
A semantics for concurrent separation logic

Stephen Brookes

Abstract

We present a trace semantics for a language of parallel programs
which share access to mutable data. We introduce a resource-sensitive
logic for partial correctness, based on a recent proposal of O’Hearn,
adapting separation logic to the concurrent setting. The logic allows
proofs of parallel programs in which “ownership” of critical data, such
as the right to access, update or deallocate a pointer, is transferred
dynamically between concurrent processes. We prove soundness of
the logic, using a novel “local” interpretation of traces which allows
accurate reasoning about ownership. We show that every provable
program is race-free.

1 Introduction

Parallel programs typically involve the concurrent execution of processes
which share state and are intended to cooperate to achieve a collective goal.
It is notoriously difficult to ensure that process interactions are sufficiently
disciplined to preclude undesirable phenomena such as races, in which one
process changes a piece of state that is simultaneously being used by another
process. Races can result in unpredictable, possibly irreproducible, behav-
ior. In addition to goals expressible as partial correctness or total correctness
properties, we often need to be able to establish safety properties, of the
form that something bad never happens, and liveness properties, of the form
that something good happens eventually [35]. Rather than relying on possi-
bly unrealistic assumptions about the granularity of hardware primitives, we
would prefer to use proof techniques that guarantee both race-freedom and
correctness.

Program design rules based on resource separation [22, 24, 36, 37] and the
use of synchronization constructs such as conditional critical regions [7, 9, 8,

1

24] offer the programmer a means to impose discipline. For example, building
on an earlier proposal of Hoare [22, 24], Owicki and Gries [36, 37] introduced
a syntax-directed logic for partial correctness of simple shared-memory par-
allel programs. A key notion behind the success of this approach is its focus
on the critical variables of a program, characterized as identifiers which may
be concurrently written by one process and read or written by another. The
programmer is required to partition the critical variables among a fixed col-
lection of resources, and to obey a simple syntactic constraint on program
structure: each occurrence of a critical variable must be inside a conditional
critical region naming the relevant resource. Assuming that resource man-
agement is implemented using a suitable low-level synchronization primitive,
such as semaphores [19, 20], so that at all stages during program execution
each resource is held by at most one process, these statically enforceable de-
sign rules guarantee mutually exclusive access to the critical variables and
therefore freedom from races. The Owicki-Gries inference rules support a
modular methodology based on resource invariants, in which each process
relies on its environment to ensure that whenever a resource is available
the corresponding resource invariant holds, and guarantees that whenever a
process releases the resource the invariant will hold again. This usage of in-
variants also serves to simplify the task of program proving, since it abstracts
away from what happens “inside” a critical region and focusses instead only
on the places where synchronization occurs.

This methodology works well for simple (pointer-free) shared-memory
programs, but breaks down when the shared state can contain pointers. The
Owicki-Gries rule for parallel composition is unsound for parallel programs
that manipulate pointers (“pointer-programs”), because of the possibility
of race conditions involving concurrent attempts to deallocate or update a
pointer being used by another process. The problems are exacerbated by
the possibility of aliasing: syntactically distinct expressions may denote the
same pointer value. It is not possible to use purely syntactic constraints to
rule out races (and restore soundness) for pointer-programs, because aliasing
cannot be detected adequately by static analysis alone.

Pointers require a more sophisticated model of state: a store mapping
identifiers to values, which may be data values such as integers, or pointer
values such as addresses; and a heap mapping addresses to values, which
again can be data or pointers. For sequential pointer-programs one can
give a straightforward denotational or operational semantics based on state
transformations, and separation logic has been developed as an extension

2

of Hoare-style partial correctness logic to allow reasoning about the store
and the heap [41, 25]. The key feature of separation logic is a separating
conjunction, used to specify disjointness constraints. Separation logic has
been applied successfully to a range of significant examples [2, 4, 33, 40, 44].
The approach suggests a style of local reasoning in which one focusses on
the “footprint” of a command, i.e. the minimal portion of state actually
relevant to the command’s execution, and one appeals to a “Frame Rule”
whenever necessary to deduce that the command has no effect outside of its
footprint [4, 25, 33, 44].

Recently, O’Hearn has proposed using separation logic, together with an
adaptation of the Owicki-Gries resource-based methodology, for reasoning
about partial correctness of parallel pointer-programs [30, 31]. Again the
shared state is viewed as being partitioned among named resources, each
equipped with a resource invariant and a protection list. O’Hearn proposed
a methodology based on the following Separation Hypothesis: at all times
the state can be partitioned to yield a separate portion for each process, and a
separate portion, satisfying the relevant resource invariant, for each available
resource. It then becomes possible to give a natural ownership interpreta-
tion of program execution. In particular, the heap portions associated with
each process, and with each available resource, are always mutually disjoint.
When a process acquires a resource it claims ownership of the state associ-
ated with that resource; when releasing the resource it must ensure that the
invariant holds again, and returns ownership of the corresponding piece of
state. Although the heap portion associated with a resource may vary dy-
namically, at all stages the Separation Hypothesis ensures that each piece of
heap is accessed by at most one process. It thus becomes possible to reason
safely about parallel programs in which “ownership” of a pointer, or some
fragment of shared state, can be deemed to transfer dynamically between
processes, or between a process and a resource: the partitioning of state
among resources is not required to stay fixed throughout execution, but may
adjust itself dynamically.

The main novelty in O’Hearn’s adaptation involves the judicious use
of the separating form of conjunction in key places in the pre- and post-
conditions of the inference rules which deal with resources. Although this
might appear superficially to produce “obvious” variants of the traditional
rules, the soundness of the new rules is far from obvious. Indeed, to indicate
the difficulties, Reynolds has shown that similar rules (even for sequential
programs) are unsound if used without restrictions on the formulas allowed

3

as resource invariants [42, 31]. Moreover the traditional rules are unsound for
pointer-programs, so soundness of the new rules cannot be deduced merely
by analogy. O’Hearn provides a series of compelling examples of concurrent
programs and informal correctness proofs [31], but (as he remarks) the logic
cannot properly be assessed without a suitable semantic model [30].

However, it is not at all obvious how to provide a semantics that permits
a formalization of the notions of ownership transfer and race-freedom, and
such a semantics is crucial in establishing soundness. Traditional seman-
tic models for shared-memory concurrent languages do not include pointers,
and semantic models for pointer-manipulating programs do not typically in-
corporate concurrency. Most models of shared-memory concurrency do not
deal explicitly with race-detection. Furthermore, earlier state-based models
of concurrency such as transition traces [16, 13, 38] work with global states,
which lump together the state shared by all processes, and it is not easy
to adapt such models for the kind of local reasoning that is required to
track ownership. On the one hand, race-freedom should lead to a semantics
in which program behavior has a sequential flavor modulo synchronization
through shared resources, but on the other hand we need to properly ac-
count for concurrent execution.

In this paper we give a denotational semantics, based on sets of action
traces [12], that solves these problems. The semantics involves a form of
parallel composition that detects race conditions: every parallel program
whose components may concurrently read and write the same variable or
the same heap cell will produce a runtime error. Our semantics models a
potential race condition as catastrophic, since we want to prove the absence
of races. This semantic model is worthy of attention in its own right, although
our main emphasis here is to demonstrate its utility in proving the soundness
of O’Hearn’s methodology. We also stress that the semantics applies to all
concurrent shared-memory programs, both to race-free programs and to racy
programs. The crucial feature of the semantics is that it permits a natural,
rigorous and simple characterization of race-freedom.

Our treatment of race conditions leads to a semantic model embodying
one of the classic principles of concurrent program design, as originally artic-
ulated by Dijkstra [20] and reflected in the design of Owicki-Gries logic and
O’Hearn’s logic:

. . . processes should be loosely connected; by this we mean
that apart from the (rare) moments of explicit intercommunica-

4

tion, the individual processes are to be regarded as completely
independent of each other.

In other words, concurrent processes do not interfere (or cooperate) except
through explicit synchronization. Our semantics reflects this idea in a novel
manner, through the interplay between action traces, which describe inter-
leaved behaviors of processes, and an enabling relation that implements the
“no interference from outside” notion. This interplay is crucial in permit-
ting a formalization of O’Hearn’s intuitive concept of “processes that mind
their own business”. To the best of the author’s knowledge ours is the first
semantics in which such a formalization is possible.

O’Hearn, following Owicki and Gries, focussed on programs containing
a single resource declaration whose scope includes a single parallel compo-
sition of sequential commands. We reformulate O’Hearn’s rules in a more
general manner, allowing nested resource declarations and nested parallel
compositions. We introduce a formal definition of resource contexts, subject
to some natural disjointness requirements which facilitate modular reason-
ing, and a class of resource-sensitive partial correctness formulas that pins
down the syntactic constraints on programs and logical formulas necessary
for enforcing the intended resource discipline. Using the trace semantics we
give a suitably general (and compositional) notion of validity, and we prove
that the proof rules are sound. Our soundness proof demonstrates that a
verified program has no race conditions.

A key ingredient in our soundness proof, and another illustration of the
benefits of our approach, is a Parallel Decomposition Lemma, again with
connections back to early intuitions of Dijkstra. We can summarize this
result informally as follows. When c1‖c2 is a race-free program, every inter-
leaved computation of c1‖c2 can be decomposed into “local” computations
of the constituent processes c1 and c2 which are interference-free except for
interactions with protected resources. This clearly reflects the “loosely con-
nected” assumption for processes and shows how this assumption is crucial
in permitting syntax-directed proofs for concurrent programs.

We assume that each resource invariant is precise, so that every time a
program acquires or releases a resource there is a uniquely determined portion
of the heap whose ownership can be deemed to transfer. This does not seem
to be a major limitation, since all of O’Hearn’s examples involve precise
invariants, and a methodology based on precision seems very natural [31].
Moreover this limitation is sufficient to ensure soundness, and it suffices to

5

avoid the Reynolds counterexample that shows unsoundness when resource
invariants are allowed to be arbitrary separation logic formulas.

Since our semantics is trace-based it can be used to support reasoning
about safety and liveness properties of concurrent programs, in addition to
partial correctness and absence of races. We discuss how to adapt the proof
system to deal with total correctness and freedom from deadlock.

We conclude with some comments on related work, a discussion of the
limitations of our semantics and the logic, and some suggestions for future
research. An Appendix contains some technical details behind some of the
key results.

2 Syntax

We use a programming language that combines shared-memory parallelism,
resource declarations, and conditional critical regions with constructs for
manipulating heap pointers.

We use the following meta-variables: r ranges over resource names, i over
identifiers, e over integer expressions, b over boolean expressions, E over list
expressions, and c over commands. We omit the syntax for integer expres-
sions and boolean expressions, but we assume that the language includes
the usual arithmetic and boolean constructs. The abstract grammar for list
expressions is:

E ::= (e0, . . . , en) (n ≥ 0)

We assume that expressions are pure: that is, expressions do not contain
notations, such as cons and [−], whose semantics refers to the heap, and
they do not cause side-effects. The value of an expression therefore depends
only on the store.

The syntax for commands is defined by the following abstract grammar:

c ::= skip | i:=e | c1; c2 | c1‖c2 |
i:=[e] | [e]:=e′ | i:=consE | dispose e |
if b then c1 else c2 | while b do c | local i = e in c |
resource r in c | with r when b do c

There are four assignment-like command constructs, and we distinguish
them syntactically from each other because of their different semantics. Three
have an effect on the store: a traditional assignment i:=e, a lookup i:=[e],

6

and an allocation i:=cons(E). To emphasize this fact we will use the term
assignment collectively for these forms of command. An allocation also has
affects the heap. An update [e]:=e′ changes only the heap, as does a disposal
dispose(e). We will use the term mutation to refer to an allocation, update,
or disposal. Thus assignments affect the store, and mutations affect the heap.

The syntax for commands also includes sequential composition, written
c1; c2, conditional commands, while-loops, and parallel composition, which is
denoted c1‖c2.

A block of the form local i = e in c introduces a local variable named
i, initialized to the value of e, whose scope is the block body c. Similarly a
resource block resource r in c introduces a local resource named r, assumed
to be initially available, with scope c.

A command of form with r when b do c is called a conditional critical
region for r, or just a “region” for short. A process attempting to enter a
region must wait until the resource r is available, whereupon it may acquire
the resource and evaluate the test b: if b is true the process executes c then
releases the resource; on the other hand, if b is false the process releases the
resource and waits to try again. Program execution is constrained to ensure
that resources are mutually exclusive: a resource can only be acquired when
it is available, and can only be held by one process at a time; hence at all
stages at most one concurrent process is “inside” a region for r. We impose
the natural syntactic constraint that the body c of a region for r must not
contain another region for the same resource name r. This decision is made
for pragmatic reasons: the only commands ruled out by this constraint would
cause deadlock anyway, so their omission is no great cause for concern.

3 Static semantics

We assume given the standard structurally inductive definitions of the sets
free(e), free(b),free(E) of identifiers which occur free in an expression.
In addition we will define reads(c), the set of identifiers having a free read
occurrence in c; writes(c), the set of identifiers having a free write occurrence
in c; and res(c), the set of resource names occurring free in c. We only provide
the details for a few key cases.

7

Definition 1
Let reads(c) be the set of identifiers with a free read occurrence in c, given
by structural induction. In particular,

reads(i:=e) = free(e)
reads(i:=[e]) = free(e)
reads(i:=consE) = free(E)
reads([e]:=e′) = free(e) ∪ free(e′)
reads(dispose(e)) = free(e)
reads(c1‖c2) = reads(c1) ∪ reads(c2)
reads(local i = e in c) = free(e) ∪ (reads(c)− {i})

Definition 2
Let writes(c) be the set of identifiers with a free write occurrence in c, defined
by structural induction. In particular,

writes(i:=e) = {i}
writes(i:=[e]) = {i}
writes(i:=consE) = {i}
writes([e]:=e′) = {}
writes(dispose(e)) = {}
writes(c1‖c2) = writes(c1) ∪ writes(c2)
writes(local i = e in c) = writes(c)− {i}

For all commands c we then define free(c) = reads(c) ∪ writes(c). Note
that free(local i = e in c) = free(e) ∪ (free(c)− {i}).

Definition 3
Let res(c) be the set of resource names occurring free in c, defined by struc-
tural induction. In particular,

res(with r when b do c) = res(c) ∪ {r}
res(resource r in c) = res(c)− {r}
res(c1‖c2) = res(c1) ∪ res(c2)

4 Dynamic Semantics

We give a trace-theoretic semantics for expressions and commands. The
meaning of an expression will be a set of trace-value pairs, and the meaning

8

of a command will be a set of traces. The trace set denoted by a program
describes in abstract terms the possible interactive computations that the
program may perform when executed fairly, in an environment which is also
capable of performing actions1. We interpret sequential composition as con-
catenation of traces, and parallel composition as a resource-sensitive form of
interleaving of traces that enforces mutually exclusive access to each resource.

By presenting traces as sequences of actions we can keep the underlying
notion of state more or less implicit. We will exploit this feature later, when
we show how to use the semantics to prove soundness of a concurrent separa-
tion logic. We start by providing an interpretation of actions using a global
notion of state; later we will set up a more refined local notion of state in
which it is easier to reason about ownership. Another advantage of action
traces over the transition traces often used to model shared-memory parallel
languages is succinctness: an action typically acts the same way on all states,
and we can express this implicitly, without enumerating all pairs of states
related by the action.

4.1 States and values

A value is either an integer, or an address. We use v to range over values,
l over addresses. Let Vint be the set of integers and Vaddr be the set of
addresses2. A truth value is either true or false. Let Vbool be the set of truth
values. We use t as a meta-variable ranging over truth values.

A state σ comprises a store s, a heap h, and a finite set A of resource
names. The store maps a finite set of identifiers to values; we let S be
the set of stores, and we write dom(s) = {i | ∃v. (i, v) ∈ s} for the set of
identifiers for which s has a value. The heap maps a finite set of addresses
to values; we write dom(h) = {l | ∃v. (l, v) ∈ h} for the set of locations for
which h has a value. We will use notations such as [i1 : v1, . . . , ik : vk] and
[l1 : v′1, . . . , ln : v′n] to denote stores and heaps with specific contents. We also
use the notation [s | i : v] for the store which agrees with s on all identifiers

1Although we are mainly concerned with partial correctness properties of programs,
which depend only on the finite traces of a program, we also want to be able to use our
semantics to establish race-freedom properties, so that we also need to include infinite
traces. Consequently it makes sense to build fairness directly into our model.

2Actually we treat addresses as integers, so that our semantic model can incorporate
address arithmetic, but for moral reasons we should maintain the conceptual distinction
between integers as values and integers which happen to be addresses in current use.

9

except i, which it maps to v; and the similar notation [h | l : v′] denotes an
updated heap. We also use the notation h\l for the heap obtained from h by
deleting l from its domain; clearly dom(h\l) = dom(h)− {l}.

Since we assume that resources are initially available, an “initial” state
will always have the form (s, h, {}); we will use the abbreviation (s, h) in
such a case.

4.2 Actions

The atomic units in which a program’s execution is measured will be called
actions, and we assume that actions form a simple algebra under concate-
nation. Actions include reads and writes to individual identifiers, lookups
and updates to individual heap addresses, allocations and disposals of heap
addresses, and actions involving the acquisition and release of resources. We
use λ as a meta-variable ranging over the set of actions.

Definition 4
An action has one of the following forms:

• δ, an idle step

• i=v, a read of identifier i

• i:=v, a write to i

• [l]=v, a lookup of address l

• [l]:=v, an update to address l

• alloc(l, L), an allocation, where l is an address and L is a finite list of
values

• disp(l), a disposal of address l

• acq(r), where r is a resource name

• rel(r), where r is a resource name

• try(r), where r is a resource name

• abort, an error stop

10

We will refer to reads and writes as store actions, to lookups, updates, allo-
cations and disposals as heap actions, and to try, acquire and release actions
as resource actions.

Each action has a natural intuitive interpretation. For example, an
allocate action alloc(l, [v0, . . . , vn]) allocates a fresh sequence of addresses
l, . . . , l + n and initializes their contents to v0, . . . , vn, respectively. A try ac-
tion represents an unsuccessful attempt to acquire a resource, and an acquire
action represents the successful case.

4.3 Effects and enabling

Each action λ is characterized by its its effect, which can be defined as a

partial function
λ

==⇒ from states to states (Figure 1); the domain of this
partial function is the set of states from which the action can be executed.
To account for runtime errors we use a special “improper” state abort.

It is convenient to introduce a more succinct notation that recognizes the
facts that: store actions only depend on the store; heap actions only depend
on the heap; and resource actions only involve the resource set. Thus when λ

is a store action we will treat
λ

==⇒ as a partial function from stores to stores;

when λ is a heap action we may use
λ

==⇒ as a partial function from heaps to

heaps; and when λ is a resource action we may use
λ

==⇒ as a partial function
from resource sets to resource sets.

We extend the definitions of writes, reads, and free to actions:

writes(i:=v) = {i} reads(i=v) = {i}
writes([l]:=v) = {l} reads([l]=v) = {l}
writes(disp(l)) = {l} reads(disp(l)) = {l}
writes(λ) = {} otherwise reads(λ) = {} otherwise

For all actions λ, we let free(λ) = reads(λ) ∪ writes(λ).
For each action λ, reads(λ) is the set of identifiers or addresses needed to

enable the action, and writes(λ) is the set of identifiers or addresses whose
current value is changed by the action. Note that allocation actions are given
a special treatment: we do not include addresses l, . . . , l + n in the write-set
of alloc(l, [v0, . . . , vn]), because these addresses will be assumed to be fresh
(not in current use) whenever the action occurs. We distinguish between this
kind of effect (generating a fresh piece of heap) and the effect of a disposal
or an update, which modifies or deletes part of the current heap.

