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ABSTRACT
Many techniques for improving search result quality have
been proposed. Typically, these techniques increase average
effectiveness by devising advanced ranking features and/or
by developing sophisticated learning to rank algorithms. How-
ever, while these approaches typically improve average per-
formance of search results relative to simple baselines, they
often ignore the important issue of robustness. That is, al-
though achieving an average gain overall, the new models
often hurt performance on many queries. This limits their
application in real-world retrieval scenarios. Given that ro-
bustness is an important measure that can negatively impact
user satisfaction, we present a unified framework for jointly
optimizing effectiveness and robustness. We propose an ob-
jective that captures the tradeoff between these two com-
peting measures and demonstrate how we can jointly opti-
mize for these two measures in a principled learning frame-
work. Experiments indicate that ranking models learned
this way significantly decreased the worst ranking failures
while maintaining strong average effectiveness on par with
current state-of-the-art models.

Categories and Subject Descriptors
H.3.3 [Information Retrieval]: Retrieval Models

Keywords
Re-ranking, robust algorithms, machine learning

1. INTRODUCTION
Many approaches for learning highly effective ranking mod-

els for search have been proposed in recent years [19, 5, 25].
Most commonly, they apply well-developed machine learning
algorithms to construct ranking models from training data
by optimizing a given IR metric. While the learned rank-
ing models can be highly effective, these approaches have
mostly ignored the important issue of robustness – in addi-
tion to performing well on average, the model should, with
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high probability, not perform very poorly for any individ-
ual query. Often effectiveness and robustness are competing
forces that counteract each other: models optimized for ef-
fectiveness alone may not meet the strict robustness require-
ment for individual queries.

This paper introduces learning robust ranking models for
search via risk-sensitive optimization, by exploiting and op-
timizing the tradeoffs between model effectiveness and ro-
bustness. At a basic level, this framework learns ranking
models whose effectiveness and robustness can be explic-
itly controlled. While effectiveness and robustness can be
thought of in terms of absolute performance, one can spe-
cialize these concepts to a case where we desire to perform
well relative to a particular baseline – for example a person-
alized system vs. the non-personalized baseline, query ex-
pansion vs. no expansion, or a learned model vs. a retrieval
formula. In this case, we can specialize the notions of ef-
fectiveness and robustness to say that we wish to have high
average gain relative to the baseline (i.e., positive change in
performance) while at the say time incurring low risk rela-
tive to the baseline (i.e., low probability of performing worse
than the baseline for any particular query).

We develop a unified learning to rank framework for jointly
optimizing both gain and risk by introducing a novel trade-
off metric that decomposes gain into reward (upside) and
risk (downside) relative to a baseline. While this objective
could be integrated into many learning models, we show how
to extend and generalize a state-of-the-art algorithm Lamb-
daMart [6] to optimize the new objective. We empirically
demonstrate that models learned this way outperform both
a selective personalization approach and standard learning
to rank models in terms of achieving an optimal balance
between gain and risk. Moreover, our results also provide
important insights into why our learned models are more ro-
bust in terms of the learning convergence property of the new
model as compared to standard effectiveness-centric models.

2. RELATED WORK
Multi-objective learning to rank has received much atten-

tion in recent years [31, 13]. This is because, in many prac-
tical settings, the performance of a ranking model is eval-
uated by multiple measures of interest (e.g., NDCG, MAP,
freshness, efficiency). Multi-objective learning to rank trains
ranking models to simultaneously optimize multiple IR mea-
sures. Svore et al. [31] use a standard web relevance mea-
sure, NDCG, as the primary optimization metric and a rele-
vance derived from click-data is used as the secondary met-
ric; the performance of the primary measure is maintained



constant while the algorithm tries to improve the secondary
measure. Dai et al. [13] develop a multi-objective learning
to rank algorithm for freshness and relevance by extending
a state-of-the-art divide and conquer ranking approach [3].
The key differences between these and our work is that we
treat both risk and reward, which are potentially competing
measures, as first-class metrics during optimization, unlike
the “tiered” approach [31]; however, more importantly, our
risk measure is inherently different from the previous multi-
objective learning to rank metrics – instead of capturing just
another facet of web search [31, 13], risk evaluates the fitness
of the ranking model with respect to a baseline model under
a specific metric. In other words, risk is orthogonal to the
previous multi-objective metrics – risk is defined on top of
these metrics with respect to a baseline model.

Although other risk-aware algorithms have been proposed
for ad-hoc retrieval [35, 39] and query expansion [26, 10],
our problem differs from them in three important dimen-
sions. First, we focus on designing new learning to rank
algorithms to create robust state-of-the-art ranking mod-
els using boosted regression trees, rather than focusing on
risk-minimization for language models or simple term-based
models [35, 39, 34]. Second, unlike [10, 26], the source of
risk in our setting comes from the fact that users and queries
are diverse, so that a single model cannot serve all users or
queries well. Thus we design a new risk-sensitive algorithm
that effectively leverages query-dependent features to build
models that are highly robust and effective for individual
queries. Finally, these previous problems represent partic-
ular strategies for ranking, hence their solutions cannot be
trivially extended to the more general problem of learning
robust ranking models for large-scale retrieval.

Risk can be indirectly addressed by building query-dependent
models to better adapt to individual queries. This line of
work resulted in recent papers that consider query-specific
loss functions [4], where queries of different types (e.g., navi-
gational, information) are optimized with different loss func-
tions. Geng et al. [18] proposed a k-Nearest Neighbor based
method which trains a query-dependent ranking function
for each query based on its nearest neighbors in the train-
ing set. Bian et al. [3] proposed a clustering-based divide-
and-conquer approach for building query-dependent rank-
ing models. However, it is important to note that query-
dependent models are not perfect – just like any other mod-
els, query-dependent models incur risk (e.g., reduced perfor-
mance for some queries and gains for other queries), and this
fact has been largely ignored as well. In a sense, our pro-
posed framework generalizes and complements this thread
of work by learning risk-sensitive query-dependent models.

