; Q2)
= (@;local hin (h7z; P)||Q2
if h not free in Q¢

e Cyclic synchronization

local hl, hQ in — <P1HP2)3
(Pl; hll*; hg?*; Ql) local hl,hg
| (P25 halx; hi?%; Qo) in (Q1]/Q2)
if h1, ho not free in Py, P»

. require and reflect fair semantics

14

CLASSES AND OBJECTS

e Declarations as first-class citizens
/
oD

e Class is template for declaration:

class C' =
private
public 79

e Object instantiates template:

object X : ' = private D;
public D

translates to

local X.D{ in X.D»

15

BUFFER CLASSES

class Buffer; =
public
put . exp|r| — comm
get : var|t| — comm

class Buffery =
Buffer; with private data : chan|T|

class Buffer; =
Buffer; with private data : var|r]

SUBCLASSES

Buffero < Buffer,
Buffers < Buffery

A BUFFER OBJECT

object Bj : Buffer, =
private
empty : chan[unit| = [x|;
data : chan|int]
public
put(e) = (empty?*; datale);
get(z) = (data’z;, empty!x)

PROPERTIES

e 31 has class Buffery

e Buffers < Buffer;

e 31 also has class Buffer;

e B behaves like a 1-place bufter

17

ANOTHER BUFFER

object B9 : Buffer, =

private
empty : chan[unit| = [x|;
data : chan[int]

public
put(e) = (empty?*;, data!(—e));
get(z) = local x : var|int] in

(data’x; z:=(—x); empty!*)

PROPERTIES

e Codes and decodes data

e Still behaves like 1-place buffer

18

YET ANOTHER BUFFER

object Bs: Buffers =
private
empty : var|bool| = true;
full : var|bool| = false;
data : var|r]|
public
put(e) =
(await empty then empty.=false;
data:=e;
full:=false);
get(xz) =
(await full then full=true;
r:=data;
empty.=true)

19

EQUIVALENCES

e All three implementations of
buffers are ‘“equivalent”

—no way to tell them apart

e Need to compare across paradigms

— communicating processes

— shared-variable

e Trace semantics can be used
in both cases

— all three buffer objects have same
trace semantics

— closure blurs granularity

20

CONCLUSIONS

e Idealized CSP supports a form
of concurrent objects

e Trace semantics validates
natural laws of equivalence

— locality
— fairness

— synchronization patterns
e Can compare across paradigms

e Can abstract from granularity

21

SPECIFICATIONS

spec BUFFER =
interface
empty, full . exp|bool|
with
{empty}put(v){ full}

Uully get(x){ empty;

put(vy)||put(vo) =
(put(vy); put(ve)) or (put(va); put(vy))

{empty}(get(z1)| get(z2)) =
(get(z1); get(z9)) or (get(zs); get(z1))

{empty} (put(v)| get(z)) =
put(v); get(x) = z:=v

22