11

• (s, h, A)
δ

==⇒ (s, h, A) always

• (s, h, A)
i=v

====⇒ (s, h, A) iff (i, v) ∈ s

• (s, h, A)
i=v

====⇒ abort iff i 6∈ dom(s)

• (s, h, A)
i:=v

====⇒ ([s | i : v], h, A) iff i ∈ dom(s)

• (s, h, A)
i:=v

====⇒ abort iff i 6∈ dom(s)

• (s, h, A)
[l]=v

=====⇒ (s, h, A) iff (l, v) ∈ h

• (s, h, A)
[l]=v

=====⇒ abort iff l 6∈ dom(h)

• (s, h, A)
[l]:=v

=====⇒ (s, [h | l : v], A) iff l ∈ dom(h)

• (s, h, A)
[l]:=v

=====⇒ abort iff l 6∈ dom(h)

• (s, h, A)
alloc(l,[v0,...,vn])

=============⇒ (s, [h | l : v0, . . . , l + n : vn], A)
iff dom(h) ∩ {l, l + 1, . . . , l + n} = {}

• (s, h, A)
disp(l)

======⇒ (s, h\l, A) iff l ∈ dom(h).

• (s, h, A)
disp(l)

======⇒ abort iff l 6∈ dom(h)

• (s, h, A)
try(r)

=====⇒ (s, h, A) iff r ∈ A

• (s, h, A)
acq(r)

======⇒ (s, h, A ∪ {r}) iff r 6∈ A

• (s, h, A)
rel(r)

=====⇒ (s, h, A− {r}) iff r ∈ A

• (s, h, A)
abort

=====⇒ abort always

• abort
λ

==⇒ abort always

Figure 1: Enabling relations
λ

==⇒

12

For a finite trace α we define
α

==⇒ in the obvious way, so that σ
λ0...λn======⇒ σ′

if there is a sequence of states σ0, . . . , σn−1 such that

σ
λ0===⇒ σ0

λ1===⇒ · · · λn−1=====⇒ σn−1
λn===⇒ σ′.

For an infinite trace α we write (s, h, A)
α

==⇒ abort when there is a finite

prefix β of α such that (s, h, A)
β

==⇒ abort. We write σ
α

==⇒ · when α
is enabled from σ. By definition, every trace participating in this kind of
enabling is sequential. This enabling notion can thus be used to describe the
effect of executing a program in isolation, without interference.

4.4 Traces

A trace is a non-empty finite or infinite sequence of actions. Let Tr be the
set of all traces. We use α, β as meta-variables ranging over the set of traces,
and T1, T2 range over trace sets. Using the usual pun, we do not distinguish
notationally between an action λ and the corresponding trace λ consisting of
a single action. (But note that δ is not the same as the empty sequence!)

We write α1α2 for the trace obtained by concatenating α1 and α2; when
α1 is infinite this is just α1. We assume that abort behaves like a left-zero for
concatenation, so that α abort β = α abort , for all traces α and β. We also
assume that δ is a unit for concatenation, so that αδβ = αβ for all traces α
and β. Thus, in particular, for all n > 0, δn = δ. Note, however, that δω is
not (and should not be) equal to δ. Concatenation is associative: for all α1,
α2 and α3, α1(α2α3) = (α1α2)α3.

Sequential traces

We write αdi for the subsequence of α consisting of reads and writes to
identifier i, αdl for the subsequence involving heap cell l, and αdr for the
subsequence involving resource r. We say that α is sequential for i from s if

s
αdi

===⇒ ·, sequential for l from h if h
αdl

===⇒ ·, and sequential for r from A if

A
αdr

====⇒ ·.
A trace which is sequential for i from s describes an execution in which

the initial value of i is specified by s and the value of i is not changed by
the environment. Such traces will be used to determine the trace set of
local i = e in c, since the scope of the local binding for i includes c but not
the environment. For a trace set T we let T[i:v] be the set of traces in T which

13

are sequential for i from [i : v]. We define α\i to be the trace obtained from
α by replacing every action involving i by δ.

Similarly, a trace which is sequential for r from the empty set describes an
execution in which r is initially available and the environment never affects r.
This kind of trace will be used to formulate the trace set of resource r in c,
since the scope of the local binding for r only includes c. Since resources are
assumed to be initially available we will drop the qualification and call such
a trace sequential for r. Given a trace set T , let Tr be the subset consisting
of the traces in T which are sequential for r. Note that (Tr)r′ = (Tr′)r, so we
may write Tr,r′ for the subset of traces which are sequential both for r and
for r′, without any ambiguity. We let α\r be the trace obtained from α by
replacing each resource action on r by δ.

We say that α is sequential from (s, h, A) if α is sequential for all identifiers
from s, for all locations from h, and for all resources from A. An infinite
trace is sequential from (s, h, A) if each of its finite prefixes is sequential
from (s, h, A).

Sequential traces describe the behavior of a command when executed in
isolation from some given initial store and heap, endowed with a given initial
collection of resources. Thus sequential traces provide enough information
to determine partial (and total) correctness properties of commands. It is
well known that one cannot generally determine the sequential traces of a
parallel program solely from the sequential traces of its components. This
is a symptom of the usual problem with concurrent programs: in order to
obtain a compositional semantics we need to include both sequential and
non-sequential traces in the trace set of a command.

Sequential composition and iteration

For trace sets T1 and T2 we let T1T2 be the set of all concatenations α1α2 with
α1 ∈ T1 and α2 ∈ T2. We also let λT = {λα | α ∈ T} and Tλ = {αλ | α ∈ T}.

For each n ≥ 0 we define T 0 = {δ}, and T n+1 = TT n = T nT . We let
T ∗ =

⋃∞
n=0 T n. We let T ω be the set of all infinite concatenations of the form

α1 . . . αn . . ., where for each n ≥ 1 we have αn ∈ T . We let T∞ = T ∗ ∪ T ω.
Note that {}∗ is the set {δ} and {}ω = {}.

14

Parallel composition

The resource actions permissible for a command will depend on the resources
currently held by the command, but also on the resources being used by its
environment. These sets of resources will always be disjoint. Accordingly we
define the resource enabling relation (A1, A2)

λ−→ (A1, A2) on disjoint pairs
of resource sets, to specify what happens if a program holding resources A1,
in an environment that holds A2, attempts to perform an action λ. This
action may be forbidden because it would acquire a resource already in use
by the program or its environment, or because the action would release a
resource which the program does not currently hold. If allowed, we specify
the action’s effect on the resources held by the program:

(A1, A2)
try(r)−−−−−→ (A1, A2)

(A1, A2)
acq(r)−−−−−→ (A1 ∪ {r}, A2) if r 6∈ A1 ∪ A2

(A1, A2)
rel(r)−−−−→ (A1 − {r}, A2) if r ∈ A1

(A1, A2)
λ−→ (A1, A2) if λ is not a resource action

This resource enabling relation generalizes in the obvious way to describe
what happens to the resources when the program tries to perform a finite or
infinite sequence α of actions. We write (A1, A2)

α−−→ · to indicate that the
trace is allowed.

We want to detect race conditions caused by an attempt to write to an
identifier or address being used concurrently: we will treat such a possibility
as a catastrophe. We will write λ1]λ2, pronounced λ1 interferes with λ2, to
indicate when this happens:

λ1]λ2 ⇔ free(λ1) ∩ writes(λ2) 6= {} ∨ writes(λ1) ∩ free(λ2) 6= {}.
Notice that we do not regard two concurrent reads as a disaster.

We define, for each pair (A1, A2) of disjoint sets of resources, and each
pair (α1, α2) of finite traces, the set α1A1‖A2α2 of all mutex fairmerges of α1

(with initial resources A1) and α2 (with initial resources A2). The definition
is inductive in the lengths of α1 and α2, and we include the empty sequence,
denoted ε, to allow a simpler formulation:

α1 A1‖A2 ε = {α1 | (A1, A2)
α1−−→ ·}

ε A1‖A2 α2 = {α2 | (A2, A1)
α2−−→ ·}

(λ1α1) A1‖A2 (λ2α2) = {abort | λ1]λ2}
∪ {λ1β | (A1, A2)

λ1−−→ (A′
1, A2) & β ∈ α1 A′

1
‖A2(λ2α2)}

∪ {λ2β | (A2, A1)
λ2−−→ (A′

2, A1) & β ∈ (λ1α1) A1‖A′
2
α2}

15

Note that the definition only produces interleavings which respect the mutex
constraints on resource acquisition. 3

For example, the set

(acq(r) x:=0 rel(r)){}‖{}(acq(r) x=1 x:=2 rel(r))

contains only
acq(r) x:=0 rel(r) acq(r) x=1 x:=2 rel(r)

and
acq(r) x=1 x:=2 rel(r) acq(r) x:=0 rel(r).

We can also give a coinductive definition of the mutex fairmerges of two
infinite traces, or a finite trace with an infinite trace, starting from a given
disjoint pair of resource sets. We need mostly to work with finite traces, given
our focus on partial correctness and race-freedom, so we omit the details,
which are standard [16].

For traces α1 and α2, let α1‖α2 be defined to be α1{}‖{}α2. For trace sets
T1 and T2 we define T1‖T2 =def

⋃{α1‖α2 | α1 ∈ T1 & α2 ∈ T2}. As usual, for
all trace sets T1, T2 and T3, T1‖(T2‖T3) = (T1‖T2)‖T3, and T1‖T2 = T2‖T1.
Moreover, for all trace sets T we have T‖{δ} = T .

4.5 Trace semantics of expressions

We do not assume that expression evaluation is atomic, because we want to
design a semantics for commands that permits analysis of race conditions,
and we do not want to make unrealistic assumptions about granularity.

An expression will denote a set of evaluation traces paired with values.
Since expression values depend only on the store, the only non-trivial actions
participating in such traces will be reads. We will use ρ as a meta-variable
ranging over evaluation traces. To allow for the possibility of interference dur-
ing expression evaluation we will include both non-sequential and sequential
evaluation traces. Again the sequential traces describe what happens if an
expression is evaluated without interference.

3This definition of (λ1α1) A1‖A2 (λ2α2) differs slightly from the one originally proposed
and which appears in the earlier versions of this paper [11]. The original definition turns
out to lack associativity. Apart from that, all of the results proven in the original paper
are valid for both definitions of interleaving. In particular, the new version leads to the
same notion of race-freedom.

16

For an integer expression e,

[[e]] ⊆ Tr× Vint

is defined to be the set of all (ρ, v) such that e evaluates to v along ρ. For a
boolean expression b we define

[[b]] ⊆ Tr× Vbool

to be the set of all (ρ, t) such that b evaluates to t along ρ. For a list expression
E, we let

[[E]] ⊆ Tr× V ∗
int

be the set of (ρ, [v0, . . . , vn]) such that E evaluates to the value list [v0, . . . , vn]
along ρ.

We assume that the semantic functions are given, by structural induction,
in the usual way. For example:

[[10]] = {(δ, 10)}
[[i]] = {(i=v, v) | v ∈ Vint}
[[e1 + e2]] = {(ρ1ρ2, v1 + v2) | (ρ1, v1) ∈ [[e1]] & (ρ2, v2) ∈ [[e2]]}
[[(e0, . . . , en)]] = {(ρ0 . . . ρn, [v0, . . . , vn]) | ∀j. 0 ≤ j ≤ n ⇒ (ρj, vj) ∈ [[ej]]}.

The use of concatenation in these semantic clauses assumes that sum
expressions and lists are evaluated in left-right order. This assumption is
not crucial; it would be just as reasonable to assume parallel evaluation for
such expressions, with an appropriately modified semantic definition, and
this adjustment can be made without affecting the ensuing development.

Since expressions are pure, the only non-trivial actions occurring in an
expression trace ρ will be reads. Note that s

ρ
==⇒ s holds if and only if the

reads in ρ are consistent with the store s.
We assume the usual properties. For instance, the value of an expression

depends only on the values of its free identifiers, so that in particular when-
ever (ρ, v) ∈ [[e]] and stores s1 and s2 agree on the values of the identifiers
occurring free in e, s1

ρ
==⇒ s1 holds if and only if s2

ρ
==⇒ s2 holds. There are

analogous properties for boolean expressions and list expressions.
We let [[b]]true ⊆ Tr be the set of all ρ such that (ρ, true) ∈ [[b]], and

likewise [[b]]false = {ρ | (ρ, false) ∈ [[b]]}.

17

4.6 Trace semantics of commands

A command c denotes a set [[c]] ⊆ Tr of action traces. Again we include both
sequential and non-sequential traces.

Definition 5
For all commands c we define the trace set [[c]] ⊆ Tr inductively by:

[[skip]] = {δ}
[[i:=e]] = {ρ i:=v | (ρ, v) ∈ [[e]]}
[[i:=[e]]] = {ρ [v]=v′ i:=v′ | (ρ, v) ∈ [[e]]}
[[i:=consE]] = {ρ alloc(l, L) i:=l | (ρ, L) ∈ [[E]]}
[[[e]:=e′]] = {ρ ρ′ [v]:=v′ | (ρ, v) ∈ [[e]] & (ρ′, v′) ∈ [[e′]]}
[[dispose(e)]] = {ρ disp(l) | (ρ, l) ∈ [[e]]}
[[c1; c2]] = [[c1]] [[c2]] = {α1α2 | α1 ∈ [[c1]] & α2 ∈ [[c2]]}
[[if b then c1 else c2]] = [[b]]true [[c1]] ∪ [[b]]false [[c2]]
[[while b do c]] = ([[b]]true [[c]])∗ [[b]]false ∪ ([[b]]true [[c]])ω

[[c1‖c2]] = [[c1]]‖[[c2]]
[[local i = e in c]] = {ρ(α\i) | (ρ, v) ∈ [[e]] & α ∈ [[c]][i:v]}
[[with r when b do c]] = wait∗ enter ∪ waitω

where wait = acq(r) [[b]]false rel(r) ∪ {try(r)}
and enter = acq(r) [[b]]true [[c]] rel(r)

[[resource r in c]] = {α\r | α ∈ [[c]]r}

We hope that the purpose of each semantic clause is evident, and that the
reader will readily appreciate the role played in these clauses by the trace
constructions discussed earlier. For instance, execution of an assignment
command begins with evaluation of the right-hand-side expression and ends
with the assignment to the target identifier. (So we do not assume that as-
signments are atomic.) Similarly, an update command evaluates from left to
right, then performs the update action on the relevant heap address. Sequen-
tial composition and conditional commands are interpreted using concatena-
tion, and parallel composition is modelled using mutex fairmerge. While-
loops correspond, as usual, to iteration, and we include traces representing
both terminating and non-terminating executions. A block local i = e in c
begins by evaluating e to obtain a value v, then executes c with i bound
locally to v. Similarly a resource block resource r in c executes c with r
bound to a local resource assumed to be initially available.

18

The iterative structure of the traces of a conditional critical region reflect
its characteristic synchronization attributes: waiting until the resource is
available and the test condition is true, followed by execution of the body
command while holding the resource, and finally releasing the resource. Note
that the clause for a critical region allows for the possibility that the body
may loop forever or encounter a runtime error, in which case the resource
release action will not occur.

Since [[true]]false = {} and [[true]]true = {δ}, we can derive a simpler
formula for the trace set of with r when true do c: we will use the syntactic
abbreviation with r do c for this special case, and we have

[[with r do c]] = try(r)∗ acq(r) [[c]] rel(r) ∪ {try(r)ω}.

Note that the semantics and the enabling relation allow us to determine,
for each command c and state σ, what possible executions of c are enabled
from σ, and whether or not execution may encounter a runtime error, such as
a dangling pointer, an attempt to read or assign to an uninitialized identifier,
or a race.

Examples

1. [[x:=x + 1]] = {x=v x:=v + 1 | v ∈ Vint}
This program always terminates, when executed from a state in which
x has a value; its effect is to increment the value of x by 1.

2. Concurrent assignments to the same identifier cause a race. For exam-
ple [[x:=x + 1‖x:=x + 1]] contains interleavings of traces x=v x:=v + 1
and x=v′ x:=v′ + 1, for all v and v′, and also traces that reflect the
inherent race condition, such as x=v abort .

3. [[with r do x:=x + 1]] = try(r)∗ acq(r) [[x:=x + 1]] rel(r) ∪ {try(r)ω}
This program needs to acquire r before incrementing x, and will wait
forever if the resource never becomes available.

4. The trace set [[with r do x:=x + 1‖with r do x:=x + 1]] contains all
traces of the forms

• acq(r) α rel(r) acq(r) β rel(r)

• acq(r) α rel(r) try(r)ω

19

• try(r)ω

where α, β ∈ [[x:=x + 1]]. Only the first kind are sequential for r.
The trace set also includes traces obtainable from the above forms by
inserting (finitely many) additional try(r) steps.

5. It follows from the previous example, focussing on the traces which are
sequential for r, that

[[resource r in (with r do x:=x + 1‖with r do x:=x + 1)]]
= {αβ | α, β ∈ [[x:=x + 1]]}
= [[x:=x + 1; x:=x + 1]].

The parallel assignments to x here are protected by r, and the overall
effect is the same as that of two consecutive increments.

6. The command x:=cons(1)‖y:=cons(2) has the trace set

{alloc(l, [1]) x:=l | l ∈ Vaddr}‖{alloc(l′, [2]) y:=l′ | l′ ∈ Vaddr}.

This set includes traces of the form

alloc(l, [1]) x:=l alloc(l, [2]) y:=l,

and other interleavings of alloc(l, [1]) x:=l with alloc(l, [2]) y:=l, none
of which are sequential for l. The set also includes traces obtained by
interleaving alloc(l, [1]) x:=l and alloc(l′, [2]) y:=l′, where l 6= l′; all of
these are sequential for l and l′.

7. The command x:=cons(1)‖dispose(42) has the trace set

{alloc(l, [1]) x:=l | l ∈ Vaddr}‖{disp(42)}.

The possible interleavings have one of the forms

• disp(42) alloc(l, [1]) x:=l

• alloc(l, [1]) disp(42) x:=l

• alloc(l, [1]) x:=l disp(42),

where l ∈ Vaddr .

20

8. The command dispose(x)‖dispose(y) has the trace set

{x=v disp(v) | v ∈ Vaddr}‖{y=v′ disp(v′) | v′ ∈ Vaddr},

including traces of the form x=v y=v abort because of the race-detecting
clause in the definition of fairmerge. A trace of this form indicates that
if the program is executed from a state in which x and y are aliases for
the same heap cell v a race condition will occur.

9. To illustrate how the semantic model deals with deadlock, consider

c1 =def with r1 do with r2 do x:=1
c2 =def with r2 do with r1 do y:=1

We have

[[c1]] = try(r1)
∞ acq(r1) try(r2)

∞acq(r2) x:=1 rel(r2) rel(r1)
[[c2]] = try(r2)

∞ acq(r2) try(r1)
∞acq(r1) y:=1 rel(r1) rel(r2)

The trace set of c1‖c2 thus includes traces such as

acq(r1) acq(r2) x:=1 rel(r2) rel(r1) acq(r2) acq(r1) y:=1 rel(r1) rel(r2)
acq(r2) acq(r1) y:=1 rel(r1) rel(r2) acq(r1) acq(r2) x:=1 rel(r2) rel(r1)

which correspond to deadlock-free computations, but also includes traces
belonging to the subset

(acq(r1)‖acq(r2)) (try(r2)
ω‖try(r1)

ω)

which represent the deadlock which occurs if c1 acquires r1 and c2

acquires r2, whereupon each process is trying to acquire a resource
held by the other. Using the above analysis it is easy to see that

[[resource r1, r2 in (c1‖c2)]] = {x:=1 y:=1, y:=1 x:=1, δω}

and this trace set again records the potential for deadlock.