There has been a great deal of research devoted to de-
veloping effective retrieval models that have high average
retrieval quality. This has given rise to a steady stream
of techniques for effective ranked retrieval. Examples in-
clude learning to rank [19, 5, 25], learning to re-rank [22],
numerous term proximity models [27, 8, 32], and search per-
sonalization [1, 36, 11]. However, unlike our work, they ig-
nore the important issue of model robustness – while many
queries see performance improvements, other queries are of-
ten hurt by the new and complex models as compared to
simple alternatives such as BM25 [29] and language models
for information retrieval [28].

Our work also has connections to query difficulty and per-
formance prediction for Web search [38], as well as selective

personalization [33]. These techniques mitigate risk in re-
ranking by using a query performance prediction method
to selectively re-rank queries whose baseline effectiveness is
expected to be low, and avoid re-ranking for queries where
the baseline effectiveness is already high. We note these
techniques are robustness-centric, which may lead to overly
reduced effectiveness due to unreliable decision in applying
the model. In Section 5 we compare our approach to the use
of selective re-ranking using performance variables.

It seems reasonable to assume that users tend to remem-
ber the singular, spectacular failures of a search engine rather
than the many successful searches that preceded them. How-
ever, we are not aware of many user studies that have looked
at the effect of IR robustness (or the lack thereof) on users’
perceptions of system quality. One exception is a recent user
study of recommender systems [23] that showed how opti-
mizing the accuracy of a system is not enough: among other
interesting findings, they found that high-variance recom-
mendation algorithms can create a bad user experience. In-
formally, significant errors can have a large negative impact
on the perceived quality of the system, even if the system
frequently does well.

Finally, the term robust ranking has been used previously
in the literature, but with somewhat different meaning. For
example, Li et al. [24] call ranking functions ‘robust’ that
account for volatility in ranker scores, and thus, document
ordering, over time, by taking into account the distribution
of ranking scores over results. Others have used ‘robust
ranking’ to refer to ranking algorithms that are less vulner-
able to spam or noise in the training data [2].

3. MOTIVATION
Before proceeding, it is important to identify sources of

uncertainty that contribute to low robustness in ranking
models. In most search settings and especially Web search,
both users and information needs are highly diverse, thus, it
is unlikely a common set of ranking features and the same
model learned from these features can optimally work for
all users and queries. For instance, it has been shown that:
queries with low click entropies typically will not benefit
from search personalization [1, 36, 11]; queries with low
query clarity will not benefit from query expansion tech-
niques as much [16]. Ignoring these facts during model train-
ing leads to a highly risky model. Although previous work
has studied whether and when a learned model should be
applied to a given query based on the aforementioned query-
specific meta-features [33], the average effectiveness that re-
sults from the robust application of the ranking model is
generally ignored – which means the robustness is typically
improved but at an overly aggressive cost in reduced av-
erage effectiveness. We take a principled learning to rank
approach that directly optimizes multiple requirements.

For instance, Figure 1 illustrates the improvements and
degradations of a proposed model (tuned for average effec-
tiveness) with respect to a baseline ranking across queries.
The plots shows a high variance of the new results – the per-
formance of a number of queries is improved (right side) at
the expense of degraded results for other queries (left side).
Directly optimizing for variance is a challenging task – vari-
ance is inherently a set-based measure defined on the distri-
bution of results quality over queries, but typically, learning
to rank algorithms are not directly applicable to optimizing
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Figure 1: Typical helped-hurt histogram of re-ranking gains
and losses compared to a given baseline ranking.

set-based measures. We instead adopt a simple approach
suggested by this figure.

Informally, when compared to an alternative or baseline
ranking, the probability of decreasing performance is related
to the mass on the left-hand side of the figure. In fact the
expectation of the left-hand side, which we call risk, is the
amount we can expect to decrease retrieval quality on av-
erage if we pick a query at random. Likewise, the expec-
tation of the right-hand side, which we call reward, is the
amount we can expect to improve retrieval quality on aver-
age. By defining each average relative to the total number
of queries rather than dividing reward by the number of
improved queries and risk by the number of hurt queries,
we control for issues of coverage. Typical methods optimize
overall performance, Reward − Risk + Baseline, but since
the baseline is fixed from the optimization point of view, this
is equivalent to optimizing the difference, Reward−Risk. In
order to control the risk or probability of harm, this suggests
introducing a weight on the risk term that is user tunable.
This is precisely what we do. In the next section, we for-
malize this intuition before demonstrating how to optimize
the objective in practice.

4. A LEARNING TO RANK APPROACH
FOR CREATING ROBUST MODELS

4.1 Problem setting
In this section, we present the formal setup for learning

robust ranking models for Web search. Given a baseline
ranking Mb we would like to construct a new ranking model
Mm with high average effectiveness across queries, without
degrading the performance of individual queries too much
with respect to Mb. The exact instantiation of the base-
line Mb depends on the specific application of our general
framework. For personalization, Mb might be the initial
non-personalized ranking (e.g., optimized for the average
user). In a production environment, Mb might represent
the results from an earlier release of the ranker. In learning
to rank, Mb might be simpler models such as BM25 that
are known to be effective on a particular subset of queries.
Our framework is applicable to these and any other ranking-
based applications where a risk/reward tradeoff may exist.

4.2 Measuring risk and reward
One way to measure risk is by measuring the variance

of the new ranking model with respect to baseline results.
We instead adopt a variant of this approach, by introducing
a risk function FRISK (QT ,Mb) to capture characteristics of
the variance with respect to model Mb over a training set
QT . We are interested in the downside risk of the new model,
defined as the average reduction in effectiveness due to using
the new model Mm compared to the baseline model Mb

1.

FRISK (QT ,Mb) =
1

N

X
Q∈QT

max [0,Mb(Q)−Mm(Q)] (1)

where N denotes the total number of queries in the training
set QT , and Mb(Q) and Mm(Q) denote the effectiveness
of the baseline model and new model for a given query Q,
respectively. We note that effectiveness can be measured
by any commonly-used IR metrics (e.g. precision@k, recall,
average precision, and NDCG@k). Thus, the downside risk
accounts for the negative aspect of the retrieval performance
across queries.