10. Consider the program c given by

c =def with r do while true do skip.

We have
[[c]] = try(r)∗ acq(r) δω ∪ try(r)ω

21

so that
[[c‖c]] = try(r)∗ acq(r) try(r)ω ∪ try(r)ω

It follows that
[[resource r in (c‖c)]] = {δω}

This reflects the expected behavior of this command: one of the parallel
components will acquire the resource and loop forever, while the other
waits forever.

11. Let put(x) and get(y) be the following code fragments:

put(x) : with buf when full = 0 do (z:=x; full :=1)
get(y) : with buf when full = 1 do (y:=z; full :=0)

We have

[[put(x)]] = wait¬full
∗ put ∪ wait¬full

ω

where wait¬full = {acq(buf) full=1 rel(buf), try(buf)}
put = {acq(buf) put(v) rel(buf) | v ∈ Vint}

put(v) = full=0 x=v z:=v full :=1

and

[[get(y)]] = wait full
∗ get ∪ wait full

ω

where wait full = {acq(buf) full=0 rel(buf), try(buf)}
get = {acq(buf) get(v) rel(buf) | v ∈ Vint}

get(v) = full=1 z=v y:=v full :=0

The trace set of put(x)‖(get(y);dispose(y)) includes traces of the
following forms, where v, v′, v′′ range over Vint :

• acq(buf) put(v) rel(buf) acq(buf) get(v′) rel(buf) y=v′′ disp(v′′)

• acq(buf) get(v′) rel(buf) ((acq(buf) put(v) rel(buf))‖(y=v′′ disp(v′′)))

The sequential traces of these forms are:

• acq(buf) put(v) rel(buf) acq(buf) get(v) rel(buf) y=v disp(v)

• acq(buf) get(v′) rel(buf) ((acq(buf) put(v) rel(buf))‖(y=v′ disp(v′)))

None of these traces leads to a race.

For (put(x);dispose(x))‖get(y) the trace set includes traces of the
forms:

22

• acq(buf) put(v) rel(buf) ((x=v′′ disp(v′′))‖(acq(buf) get(v′) rel(buf)))

• acq(buf) get(v′) rel(buf) acq(buf) put(v) rel(buf) x=v′′ disp(v′′)

The sequential traces of these forms are:

• acq(buf) put(v) rel(buf) ((x=v disp(v))‖(acq(buf) get(v) rel(buf)))

• acq(buf) get(v′) rel(buf) acq(buf) put(v) rel(buf) x=v disp(v)

Again there are no races in these traces.

On the other hand, the trace set of (put(x);dispose(x))‖(get(y);dispose(y))
includes, for each v, traces of the form

acq(buf) put(v) rel(buf) acq(buf) get(v) rel(buf) (x=v disp(v))‖(y=v disp(v))

and hence includes the sequential trace

acq(buf) put(v) rel(buf) acq(buf) get(v) rel(buf) x=v y=v abort .

This indicates the possibility of a race condition, caused in this case
by concurrent attempts to dispose the same heap cell. This trace is
enabled from any state (s, h) such that s(full) = 0, s(x) = v, and
y, z ∈ dom(s).

5 Semantic equivalence

Definition 6
Commands c and c′ are said to be semantically equivalent if [[c]] = [[c′]].

Since the trace semantics is compositional, semantic equivalence is clearly
a congruence: if [[c]] = [[c′]] then for all program contexts C[−] we also have
[[C[c]]] = [[C[c′]]].

We can establish a number of standard laws of semantic equivalences. In
particular, sequential composition and parallel composition are associative:
for all commands c1, c2 and c3,

[[c1; (c2; c3)]] = [[(c1; c2); c3)]]
[[c1‖(c2‖c3)]] = [[(c1‖c2)‖c3]]

23

Parallel composition is also commutative: for all c1 and c2, [[c1‖c2]] = [[c1‖c2]].
Moreover, for all c we have

[[skip; c]] = [[c; skip]] = [[c]]
[[skip‖c]] = [[c‖skip]] = [[c]]

We also obtain the usual loop unrolling law:

[[while b do c]] = [[if b then c;while b do c else skip]].

Let [i′/i]c be the command obtained by replacing each free occurrence of
i in c by i′, changing bound variable names if necessary to avoid capture. If
i′ 6∈ free(c), then

[[local i = e in c]] = [[local i′ = e in [i′/i]c]].

Simlarly, let [r′/r]c be obtained by replacing every free occurrence of the
resource name r in c by r′, changing bound resource names if necessary to
avoid capture. We use a similar notation [r′/r]α for the trace obtained
by replacing each resource action on r in α by the corresponding action
on r′. If r′ is a “fresh” resource name, so that r′ 6∈ res(c), the commands
resource r in c and resource r′ in [r′/r]c are semantically equivalent, since

[[resource r′ in [r′/r]c]] = {β\r′ | β ∈ [[[r′/r]c]]r′}
= {([r′/r]α)\r′ | α ∈ [[c]]r}
= {α\r | α ∈ [[c]]r}
= [[resource r in c]].

Note also that if r1 and r2 are distinct resource names,

[[resource r1 in resource r2 in c]] = {(α\r1)\r2 | α ∈ ([[c]]r1
)r2}

[[resource r2 in resource r1 in c]] = {(α\r2)\r1 | α ∈ ([[c]]r2
)r1}

and since (α\r1)\r2 = (α\r2)\r1 holds for all traces α, and (Tr1)r2 = (Tr2)r1

holds for all trace sets T , the two commands are semantically equivalent.
Accordingly, we may use the convenient syntactic abbreviation

resource r1, r2 in c

without risk of ambiguity, and we may write

[[resource r1, r2 in c]] = {α\{r1, r2} | α ∈ [[c]]r1,r2
}.

24

6 Race-free programs

We now formalize, using the trace semantics, a notion of race-freedom for
commands. We choose this notion to be strong enough to imply that when-
ever the program is executed in isolation, without interference, there will be
no races, no attempt to access an identifier outside the domain of the store,
and no attempt to access an address outside of the heap.

Definition 7 (Race-free command)
A command c is race-free from state (s, h) if for all traces α ∈ [[c]],

¬(s, h)
α

==⇒ abort.

Examples

1. x:=1‖y:=2 is race-free from (s, h) if and only if x, y ∈ dom(s).

2. [x]:=1‖[y]:=2 is race-free from (s, h) if and only if x, y ∈ dom(s), s(x) 6=
s(y), and s(x), s(y) ∈ dom(h).

3. [10]:=1‖[10]:=2 is not race-free from any state.

4. x:=[10]‖y:=[10] is race-free from all states (s, h) in which x, y ∈ dom(s)
and 10 ∈ dom(h). This is because we do not view a concurrent pair of
reads as a race condition.

5. x:=1‖x:=1 is not race-free from any state; similarly [x]:=1‖x:=1 and
y:=[x]‖x:=1 are not race-free.

6. dispose(x)‖dispose(y) is race-free from (s, h) if and only if x, y ∈

dom(s), s(x) 6= s(y) and s(x), s(y) ∈ dom(h).

7. The command x:=cons(1)‖dispose(42) is race-free from any state
(s, h) such that x ∈ dom(s) and 42 ∈ dom(h).

8. The command x:=cons(1)‖y:=cons(2) is race-free from every state
(s, h) in which x, y ∈ dom(s).

9. The command
x:=3‖with r do x:=x + 1

25

is not race-free from any state, whereas

with r do x:=3 ‖with r do x:=x + 1

is race-free from all states (s, h) with x ∈ dom(s).

10. Let put(x) and get(y) be the commands introduced earlier. Based on
our prior analysis of the traces of these programs, we can deduce that

• put(x)‖(get(y);dispose(y))
is race-free from (s, h) if and only if x, y, z, full ∈ dom(s) and either
s(full) = 0 & s(x) ∈ dom(h) or s(full) = 1 & s(z) ∈ dom(h).

• (put(x);dispose(x))‖get(y)
is race-free from (s, h) if and only if x, y, z, full ∈ dom(s) and
s(full) ∈ {0, 1} & s(x) ∈ dom(h).

• (put(x);dispose(x))‖(get(y);dispose(y))
is not race-free from any state.

• (x:=cons(1);put(x))‖(get)(y);dispose(y))
is race-free from (s, h) if and only if x, y, z, full ∈ dom(s) and either
s(full) = 0, or s(full) = 1 & s(z) ∈ dom(h).

• (x:=cons(1);put(x);dispose(x))‖get(y)
is race-free from (s, h) if and only if x, y, z, full ∈ dom(s) and
s(full) ∈ {0, 1}.

We have shown that the trace semantics supports compositional program
analysis, and can be used to determine whether or not a command causes
a runtime error. The semantics applies to all programs in our programming
language, including racy programs as well as race-free programs, but – cru-
cially – we are able to distinguish race-free programs from racy programs.
Although it is possible to use the semantic definitions by hand to determine
race-freedom in some simple examples, it should be evident from the above
analyses that this method is likely to be prohibitively complex for programs
on a larger scale.

Now we are ready to introduce a resource-sensitive logic. This logic will
be designed to ensure that all provable programs are race-avoiding. More-
over, the logic is designed to abstract away from irrelevant scheduling details
and allow attention to be directed more narrowly. The interactions between
processes in a well designed parallel program will be amenable to a less taxing
analysis that takes advantage of a dynamic form of separation.

26

7 Separation logic

We begin with the syntax, semantics, and key properties of separation logic
formulas, following Reynolds [41].

7.1 Syntax

We use p as a meta-variable ranging over separation logic formulas, given by
the following abstract grammar. We let b range over pure boolean expres-
sions, e over pure integer-valued expressions, and E over pure list expressions.

p ::= b | emp | (e 7→ e′) | p1 ∗ p2 | p1 ∨ p2 | p1 ∧ p2 | ¬p | ∃i.p

We also allow inductively defined formulas such as list(f). We use the usual
notation for derived connectives such as implication: p ⇒ q is defined to be
(¬p) ∨ q.

We also use the standard abbreviations, such as e 7→ − for ∃i.(e 7→ i)
(where i is not free in e) and e 7→ E for e 7→ e0 ∗ · · · ∗ (e + n) 7→ en, when E
is (e0, . . . , en).

Let free(p) be the set of identifiers occurring free in p, defined as usual
by structural induction.

7.2 Semantics

Since the value of a pure expression depends only on the store, we can specify
the atomic semantics of an integer expression e as a partial function from
stores to values. Thus we will write |e| : S ⇀ Vint , where S is the set of
stores. Similarly a pure boolean expression b will denote a partial function
from stores to truth values, |b| : S ⇀ {true, false}. And a list expression
E denotes a partial function |E| : S ⇀ V ∗

int from stores to lists of values.
These semantic functions are defined in the traditional, denotational style.
For example,

|i| = {(s, v) | (i, v) ∈ s & s ∈ S}
|e1 + e2| = {(s, v1 + v2) | (s, v1) ∈ |e1| & (s, v2) ∈ |e2|}
|(e0, . . . , en)| = {(s, [v0, . . . , vn]) | ∀i.(0 ≤ i ≤ n ⇒ (s, vi) ∈ |ei|)}

We can connect the atomic semantics and trace semantics of expressions
in the following way:

(s, v) ∈ |e| ⇔ ∃ρ. s
ρ

==⇒ s & (ρ, v) ∈ [[e]].

27

The truth value of a separation logic formula p depends on the store and
the heap. When σ |= p we say that σ satisfies p, or that p holds in σ.

When dom(s) ∩ dom(s′) = {} we say that s and s′ are disjoint, written
s ⊥ s′, and we write s · s′ = s ∪ s′. Similarly when dom(h) ∩ dom(h′) = {} we
write h ⊥ h′ and we let h · h′ = h ∪ h′.

Definition 8
The satisfaction relation (s, h) |= p is defined by structural induction on p,
for all states (s, h) such that dom(s) ⊇ free(p):

(s, h) |= b iff (s, true) ∈ |b|
(s, h) |= emp iff h = {}
(s, h) |= (e 7→ e′) iff ∃v, v′. (s, v) ∈ |e| & (s, v′) ∈ |e′| & h = {(v, v′)}
(s, h) |= p1 ∗ p2 iff ∃h1 ⊥ h2. h = h1 · h2 & (s, h1) |= p1 & (s, h2) |= p2

(s, h) |= p1 ∧ p2 iff (s, h) |= p1 & (s, h) |= p2

(s, h) |= p1 ∨ p2 iff (s, h) |= p1 or (s, h) |= p2

(s, h) |= ¬p iff not (s, h) |= p
(s, h) |= ∃i.p iff ∃v ∈ Vint . ([s | i : v], h) |= p

We also specify that abort |= p is false for all p. We say that a state is
proper if it is not abort; thus σ |= true is true if and only if σ is proper.

We will assume without proof the following Agreement Theorem, to the
effect that the satisfaction of a separation logic formula depends only on the
heap and the values of its free identifiers.

Lemma 9 (Agreement)
If s1 agrees with s2 on free(p) then (s1, h) |= p if and only if (s2, h) |= p.

Let [e/i]p be obtained from p by replacing every free occurrence of i by
e, renaming bound variables if necessary to avoid capture. The following
Substitution Lemma can be proven by induction on the structure of p.

Lemma 10 (Substitution)
For all formulas p, expressions e, identifiers i, and states (s, h),

(s, h) |= [e/i]p ⇔ ∃v. (s, v) ∈ |e| & ([s | i : v], h) |= p.

We say that p is universally valid if p holds in all (proper) states. Note
that an implication p ⇒ q is universally valid if and only if every state

28

satisfying p also satisfies q. If p ⇒ q and q ⇒ p are both universally valid, so
that p and q hold in exactly the same states, we say that p and q are logically
equivalent.

We say that a formula p holds in a sub-heap of (s, h) if there is a sub-heap
h′ ⊆ h such that (s, h′) |= p. We will be particularly concerned with precise
formulas, which are characterized by the property that in every state there
is at most one sub-heap in which the formula holds.

Definition 11
A formula p is precise if, for all states (s, h), there is at most one sub-heap
h′ ⊆ h such that (s, h′) |= p.

Note that emp and e 7→ e′ are precise, and if R1 and R2 are precise, so is
R1 ∗R2. If b is pure and p1, p2 are precise, then (b∧ p1)∨ (¬b∧ p2) is precise.
If p1 is precise or p2 is precise, so is p1 ∧ p2.

Moreover, if R is precise then, for all p and q, (p∧q)∗R and (p∗R)∧(q∗R)
are logically equivalent.

If R is precise, (s, h) |= R, and h′ ⊆ h, we may refer unambiguously to
(sdfree(R), h′) as the portion of (s, h) determined by R.

8 Concurrent separation logic

8.1 Syntax

As in the Owicki-Gries logic, and in O’Hearn’s adaptation, we want to prove
properties of a parallel program in the context of a collection of assumptions
about resources: each resource name occurring in the program is to be associ-
ated with a finite set of identifiers (a protection list) and a resource invariant.
As Owicki remarks, the identifiers chosen to be associated with a particular
resource should be “logically” related. Consequently, unlike Owicki-Gries
and O’Hearn, we will make this association part of the structure of a logical
formula, rather than part of the program itself. We will therefore work with
resource-sensitive partial correctness formulas of the form

Γ ` {p}c{q},

where the pre-condition p and post-condition q are separation logic formulas
and Γ is a resource context which associates resource names with protection

29

lists and invariants. Each resource invariant is a precise separation logic
formula.

A typical resource context Γ has the form

r1(X1) : R1, . . . , rk(Xk) : Rk,

in which k ≥ 0 and for each index i ∈ 1 . . . k, Xi is the set of identifiers pro-
tected by ri and Ri is the resource invariant for ri. Let dom(Γ) = {r1, . . . , rk}
be the set of resource names mentioned in Γ, and owned(Γ) =

⋃k
i=1 Xi be the

set of identifiers protected by Γ. Let free(Γ) =
⋃k

i=1 free(Ri) be the set of
identifiers mentioned in the resource invariants. Let inv(Γ) = R1∗· · ·∗Rk be
the separate conjunction of the resource invariants in Γ. In particular, when
Γ is empty this is emp. Note that since each resource invariant is precise it
follows that inv(Γ) is precise.

We will impose some syntactic well-formedness constraints on contexts
and formulas, designed to facilitate modularity. Specifically, we say that:

• Γ is well-formed if its entries are disjoint, in that if i 6= j then ri 6= rj,
Xi ∩Xj = {}, and free(Ri) ∩Xj = {}.

• Γ ` {p}c{q} is well-formed if Γ is well-formed, and p and q do not
mention any protected identifiers, i.e. free(p, q) ∩ owned(Γ) = {}.

Thus in a well-formed context each identifier belongs to at most one resource.
We do not require that the free identifiers in a resource invariant be protected,
i.e. that free(Ri) ⊆ Xi. This allows us to use a resource invariant to specify
a connection between the values of protected identifiers and the values of
non-critical variables.

The inference rules will be designed to enforce the following additional
syntactic constraints4:

• Every free write occurrence in c of an identifier used in a resource
invariant of Γ is inside a critical region for the corresponding resource.

• Every free occurrence in c of a protected identifier is inside a critical
region for the corresponding resource of Γ.

4We do not use these properties in any of the technical developments that follow, so we
will not formalize them or give a proof that they hold in all provable formulas. Nevertheless
we state them here since they recall analogous requirements in the Owicki-Gries logic.

30

• Every critical identifier of c is protected by a resource.

Resource contexts Γ and Γ′ are disjoint when dom(Γ) ∩ dom(Γ′) = {} and
owned(Γ) ∩ free(Γ′) = {} and free(Γ) ∩ owned(Γ′) = {}. We write Γ ⊥ Γ′

when Γ and Γ′ are disjoint, and when this holds we write Γ, Γ′ for the union
of Γ and Γ′. Note that If Γ and Γ′ are well-formed and disjoint, the union
context Γ, Γ′ is also well-formed.

8.2 Semantics

Intuitively, a resource-sensitive partial correctness formula specifies how the
program behaves when executed in an environment which obeys the mu-
tex discipline for resources and respects the protection lists and invariants.
Echoing O’Hearn’s description of the philosophy behind this methodology, we
assume that at all stages the state can be partitioned into the portion owned
by the program, the portion owned by its environment, and the portion be-
longing to the currently available resources. We assume that at all times
the separate conjunction of the resource invariants holds, for all available
resources. The program guarantees to stay within these bounds, provided
it can rely on its environment to do likewise. When a process acquires a
resource it claims ownership of the protected identifiers and the correspond-
ing (separate) heap portion in which the invariant holds; when releasing the
resource it must ensure that the invariant holds again, separately, and yields
ownership of the corresponding piece of state.

Based on this intuitive notion of respect, we can now propose an informal
notion of validity for resource-sensitive partial correctness formulas.

Proposal 12 (Informal notion of validity)
A formula Γ ` {p}c{q} is valid iff every finite interactive computation of
c, from a state satisfying p ∗ inv(Γ) with initial values for free(c), in an
environment that respects Γ, is error-free, respects Γ, and ends in a state
satisfying q ∗ inv(Γ).

The special case when Γ is empty implies conventional partial correctness
together with freedom from runtime error: validity of {} ` {p}c{q} implies
that whenever c is executed from a state satisfying p, with initial values for
free(c), there are no runtime errors, and if execution terminates the final
state satisfies q.