Similarly we defined reward in relative terms as the pos-
itive improvement in effectiveness over baseline model Mb,
averaged across all queries in a training set QT :

FREWARD(QT ,Mb) =
1

N

X
Q∈QT

max [0,Mm(Q)−Mb(Q)] (2)

where notations N , Mb, and Mm are defined as before.
Thus, the reward function accounts for the positive aspects
of the retrieval performance across queries. For any arbi-
trary baseline, Mb, the overall gain for training set QT can
then be written:

FGAIN (QT ) = FREWARD(QT ,Mb)− FRISK (QT ,Mb). (3)

Our goal is to automatically learn ranking models that
better adapt to individual queries by optimally trading off
between risk and reward. However, before we can learn such
a well-balanced model, we must define a new metric that
captures the tradeoff. Our objective function, which we call
Risk-Reward tradeoff T , is defined as a weighted linear com-
bination of gain (which includes risk and reward) and risk:

Tα(QT ,Mb) = FGAIN (QT )− α · FRISK (QT ,Mb) (4)

= FREWARD(QT ,Mb)− (1 + α) · FRISK (QT ,Mb)

where α ≥ 0 is a key risk-sensitivity parameter that con-
trols the tradeoff between risk and reward. We chose this
formulation so that the case α = 0 corresponds to the stan-
dard learning-to-rank objective to maximize average FGAIN

alone. Note that T is not a single measure, but a family of
measures, parameterized by the tradeoff parameter α. By
varying α we can capture a full spectrum of risk/reward
tradeoffs: from α = 0 (standard default ranking) to larger
values of α that lead to lower-risk models, or small values of
α that lead to higher gain models.

The most common approach to optimizing multiple objec-
tives [30] is to linearly combine objectives, as we have done
with the risk and reward functions. While many other ways
for combining metrics exist, such as by multiplication, divi-
sion, geometric or harmonic means, optimizing an arbitrary

1For simplicity of notation, in the remaining of the paper Mb

will refer to both the baseline model and the effectiveness of
the baseline model. A similar convention is used for Mm.



optimization objective can be problematic in many learning
algorithms. In contrast, linearly combined objectives are of-
ten easily optimized. For our purposes, we will extend the
objective of the LambdaMart algorithm [37]. In Sec. 4.3,
we prove that our tradeoff measure T satisfies a desirable
consistency property [6].

4.3 Constructing robust ranking models
In this section, we describe how to learn models that di-

rectly optimize the proposed tradeoff metric Tα in the pre-
vious section. The basic assumption is that queries are dif-
ferent, thus requiring potentially different ranking functions
to be individually effective. Previous query-dependent mod-
els [4, 18, 3] ignore risk. We devise learning to rank algo-
rithms that directly optimize the tradeoff metric in the con-
text of LambdaMart boosted regression trees framework [37].

4.3.1 Model and optimization algorithm
We choose to extend LambdaMart [37] for our ranking

model. Boosted regression trees have been shown to be one
of the best learning to rank models. In the recent Yahoo!
Learning to Rank Challenge [9], boosting (and ensemble
methods) have been a dominant technique used by winning
entries. Boosted regression trees are a type of non-linear
model that can capture the potentially complex interactions
between various types of ranking features.

LambdaMart is derived from the tree-boosting optimiza-
tion MART [17] and the listwise LambdaRank [7]. Lamb-
daMart improves an effectiveness metric by fitting a se-
quence of boosted regression trees using an approximation
to the derivative of a cost function by accumulating pair-
wise gradients weighted by the total change from the current
ranking to a desired ranking.

We now present a brief overview on LambdaMart objec-
tive function as it serves as a foundation for deriving the
learning algorithm for the tradeoff metric. The objective
function of list-wise LambdaMart is based on the cross-
entropy objective function used by RankNet [5]. Let ri de-
note the relevance grade of a document Di, so that Rij = 1
if ri > rj , and Rij = −1 when rj > ri. Let si denote the
score assigned to Di by the model. For documents Di and
Dj , the cross-entropy is expressed as follows:

C =
1

2
(1−Rij)β(si − sj) + log

“
1 + e−β·(si−sj)

”
(5)

where β is a shape parameter for the sigmoid function. This
cost function assigns zero penalty if two documents are cor-
rectly ranked, and asymptotically, assigns linear penalty if
they are ranked incorrectly. The derivatives of C with re-
spect to score difference between si and sj is:

λij = β

„
1

2
(1−Rij)−

1

1 + eβ(si−sj)

«
(6)

LambdaRank [7] and LambdaMart [37] modify this gradi-
ent defined on pairwise loss to optimize for list-wise IR mea-
sures. The new gradient λnew

ij captures the desired change
of document scores with respect to the IR metric after the
documents have been sorted by their scores, in addition to
capturing the original λij value. The new gradient under the
list-wise optimization is simply defined to be λij multiplied
by the absolute change in IR measure M due to swapping
documents i and j:

λnew
ij = λij |∆Mij | (7)

The gradient for each document Di is obtained by sum-
ming λij over all pairs that Di participates in for query Q:

λnew
i =

X
j 6=i

λij |∆Mij | (8)

The gradients λnew
i defined on each document for each

query are modeled and optimized by LambdaMart regres-
sion trees. In principle, LambdaMart can be extended to
optimize any standard IR metric by simply replacing ∆Mij

in Eq. 8 by the corresponding change ∆M?
ij in the optimized

metric M?. However, it is generally considered desirable for
M? to satisfy the consistency property : any pairwise swap
between correctly ranked documents Di and Dj must lead to
decrease in M?, i.e., ∆M?

ij < 0 if ri > rj . Generally consis-
tency is desired since LambdaMart’s approximation to the
overall gradient is derived from the pairwise gradients.

Unlike standard IR metrics, the tradeoff measure is de-
fined relative to a baseline ranking and it is a meta-measure
– a combination of multiple measures. Despite its impor-
tance, little existing literature has provided insight into how
to optimize meta-measures in a principled way. Next, we
prove the consistency property of the tradeoff metric T and
show how it can be optimized by boosted regression trees.

4.3.2 Consistency of Risk-Reward Tradeoff Tα
While LambdaMart is a list-wise optimization scheme and

can optimize a wide range of IR measures – including NDCG,
MAP, and MRR – it is often desirable for an objective mea-
sure to satisfy the consistency property [6] stated above:
when swapping ranked positions of two documents, di and
dj , in a sorted document list where di is more relevant than
dj , and ranks before dj , the objective should decrease. While
most IR measures easily satisfy this property, in general an
arbitrary objective measure M will not always satisfy the
consistency property. For example, suppose measures A and
B are NDCG@5 and NDCG@10, respectively, and we define
a meta-measureM = A−B. It is easy to see thatM does not
satisfy the consistency property, because as a correct swap is
made, the gain in NDCG@5 is offset by gain in NDCG@10,
which may result in a negative change for the overall mea-
sure M , causing M to be inconsistent. In general, it is not
straightforward to see whether a meta-measure, defined as
a combination of different measures, can ensure the consis-
tency property.

We now show that the tradeoff metric T , defined as a
weighted linear combination of risk and reward in Eq. 4,
satisfies the consistency property.

Theorem 1. The tradeoff metric T in Eq. 4 satisfies the
consistency property.

Proof. Let Mm and Mb be the effectiveness of the Lamb-
daMart model and baseline model respectively. After swap-
ping documents di and dj , denote the resulting change in
tradeoff by ∆T , change in effectiveness by ∆M , change in
reward by ∆γ and change in risk by ∆σ. Let Rel(d) be the
relevance of document d. To show T is consistent we show
that swapping documents di and dj , where di is more rele-
vant than dj and ranks before dj , results in a decrease of T
or equivalently ∆T < 0. We consider two scenarios as new
trees are added to the current LambdaMart ensemble: 1)
Mm ≤ Mb and 2) Mm > Mb. We show T is consistent in
both cases.



Scenario A: Mm ≤Mb

Case A1 ) Swap di and dj , where Rel(di) > Rel(dj) and
i < j. In this case ∆γ = 0 and ∆σ = ∆M < 0. Thus
∆T = (1 + α) ·∆M < 0 as desired.

Case A2 ) Swap di and dj , where Rel(di) > Rel(dj) and
i > j. Then there are two subcases:

If Mb > Mm + ∆M then ∆γ = 0, ∆σ = ∆M and

∆T = (1 + α) ·∆M > 0.

If Mb ≤Mm + ∆M then ∆γ = Mm + ∆M −Mb

∆σ = Mb −Mm and ∆T = α · (Mb −Mm) + ∆M .

Then ∆T > 0, as desired.

Scenario B: Mm > Mb

Case B1 ) Swap di and dj , where Rel(di) > Rel(dj) and
i < j. Then there are two subcases:

If Mb > Mm − |∆M | then ∆σ = −Mb + (Mm − |∆M |) < 0

∆γ = Mb −Mm < 0 and ∆T = α · (Mm −Mb)− (1 + α) · |∆M |
If Mb ≤Mm − |∆M | then ∆σ = 0 and ∆T = ∆M .

Then ∆T < 0, as desired.
Case B2 ) Swap di and dj , where Rel(di) > Rel(dj) and

i > j. There is no risk and ∆M > 0, so ∆T > 0 as desired.

Thus, in all cases the tradeoff measure T satisfies the re-
quired consistency property.

We note that NDCG, MRR, and MAP (Mean Average
Precision) have all been shown to satisfy consistency [14],
and thus Theorem 1 applies generally to risk-reward tradeoff
measures based on these widely-used IR measures, as well
as any others that have been proven consistent.

4.3.3 Risk-sensitive LambdaMart optimization
The details of the proof for Theorem 1 above also tell us

how to compute the ∆T ’s used in the LambdaMart gra-
dients for optimizing T . We observe that by optimizing
the tradeoff metric, the LambdaMart puts more emphasis
on the “risky” queries, by modifying the gradient of such
queries so that incorrect results for risky queries hurt the
tradeoff metric more, and the algorithm learns to optimally
utilize query-dependent features in order to be more risk-
averse. To illustrate this point, we see that when the current
model effectiveness is less than the baseline’s and a correct
swap is made (i.e., Case A2), the optimizer assigns a larger
positive change to the tradeoff if the swap erases the per-
formance difference between the model and baseline (i.e.,
∆T = α · (Mb −Mm) + ∆M > (1 + α) · (Mb −Mm)); oth-
erwise, it assigns a smaller positive tradeoff change to the
query (∆T = (1 + α) · ∆M < (1 + α) · (Mb − Mm)). As
another example, in the case where the current model has
a better effectiveness than the baseline and when two docu-
ments are incorrectly swapped (i.e., Case B1), the algorithm
assigns a non-zero risk to the query if the swap causes the
model to degrade below the baseline effectiveness; other-
wise, it assigns no penalty. Such risk-sensitive optimization
is in sharp contrast to the standard LambdaMart algorithm
which treats all queries identically, without paying extra at-
tention to high-risk queries. Thus, our risk-sensitive frame-
work generalizes standard learning-to-rank algorithms like

LambdaMart that only optimize for average effectiveness
gain without accounting for risk.

5. EXPERIMENTS
We now show the benefits of augmenting the standard

average-gain maximization ranking objective with our risk-
sensitive objective. We emphasize that our key learning goal
is not to maximize NDCG gains alone, or to minimize vari-
ance alone, but to achieve the best possible joint tradeoff
between change in risk and change in reward. The ability
to control such tradeoffs can be important in operational
decisions, and in giving a better picture of the achievable
performance space of a ranking algorithm. We also analyze
the effect of the risk-aversion parameter α on the conver-
gence rate of the learning algorithm and on characteristics
of risk-averse rankings.

5.1 Datasets
We report results using two datasets, one public and one

proprietary. These datasets were chosen to illustrate differ-
ent applications of risk-sensitive ranking for different types
of queries and Web applications. For clarity, we will use
“baselines” to refer to the models used to relativize loss in
our risk-reward optimization. The model without any risk
sensitivity (i.e., α=0), we will call the gain-only model.

5.1.1 MSLR learning-to-rank dataset
We use MSLR-WEB10K, a widely-used publicly released

dataset from Microsoft Research2. MSLR is a sampling
of 10,000 Web search queries and their results from a ma-
jor commercial search engine that includes graded relevance
judgments for supervised learning-to-rank experiments. This
dataset is pre-partitioned into five folds, each with train,
test, and validation subsets. We use and report results using
these same folds in our experiments. We report NDCG@1
and NDCG@10 since both measures are of importance in
Web search evaluation. Since our optimization is performed
relative to a baseline, we have taken the ranking obtained
from sorting by BM25 using the BM25.whole.document fea-
ture as a baseline. Thus, on this dataset, the goal is to
make a more robust tradeoff relative to a well-motivated IR
formula for ranking.