31

We have not yet formulated precisely the notion of an interactive compu-
tation in an environment that respects Γ. This will be formalized later, but
this informal notion of validity should serve as a reasonable guide for now.

We are now ready to present our version of O’Hearn’s rules.

8.3 Inference rules

The following are the inference rules of concurrent separation logic. The side
conditions of various rules are designed to ensure that every provable formula
is well formed. In particular, this means that all resource contexts are well
formed, resource invariants are precise, and the pre- and post-condition of a
formula do not mention any protected identifiers. Some of the rules have side
conditions to ensure that the command obeys the resource discipline, so that
protected identifiers, and writes to identifiers occurring in invariants, only
appear inside regions. Similar restrictions are made in O’Hearn’s paper [31].

• Skip

Γ ` {p}skip{p}
if free(p) ∩ owned(Γ) = {}

• Assignment

Γ ` {[e/i]p}i:=e{p}
if i 6∈ owned(Γ) ∪ free(Γ) and free(p, e) ∩ owned(Γ) = {}

• Lookup

Γ ` {[e′/i]p ∧ e 7→ e′}i:=[e]{p ∧ e 7→ e′}
if i 6∈ free(e, e′) and i 6∈ owned(Γ) ∪ free(Γ)
and free(e, e′, p) ∩ owned(Γ) = {}

• Allocation

Γ ` {emp}i:=cons(E){i 7→ E}
if i 6∈ free(E) and i 6∈ owned(Γ)∪free(Γ) and free(E)∩owned(Γ) = {}

• Update

Γ ` {e 7→ −}[e]:=e′{e 7→ e′}
if free(e, e′) ∩ owned(Γ) = {}

32

• Disposal

Γ ` {e 7→ −}dispose e{emp}
if free(e) ∩ owned(Γ) = {}

• Sequential
Γ ` {p1}c1{p2} Γ ` {p2}c2{p3}

Γ ` {p1}c1; c2{p3}

• Conditional

Γ ` {p ∧ b}c1{q} Γ ` {p ∧ ¬b}c2{q}
Γ ` {p}if b then c1 else c2{q}

• Loop
Γ ` {p ∧ b}c{p}

Γ ` {p}while b do c{p ∧ ¬b}

• Local variable

Γ ` {p ∧ i = e}c{q}
Γ ` {p}local i = e in c{q}

if i 6∈ free(e, p, q) and free(p, e, i, q) ∩ owned(Γ) = {}

• Renaming variable

Γ ` {p}local i′ = e in [i′/i]c{q}
Γ ` {p}local i = e in c{q}

if i′ 6∈ free(c)

• Parallel
Γ ` {p1}c1{q1} Γ ` {p2}c2{q2}

Γ ` {p1 ∗ p2}c1‖c2{q1 ∗ q2}
if free(p1, q1) ∩ writes(c2) = free(p2, q2) ∩ writes(c1) = {}
and (free(c1) ∩ writes(c2)) ∪ (free(c2) ∩ writes(c1)) ⊆ owned(Γ)

• Local Resource

Γ, r(X) : R ` {p}c{q}
Γ ` {p ∗R}resource r in c{q ∗R}

if r 6∈ dom(Γ), X ∩ owned(Γ) = {}, free(R) ∩ owned(Γ) = {},
and R is precise.

33

• Renaming resource

Γ ` {p}resource r′ in [r′/r]c{q}
Γ ` {p}resource r in c{q}

if r′ 6∈ res(c)

• Region
Γ ` {(p ∗R) ∧ b}c{q ∗R}

Γ, r(X) : R ` {p}with r when b do c{q}
if r 6∈ dom(Γ), X ∩ owned(Γ) = {}, free(R) ∩ owned(Γ) = {}, R is
precise, and free(p, q) ∩X = {}

• Frame
Γ ` {p}c{q}

Γ ` {p ∗ I}c{q ∗ I}
if free(I) ∩ writes(c) = {} and free(I) ∩ owned(Γ) = {}

• Consequence
p′ ⇒ p Γ ` {p}c{q} q ⇒ q′

Γ ` {p′}c{q′}
provided p′ ⇒ p and q ⇒ q′ are universally valid,
and free(p′, q′) ∩ owned(Γ) = {}

• Existential

Γ ` {p}c{q}
Γ ` {∃i.p}c{∃i.q}

if i 6∈ free(c)

• Auxiliary
Γ ` {p}c{q}

Γ ` {p}c\X{q}
if X is auxiliary for c, and X ∩ free(p, q) = {}.

• Conjunction

Γ ` {p1}c{q1} Γ ` {p2}c{q2}
Γ ` {p1 ∧ p2}c{q1 ∧ q2}

34

• Disjunction
Γ ` {p1}c{q1} Γ ` {p2}c{q2}

Γ ` {p1 ∨ p2}c{q1 ∨ q2}

• Expansion
Γ ` {p}c{q}

Γ, Γ′ ` {p}c{q}
if writes(c) ∩ free(Γ′) = {}, free(c) ∩ owned(Γ′) = {}, Γ ⊥ Γ′, and
free(p, c, q) ∩ owned(Γ′) = {}

• Contraction
Γ, Γ′ ` {p}c{q}
Γ ` {p}c{q}

if res(c) ⊆ dom(Γ) and Γ ⊥ Γ′

8.4 Comments

The rules dealing with the sequential programming constructs of the lan-
guage are natural adaptations of the corresponding inference rules given by
Reynolds, with the incorporation of a resource context and side conditions
to ensure well-formedness of the formulas and adherence to the protection
policy. For instance, the Assignment rule has a side condition to prevent
the rule’s use when the target identifier is protected or used in a resource
invariant, and another side condition to disallow use of a protected identifier
on the right-hand-side of an assignment. The Region rule permits such use
of protected identifiers inside the body of a critical region for the relevant
resource.

The Parallel, Region and Resource rules are based on O’Hearn’s
proposed adaptations of Owicki-Gries inference rules. A side condition in
the Parallel rule enforces the requirement that each critical variable must
be associated with a resource, just as in the original Owicki-Gries rule, but
the pre- and post-conditions of the component commands are combined with
the separating form of conjunction. The original rule using the standard
conjunction is not sound for pointer-programs, as we have already remarked.
The well-formedness condition in the Resource and Region rules require
the resource invariant R to be precise. As Reynolds has shown, arbitrary
resource invariants cannot be used here without losing soundness.

35

The Auxiliary rule similarly adapts the Owicki/Gries rule for auxiliary
variables5. As usual, a set of identifiers X is said to be auxiliary for c if every
free occurrence in c of an identifier from X is in an assignment that only
affects the values of identifiers in X. In particular, auxiliary identifiers cannot
occur in conditional tests or loop tests, and do not influence the control
flow of the program. The command c\X is obtained from c by deleting all
assignments to identifiers in X.

The “structural” rules Conjunction and Disjunction are not crucial
but can be useful as methodological tools.

The “contextual” rules Expansion and Contraction suggest them-
selves rather naturally as a by-product of our formal development.

We have omitted the obvious structural rules permitting permutation of
resource contexts.

9 Examples

To demonstrate the utility of the inference rules, clarify the need for some of
the side conditions, and explain what aspects of program behavior the logic
handles, we now present a series of examples. Many of these are more formal
versions of examples drawn from O’Hearn’s paper, and we include them here
to emphasize the virtues of our logical formulation.

9.1 Non-termination, deadlock, and runtime errors

Our resource-sensitive notion of partial correctness is designed to support
reasoning about the absence of runtime errors. This requires proper account
to be taken of the infinite traces of a command, not just its finite traces,
in case an infinite trace may lead to a runtime error. The semantics, of
course, deals with this possibility appropriately. Nevertheless, our logic is not
sensitive to error-free non-termination, and ignores the potential for deadlock.
To help clarify the subtleties, consider the following simple commands.

The command while true do skip never terminates, and never causes
any runtime errors. It is easy to prove the formula

` {true}while true do skip {false},
5Owicki and Gries cite Brinch Hansen [8] and Lauer [29] as having first recognized the

need for auxiliary variables in proving correctness properties of concurrent programs.

36

using the Loop rule.
On the other hand, the command while true do dispose(42) never

terminates successfully, and always causes a runtime error. There is no non-
trivial formula of the form

` {p}while true do dispose(42) {q}

that can be proven from our inference rules, since this would require both
p ⇒ 42 7→ − and emp ⇒ p to be universally valid, and this can only happen
when p is logically equivalent to false.

Finally, let c1 and c2 be the following commands:

c1 =def with r1 do with r2 do x:=1
c2 =def with r2 do with r1 do y:=1

The formula

r1 : emp, r2 : emp ` {x = 0 ∧ y = 0}c1‖c2{x = 1 ∧ y = 1}

is provable. Note that the possibility of deadlock, which was evident from
the trace set of this program, is ignored by the logic.

From the above formula we can then deduce

` {x = 0 ∧ y = 0}resource r1, r2 in (c1‖c2) {x = 1 ∧ y = 1}

by Resource and Consequence. Again this formula ignores the potential
for deadlock.

9.2 Concurrent disposal

Suppose that p ⇒ x 7→ − ∗ y 7→ − ∗ q. We can then construct the following
derivation:

• ` {x 7→ −}dispose(x){emp} by Disposal

• ` {y 7→ −}dispose(y){emp} by Disposal

• ` {x 7→ − ∗ y 7→ −}dispose(x)‖dispose(y){emp ∗ emp}
by Parallel

• ` {x 7→ − ∗ y 7→ − ∗ q}dispose(x)‖dispose(y){emp ∗ emp ∗ q}
by Frame, since writes(dispose(x)‖dispose(y)) = {}

• ` {p}dispose(x)‖dispose(y){q} by Consequence

37

9.3 Memory manager

Let list(f) be the least predicate satisfying the usual recursive definition:

list(f) =def (f = nil ∧ emp) ∨ (∃y.f 7→ −, y ∗ list(y))

This is a precise predicate.
Let alloc(x) and free(y) be the following code fragments:

alloc(x) = with mm do
if f = nil then x:=cons(−,−) else (x:=f ; f :=[x + 1])

free(y) = with mm do ([y + 1]:=f ; f :=y)

The following formula is provable from the rules Conditional, Lookup,
Sequence, Allocation and Sequential.

{} ` {emp ∗ list(f)}
if f = nil then x:=cons(−,−) else (x:=f ; f :=[x + 1])
{x 7→ −,− ∗ list(f)}

Hence, using Region

mm(f) : list(f) ` {emp}alloc(x){x 7→ −,−}

and with the appropriate substitutions we can replay the above derivation
to deduce

mm(f) : list(f) ` {emp}alloc(x1){x1 7→ −,−}

mm(f) : list(f) ` {emp}alloc(x2){x2 7→ −,−}

Using Parallel and Consequence we get

mm(f) : list(f) ` {emp}alloc(x1)‖alloc(x2){x1 7→ −,− ∗ x2 7→ −,−}

Using the Resource rule yields

{} ` {list(f)}
resource mm in alloc(x1)‖alloc(x2)
{x1 7→ −,− ∗ x2 7→ −,− ∗ list(f)}

38

Similarly

{} ` {list(f) ∗ y 7→ −,−}[y + 1]:=f ; f :=y{emp ∗ list(f)}
mm(f) : list(f) ` {y 7→ −,−}free(y){emp}

With the appropriate substitutions, we can derive similarly

mm(f) : list(f) ` {y1 7→ −,−}free(y1){emp}
mm(f) : list(f) ` {y2 7→ −,−}free(y2){emp}

Now using the Parallel rule we get

mm(f) : list(f) ` {y1 7→ −,− ∗ y2 7→ −,−}free(y1)‖free(y2){emp}

The Resource rule then gives

{} ` {y1 7→ −,− ∗ y2 7→ −,− ∗ list(f)}
resource mm in free(y1)‖free(y2)
{list(f)}

9.4 Buffer

Let RI be the following (precise) resource invariant:

RI : (full = 1 ∧ z 7→ −) ∨ (full = 0 ∧ emp)

Let put(x) and get(y) be the following code fragments:

put(x) : with buf when full = 0 do (z:=x; full :=1)
get(y) : with buf when full = 1 do (y:=z; full :=0)

We can prove:

{} ` {(RI ∗ x 7→ −) ∧ full = 0}z:=x; full :=1{RI ∗ emp}
buf (z, full) : RI ` {x 7→ −}put(x){emp}

Similarly

{} ` {(RI ∗ emp) ∧ full = 1}y:=z; full :=0{RI ∗ y 7→ −}
buf (z, full) : RI ` {emp}get(y){y 7→ −}

Hence we can also prove:

buf (z, full) : RI ` {emp}x:=cons(−);put(x){emp}
buf (z, full) : RI ` {emp}get(y);dispose(y){emp}

39

Using the Parallel rule we obtain:

buf (z, full) : RI ` {emp ∗ emp}
(x:=cons(−);put(x))‖(get(y);dispose(y))
{emp ∗ emp}

and hence, using Consequence,

buf (z, full) : RI ` {emp}
(x:=cons(−);put(x))‖(get(y);dispose(y))
{emp}

Now using the Resource rule we derive

{} ` {RI ∗ emp}
resource buf in

(x:=cons(−);put(x))‖(get(y); dispose(y))
{RI ∗ emp}

Again we can simplify via Consequence, to obtain

{} ` {RI}
resource buf in

(x:=cons(−);put(x))‖(get(y); dispose(y))
{RI}

Using Consequence and the definition of RI we can deduce

{} ` {full = 0 ∧ emp}
resource buf in

(x:=cons(−);put(x))‖(get(y); dispose(y))
{(full = 0 ∧ emp) ∨ (full = 1 ∧ z 7→ −)}

Unfortunately the post-condition of this formula does not tell us the whole
story, since we expect there to be no heap left over and full to be 0. We
will revisit this example using auxiliary variables later. Since full is a critical
variable there’s no way to carry around extra information about the value
of full in the pre- and post-conditions, so we cannot strengthen the formula
that way.

40

9.5 Ownership is in the eye of the prover

Suppose we dispose in the first rather than the second process. The program
becomes

resource buf in
(x:=cons(−);put(x);dispose(x)) ‖ get(y)

We must then reason about the program’s behavior under the assumption
that no heap locations are deemed to transfer ownership when the resource
is acquired or released, so we employ a different resource invariant:

RI ′ =def (full = 0 ∧ emp) ∨ (full = 1 ∧ emp)

This choice of invariant leads to different specifications for the put and get
operations:

{} ` {(RI ′ ∗ x 7→ −) ∧ full = 0}z:=x; full :=1{RI ′ ∗ x 7→ −}
buf (z, full) : RI ′ ` {x 7→ −}put(x){x 7→ −}

{} ` {(RI ′ ∗ emp) ∧ full = 1}y:=z; full :=0{RI ′ ∗ emp}
buf (z, full) : RI ′ ` {emp}get(y){emp}

Hence we can derive

buf (z, full) : RI ′ ` {emp}x:=cons(−);put(x);dispose(x){emp}

so the Parallel rule gives

buf (z, full) : RI ′ ` {emp ∗ emp}
(x:=cons(−);put(x);dispose(x))‖get(y)
{emp ∗ emp}

Finishing off with Consequence and the Resource rule, we obtain

{} ` {RI ′}
resource buf in

(x:=cons(−);put(x);dispose(x))‖get(y)
{RI ′}

Since RI ′ implies emp this post-condition is as strong as can be expected.

41

We have seen that memory ownership can either be deemed to transfer
with a pointer’s value, or to stay located in the sending process, depending on
what we want to prove. (The distinction is made when we choose a resource
invariant.) It is not possible for the ownership to go both ways. For example,
there is no resource invariant R that would permit us to prove any non-trivial
formula for the program

(x:=cons(−);put(x);dispose(x)) ‖ (get(y);dispose(y))

in the resource context buf (z, full) : R. It is fairly easy to see that for such
an invariant R to exist we would have to be able to prove both

buf (z, full) : R ` {emp}get(y){y 7→ −}

and
buf (z, full) : R ` {x 7→ −}put(x){x 7→ −}.

Thus in turn we would have to be able to prove both

` {(R ∗ emp) ∧ full = 1}y:=z; full :=0{y 7→ − ∗R}

and
` {(R ∗ x 7→ −) ∧ full = 0}z:=x; full :=1{R ∗ x 7→ −}

The first requires that R ∧ full = 1 ⇒ z 7→ −. But the second requires that
R ∗ x 7→ − holds in the state immediately after setting z to x and full to 1.
This is impossible since z = x ∧ (z 7→ − ∗ x 7→ −) is never true.

9.6 Combining the buffer and the memory manager

Using the notation from before, we had:

mm(f) : list(f) ` {emp}alloc(x){x 7→ −}
mm(f) : list(f) ` {y 7→ −}free(y){emp}

If we let R be the following (precise) resource invariant:

R : (full = 1 ∧ z 7→ −,−) ∨ (full = 0 ∧ emp)

then we can derive the following:

buf (z, full) : R ` {x 7→ −,−}put(x){emp}
buf (z, full) : R ` {emp}get(y){y 7→ −,−}

42

The two resource contexts involved here are disjoint, so we can appeal to the
Expansion rule to obtain

mm(f) : list(f), buf (z, full) : R ` {emp}alloc(x){x 7→ −,−}
mm(f) : list(f), buf (z, full) : R ` {x 7→ −,−}put(x){emp}.

Hence, using the Sequential rule,

mm(f) : list(f), buf (z, full) : R ` {emp}alloc(x);put(x){emp}

Similarly we can derive

mm(f) : list(f), buf (z, full) : R ` {emp}get(y); free(y){emp}

Now the Parallel rule yields

mm(f) : list(f), buf (z, full) : R ` {emp}
(alloc(x);put(x))‖(get(y); free(y))
{emp}

There are two ways to apply the Resource rule, and the rule can be applied
twice in either order, yielding

mm(f) : list(f) ` {R}
resource buf in

(alloc(x);put(x))‖(get(y); free(y))
{R}

or

buf (z, full) : R ` {list(f)}
resource mm in

(alloc(x);put(x))‖(get(y); free(y))
{list(f)}

followed by

` {R ∗ list(f)}
resource mm, buf in

(alloc(x);put(x))‖(get(y); free(y))
{R ∗ list(f)}

43

9.7 Using auxiliary variables

Previously we proved the following formula,

{} ` {full = 0 ∧ emp}
resource buf in

(x:=cons(−);put(x))‖(get(y); dispose(y))
{(full = 0 ∧ emp) ∨ (full = 1 ∧ z 7→ −)}

and we noted that the post-condition is not strong enough to imply that
there is no “memory leak” with this program. In fact the trace set of this
command shows that on termination full will be 0 and the heap will be
empty. However, since full is a critical variable, read and written by both
processes, there is no way to propagate information about the value of full
in the logic, except by invoking the resource invariant. We can skirt around
this difficulty by using auxiliary variables, as suggested by Owicki and Gries
to deal with similar problems in the pointer-free setting.

Let put′(x) and get′(y) be the following:

put′(x) : with buf when full = 0 do
(z:=x; full :=1; start :=0)

get′(y) : with buf when full = 1 do
(y:=z; full :=0; finish:=1)

Note that put′(x) and get′(y) are obtained from put(x) and get(y) by
inserting assignments to start and finish. Since these assignments do not
affect the flow of control and have no influence on the values of any other
identifiers, or on the heap, start and finish are indeed auxiliary variables.