5.1.2 Location personalization dataset
We use a proprietary dataset for learning to personalize

Web results by user location, with details and baseline re-
sults as described in [1]. That work introduced a method-
ology for automatically learning a location distribution to
associate with a search result with the goal of promoting
results when the user’s search location matches the search
result’s location distribution. The data consists of logs from
a competitive top commercial search engine and labels based
on a single binary last satisfied click by the user per query
impression as an implicit relevance judgment. We follow the
same methodology as [1] and report average change across
test folds in MRR relative to the search engine’s original
ranking for the last satisfied click. Thus, on this dataset,
the goal is to learn both how to personalize and when to
personalize simultaneously.

We next define some key evaluation terms used in our
experiments.

2research.microsoft.com/en-us/projects/mslr/



5.2 Evaluation measures
A retrieval quality measure for a ranked result list is sim-

ply a standard statistic that measures some aspect of rele-
vance. The retrieval quality measures we use to report re-
sults on the Web data sets in our study are Non-Discounted
Cumulative Gain (NDCG) and Mean Reciprocal Rank (MRR).

Given a baseline ranking, the reward of using a retrieval
algorithm over a set of queries is the total positive changes
in retrieval quality compared to the baseline ranking divided
by the total number of queries (Eq. 2). The risk of using a
retrieval algorithm is the total negative changes (losses) in
retrieval quality compared to the baseline ranking divided
by the total number of queries (Eq. 1). Visually, risk cor-
responds to the total mass on the left of the vertical zero
line in Figure 1 normalized by the total number of queries,
while reward is the total mass on the right half normalized
by the total number of queries. We call the overall gain –
or simply gain – of an algorithm the average combined gain
over all queries, so that Gain = Reward − Risk. There is
typically a risk-reward tradeoff for retrieval algorithms [10].

Taken together, the (risk, gain) tradeoff pair provides a
more complete picture of a ranker’s performance profile than
simply reporting average NDCG gain. Often, algorithms
that appear similar in NDCG gain can differ greatly in their
risk-sensitivity, for example. This is evident in some of our
results later in Sec. 5.6.

5.3 Query Performance Selective Strategies
Query-dependent features such as click entropy [15], query

clarity [21], query length [12], and the maximum of BM25
scores [20] have been shown to be highly indicative of indi-
vidual query performance and can be used to differentiate
performance between different kinds of queries. An alterna-
tive approach to attempting to learn a model is simply to
selectively apply a learned model by leveraging the insights
from query performance prediction. We provide two such
selective methods for comparison points. For the MSLR
dataset, we use insights regarding the maximum BM25 score
from [20] and use the max of the BM25.whole.document fea-
ture to predict when the baseline (the ranking obtained from
the same feature) will perform well. We can then simply
sweep out thresholds by using the gain-only learned model
when the max BM25 score is low and the BM25 ranking
otherwise. We then vary this threshold in an analogy to
varying the α parameter. We refer to this as maxBM25.

For the location dataset, we also present a selection strat-
egy. For each search result in the location dataset, the
entropy of the result’s location distribution measures how
location-specific a single search result is. When the mini-
mum of this feature over all search results is low, it means
that at least one search result has a very location-specific
meaning, and therefore, location personalization is more likely
to succeed. We again vary the threshold using the person-
alized gain only model when the minimum is low and using
the baseline original ranking of the search engine otherwise.
We refer to this as minEntropy below.

5.4 Learning methodology
To ensure all methods have the same information avail-

able, both the gain-only models and the risk-sensitive models
also have the features (max BM25 for MSLR and minimum
entropy for location) that are used by the selective meth-
ods. In the case of MSLR, in order to ensure strong gain-

only model performance, we performed sweeps on Lamb-
daMart parameters using the validation sets. On the MSLR
data, for α = 0 (i.e. standard optimization), for each fold
we used performance on the validation data to do a grid
search for parameter settings. The parameter ranges we ex-
perimented with were: minimum documents in leaf m ∈
500, 1000, 1500; number of leaves l ∈ 10, 25, 50; number of
trees in ensemble t ∈ 50, 100, 200, 400, 800 and learning rate
r ∈ 0.025, 0.05, 0.07. For three folds the optimal values were
m = 1000, l = 50, t = 800 and r = 0.075, and for the two
remaining folds, the values were identical except m = 500.
For the models learned using α > 0, we used these same pa-
rameters to keep other variables constant. For consistency
of comparison we used the same parameter setting for the
Location dataset experiments as in [1].

5.5 Summary statistics
Tables 1 and 2 show summary retrieval quality and ro-

bustness statistics for ranking on the MSLR and Location
datasets. The gain over baseline effectiveness is broken down
into its constituent Risk and Reward components. (Recall
that Gain = Reward − Risk.) Unless otherwise noted,
other summary stats are based on the top 10 results. The
Wins/Losses row shows the counts of queries that contributed
to the Reward vs Risk respectively.3 The ‘Loss > 20%’
statistic counts queries whose relative NDCG change over
baseline NDCG was worse than -20%. Thus, smaller Loss
numbers are better.

Risk, reward and wins/losses are relative to the baseline
ranking. The NDCG@10 score for the BM25 baseline was
30.869. The ∆MRR score for the Location minEntropy base-
line is zero, since we report relative gains on that dataset for
proprietary reasons.

As expected, there is a clear trade-off between overall re-
trieval effectiveness and amount of risk reduction for both
collections. As the risk-aversion parameter α is increased,
the Wins/Losses row shows consistent reduction in losses,
with a small decline in overall effectiveness (NDCG or ∆MRR).
Note in particular that for the Location data, the chance of a
query being hurt by more than 20% loss in ∆MRR compared
to the baseline vanishes almost to zero, while still retaining
significant overall effectiveness gains.