Let R′ be the (precise) formula

(full = 0 ∧ emp ∧ (start = 1 ⇔ finish = 0))
∨ (full = 1 ∧ z 7→ − ∧ start = 0 ∧ finish = 0)

44

We can prove the formulas

buf (z, full) : R′ ` {start = 1 ∧ emp}
x:=cons(−);put′(x)
{start = 0 ∧ emp}

buf (z, full) : R′ ` {finish = 0 ∧ emp}
get′(y);dispose(y)
{finish = 1 ∧ emp}

buf (z, full) : R′ ` {start = 1 ∧ finish = 0 ∧ emp}
(x:=cons(−);put′(x))‖(get′(y);dispose(y))
{start = 0 ∧ finish = 1 ∧ emp}

` {start = 1 ∧ finish = 0 ∧ R′}
resource buf in

(x:=cons(−);put′(x))‖(get′(y);dispose(y))
{start = 0 ∧ finish = 1 ∧R′}

We then derive

` {full = 0 ∧ emp}
start :=1;
finish:=0;
resource buf in

(x:=cons(−);put′(x))‖(get′(y);dispose(y))
{start = 0 ∧ finish = 1 ∧R′}

Hence, using Consequence,

` {full = 0 ∧ emp}
start :=1;
finish:=0;
resource buf in

(x:=cons(−);put′(x))‖(get′(y);dispose(y))
{full = 0 ∧ emp}

Since start and finish are auxiliary variables and do not occur free in the pre-

45

condition or the post-condition, we can use the Auxiliary rule to deduce

` {full = 0 ∧ emp}
resource buf in

(x:=cons(−);put(x))‖(get(y);dispose(y))
{full = 0 ∧ emp},

since the removal of the auxiliary assignments converts put′(x) to put(x)
and get′(y) to get(y).

As desired, this formula expresses the property that this program is error-
free and does not leak memory.

10 Towards validity

We now return to the problem of interpretation that we raised earlier but have
not yet settled. We wish to establish that every provable resource-sensitive
formula is valid, but we need to determine precisely what that should mean.
Earlier we proposed informally that Γ ` {p}c{q} should be regarded as valid
if every finite interactive computation of c from a state satisfying p ∗ inv(Γ),
in an environment which respects Γ, is error-free, respects Γ, and ends in a
state satisfying q ∗ inv(Γ). We might try to formalize this notion of validity
in terms of the enabling relation, as in:

for every trace α of c, and all states σ and σ′,
if σ satisfies p ∗ inv(Γ) and σ

α
==⇒ σ′, then σ′ satisfies q ∗ inv(Γ).

This characterization of “validity” would work well for sequential programs.
However, it only involves the sequential traces of c. As a result it will not
suffice for parallel programs: we would be unable to establish soundness of
the proof rule for parallel composition. What is missing here is the ability
to quantify over traces with gaps at resource actions, assuming that the gaps
will be filled by actions on protected identifiers performed by an environment
which respects invariants and obeys the mutex constraints on resources.

To obtain a suitably general notion of validity we will work with local
states, so that we can make accurate statements about the portion of the
state which is deemed to be “owned” by the program and the pieces of state
that are designated to transfer on resource acquisition or release.

46

10.1 Local states and local enabling

Given a resource context Γ, a process holding resource set A is allowed to
access unprotected identifiers, as well as identifiers protected by resources
in A, but should be prevented from accessing identifiers protected by other
resources. We will therefore say that (s, h, A) is a local state consistent with
Γ if dom(s)∩owned(Γ) = owned(ΓdA), where ΓdA is the subset of Γ involving
the resources in A. Similarly we let Γ\A be the rest of Γ. Note that a local
state also satisfies dom(s) ∩ owned(Γ\A) = {}.

We introduce a family of local enabling relations (Figure 2): a step

(s, h, A) λ−→
Γ

(s′, h′, A′)

will mean that in the local state (s, h, A) a program is permitted to perform
action λ, causing the local state to change to (s′, h′, A′). This is a partial
relation, defined only when (s, h, A) is consistent with Γ and the action is

enabled in the usual manner; whenever (s, h, A) λ−→
Γ

(s′, h′, A′) holds it will
follow that (s′, h′, A′) is also consistent with Γ and the action “respects” the
resource constraints and the ownership rules. We use the error state abort
to handle runtime errors such as races or an attempt to use an identifier or
heap address not locally owned, or an attempt to release a resource in a state
for which no sub-heap satisfies the corresponding invariant. Thus a step

(s, h, A) λ−→
Γ

abort

indicates that the action λ is enabled but would cause a runtime error or
break the rules. As before it is convenient to extend this enabling relation
so that abort λ−→

Γ
abort holds, for all Γ and λ.

The local enabling relations are designed to embody the ownership rules
and transfer policy implied by the resource context: each time the program
acquires a resource it claims ownership of exactly the store and heap needed
to satisfy the relevant invariant, and on releasing a resource it relinquishes
ownership of the store and heap determined by the invariant. (The im-
portance of precision here is evident: since resource invariants are precise
there will be, for a given global store s′′ ⊇ s at most one heap h′ such that
(s′′, h′) |= R, and hence at most one local transition from (s, h, A) involving
the action acq(r) consistent with this global state.)

This leads us to a notion of local computation in which the program’s
claims on heap and protected identifiers are guided by the resource invariants.

47

• (s, h, A) δ−→
Γ

(s, h, A) and (s, h, A) abort−−−−→
Γ

abort always

• (s, h, A) i=v−−−→
Γ

(s, h, A) iff (i, v) ∈ s

• (s, h, A) i=v−−−→
Γ

abort iff i 6∈ dom(s)

• (s, h, A) i:=v−−−−→
Γ

([s | i : v], h, A) iff i ∈ dom(s)− free(Γ\A)

• (s, h, A) i:=v−−−−→
Γ

abort iff i 6∈ dom(s) or i ∈ free(Γ\A)

• (s, h, A)
[l]=v−−−−→

Γ
(s, h, A) iff (l, v) ∈ h

• (s, h, A)
[l]=v−−−−→

Γ
abort iff l 6∈ dom(h)

• (s, h, A)
[l]:=v′−−−−−→

Γ
(s, [h | l : v′], A) iff l ∈ dom(h)

• (s, h, A)
[l]:=v′−−−−−→

Γ
abort iff l 6∈ dom(h)

• (s, h, A)
alloc(l,[v0,...,vn])−−−−−−−−−−−−→

Γ
(s, [h | l : v0, . . . , l + n : vn], A)

iff dom(h) ∩ {l, l + 1, . . . , l + n} = {}

• (s, h, A)
disp(l)−−−−−→

Γ
(s, h\l, A) iff l ∈ dom(h)

• (s, h, A)
disp(l)−−−−−→

Γ
abort iff l 6∈ dom(h)

• (s, h, A)
try(r)−−−−−→

Γ
(s, h, A) iff r ∈ A

• (s, h, A)
acq(r)−−−−−−−→

Γ,r(X):R
(s · s′, h · h′, A ∪ {r}) iff

r 6∈ A, h ⊥ h′, dom(s′) = X and (s · s′, h′) |= R

• (s, h, A)
rel(r)−−−−−−−→

Γ,r(X):R
(s\X, h− h′, A− {r}) iff

r ∈ A, h′ ⊆ h, and (s, h′) |= R

• (s, h, A)
rel(r)−−−−−−−→

Γ,r(X):R
abort iff ∀h′ ⊆ h. ¬(s, h′) |= R

Figure 2: Local enabling relations on states consistent with Γ

48

A local computation can be seen to reflect the program’s view of the global
state during an interactive execution with an environment that respects the
resource environment. We write σ α−−→

Γ
σ′ when there is a local computation α

from σ to σ′ respecting Γ. We allow this notation when α is finite, in which
case σ′ may be a proper state or abort; if α is λ0 . . . λn we therefore have
σ λ0...λn−−−−−→

Γ
σ′ if there is a sequence of states σ0, . . . , σn−1 such that

σ λ0−−→
Γ

σ0
λ1−−→
Γ

σ1 · · · λn−1−−−−→
Γ

σn−1
λn−−→
Γ

σ′.

We also allow the notation when α is an infinite trace and σ′ is abort, to
handle the case when a program may cause an error part way through a
non-terminating computation. Thus σ α−−→

Γ
abort means that a program

attempting the trace α from σ aborts, possibly in mid-trace. And we write
σ α−−→

Γ
· to indicate that the trace α is locally enabled, or more informally,

that α respects Γ from σ. Note that this notion of local computation makes
sense for arbitrary traces, not just for sequential traces.

10.2 Fundamental properties

In preparation for the soundness analysis we build up a series of results
expressing basic properties of local computation. Most of the proofs are
straightforward, making extensive use of the relevant definitions. We include
more details in the Appendix for the more complex cases.

First we show that executing a command with a trivial resource context
that never transfers any state is the same as executing the command without
interference.

Lemma 13 (Empty Context Lemma)
Let α be a finite trace, let {r1, . . . , rn} be the set of resource names occurring
in actions of α, and let Γ0 be the resource context r1 : emp, . . . , rn : emp.
Then

(s, h, A)
α

==⇒ σ′ if and only if (s, h, A) α−−→
Γ0

σ′.

Theorem 14 (Respect for resources)
If α ∈ [[c]] and (s, h, A) α−−→

Γ
(s′, h′, A′), then dom(s′) = dom(s) and A = A′.

Note that these results imply the corresponding property for sequential
traces.

49

Corollary 15
If α ∈ [[c]] and (s, h, A)

α
==⇒ (s′, h′, A′), then dom(s) = dom(s′) and A = A′.

The following definition therefore makes sense.

Definition 16
We define (s, h) α−−→

Γ
(s′, h′) if (s, h, {}) α−−→

Γ
(s′, h′, {}).

The effect of a program in a local computation depends only on the heap,
the values of its free identifiers, and the values of (non-critical) identifiers
occurring free in resource invariants; moreover, a program can only change
the value of identifiers which have a free write occurrence.

Theorem 17 (Agreement)
Let α ∈ [[c]] and suppose that s1 agrees with s2 on free(c, Γ).

• If (s1, h) α−−→
Γ

abort, then (s2, h) α−−→
Γ

abort.

• If (s1, h) α−−→
Γ

(s′1, h
′) then there is a store s′2 such that

(s2, h) α−−→
Γ

(s′2, h
′) and s′1 agrees with s′2 on free(c, Γ).

If α ∈ [[c]] and (s, h) α−−→
Γ

(s′, h′) then s′ agrees with s′ except on writes(c).

Again this property, together with the Empty Context Lemma, implies
the analogous property for sequential traces.

Corollary 18
If α ∈ [[c]] and s1 agrees with s2 on free(c), then

• (s1, h)
α

==⇒ abort implies (s2, h)
α

==⇒ abort

• (s1, h)
α

==⇒ (s′1, h
′) implies (s2, h)

α
==⇒ (s2, h

′) for some store s′2 that
agrees with s′1 on free(c).

Moreover, if α ∈ [[c]] and (s, h)
α

==⇒ (s′, h′), then s′ agrees with s except on
writes(c).

As in the sequential setting, we obtain a Frame Property.

50

Theorem 19 (Frame)
Let α ∈ [[c]] and suppose h1 ⊥ h2 and h = h1 · h2.

• If (s, h) α−−→
Γ

abort then (s, h1)
α−−→
Γ

abort.

• If (s, h) α−−→
Γ

(s′, h′) then either (s, h1)
α−−→
Γ

abort, or there is a heap h′1
such that h′1 ⊥ h2, h′ = h′1 · h2, and (s, h1)

α−−→
Γ

(s′, h′1).

Yet again by invoking the Empty Context Lemma we deduce the corre-
sponding property for interference-free executions.

Corollary 20
Let α ∈ [[c]], h1 ⊥ h2, and h = h1 · h2.

• If (s, h)
α

==⇒ abort then (s, h1)
α

==⇒ abort.

• If (s, h)
α

==⇒ (s′, h′) then either (s, h1)
α

==⇒ abort, or there is a heap h′1
such that h′1 ⊥ h2, h′ = h′1 · h2, and (s, h1)

α
==⇒ (s′, h′1).

Using the Frame Theorem as a basis, we can establish a parallel decom-
position property relating a local computation of a parallel program to local
computations of its components. If the critical identifiers of c1 and c2 are
protected by resources in Γ, a local computation of c1‖c2 can be “projected”
into a local computation of c1 and a local computation of c2. Suppose c1‖c2

has a local computation α from (s, h) to (s′, h′), where α is obtained by inter-
leaving α1 ∈ [[c1]] and α2 ∈ [[c2]], and we choose a partition (h1, h2) of h. If c1

and c2 have successful computations α1 from (s\writes(α2), h1) and α2 from
(s\writes(α1), h2), the results of these computations fit together, determin-
ing (s′, h′) in a natural manner. On the other hand, if α leads to an error
one (or both) of α1, α2 must lead to error. The following Theorem expresses
this intuition more precisely. We include proof details in the Appendix.

Theorem 21 (Parallel Decomposition)
Suppose (free(c1) ∩ writes(c2)) ∪ (writes(c1) ∩ free(c2)) ⊆ owned(Γ) and
α ∈ α1‖α2, where α1 ∈ [[c1]] and α2 ∈ [[c2]]. Suppose h1 ⊥ h2 and h = h1 · h2.

• If (s, h) α−−→
Γ

abort then

(s\writes(α2), h1)
α1−−→
Γ

abort or (s\writes(α1), h2)
α2−−→
Γ

abort.

51

• If (s, h) α−−→
Γ

(s′, h′) then

(s\writes(α2), h1)
α1−−→
Γ

abort or (s\writes(α1), h2)
α2−−→
Γ

abort,
or there are disjoint heaps h′1 ⊥ h′2 such that h′ = h′1 · h′2 and

– (s\writes(α2), h1)
α1−−→
Γ

(s′\writes(α2), h
′
1)

– (s\writes(α1), h2)
α2−−→
Γ

(s′\writes(α1), h
′
2)

The following property of local computations shows that our definition
handles resources sensibly, and provides a way to connect local computations
of resource r in c in resource context Γ with local computations of c in
resource context Γ, r(X) : R. Recall that every trace of resource r in c has
the form β\r, where β is a trace of c that is sequential for r.

Theorem 22 (Local Resource Lemma)
Let β ∈ [[c]]r and suppose h1 ⊥ h2 and (s, h2) ` R.

• If (s, h1 · h2)
β\r−−−→
Γ

abort then (s\X, h1)
β−−−−−−−→

Γ,r(X):R
abort.

• If (s, h1 · h2)
β\r−−−→
Γ

(s′, h′) then either (s\X, h1)
β−−−−−−−→

Γ,r(X):R
abort, or

there are heaps h′1 ⊥ h′2 such that h′ = h′1 · h′2, (s′, h′2) |= R, and

(s\X, h1)
β−−−−−−−→

Γ,r(X):R
(s′\X, h′1).

There is an analogous property relating the local computations of a block
local i = e in c with those of its body.

Theorem 23 (Local Variable Lemma)
Let β ∈ [[c]][i:v] and i 6∈ owned(Γ).

• If (s, h)
β\i−−−→
Γ

abort then ([s | i : v], h) β−→
Γ

abort.

• If (s, h)
β\i−−−→
Γ

(s′, h′) then either ([s | i : v], h) β−→
Γ

abort, or there is a

value v′ such that ([s | i : v], h) β−→
Γ

([s′ | i : v′], h′).

52

11 Validity

The definition of local enabling was designed to formalize the notion of a
computation by a process, in an environment that respects resources, and
“minds its own business” by obeying the ownership policy of a given resource
context. With this definition in hand we can at last give a formal version of
validity.

Definition 24
The formula Γ ` {p}c{q} is valid if for all traces α of c, all local states
(s, h) such that dom(s) ⊇ free(c, Γ)− owned(Γ), and all σ′, if (s, h) |= p and
(s, h) α−−→

Γ
σ′ then σ′ |= q.

Note that this definition involves the local enabling relation, so that the
quantification ranges over local states (s, h) consistent with Γ, for which
dom(s) ∩ owned(Γ) = {}. Since abort does not satisfy q validity implies
freedom from race conditions. Furthermore, this notion of validity involves
all traces of c, not just the sequential traces and not just the finite traces;
the infinite traces only really matter in the no-abort requirement, since we
never get σ α−−→

Γ
σ′ when α is infinite and σ′ is a proper state.

It is easy to see from the above definition that, when Γ is the empty
context and c has no free resource names, validity of {} ` {p}c{q} implies
the usual notion of partial correctness together with the guaranteed absence
of runtime errors: in every terminating execution of c from a state satisfying
p, with values for all free identifiers of c, there is no runtime error and the
final state satisfies q . More generally, the same implication holds when
res(c) = {r1, . . . , rn} and Γ0 is the context r1 : emp, . . . , rn : emp: validity
of Γ0 ` {p}c{q} implies the usual notion of partial correctness together with
absence of errors.

Again we return to some examples to illustrate validity.

1. ` {true}while true do skip {false} is valid, because for all states σ

there is no state σ′ such that σ δω−−→{} σ′.

2. The formula ` {p}dispose(x)‖dispose(y){q} is valid if and only if
p ⇒ (x 7→ −) ∗ (y 7→ −) ∗ q is universally valid.

Suppose p ⇒ (x 7→ −)∗ (y 7→ −)∗ q is universally valid. Let (s, h) be a
state satisfying p and let s(x) = v, s(y) = v′. It follows that v 6= v′, and

53

(s, h\{v, v′}) satisfies q. Every trace of dispose(x)‖dispose(y) enabled
from (s, h) is an interleaving of x=v disp(v) with y=v′ disp(v′), and
therefore leads to the state (s, h\{v, v′}), which satisfies q as required.
The converse implication is straightforward.

3. Let Γ be the context r(x) : x = m+n∧emp. Note that in this example
the resource invariant connects the value of the protected identifier x
with the values of two unprotected identifiers m and n. The formula

Γ ` {m = 0}with r do (x:=x + 1; m:=m + 1){m = 1}

is clearly well formed, and also valid. To see this, let (s, h) be a local
state such that dom(s) ⊇ {m,n}, x 6∈ dom(s), and (s, h) |= m = 0, so
that s(m) = 0 and s(n) = v for some integer v. The only relevant trace
of the program, enabled from this state, is

acq(r) x=v x:=v + 1 m=0 m:=1 rel(r)

and we have

(s, h)
acq(r)−−−−−→

Γ
([s | x : v], h, {r})

x=v−−−→
Γ

([s | x : v], h, {r})
x:=v+1−−−−−−→

Γ
([s | x : v + 1], h, {r})

m=0−−−−→
Γ

([s | x : v + 1], h, {r})
m:=1−−−−→

Γ
([s | x : v + 1, m : 1], h, {r})

rel(r)−−−−→
Γ

([s | m : 1], h),

leading to a state satisfying m = 1, as required.

By symmetry the formula

Γ ` {n = 0}with r do (x:=x + 1; n:=n + 1){n = 1}

is also well formed and valid. Moreover, the formula

Γ ` {m = 0 ∧ n = 0}
with r do (x:=x + 1; m:=m + 1)

‖ with r do (x:=x + 1; n:=n + 1)
{m = 1 ∧ n = 1}

is well formed, since x is the only critical variable and it is protected
by r. This formula is also valid, because when (s, h) is a local state

54

such that dom(s) ⊇ {m,n}, x 6∈ dom(s), and s(m) = s(n) = 0, every
trace of this parallel command enabled from (s, h) leads to the state
([s | m : 1, n : 1], h).

12 Soundness

Theorem 25 (Soundness)
Every provable formula Γ ` {p}c{q} is valid.

Proof:
Our inference rules are subject to an implicit well-formedness constraint:
only well formed instance of rules are permitted. To prove soundness of the
proof system we show that each well formed instance of an inference rule
is sound: if the rule’s premisses and conclusion are well formed, the side
conditions hold, and the premisses are valid, then the conclusion is valid. It
then follows, by induction on the length of the derivation, that every provable
formula is valid.

For some of the rules this is fairly easy, although we provide details since
the notion of validity is rather subtle. The proofs for Update, Allocation
and Disposal are carried out in a similar manner to the proof given here for
Lookup; these are all straightforward adaptations of the soundness analysis
that can be given for these constructs in the sequential setting. Similarly the
rules for Conditional and Loop are straightforward.

• skip
The formula Γ ` {p}skip{p} is clearly valid, because the only com-

putation of skip from a state σ satisfying p has the form σ δ−→
Γ

σ.
The well-formedness assumption that free(p)∩ owned(Γ) = {} simply
ensures that if (s, h) satisfies p then so does (s\owned(Γ), h).

• Assignment
We verify that the formula Γ ` {[e/i]p}i:=e{p} is valid when i, free(e),
and free(p) are disjoint from owned(Γ), and i is not free in any resource
invariant of Γ. Let (s, h) be a state satisfying the pre-condition [e/i]p
and such that dom(s) ⊇ free(i:=e, Γ) − owned(Γ). This implies that
i ∈ dom(s) and free(e) ⊆ dom(s). Moreover, (s\owned(Γ), h) |= [e/i]p.
The traces of i:=e have the form ρ i:=v, where (ρ, v) ∈ [[e]]. Every local

55

computation of i:=e from (s, h) will therefore have the form

(s, h) ρ i:=v−−−−−→
Γ

([s | i : v], h)

where (ρ, v) is an evaluation trace of e enabled from s. Hence we also
have (s, v) ∈ |e| and (s, h) i:=v−−−−→

Γ
([s | i : v], h). Since (s, h) |= [e/i]p and

(s, v) ∈ |e| the Substitution Lemma implies that ([s | i : v], h) |= p, as
required.

• Sequential Composition
Suppose that the formulas Γ ` {p1}c1{p2}, Γ ` {p2}c2{p3} are valid
and well formed. It is clear that Γ ` {p1}c1; c2{p3} is also well formed.
We need to show that Γ ` {p1}c1; c2{p3} is valid.

Suppose (s, h) |= p1 and dom(s) ⊇ free(c1; c2, Γ) − owned(Γ). Every
trace of c1; c2 has the form α = α1α2 for some traces α1 of c1 and α2 of
c2. Suppose we have a local computation of c1; c2 of the form

(s, h) α1α2−−−−→
Γ

σ′′.

We need to show that σ′′ |= p3. Since dom(s) ⊇ free(c1, Γ)−owned(Γ),
by validity of Γ ` {p1}c1{p2} we know that the computation along α1

is error-free. If α1 is infinite (so α = α1) there is no more to prove.
Otherwise α1 is finite and there is a (proper) state (s′, h′) such that

(s, h) α1−−→
Γ

(s′, h′) α2−−→
Γ

σ′′

and (s′, h′) |= p2. By the Local Respect lemma, dom(s′) = dom(s), so we
have dom(s′) ⊇ free(c2, Γ) − owned(Γ). By validity of Γ ` {p2}c2{p3}
it follows that σ′′ satisfies p3.

• Parallel Composition
Suppose that Γ ` {p1}c1{q1} and Γ ` {p2}c2{q2} are well formed and
valid, and that free(p1) ∩ writes(c2) = free(p2) ∩ writes(c1) = {}
and (free(c1) ∩ writes(c2)) ∪ (writes(c1) ∩ free(c2)) ⊆ owned(Γ).
It is clear that Γ ` {p1 ∗ p2}c1‖c2{q1 ∗ q2} is well formed.
We must show that Γ ` {p1 ∗ p2}c1‖c2{q1 ∗ q2} is valid.

Let (s, h) |= p1 ∗ p2, and suppose h1 ⊥ h2, h = h1 · h2, and (s, h1) |= p1,
(s, h2) |= p2. Given the well-formedness assumptions, we also have
(s\writes(c2), h1) |= p1 and (s\writes(c1), h2) |= p2.

56

Let α ∈ [[c1‖c2]], and (s, h) α−−→
Γ

σ′. Choose traces α1 ∈ [[c1]] and α2 ∈ [[c2]]
such that α ∈ α1‖α2. If σ′ = abort it would follow by the Parallel
Decomposition Lemma that either (s\writes(c2), h1)

α1−−→
Γ

abort or

(s\writes(c1), h2)
α2−−→
Γ

abort. Neither of these is possible, since they
contradict the assumed validity of the premisses Γ ` {p1}c1{q1} and
Γ ` {p2}c2{q2}. If α is infinite that is all we need. Otherwise α is
finite, and σ′ has the form (s′, h′). Again by the Parallel Decomposition
Lemma and validity of the premisses, there are heaps h′1 ⊥ h′2 such that
h′ = h′1 · h′2,

(s\writes(c2), h1)
α1−−→
Γ

(s′\writes(c2), h
′
1)

(s\writes(c1), h2)
α2−−→
Γ

(s′\writes(c1), h
′
2),

and (s′\writes(c2), h
′
1) |= q1, (s′\writes(c1), h

′
2) |= q2. Since q1 does

not depend on writes(c2) and q2 does not depend on writes(c1) we
also have (s′, h′1) |= q1 and (s′, h′2) |= q2, from which it follows that
(s′, h′) |= q1 ∗ q2, as required.

• Region
Suppose we have a well formed and valid instance of the rule’s premiss,
of the form Γ ` {(p ∗R) ∧ b}c{q ∗R}. We need to show that

Γ, r(X) : R ` {p}with r when b do c{q}

is valid, provided this formula is also well formed. In particular, we
assume that free(p, q) ∩ owned(Γ) = {} and free(p, q) ∩X = {}, and
we suppose that r 6∈ dom(Γ) and R is precise.

To this end, let (s, h) be a state satisfying p, let α be a trace of
[[with r when b do c]], and assume that (s, h) α−−−−−−−→

Γ,r(X):R
σ′. We must

show that σ′ satisfies q. By definition, and ignoring try actions, which
can be done without loss of generality, α must have the form

acq(r) ρ1 rel(r) . . . acq(r) ρn−1 rel(r) acq(r) ρ β rel(r)

where ρ1, . . . , ρn−1 ∈ [[b]]false, ρ ∈ [[b]]true, and β ∈ [[c]]. Each of the ρi is a
sequence of evaluation actions, having no effect on the state. Since R
is precise, the heap portion released at the end of each waiting phase
acq(r) ρi rel(r) must be the same as the heap portion acquired at the
start of that phase. Hence we have

(s, h)
acq(r) ρ β rel(r)−−−−−−−−−−−→

Γ,r(X):R
σ′.

57

But this requires that there exists a state σ′′ such that

(s, h)
acq(r)−−−−−−−→

Γ,r(X):R
(s · s1, h · h1)

ρ β−−−−−−−→
Γ,r(X):R

σ′′
rel(r)−−−−−−−→

Γ,r(X):R
σ′

for some s1 ⊥ s, h1 ⊥ h such that dom(s1) = X and (s · s1, h1) |= R.
Since ρ ∈ [[b]]true and b is pure, we must have (s · s1, h · h1) |= b.

Since (s, h) |= p and free(p) ∩X = {}, it follows that (s · s1, h) |= p.
So (s · s1, h · h1) |= (p ∗R) ∧ b.

Since ρ does not change the state we therefore have

(s · s1, h · h1)
β−−−−−−−→

Γ,r(X):R
σ′′,

and since β cannot contain any acquire or release actions on resource
r we also have

(s · s1, h · h1)
β−→
Γ

σ′′.

Validity of the premiss Γ ` {(p ∗ R) ∧ b}c{q ∗ R} establishes that σ′′

is not abort and satisfies q ∗ R. The final rel(r) action leading from
σ′′ to σ′ must therefore release the unique subheap corresponding to
R (retaining the subheap corresponding to q), and remove the store’s
values for X. Since free(q) ∩X = {} it follows that σ′ satisfies q.

Note that the case where β is infinite is handled implicitly in the above
proof, and causes no problem.

• Resource
Suppose Γ, r(X) : R ` {p}c{q} is well-formed and valid. Thus R is
precise, r 6∈ dom(Γ), free(p, q, R) ∩ owned(Γ) = {}, free(p, q) ∩ X =
{}, and X ∩ (owned(Γ) ∪ free(Γ)) = {} It is then easy to see that
Γ ` {p ∗R}resource r in c{q ∗R} is well formed. To prove validity of
this formula we argue as follows.

Suppose (s, h) satisfies p ∗ R, and let α be a trace of resource r in c
such that (s, h) α−−→

Γ
σ′. We must show that σ′ satisfies q ∗R.

Choose a trace β ∈ [[c]]r such that β\r = α, and heaps h1 ⊥ h2 such
that h = h1 · h2, (s, h1) |= p and (s, h2) |= R. Since X ∩ free(p) = {},
we also have (s\X, h1) |= p.

By the Local Resource Lemma, if σ′ = abort we would also have

(s\X, h1)
β−−−−−−−→

Γ,r(X):R
abort, which contradicts our assumption that the

58

premiss Γ, r(X) : R ` {p}c{q} is valid. So σ′ must have the form (s′, h′).
Again by the Local Resource Lemma and validity of the premiss, it
follows that there must be heaps h′1 ⊥ h′2 such that h′ = h′1 · h′2,

(s′, h′2) |= R, (s\X, h1)
β−−−−−−−→

Γ,r(X):R
(s′\X, h′1), and (s′\X, h′1) |= q. Since

X ∩ free(q) = {} we also have (s′, h′1) |= q. It then follows that
(s′, h′) |= q ∗R, as required.

• Renaming Resource

Γ ` {p}resource r′ in [r′/r]c{q}
Γ ` {p}resource r in c{q}

if r′ does not occur free in c.

This rule is sound because if r′ 6∈ res(c) the commands resource r in c
and resource r′ in [r′/r]c are semantically equivalent. Since they have
the same traces they have the same computations.

• Lookup

Γ ` {[e′/i]p ∧ e 7→ e′}i:=[e]{p ∧ e 7→ e′}
provided i not free in e or e′ and the formula is well formed, i.e.
free(p, e, e′) ∩ owned(Γ) = {}.
Suppose (s, h) |= [e′/i]p∧e 7→ e′. Let v = |e|s and v′ = |e′|s, so that we
have ([s | i : v′], h) |= p by the Substitution Theorem, and h = {(v, v′)}.
The only traces of i:=[e] relevant here have the form ρ [v]=v′ i:=v′, and
it is obvious that we have

(s, h)
ρ [v]=v′ i:=v′−−−−−−−−−−→

Γ
([s | i : v′], h).

Since i 6∈ free(e, e′) we have |e|[s | i : v′] = |e|s and |e′|[s | i : v′] = |e′|s,
so ([s | i : v′], h) |= p ∧ e 7→ e′, as required.

• Update

Γ ` {e 7→ −}[e]:=e′{e 7→ e′}
provided free(e) ∩ owned(Γ) = {} and free(e′) ∩ owned(Γ) = {}.
Suppose (s, h) |= e 7→ −. Thus there are values v and v0 such that
(s, v) ∈ |e| and h = {(v, v0)}. Every trace of [e]:=e′ enabled from (s, h)
has the form ρ ρ′ [v]:=v′, where (s, v′) ∈ |e′|. And we have

(s, h)
ρ ρ′ [v]:=v′−−−−−−−−→

Γ
(s, [h | v : v′]).

59

Clearly [h | v : v′] = {(v, v′)}. Since e and e′ are pure we also have
(s, {(v, v′)}) |= e 7→ e′, as required.

• Local variable

Suppose Γ ` {p∧ i = e}c{q} is valid and i 6∈ free(e, p, q), i 6∈ owned(Γ),
free(e) ∩ owned(Γ) = {}, and free(p, q) ∩ owned(Γ) = {}.
We must show that Γ ` {p}local i = e in c{q} is valid. (It is obvious
that this formula is also well formed.)

Suppose (s, h) |= p. Every trace of local i = e in c has the form ρ (α\i)
where (ρ, v) ∈ [[e]] and α ∈ [[c]][i:v]. If (s, h)

ρ (α\i)−−−−−→
Γ

σ′ then (s, v) ∈ |e| and

(s, h)
α\i−−−→
Γ

σ′. If σ′ = abort then ([s | i : v], h) α−−→
Γ

abort, by the Local
Variable Lemma. But we already know that the state ([s | i : v], h)
satisfies p∧ i = e and α is a trace of c, so this would contradict validity
of the premiss. Hence σ′ has the form (s′, h′), and the Local Variable
Lemma implies that ([s | i : v], h) α−−→

Γ
([s′ | i : v′], h′) for some v′. Since

the premiss is valid we have ([s′ | i : v′], h′) |= q, and since i is not free
in q we obtain (s′, h′) |= q, as required.

• Expansion

Let Γ ` {p}c{q} be valid and well formed, free(c) ∩ owned(Γ′) = {},
and writes(c) ∩ free(Γ′) = {}. Suppose that Γ, Γ′ ` {p}c{q} is well
formed. We need to prove that this formula is valid.

By well-formedness Γ and Γ′ are mutually disjoint. By assumption,
c does not read or write any identifier protected by Γ′, and c does
not write to any identifier mentioned in the resource invariants of Γ′.
Hence, if α ∈ [[c]] and σ α−−−→

Γ,Γ′
σ′, then σ α−−→

Γ
σ′. The result follows easily.

• Contraction

Let Γ, Γ′ ` {p}c{q} be well formed and valid. In particular Γ and Γ′

are mutually disjoint. Suppose that res(c) ⊆ dom(Γ). We must show
that Γ ` {p}c{q} is valid. Let α ∈ [[c]], σ |= p, and σ α−−→

Γ
σ′. Since α

cannot contain any actions involving the resources of Γ′, we also get
σ α−−−→

Γ,Γ′
σ′. So by validity of Γ, Γ′ ` {p}c{q} it follows that σ′ |= q, as

required.

60

• Existential

Suppose Γ ` {p}c{q} is valid and well formed, i 6∈ free(Γ)∪ owned(Γ),
and i 6∈ free(c). We must show that Γ ` {∃i.p}c{∃i.q} is valid.

Assume that (s, h) |= ∃i.p, so that ([s | i : v0], h) |= p for some value
v0. Let α be a trace of c. Since i is not free in c we can use the
Agreement Theorem to deduce that (s, h) α−−→

Γ
abort if and only if, for

all v, ([s | i : v], h) α−−→
Γ

abort. Similarly, (s, h) α−−→
Γ

(s′, h′) if and only

if, for all v, ([s | i : v], h) α−−→
Γ

([s′ | i : v], h′). Since Γ ` {p}c{q} is
valid and ([s | i : v0], h) |= p it follows that for all (s′, h′) such that
(s, h) α−−→

Γ
(s′, h′) we have ([s′ | i : v0], h

′) |= q, and hence (s′, h′) |= ∃i.q.

• Auxiliary
Γ ` {p}c{q}

Γ ` {p}c\X{q}
if X is auxiliary for c, and X ∩ free(p, q) = {}.
Recall that a set X is auxiliary for c if every free occurrence in c of
an identifier from X is in an assignment whose target belongs to X.
The command c\X is obtained from c by deleting all assignments to
identifiers in X.

Suppose X is auxiliary for c, Γ ` {p}c{q} is well formed and valid, and
X ∩ free(p, q) = {}. We must show that Γ ` {p}c\X{q} is valid. So

let β ∈ [[c\X]], and suppose that (s, h) |= p and (s, h) β−→
Γ

σ′. We need
to show that σ′ |= q.

Since X is auxiliary for c, if (s, h) β−→
Γ

abort, there is a trace α of c and

a store ŝ such that ŝ agrees with s except on X and (ŝ, h) α−−→
Γ

abort.
But since X ∩free(p) = {} we also have (ŝ, h) |= p, so this contradicts
the validity of Γ ` {p}c{q}. Hence σ′ must be a proper state of the

form (s′, h′). Similarly, since we now have (s, h) β−→
Γ

(s′, h′), and X is

auxiliary, there are stores ŝ and ŝ′ that agree with s and s′ (respectively)
on X, and a trace α of c, such that (ŝ, h) α−−→

Γ
(ŝ′, h′). Again we have

(ŝ, h) |= p, so by validity of Γ ` {p}c{q} it follows that (ŝ′, h′) |= q.
Since X ∩ free(q) = {} we deduce that (s′, h′) |= q, as required.

• Frame
Assume Γ ` {p}c{q} is well formed and valid, free(I)∩writes(c) = {}

61

and free(I) ∩ owned(Γ) = {}. We must show that Γ ` {p ∗ I}c{q ∗ I}
is valid.

Let α ∈ [[c]] and let (s, h) be a state satisfying p ∗ I. Let h = h1 · h2

with h1 ⊥ h2, (s, h1) |= p, (s, h2) |= I. Suppose (s, h) α−−→
Γ

σ′. By the
Frame Property and validity of Γ ` {p}c{q}, there is a state (s′, h′1)
such that h′1 ⊥ h2, (s, h1)

α−−→
Γ

(s′, h′1), (s′, h′1) |= q, and σ′ has the form
(s′, h′1 ·h2). Since α does not write to free(I), we also have (s′, h2) |= I
by the Agreement Theorem. Hence σ′ |= q ∗ I, as required.

Thus we have established soundness of the inference rules with respect to
a “local” enabling relation that keeps track of protection lists and resource
invariants. It remains to connect this result with the global enabling relation
introduced earlier. In fact we can now show that validity, defined on the
basis of local computations, implies the weaker notion of validity that was
discussed earlier.

13 Provability implies no races

As we mentioned earlier, the global state can be regarded as combining the
local states of each process and the state portions determined by the available
resources. A global state (s, h, A) corresponds in the obvious manner to the
local state (s↓A, h, A), where we define s↓A = s\owned(Γ\A).

Lemma 26 (Connection Property)
Let (s, h, A) be a global state and suppose h = h1 ·h2 with (s, h2) |= inv(Γ\A).

• If (s, h, A)
λ

==⇒ abort then (s↓A, h1, A) λ−→
Γ

abort.

• If (s, h, A)
λ

==⇒ (s′, h′, A′) then either (s↓A, h1, A) λ−→
Γ

abort, or there
are heaps h′1 ⊥ h′2 such that h′ = h′1 · h′2, (s′, h′2) |= inv(Γ\A′), and

(s↓A, h1, A) λ−→
Γ

(s′↓A′, h′1, A
′)

Proof
Case analysis using the definitions of the two enabling relations.

• For δ, i=v and abort the results hold trivially.

62

• For i:=v note that the side condition justifying a successful local step
is sufficient to ensure that the change to i has no effect on the relevant
invariants.

• For [l] = v′, [l]:=v′, alloc(l, L), disp(l) the proof is straightforward.

• For acq(r) let r(X) : R ∈ Γ. Note that if (s, h, A)
acq(r)

======⇒ (s, h, A∪{r})
and r 6∈ A, then we can split h2 into disjoint pieces hr, h3 such that
(s, hr) |= R and (s, h3) |= inv(Γ\(A ∪ {r})). Hence we also have

(s↓A, h1, A)
acq(r)−−−−−→

Γ
((s↓A) · (sdX), h1 · hr, A ∪ {r}).

Clearly (s↓A) ·(sdX) = s↓(A∪{r}) and (h1 ·hr) ·h3 = h, and the result
follows.