5.6 Risk-reward tradeoff
Finding a re-ranking strategy that reduces variance com-

pared to the baseline is easy - simply avoid re-ranking and
always use the baseline ranking. In this case, the ∆MRR
will be zero, with zero risk. However, this obviously loses all
the benefits of the re-ranking for queries that are actually
helped by re-ranking. Our goal is to find optimal tradeoff
strategies that dominate other possible strategies for trading
risk for reward.

Figure 2 shows our risk-sensitive objective in LambdaMart
indeed dominates alternative effective strategies for selective
re-ranking, as measured by the tradeoff curve for risk vs.
gain for each collection. This tradeoff curve for the selec-
tive re-ranking strategy is produced as a function of the fea-
ture threshold (the minEntropy feature for Location queries,
and maxBM25 feature for MSLR queries). As the feature
threshold is lowered, more and more queries have the feature

3We ignore queries with zero NDCG@10 difference from the
baseline, with gains over baseline being a ‘Win’, and losses
being a ‘Loss’.



Collection/Statistics All features
α = 0 α = 1 α = 5 α = 10

MSLR
(N = 10000)

NDCG@1 46.166 45.835 44.615 43.658
NDCG@10 47.272 47.221 46.312 45.540

Risk 2.239 1.974 1.722 1.540
Reward 18.642 18.327 17.165 16.282

Wins/Losses 7512/1972 7630/1845 7613/1838 7645/1776
Loss > 20% 740 684 630 573

Table 1: Summary of generalization performance over test folds for the MSLR dataset.

Collection/Statistics All features
α = 0 α = 1 α = 5 α = 10

Location
(N = 541958)

∆MRR 1.451 1.144 0.784 0.555
Risk 0.4725 0.193 0.080 0.051

Reward 1.923 1.337 0.864 0.606
Wins/Losses 43616/24499 32253/14952 23598/8041 19818/8090
Losses > 20% 2539 718 266 14

Table 2: Summary of generalization performance over test folds for the Location dataset.

value above the threshold and are re-ranked according to the
baseline ranking. The tradeoff curve for the risk-sensitive
re-ranking strategy is a function of α. At α = 0, the risk-
sensitive ranking coincides with the gain-only ranking. As
α is increased, the learned model exhibits a stronger pref-
erence for the baseline, which acts like an increasing ‘soft’
query selection for the baseline ranking. The dotted Break
Even line shows the break-even point where the tradeoff
objective T = 0, and any result above the dashed Propor-
tional Reduction line has the desirable property that it re-
duces risk proportionally more than it reduces reward. The
“near-optimal hull” curve represents an envelope of achiev-
able tradeoffs that results from incorporating an automatic
stopping strategy for α, details of which are given in Sec. 5.7.

For both collections it is notable that the selective thresh-
old re-ranking method performs significantly better than the
break-even point. Additionally, since it lies above the Pro-
portional Reduction line, it reduces risk proportionally more
than it reduces gain at almost all points of the curve. This
is most evident at high values of the respective threshold
features, when the ‘best’ queries amenable to that method
are most likely to be selected. At much lower threshold
values, it is clear that most queries do not benefit from re-
ranking with the baseline feature, giving performance closer
to break-even. Furthermore, while other selective personal-
ization approaches could be taken, it is clear based on per-
formance that the selective threshold method here provides
an informative comparison point.

In turn, for the Location data, the risk-gain tradeoff achieved
by risk-sensitive ranking completely dominates that of se-
lective threshold re-ranking. For any given risk level, risk-
sensitive ranking achieves significantly higher gain, and con-
versely, for any given level of gain, it achieves that gain
at much lower risk than the selective method. The results
also show that the near-optimal hull dominates the selective
method for both collections.

5.7 Guidance for setting the α parameter
A natural question is how to set α, or where one should

stop trying new α’s. While α is a user-set parameter to

control risk, the question of where to stop can be approxi-
mated. For any model, the risk can always be reduced by
flipping a coin with probability p and applying the method
given “heads” and the baseline given “tails”. Varying p natu-
rally both reduces the gain and the risk (e.g., p=0.20 yields
20% risk and 20% reward). Since we can apply the same
logic to the gain only model, this leads to natural guidance
in terms of the gain-to-risk ratio of the gain only model
(GOM): when α = GainGOM /RiskGOM the original gain
only model would yield a tradeoff objective T =0. Further-
more, randomly reducing the gain only model for greater
values of α than this will continue to ensure the tradeoff
objective remains non-negative. Thus, solutions with T > 0
in the segment α ∈ [0,GainGOM /RiskGOM ] are interesting
non-trivial tradeoffs relative to the original gain-only model.

To find the size of this segment of interest, we used per-
formance over the training data. For MSLR, this yielded a
value of α= 27.9±1.3 and for Location α= 4.0±0.04. Then
starting from the maximal nearest computed α points (30
and 4 respectively) in the segment, we simulate the ran-
dom reduction from there toward the origin and call this
the “Near-Optimal Hull” line on the curves. This gives a
more realistic picture of achievable tradeoffs.

5.8 Convergence rates
We discussed in Sec. 4.3.3 how adding our risk-sensitive

objective to LambdaMart results in modifying the Lamb-
daMart gradient in such a way that its magnitude is ampli-
fied as α increases, accelerating the learning rate for queries
where baseline effectiveness is already high. Thus, we hy-
pothesized that on average across all training queries, we
would see faster convergence rates at high values of α com-
pared to low values of α.

Figure 4 demonstrates that this phenomenon actually oc-
curs on both collections, comparing the ranker convergence
when α = 0 to setting α = 5. The x-axis indicates num-
ber of iterations; the y-axis shows the overall NDCG@10
achieved at any given iteration (up to a maximum of 100 it-
erations), averaged across all validation folds. Although the
algorithm ultimately converged to very similar NDCG@10
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Figure 2: Risk/gain tradeoffs achieved by risk-sensitive LambdaMart learning vs. selective re-ranking for Location dataset
(left), and MSLR dataset (right).
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Figure 3: Helped-hurt histograms, showing how variance around baseline (dotted line) shrinks as the risk-aversion parameter
α is increased from α = 0 (lightest bars) to α = 10 (darkest bars), for Location dataset (left), and MSLR dataset (right). Each
histogram bucket corresponds to a different 10% range of loss/gain in effectiveness compared to that collection’s baseline,
and contains four bars, corresponding to the number of queries helped or hurt for the four risk-reward tradeoff settings
α = 0, 1, 5, 10. For clearer scaling the large spike of queries for the [0, 10) bucket has been omitted in both charts.

for both settings, the α = 5 runs converged faster for all
folds on both collections. In the case of the Location data,
the speed improvement was dramatic – learning with α= 5
took an average of 10.2 iterations to achieve 95% of the final
convergence effectiveness, compared to 41.5 with α=0. The
improvement was smaller but still consistent across folds for
the MSLR data: for example, learning with α= 5 reached
NDCG@10 gain of 0.42 in an average of 25.4 iterations, com-
pared with 33.4 iterations for α=0.