• For rel(r) the proof is similar.

The Connection Property obviously generalizes to a finite sequence of
transitions, i.e. to a finite trace α instead of a single action λ. This is easy
to prove by induction on the length of α using the above lemma as the base
case. By putting A = A′ = {} we obtain the following corollary.

Corollary 27
Let α be a trace. Let (s, h) be a state, h = h1 · h2, and (s, h2) |= inv(Γ).

• If (s, h)
α

==⇒ abort then (s\owned(Γ), h1)
α−−→
Γ

abort.

• If (s, h)
α

==⇒ (s′, h′) then either (s\owned(Γ), h1)
α−−→
Γ

abort, or there
are heaps h′1 ⊥ h′2 such that h′ = h′1 · h′2, (s′, h′2) |= inv(Γ), and
(s\owned(Γ), h1)

α−−→
Γ

(s′\owned(Γ), h′1).

Theorem 28 (Valid implies race-free)
If Γ ` {p}c{q} is valid and well formed, then c is race-free from every state
satisfying p ∗ inv(Γ). In fact, for all states σ, σ′ and all traces α ∈ [[c]], if
σ |= p ∗ inv(Γ) and σ

α
==⇒ σ′ then σ′ |= q ∗ inv(Γ).

Proof
If Γ ` {p}c{q} is well formed then free(p, q) ∩ owned(Γ) = {}. Let α be
a trace of c. Suppose (s, h) satisfies p ∗ inv(Γ), with h1 ⊥ h2, h = h1 · h2

and (s, h1) |= p, and (s, h2) |= inv(Γ). Note that s↓{} = s\owned(Γ) and

63

that the stores s and s\owned(Γ) agree on free(p, q). Hence we also have
(s\owned(Γ), h1) |= p.

By the Connection Corollary above, and validity of Γ ` {p}c{q}, we
cannot have (s, h)

α
==⇒ abort, i.e. every computation of α from (s, h) is

error-free.
Similarly, for every computation of form (s, h)

α
==⇒ (s′, h′) there is a cor-

responding local computation (s\owned(Γ), h1)
α−−→
Γ

(s′\owned(Γ), h′1), and a
subset h′2 of h′ such that (s′, h′2) |= inv(Γ), h′ = h′1 · h′2. By validity of
Γ ` {p}c{q}, it follows that (s′\owned(Γ), h′1) |= q. Since s′ and s′\owned(Γ)
agree on free(q) we also have (s′, h′1) |= q. Hence (s′, h′) |= q ∗ inv(Γ), as
required.
Since the transition relation handles races by aborting, this is enough to en-
sure absence of races when the program is run from an initial (global) state
satisfying p ∗ inv(Γ),

Corollary 29
If ` {p}c{q} is provable then for all σ, σ′ such that σ |= p and all traces
α ∈ [[c]], if σ

α
==⇒ σ′ then σ′ |= q. Hence c is race-free from every state

satisfying p.

Using the above result we now have another way to demonstrate race-
freedom for the example programs discussed earlier. In each case the logic
confirms our previous semantic analysis.

For instance, let Γ be the following resource context:

buf (c, full) : (full = 1 ∧ z 7→ −) ∨ (full = 0 ∧ emp)

We showed that the formula

Γ ` {emp}
(x:=cons(1);put(x))‖(get(y);dispose(y))
{emp}

is provable. Hence the formula is also valid. By the above result, it follows
that the program is race-free from any state satisfying

(full = 1 ∧ z 7→ −) ∨ (full = 0 ∧ emp).

64

14 Conclusions

We have given a trace-based denotational semantics for a language of parallel
programs operating on shared mutable data. The semantics employs a form
of fair parallel composition that detects, and views as catastrophic, the po-
tential for race conditions. The semantics supports compositional reasoning
about partial correctness and the absence of races, and we used the seman-
tics as the basis for a proof of soundness for resource-sensitive concurrent
separation logic. In doing this we formulated a novel “local” semantics that
permits reasoning about the dynamic transfer of heap ownership that may
occur during program execution.

It is already known that concurrent separation logic can be used to reason
about a wide range of examples, including parallel mergesort and a simple
memory allocator [31, 30]. In view of the newness of the logic and the fresh-
ness of the methodology there is still room for further exploration of the
benefits, power and utility of this framework. We plan to tackle a series of
challenging examples from the literature, with the expectation that concur-
rent separation logic will facilitate more streamlined proofs. The semantic
framework should help to formalize and better understand intuitive concepts
such as transfer of ownership, and help to generalize such notions as appro-
priate.

We have assumed so far that each resource invariant is precise, so that
a resource context defines what might be called a precise ownership policy:
when a program acquires or releases a resource there is a uniquely determined
portion of the heap whose ownership can be deemed to transfer. This has not
seemed to be a major limitation so far, and a methodology based on precision
seems very natural. Moreover this limitation is sufficient to ensure soundness.
But the question remains if there is a more general class of formulas, suitable
as resource invariants, for which the rules remain sound (possibly with the
additional imposition of further side conditions restricting the kind of pre-
and post-condition allowed in rules dealing with resources).

One cannot simply drop the precision constraint completely and allow
arbitrary resource invariants. This is shown by the following problematic
formula, due to John Reynolds:

r : true ` {emp ∨ one}with r do skip{emp},

where one is a separation logic formula that holds only in heaps of size
one. This formula is derivable if we allow the Region rule as before but

65

without insisting that the resource invariant be precise. This formula is not
valid, according to our notion of validity, adapted to the imprecise setting
in the obvious way. Nor is there a reasonable variation on the notion of
validity that would make this formula valid and still accurately reflect the
program’s computational behavior: when executed in a heap of size 1 the
program obviously has a computation in which it ends in the same heap,
which certainly does not satisfy the specified post-condition.

Our semantic model can be used to prove that the methodology is still
sound under a parsimonious ownership policy, characterized as follows: when
a process acquires a resource it claims ownership of the smallest heap por-
tion that suffices, and when releasing the resource cedes ownership of the
minimal relevant heap portion. Technically this involves the use of supported
resource invariants with compensatory adjustments in the rules for regions
and resource declarations to require that their pre- and post-conditions be
intuitionistic. A supported formula [41, 42] has the characteristic property
that in any state there is at most one minimal sub-heap for which the formula
holds. If an intuitionistic formula [41, 42] holds in a sub-heap of the state
then it holds in all larger sub-heaps. With these adjustments, the inference
rules would then be:

• Region
Γ ` {(p ∗R) ∧ b}c{q ∗R}

Γ, r(X) : R ` {p}with r when b do c{q}
if R supported, p and q intuitionistic

• Resource
Γ, r(X) : R ` {p}c{q}

Γ ` {p ∗R}resource r in c{q ∗R}
if R supported, p and q intuitionistic

The key lemmas used in the soundness proof, notably the Parallel Decom-
position Lemma and the Local Resource Lemma, can be adapted to this
setting, and the soundness proof goes through as before, with appropriate
adjustments in the case analysis for these two rules.

This seems an intuitively natural generalization of the approach using
precise ownership policies. The use of intuitionistic and supported formulas
suggests, by analogy with results from sequential separation logic, that this
kind of reasoning may be useful for concurrent programs operating on data
structures that involve structure sharing, such as overlapping linked lists [33,

66

44, 42]. Another example in which such formulas arise naturally is parallel
mergesort. It would also be interesting to see if any other natural ownership
policies are useful and can be fit into this framework.

The trace semantics was designed to detect races. We did not include
a pair of concurrent reads as a race, since this kind of passive interaction
is usually regarded as benign. However, the use of separating conjunction
in the Parallel rule requires that the processes in a provable program
operate on disjoint portions of the heap, even if part of the heap is treated as
“read-only” by all processes and could safely be shared without racing. For
example, there is no way to prove the obviously valid formula

` {z 7→ 1}x:=[z]‖y:=[z]{x = y = 1 ∧ z 7→ 1},

since the logic requires both processes to “need” to own the heap cell denoted
by z, separately. Nevertheless, the trace semantics handles this issue (and
this example) correctly, so here is a place where the semantics is ahead of
the logic.

We believe that it may be possible to solve this passivity problem by
introducing a further class of formulas of the form Γ `R {p}c{q}, decorated
with a separation logic formula R describing a “read-only” part of the heap,
together with suitably designed inference rules. It is not yet clear if this ap-
proach can be pushed through completely, or if it is necessary to restrict the
kind of formula allowed as read-only annotation, perhaps to the class of pre-
cise formulas. Another possibility might be to try to adapt Boyland’s ideas on
fractional permissions [6], perhaps by designing a semantics in which partial
permissions are attached to resource actions and managed in an appropri-
ate manner upon resource acquisition and release, instead of all-or-nothing
transfer. The trace semantic framework should help to provide a rigorous
test-bed for checking the soundness of such proposed extensions.

Our focus so far has been limited to partial correctness. It should also
be possible to develop resource-sensitive inference rules for total correctness,
leading to a logic in which every provable program is both race-free and
deadlock-free. One natural idea is to take a more intensional view of the
structure of resource contexts, so that a context designates a sequence rather
than a set of resources, conveying an acquisition order for resource names.
One can then re-phrase the side conditions in the inference rules so that in
every provable program all processes acquire resources in the order in which
they occur in the list Γ. When all processes obey the same acquisition order

67

we will be able to rule out “cyclic” deadlocks. For example, the program

(with r1 do with r2 do x:=1) ‖ (with r2 do with r1 do y:=1)

can either deadlock or terminate successfully, depending on the scheduling.
However, there is no resource context Γ for which both c1 and c2 respect
the precedence order, and hence c1‖c2 has no provable formulas. This idea,
that precedence rules can prevent deadlock, appears to be a well known Folk
Theorem.

The trace semantics presented here makes distinctions between programs
based on the order in which they perform actions, and hence fails to be
fully abstract for partial correctness. Moreover our repertoire of actions as-
sumes that reads and writes to individual variables and heap addresses are
executable indivisibly. But the partial correctness properties of a race-free
program should not depend on whether assignments, or reads and writes to
a variable, are atomic [43]. For example, the trace sets denoted by the pro-
grams x:=1; y:=1 and y:=1; x:=1 are distinct, but the two programs clearly
satisfy the same partial correctness formulas (and the same race-freedom
properties) in all program contexts. Of course the fact that our semantics is
compositional implies the usual half of full abstraction: if two programs have
the same trace set then they satisfy the same partial correctness formulas in
all contexts. It would be interesting to devise a semantic model more ab-
stract than ours, abstracting away from granularity, in which (for example)
the above programs would be given the same meaning. One possibility is to
work with a form of “big step” transition trace in which the actions between
successive resource actions are conflated (by a form of “mumbling”) into one
big state transformation [16, 13]. Such a semantics would ascribe identical
meaning to all pairs of commands which are indistinguishable in this sense.
John Reynolds has recently proposed an alternative semantics with similar
aims but different structure. However appealing this prospect is, we leave
this as a topic for future research.

Turning the above argument on its head, we might equally well argue
that the trace semantics makes the right kinds of distinctions between pro-
grams to support reasoning about safety and liveness properties, since these
properties depend on the sequences of states through which a program may
pass during a fair execution. Using temporal logics an enormous variety of
safety and liveness properties can be expressed [39]. We plan to explore a
combination of separation logic with the modal operators of temporal logic

68

to obtain a temporal separation logic. As a first step in this direction it may
be possible to adapt rely/guarantee methodology [26, 28, 27] to our setting.
Indeed our description of ownership transfer policy clearly has both “rely”
and “guarantee” aspects.

The idea of using traces of some kind to model processes is widespread
and attests to the utility of the general concept, but the word “trace” means
different things to different people. Hoare proposed a form of action trace
in which each action represents a potential to send or receive a value on
a channel, and used such traces in an early model of CSP which ignored
deadlock (and ignored state). The failures model of CSP augmented such
traces with “refusal sets” to permit proper treatment of deadlock. The fail-
ures/divergences model further incorporated “divergence traces” to permit
a limited form of liveness analysis. In retrospect these models can be seen
as early pre-cursors of the action trace framework that we currently advo-
cate: our notion of action trace encompasses both state (including mutable
state with embedded pointers) and communication. Transition traces are de-
scended from the foundational work of David Park, who used similar traces
to model shared-variable programs. The main difference is that in Park’s
semantics each step represents the effect (again on the global shared state)
of a single atomic action, so that Park’s model failed to be fully abstract,
for instance distinguishing unnecessarily between skip and skip; skip. A
similar motivation was behind our built-in assumption that δ is a unit for
concatenation of actions.

15 Acknowledgements

Throughout the development of this work, I have had the distinct pleasure of
being able to interact on a regular basis with John Reynolds. We have had
numerous discussions, ranging from deep technical concerns to more high-
level philosophical issues. I am happy to acknowledge John’s influence and
guidance. John has prompted me in more ways than I can remember: to
justify my approach, to find simpler ways to explain concepts, to deal with
counterexamples, and to seek maximum generality. I am especially pleased
that this paper will appear as part of the Reynolds Festschrift. John has been,
and continues to be, a shining example to us all and a source of inspiration.

Many thanks to Peter O’Hearn for proposing the methodology for resource-
based reasoning about concurrent programs on which this work is based. It

69

was in response to Peter’s ideas that this work emerged, as my attempt to
underpin the ideas formally. I have benefitted immensely from discussions
with Peter, from start to finish. Thanks also to Josh Berdine, for a series of
detailed discussions during his visit to CMU; his insights have led to several
improvements in the structure of this paper.

References

[1] G. Andrews. Concurrent Programming: Principles and Practice.
Benjamin/Cummings, 1991.

[2] L. Birkedal, N. Torp-Smith, and J.C. Reynolds. Local Reasoning about
a Copying Garbage Collector. Proc. POPL Conference, Venice, pp. 220-
231, January 2004.

[3] R. Bornat, C. Calcagno, P. W. O’Hearn, and M. Parkinson. Permission
accounting in separation logic. Proc. POPL 2005, pp. 59-70.

[4] R. Bornat, C. Calcagno, and P. W. O’Hearn. Local reasoning, separa-
tion, and aliasing. Proc. 2nd ACM/SIGPLAN Workshop on Semantics,
Program Analysis, and Computing Environments for Memory Manage-
ment, SPACE 2004, January 2004.

[5] C. Boyapati, R. Lee, and M. Rinard. Ownership types for safe program-
ming: Preventing data races and deadlocks. Proc. OOPSLA 2002: 211-
230, 2002.

[6] J. Boyland. Checking interference with fractional permissions. Proc. 10th

Symposium on Static Analysis, R. Cousot, editor. Springer LNCS vol.
2694, pp. 55-72, 2003.

[7] P. Brinch Hansen. Structured multiprogramming. Comm. ACM,
15(7):574-578, July 1972.

[8] P. Brinch Hansen. Concurrent programming concepts. ACM Computing
Surveys 5(4):223-245, December 1973.

[9] P. Brinch Hansen. Operating System Principles. Prentice Hall, 1973.

70

[10] P. Brinch Hansen. The programming language Concurrent Pascal. IEEE
Trans. on Software Engr, SE-1(2):196-206. June 1975.

[11] S. Brookes. A semantics for concurrent separation logic. Invited paper,
CONCUR 2004, London. August 2004. Springer LNCS 3170.

[12] S. Brookes, Traces, pomsets, fairness and full abstraction for communi-
cating processes. Proc. CONCUR 2002, Brno. Springer LNCS vol. 2421,
pp. 466-482. August 2002.

[13] S. Brookes. The essence of Parallel Algol. Proc. 11th Symposium on
Logic in Computer Science, IEEE Computer Society Press (1996), pp.
164–173. Journal version: Inf. Comp. 179(1): 118-149, 2002.

[14] S. Brookes. Communicating Parallel Processes: Deconstructing CSP. In:
Millenium Perspectives in Computer Science, Proc. 1999 Oxford-
Microsoft Symposium in honour of Sir Tony Hoare. Palgrave, 2000.

[15] S. Brookes. Idealized CSP: Combining Procedures with Communicating
Processes, 13th MFPS Conference, Pittsburgh, March 1997. Electronic
Notes in Theoretical Computer Science 6, Elsevier, 1997.

[16] S. Brookes. Full abstraction for a shared-variable parallel language. Proc.
8th IEEE Symposium on Logic in Computer Science, IEEE Com-
puter Society Press (1993), 98–109. Journal version in: Inf. Comp., vol
127(2):145-163, Academic Press, June 1996.

[17] S. Brookes and A.W. Roscoe. Deadlock Analysis in networks of commu-
nicating processes. Distributed Computing 4:209-230, 1991.

[18] E. W. Dijkstra. Hierarchical ordering of sequential processes. Acta In-
formatica, 1(2):115-138, 1972.

[19] E. W. Dijkstra. The structure of the “THE” multiprogramming system,
Comm. ACM 11(5):341-346, May 1968.

[20] E. W. Dijkstra. Cooperating sequential processes. In: Programming
Languages, F. Genuys (editor), pp. 43-112. Academic Press, 1968.

[21] C.A.R. Hoare. A structured paging system. Computer Journal 16(3):209-
215, 1973.

71

[22] C.A.R. Hoare. Parallel programming: an axiomatic approach. Computer
Languages 1, 151-160, 1975.

[23] C.A.R. Hoare, Monitors: An operating system structuring concept,
CACM 17(10): 549-557, October 1974.

[24] C.A.R. Hoare, Towards a Theory of Parallel Programming. In Oper-
ating Systems Techniques, Hoare and Perrot, editors, pp. 61-71,
Academic Press, 1972.

[25] S. Isthiaq and P. W. O’Hearn. BI as an assertion language for mutable
data structures. Proc. 28th POPL conference, pp. 36-49, London, Jan-
uary 2001.

[26] C.B. Jones. Development Methods for Computer Programs including a
Notion of Interference. Ph.D. thesis, Oxford University, June 1981. Tech-
nical Monograph PRG-25, Programming Reseacrh Group, Oxford Uni-
versity Computing Laboratory.

[27] C.B. Jones. Specification and design of (parallel) programs. Proc. IFIP
Conference, 1983.

[28] J. Misra and M. Chandy. Proofs of networks of processes. IEEE Trans-
actions on Software Engineering, 7:417-426 (1981).

[29] H.C. Lauer. Correctness in operating systems. Ph. D. thesis, Carnegie
Mellon University, 1973.

[30] P. W. O’Hearn. Notes on separation logic for shared-variable concur-
rency. Unpublished manuscript, January 2002.

[31] P.W. O’Hearn. Resources, Concurrency, and Local Reasoning. Invited
paper, CONCUR 2004, London, August 2004. Springer LNCS 3170.
Complete paper in this volume.

[32] P.W. O’Hearn, H. Yang, and J.C. Reynolds. Separation and Information
Hiding. Proc. 31st POPL conference, pp 268-280, Venice. ACM Press,
January 2004.

[33] P.W. O’Hearn, J.C. Reynolds, and H. Yang. Local reasoning about pro-
grams that alter data structures. Proc. 15th Conference of the European

72

Association for Computer Science Logic, Springer LNCS, vol. 2142, pp
1-19, 2001.

[34] P. W. O’Hearn and D. J. Pym. The logic of bunched implications. Bul-
letin of Symbolic Logic, 5(2):215-244, June 1999.

[35] S. Owicki and L. Lamport, Proving liveness properties of concurrent
programs, ACM TOPLAS, 4(3): 455-495, July 1982.

[36] S. Owicki and D. Gries. An axiomatic proof technique for parallel pro-
grams I. Acta Informatica, 6:319-340, 1976.