5.9 Model consistency across risk levels
We now examine how rankings change with respect to the

baseline results as the risk-aversion parameter α is increased.
To measure change between rankings, we use Kendall’s tau
distance, a standard distance between two ranked lists that
corresponds to the (normalized) number of pairwise swaps
required to move from one ranking to another. A large
Kendall distance indicates low similarity to the baseline rank-
ing, and conversely a small Kendall distance indicates a
ranking that is very similar to the baseline ranking.

For illustration purposes, we binned Kendall distance val-
ues into 10 bins from 0 to 9. Queries whose re-ranking is
the same or very similar to the baseline ranking are put in
Bin 0, while queries with re-rankings that are very different
from the baseline are put into Bin 9, or an intermediate bin
according to the Kendall distance.

Figure 5 shows, for each value of α, a distribution over
Kendall bins using the location personalization dataset. It
shows that as the permitted risk increases – alpha changes
from high to low – more and more queries start to deviate
significantly from the baseline. For example, the lower-risk
model learned with α=9 has 85% of the queries staying close
to the baseline (bin 0), while the higher-risk model learned
with α=1 has only 42% of the queries close to the baseline
ranking, with the remaining queries dispersed over much
more diverse rankings with much larger Kendall distances
from the baseline. This behavior can be explained in terms
of risk/reward tradeoff. The higher-risk models have the in-
centive to deviate significantly from the baseline in exchange
for more drastic improvement in effectiveness (which is val-
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Figure 4: Risk-sensitive model (high α) consistently con-
verges faster than reward-only objective (α=0), for both the
MSLR dataset (top) and Location dataset (bottom). Each
iteration point is averaged over all validation folds.

ued more by the tradeoff metric under a low α value); while
low-risk models (high α value) tend to stay close to baseline,
since risk is aggressively penalized by the tradeoff metric un-
der large α and there is no incentive to significantly deviate
from baseline (even if that means a higher gain) due to the
potentially large penalty incurred from it. This fact is also
confirmed by results shown in Table 2, where the higher-risk
model trades off more robustness for effectiveness.

Moreover, in models that heavily penalize risk, the re-
ranked results for a particular query may deviate signifi-
cantly from baseline, but only under the condition that the
reward (NDCG gain) acquired as a result of the deviation
must be high enough to outweigh the increased risk. We
can see this behavior in the risk-sensitive model α = 9. Al-
though a majority of the queries are in Bin 0 (near base-
line), the overall NDCG gain is moderate and the overall
risk is the lowest among all models. Also interesting is that
as Kendall distance increases, the safe model tends to have
the largest reward among other models under same kendall
distance. For safe model (α = 9), reward is 0.00371 under
kendall bin 2, which is the highest among other models in
the same Kendall bin 2. Thus, one potential application of
this type of cross-model analysis might be to use the consis-
tency across different models to produce the best reranking
model for each query.
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Figure 5: Distributions of Kendall distances to baseline
ranking, for increasing values of the risk parameter α (lo-
cation dataset). For high-risk models (α = 1), only 42%
of queries have re-ranked results that remain very close to
the baseline ranking (Bin 0), compared to low-risk (α = 10)
models having 90% of queries with results very close to the
baseline.

6. DISCUSSION AND FUTURE WORK
In this study we gave a definition of ‘risk’ in terms of

the size of the downside tail of a distribution over a specific
performance measure: NDCG. However, our framework is
not limited to that choice and can address a much broader
family of scenarios.

First, the risk and reward parts of the ranking objective
may address other performance aspects of the results rank-
ing, as long as the combined measure is consistent.

Second, we can look beyond strictly performance-related
definitions of risk to include other properties of result sets.
For example, the churn of a set of results for a given query
refers to undesirable and unexpected volatility in a given
query’s results after re-ranking, even (or especially) when
the rankings of the best relevant documents - and thus over-
all performance - might be unchanged or only minimally re-
duced. All things being equal, given two rankings with the
same retrieval performance, we may prefer the one that gives
less churn compared to a baseline ranking. Thus, the ‘risk’
of ranking might be defined using a ranking dissimilarity
measure such as Kendall’s tau compared to the baseline, in-
stead of the strictly performance-based difference in NDCG
we used here.

Third, another assumption we made was that reducing
downside variance was a desirable goal. In general, this is
true. However, there may be some retrieval tasks where it
is beneficial to have an objective that tries to increase up-
side variance, even if this leads to an increased chance of
large errors. Typically this will be in cases where a greater
diversity of retrieval hypotheses is desirable as part of a
larger precision-oriented system. For example, a search en-
gine, acting as one source among several that provides can-
didate documents to a question-answering application, may
be more likely to find high-reward documents if it does more
aggressive promotion from deep in the original ranking.



Finally, we note that our use of an objective that mini-
mizes negative outcomes with respect to a baseline is a spe-
cial case of regret-based learning. In particular, we could
generalize our risk-reward objective to minimize the average
loss over the worst X% tail of negative outcomes, instead of
all negative outcomes, and this could be viewed as a mini-
max regret objective - with connections to the widely-used
Conditional Value-at-Risk objective from financial optimiza-
tion. Beyond ranking, we believe this family of robust ob-
jectives deserves wider consideration in IR, with potential
applicability to tasks such as query rewriting, federated re-
source selection, meta-search and others, where risk-reward
scenarios exist and finding the highest-quality operational
tradeoffs is critical.

7. CONCLUSIONS
We presented a general approach for improving the ro-

bustness of learned rankers by performing risk-sensitive op-
timization of ranking models. Our optimization adds a novel
additional ranking objective that minimizes downside risk
relative to a given baseline, in addition to the standard ob-
jective factor that maximizes average effectiveness across
queries. Our approach can be viewed as a way to con-
trol the robustness/effectiveness tradeoff in learning-to-rank
approaches. Thus, it generalizes the standard learning to
rank approaches as special cases that do not consider ro-
bustness. Our robustness metric is orthogonal to previous
multi-objective learning to rank metrics for capturing differ-
ent facets for search, since robustness is defined using stan-
dard facet-based and IR performance measures with respect
to a baseline model. We proved the theoretical consistency
of the proposed tradeoff measure and designed a principled
learning to rank approach, using boosted regression trees,
to optimize it. Our approach can be potentially applied to
a wide range of applications in learning-to-rank by plugging
in different baseline models. Furthermore, by performing an
extensive empirical evaluation using both public and pro-
prietary datasets we demonstrated that our robust models
achieve significant benefits in learning rate, robustness, and
reliability over existing methods.
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[8] S. Büttcher, C. L. A. Clarke, and B. Lushman. Term proximity
scoring for ad-hoc retrieval on very large text collections. In
SIGIR, pages 621–622, 2006.

[9] O. Chapelle and Y. Chang. Yahoo! learning to rank challenge
overview. Journal of Machine Learning Research -
Proceedings Track, 14:1–24, 2011.

[10] K. Collins-Thompson. Reducing the risk of query expansion via
robust constrained optimization. In CIKM 2009, pages
837–846.

[11] K. Collins-Thompson, P. N. Bennett, R. W. White, S. de la
Chica, and D. Sontag. Personalizing web search results by
reading level. In CIKM, pages 403–412, 2011.

[12] S. Cronen-Townsend, Y. Zhou, and W. B. Croft. Predicting
query performance. In SIGIR, pages 299–306.

[13] N. Dai, M. Shokouhi, and B. D. Davison. Learning to rank for
freshness and relevance. In SIGIR, pages 95–104, 2011.

[14] P. Donmez, K. M. Svore, and C. J. C. Burges. On the local
optimality of lambdarank. In SIGIR, pages 460–467, 2009.

[15] Z. Dou, R. Song, and J.-R. Wen. A large-scale evaluation and
analysis of personalized search strategies. In WWW, pages
581–590, 2007.

[16] E. N. Efthimiadis. Chapter: Query expansion. Annual Review
of Information Science and Technology, 31:121–187, 1996.

[17] J. H. Friedman. Greedy function approximation: A gradient
boosting machine. Annals of Statistics, 29:1189–1232, 2000.

[18] X. Geng, T.-Y. Liu, T. Qin, A. Arnold, H. Li, and H.-Y. Shum.
Query dependent ranking using k-nearest neighbor. In SIGIR,
pages 115–122, 2008.

[19] F. Gey. Inferring probability of relevance using the method of
logistic regression. In Proc. 17th SIGIR Conference, 1994.

[20] Q. Guo, R. W. White, S. Dumais, J. Wang, and B. Anderson.
Predicting query performance using query, result, and user
interaction features. In RIAO, 2010.

[21] C. Hauff, D. Hiemstra, and F. de Jong. A survey of
pre-retrieval query performance predictors. In CIKM, pages
1419–1420, 2008.

[22] C. Kang, X. Wang, J. Chen, C. Liao, Y. Chang, B. L. Tseng,
and Z. Zheng. Learning to re-rank web search results with
multiple pairwise features. In WSDM’11, pages 735–744, 2011.

[23] B. Knijnenburg, M. C. Willemsen, Z. Gantner, H. Soncu, and
C. Newell. Explaining the user experience of recommender
systems. J. of User Modeling and User-Adapted Interaction
(UMUAI), 22, 2011.

[24] F. Li, X. Li, S. Ji, and Z. Zheng. Comparing both relevance and
robustness in selection of web ranking functions. In SIGIR ‘09,
pages 648–649, 2009.

[25] T.-Y. Liu. Learning to rank for information retrieval.
Foundations and Trends in Information Retrieval, 3(3), 2009.

[26] Y. Lv, C. Zhai, and W. Chen. A boosting approach to
improving pseudo-relevance feedback. In SIGIR, pages 165–174,
2011.

[27] D. Metzler and W. B. Croft. A Markov Random Field model
for term dependencies. In Proc. 28th SIGIR Conference, pages
472–479, 2005.

[28] J. Ponte and W. B. Croft. A language modeling approach to
information retrieval. In Proc. 21st SIGIR Conference, pages
275–281, 1998.

[29] S. Robertson, S. Walker, S. Jones, M. M. Hancock-Beaulieu,
and M. Gatford. Okapi at TREC-3. In Proc. 3rd TREC
Conference, pages 109–126, 1994.

[30] R. Steuer. Multiple Criteria Optimization: Theory,
Computation and Application. John Wiley, 1986.

[31] K. M. Svore, M. N. Volkovs, and C. J. Burges. Learning to rank
with multiple objective functions. In WWW, pages 367–376,
2011.

[32] T. Tao and C. Zhai. An exploration of proximity measures in
information retrieval. In Proc. 30th SIGIR Conference, 2007.

[33] J. Teevan, S. T. Dumais, and E. Horvitz. Potential for
personalization. ACM TOCHI, 17(1), 2010.

[34] E. M. Voorhees. The trec robust retrieval track. SIGIR Forum,
39(1):11–20, June 2005.

[35] J. Wang and J. Zhu. Portfolio theory of information retrieval.
In SIGIR. ACM, 2009.

[36] R. W. White, P. N. Bennett, and S. T. Dumais. Predicting
short-term interests using activity-based search context. In
CIKM, pages 1009–1018, 2010.

[37] Q. Wu, C. J. Burges, K. M. Svore, and J. Gao. Adapting
boosting for information retrieval measures. Information
Retrieval, 13:254–270, June 2010.

[38] Y. Zhou and W. B. Croft. Query performance prediction in web
search environments. In Research and Development in
Information Retrieval, pages 543–550, 2007.

[39] J. Zhu, J. Wang, I. J. Cox, and M. J. Taylor. Risky business:
modeling and exploiting uncertainty in information retrieval. In
SIGIR. ACM, 2009.