[37] S. Owicki and D. Gries, Verifying properties of parallel programs: An
axiomatic approach, Comm. ACM. 19(5):279-285, 1976.

[38] D. Park, On the semantics of fair parallelism. In: Abstract Software
Specifications, Springer-Verlag LNCS vol. 86, 504–526, 1979.

[39] A. Pnueli. The temporal semantics of concurrent programs. Theoretical
Computer Science, 13(1):45-60, 1981.

[40] J. C. Reynolds. Intuitionistic reasoning about shared mutable data struc-
ture. In J.Davies, A. W. Roscoe, and J. Woodcock, eds., Millenium per-
spectives in computer science, pp. 303-321. Palgrave, 2000.

[41] J.C. Reynolds, Separation logic: a logic for shared mutable data struc-
tures, Invited paper. Proc. 17th IEEE Conference on Logic in Computer
Science, LICS 2002, pp. 55-74. IEEE Computer Society, 2002.

[42] J. C. Reynolds. Lecture notes on separation logic (15-819A3), chapter 8,
page 178. Department of Computer Science, Carnegie-Mellon University,
Spring 2003. Revised May 23, 2003.

[43] J. C. Reynolds, Towards a grainless semantics for shared-variable con-
currency. Slides from Invited Lecture, 31st POPL concerence, Venice,
January 2004.

[44] H. Yang. An example of local reasoning in BI pointer logic: The Schorr-
Waite graph marking algorithm. Proc. SPACE 2001 Workshop on Se-
mantics, Program Analysis and Computing Environments for Memory
Management, pp. 41-68. IT University of Copenhagen, 2001.

73

16 Appendix

We include here some technical lemmas leading to the proof of the Parallel
Decomposition Lemma, which was used crucially in the soundness proof for
the Parallel rule.

Lemma 1 (Agreement property for traces)
For all resource contexts Γ and all traces α:

1. If s1 agrees with s2 on Y and Y ⊇ free(α, Γ), then

• If (s1, h, A) α−−→
Γ

abort, then (s2, h, A) α−−→
Γ

abort.

• If (s1, h, A) α−−→
Γ

(s′1, h
′, A′) then there is a store s′2 such that

(s2, h, A) α−−→
Γ

(s′2, h
′, A′) and s′1 agrees with s′2 on Y .

2. If (s, h, A) α−−→
Γ

(s′, h′, A′) then s\owned(Γ) agrees with s′\owned(Γ) ex-
cept on writes(α).

Proof of (1)
By induction on the length of α.
The base case (when α is a single action λ) is a straightforward case analysis

using the definition of the transition relations λ−→
Γ

, and the inductive step is
easy. Here are the base cases for resource actions.

• For λ of the form acq(r), suppose that s1 and s2 agree on Y ⊇ free(Γ).

– If (s1, h, A)
acq(r)−−−−−→

Γ
abort then r ∈ A, so we also have

(s2, h, A)
acq(r)−−−−−→

Γ
abort.

– If (s1, h, A)
acq(r)−−−−−→

Γ
(s1 · s′, h · h′, A ∪ {r}) where dom(s′) = X,

h ⊥ h′, and (s1 · s′, h′) |= R, since s1 and s2 agree on free(R) by
assumption, it follows that we also have (s2 · s′, h′) |= R. Hence

(s2, h, A)
acq(r)−−−−−→

Γ
(s2 · s′, h · h′, A∪ {r}). It follows easily that s1 · s′

and s2 · s′ agree on Y , as required.

• For λ of form rel(r), suppose that s1 and s2 agree on Y ⊇ free(Γ).

– If (s1, h, A)
rel(r)−−−−→

Γ
abort then either r 6∈ A, or r(X) : R ∈ Γ and

for all h′ ⊆ h we have (s1, h
′) |= ¬R. In the first case it is obvious

74

that we also have (s2, h, A)
rel(r)−−−−→

Γ
abort. Otherwise r ∈ A, and

since s1 and s2 agree on free(R), we also have (s2, h
′) |= ¬R for

all h′ ⊆ h, so again (s2, h, A)
rel(r)−−−−→

Γ
abort.

– Otherwise assume that (s1, h, A)
rel(r)−−−−→

Γ
(s1\X, h − h′, A − {r})

where r ∈ A, r(X) : R ∈ Γ, h′ ⊆ h and (s1, h
′) |= R. Since

s1 and s2 agree on free(R) we also have (s2, h
′) |= R, so that

(s2, h, A)
rel(r)−−−−→

Γ
(s2\X, h − h′, A − {r}). Clearly s1\X and s2\X

agree on Y, as required.

Proof of (2)
Again by induction on the length of α.
The base case uses the definition of λ−→

Γ
and the inductive step is easy. Here

are the base cases for resource actions.

• If (s, h, A)
acq(r)−−−−−→

Γ
(s·s′, h·h′, A∪{r}) we have writes(acq(r)) = {}, and

dom(s′) ⊆ owned(Γ), so (s · s′)\owned(Γ) = s\owned(Γ), as required.

• If (s, h, A)
rel(r)−−−−→

Γ
(s\X, h − h′, A − {r}) we have X ⊆ owned(Γ) and

(s\X)\owned(Γ) = s\owned(Γ). Since writes(rel(r)) = {} the result
holds.

Lemma 2 (Frame property for actions)
Suppose h1 ⊥ h2, A1 ⊥ A2, and h = h1 · h2, A = A1 · A2.
Assume that (A1, A2)

λ−→ (A′
1, A2).

• If (s, h, A) λ−→
Γ

abort, then (s\owned(ΓdA2), h1, A1)
λ−→
Γ

abort.

• If (s, h, A) λ−→
Γ

(s′, h′, A′) then either (s\owned(ΓdA2), h1, A1)
λ−→
Γ

abort,
or there is a heap h′1 such that h′1 ⊥ h2, h′ = h′1 · h2, A

′ = A′
1 · A2, and

(s\owned(ΓdA2), h1, A1)
λ−→
Γ

(s′\owned(ΓdA2), h
′
1, A

′
1).

Proof
Case analysis for each form of action. Most cases are straighforward. Here
are the cases for resource actions. Let s↓A1 = s\owned(ΓdA2).

• For λ = acq(r), since (A1, A2)
acq(r)−−−−−→ (A′

1, A2) we have r 6∈ A1 · A2 and
A′

1 = A1 ∪ {r}.

75

– Obviously we also have r 6∈ A1, so the abort case is vacuous.

– If (s, h, A)
acq(r)−−−−−→

Γ
(s·s′′, h·h′′, A∪{r}) where r(X) : R ∈ Γ, s′′ ⊥ s,

dom(s′′) = X, h′′ ⊥ h, and (s · s′′, h′′) |= R, we argue as follows.
Since r 6∈ A, we have free(R) ∩ owned(ΓdA) = {}. Hence the
stores s · s′′ and (s↓A1) · s′′ agree on free(R), so that we also get

((s↓A1) · s′′, h′′) |= R.

It follows that (s↓A1, h1, A1)
acq(r)−−−−−→

Γ
((s↓A1) · s′′, h1 · h′′, A1 ∪ {r}).

Clearly (h1 ·h′′) ⊥ h2 and (h1 ·h′′) ·h2 = h ·h′′. By the disjointness
properties of Γ, (s · s′′)↓(A1 ∪ {r}) = (s↓A1) · s′′. The result thus
holds for this case.

• For λ = rel(r) since (A1, A2)
rel(r)−−−−→

Γ
(A′

1, A2) we have r ∈ A1 and
A′

1 = A1 − {r}. Hence r ∈ A. Let r(X) : R ∈ Γ.

– If (s, h, A)
rel(r)−−−−→

Γ
abort then (since r ∈ A) there is no subset h′ of

h such that (s, h′) |= R. Since r 6∈ A2 the stores s and s↓A1 agree
on free(R). It follows that there is no subset h′ of h1 such that

(s↓A1, h
′) |= R, and hence that (s↓A1, h1, A1)

rel(r)−−−−→
Γ

abort.

– On the other hand, if

(s, h, A)
rel(r)−−−−→

Γ
(s\X, h− h′, A− {r}),

where (s, h′) |= R and h′ ⊆ h, we argue as follows.
Recall that r ∈ A1. By the disjointness properties of Γ and the
assumption that r 6∈ A2, the stores s↓A1 and s agree on free(R).
Hence (s↓A1, h

′) |= R. If h′ is not also a subset of h1 we clearly
get

(s↓A1, h1, A1)
rel(r)−−−−→

Γ
abort.

Otherwise, h′ ⊆ h1 and we therefore get

(s↓A1, h1, A1)
rel(r)−−−−→

Γ
((s↓A1)\X, h1 − h′, A1 − {r}).

Since h1 ⊥ h2 and h = h1 · h2 we also have h− h′ = (h1 − h′) · h2,
(h1−h′) ⊥ h2, and A′−{r} = (A1−{r}) ·A2. The result follows,
since (s\X)↓(A1 − {r}) = (s↓A1)\X.

76

The generalization to traces is an obvious induction.

Lemma 3 (Frame property for traces)
Suppose h1 ⊥ h2, A1 ⊥ A2, and h = h1 · h2, A = A1 · A2.
Assume that (A1, A2)

α−−→ (A′
1, A2).

• If (s, h, A) α−−→
Γ

abort, then (s\owned(ΓdA2), h1, A1)
α−−→
Γ

abort.

• If (s, h, A) α−−→
Γ

(s′, h′, A′) then either (s\owned(ΓdA2), h1, A1)
α−−→
Γ

abort,
or there is a heap h′1 such that h′1 ⊥ h2, h′ = h′1 · h2, A

′ = A′
1 · A2, and

(s\owned(ΓdA2), h1, A1)
α−−→
Γ

(s′\owned(ΓdA2), h
′
1, A

′
1).

In the statement of the following lemma let free(α1), writes(α2) and
so on refer to the set of free identifiers, and the set of free write identifiers,
respectively, of a trace. (We do not include the heap cells read or written by
the trace, since the lemma concerns the effect of the trace on the identifiers
protected by Γ.)

Lemma 4 (Parallel Decomposition for traces)
Assume (free(α1)∩writes(α2))∪ (writes(α1)∩free(α2)) ⊆ owned(Γ) and
α ∈ α1 A1‖A2 α2. Suppose h1 ⊥ h2, A1 ⊥ A2, and h = h1 · h2, A = A1 · A2.
Let s1 = s\writes(α2)\owned(Γ) ∪ sdowned(ΓdA1),
and s2 = s\writes(α1)\owned(Γ) ∪ sdowned(ΓdA2).

• If (s, h, A) α−−→
Γ

abort then either (s1, h1, A1)
α1−−→
Γ

abort,

or (s2, h2, A2)
α2−−→
Γ

abort.

• If (s, h, A) α−−→
Γ

(s′, h′, A′) then either (s1, h1, A1)
α1−−→
Γ

abort,

or (s2, h2, A2)
α2−−→
Γ

abort, or there are disjoint heaps h′1, h
′
2, and

disjoint resource sets A′
1, A

′
2, such that h′ = h′1 · h′2, A′ = A′

1 · A′
2,

(s1, h1, A1)
α1−−→
Γ

(s′1, h
′
1, A

′
1), and (s2, h2, A2)

α2−−→
Γ

(s′2, h
′
2, A

′
2),

where s′1 = (s′\writes(α2)\owned(Γ)) ∪ (s′downed(ΓdA′
1))

and s′2 = (s′\writes(α1)\owned(Γ)) ∪ (s′downed(ΓdA′
2)).

Proof:
By induction on the lengths of α1 and α2.

• Base case: when one of the traces is empty.
Without loss of generality, assume that α2 = ε and α ∈ α1 A1‖A2 ε, so
that (A1, A2)

α−−→
Γ

(A′
1, A2) for some A′

1 ⊥ A2, and α = α1. Note that
s1 = s↓A1 and s2 = s\writes(α)\owned(Γ) ∪ sdowned(ΓdA2).

77

– If (s, h, A) α−−→
Γ

abort then (s↓A1, h1, A1)
α−−→
Γ

abort by the Frame

Property. Hence (s1, h1, A1)
α1−−→
Γ

abort, as required.
(The other base case, when α1 is empty, is symmetric; we would
get (s2, h2, A2)

α2−−→
Γ

abort here instead.)

– If (s, h, A) α−−→
Γ

(s′, h′, A′) we use the Frame Property again. Let
s′1 = s′↓A′

1 and s′2 = s′\writes(α1)\owned(Γ) ∪ s′downed(ΓdA2).
There are two possibilities.

∗ Either (s↓A1, h1, A1)
α−−→
Γ

abort, and we can argue as above

to show that (s1, h1, A1)
α1−−→
Γ

abort.

∗ Or (s↓A1, h1, A1)
α1−−→
Γ

(s′↓A′
1, h

′
1, A

′
1) with h′1 ⊥ h2 and h′ =

h′1 · h2. Hence (s1, h1, A1)
α1−−→
Γ

(s′1, h
′
1, A

′
1). Trivially we also

have (s2, h2, A2)
ε−→
Γ

(s2, h2, A2). By the Agreement Property
s′\owned(Γ) agrees with s\owned(Γ) except on writes(α),
and by definition of the enabling relation writes(α) must be
disjoint from owned(ΓdA2), so it is easy to see that s′2 = s2.
The result follows.

• Inductive case: α1 = λ1α
′
1 and α2 = λ2α

′
2, α ∈ α1 A1‖A2 α2.

If α is abort because λ1 and λ2 interfere, they must involve a concurrent
write to a critical identifier or to a heap cell. Since critical identifiers
are protected and A1 ∩A2 = {}, and dom(h1)∩ dom(h2) = {}, it follows

that either (s1, h1, A1)
λ1−−→
Γ

abort or (s2, h2, A2)
λ2−−→
Γ

abort. The result
then follows.

Otherwise, without loss of generality, assume that (A1, A2)
λ1−−→ (A′′

1, A2),
α = λ1α

′′, α′′ ∈ α′
1‖A′′

1 ,A2
α2. (Again the other case is symmetric.)

Let s1 = s\writes(α2)\owned(Γ) ∪ sdowned(ΓdA1),
and s2 = s\writes(α1)\owned(Γ) ∪ sdowned(ΓdA2).

– If (s, h, A) α−−→
Γ

abort then either (s, h, A) λ1−−→
Γ

abort, or there is a

state (s′′, h′′, A′′) such that (s, h, A) λ1−−→
Γ

(s′′, h′′, A′′) α′′−−→
Γ

abort.
In the first subcase the Frame Property for λ1 implies that
(s↓A1, h1, A1)

λ1−−→
Γ

abort. But s↓A1 and s1 agree on free(α1), so

(s1, h1, A1)
λ1−−→
Γ

abort and (s1, h1, A1)
α1−−→
Γ

abort, as required.
In the second subcase by the Frame Property for λ1 there is a
heap h′′1 ⊥ h2 such that h′′ = h′′1 · h2, and

(s↓A1, h1, A1)
λ1−−→
Γ

(s′′↓A′′
1, h

′′
1, A

′′
1).

78

Let s′′1 = s′′\writes(α2)\owned(Γ) ∪ s′′downed(ΓdA′′
1),

and s′′2 = s′′\writes(α1)\owned(Γ) ∪ s′′downed(ΓdA2).
By the Agreement Properties, s′′2 agrees with s2 on free(α2, Γ),
and

(s1, h1, A1)
λ1−−→
Γ

(s′′1, h1, A1).

We also have, by assumption,

(s′′, h′′, A′′) α′′−−→
Γ

abort.

By the induction hypothesis for α′′, we must have:

∗ either (s′′1, h
′′
1, A

′′
1)

α′1−−→
Γ

abort and hence (s1, h1, A1)
α1−−→
Γ

abort;

∗ or (s′′2, h2, A2)
α2−−→
Γ

abort, in which case since s2 agrees with

s′′2 on free(α2, Γ) it also follows that (s2, h2, A2)
α2−−→
Γ

abort.

– If (s, h, A) α−−→
Γ

(s′, h′, A′) then there must be a state (s′′, h′′, A′′)
such that

(s, h, A) λ1−−→
Γ

(s′′, h′′, A′′) α′′−−→
Γ

(s′, h′, A′).

Use the Frame Property for the first step.
If (s↓A1, h1, A1)

λ1−−→
Γ

abort we get(s1, h1, A1)
α1−−→
Γ

abort as above.

Otherwise, we must have (s↓A1, h1, A1)
λ1−−→
Γ

(s′′↓A′′
1, h

′′
1, A

′′
1) with

h′′1 ⊥ h2, h
′′ = h′′1 · h2. Using the Agreement Properties as above it

follows that (s1, h1, A1)
λ1−−→
Γ

(s′′1, h
′′
1, A

′′
1),

where s′′1 = s′′\writes(α2)\owned(Γ) ∪ s′′downed(ΓdA′′
1).

Let s′′2 = s′′\writes(α′
1)\owned(Γ) ∪ s′′downed(ΓdA2).

The induction hypothesis for α′′ implies that

∗ either (s′′1, h
′′
1, A

′′
1)

α′1−−→
Γ

abort, so that (s1, h1, A1)
α1−−→
Γ

abort;

∗ or (s′′2, h2, A2)
α2−−→
Γ

abort, and since s′′1 agrees with s2 on

free(α2, Γ) we get (s2, h2, A2)
α2−−→
Γ

abort;

∗ or (s′′1, h
′′
1, A

′′
1)

α′1−−→
Γ

(s′1, h
′
1, A

′
1) and (s′′2, h2, A2)

α2−−→
Γ

(s′′′2 , h′2, A
′
2),

where h′1 ⊥ h′2, h
′ = h′1 · h′2, A′

1 ⊥ A′
2, A

′
1 · A′

2 = A′, and
s′1 = s′\writes(α2)\owned(Γ) ∪ s′downed(ΓdA′

1),
s′′′2 = s′\writes(α′

1)\owned(Γ) ∪ s′downed(ΓdA′
2).

Hence (s1, h1, A1)
λ1−−→
Γ

(s′′1, h
′′
1, A

′′
1)

α′1−−→
Γ

(s′1, h
′
1, A

′
1) and

(s1, h1, A1)
α1−−→
Γ

(s′1, h
′
1, A

′
1).

79

Since s′′2 agrees with s2 except on writes(λ1)− owned(Γ) we
also get

(s2, h2, A2)
α2−−→
Γ

(s′2, h
′
2, A

′
2),

where s′2 = s′\writes(α1)\owned(Γ) ∪ s′downed(ΓdA′
2).

That completes the proof.

Corollary 5 (Parallel Decomposition)
Assume (free(c1) ∩ writes(c2)) ∪ (writes(c1) ∩ free(c2)) ⊆ owned(Γ) and
α ∈ α1‖α2, where α1 ∈ [[c1]] and α2 ∈ [[c2]]. Suppose that h1 ⊥ h2 and
h = h1 · h2. Let s1 = s\writes(α2) and s2 = s\writes(α1).

• If (s, h) α−−→
Γ

abort then (s1, h1)
α1−−→
Γ

abort or (s2, h2)
α2−−→
Γ

abort.

• If (s, h) α−−→
Γ

(s′, h′) then (s1, h1)
α1−−→
Γ

abort or (s2, h2)
α2−−→
Γ

abort,
or there are disjoint heaps h′1 ⊥ h′2 such that h′ = h′1 · h′2 and
(s1, h1)

α1−−→
Γ

(s′1, h
′
1), (s2, h2)

α2−−→
Γ

(s′2, h
′
2),

where s′1 = s′\writes(α2) and s′2 = s′\writes(α1).

Proof:
Let A = {} in the previous Lemma.

80

