
 1

Abstract—This paper proposes a new sequence type, the

Augmented Integer Linear Recurrence. This sequence type finds
patterns in sequences with runs of the same integer present.
AILRs use linear recurrence inference as a base, and uses
invertible sequence transforms to transform sequences into
others and recursively infers the post-transformation sequences.

I. INTRODUCTION
A common technique used in solving mathematical
problems is to solve the problem for simple cases and
then extrapolate the results to more complex cases using
sequence inference. This technique is frequently used by
students to solve word problems. However, there are a
considerable number of sequences that have a relatively
simple pattern that do not fit common definitions of
sequences, such as linear recurrences or polynomials.
Paths through a two-dimensional Cartesian plane grid
often have that the sequence of their x-coordinates or y-
coordinates has this property. This paper proposes a new
kind of sequence definition, the Augmented Integer
Linear Recurrence (AILR) as a solution to this problem.
One of the main features of an AILR is the ability to
recognize runs of the same integer repeated in a
sequence and to see patterns in these runs.

II. MOTIVATION

The problem which motivates this definition is the “ten-
second sequence” problem – the fact that not all “easy”
sequences fall under the definition of common sequence
types. An example of this is the sequence
1 2 2 3 3 3 4 4 4 4 5 5 5 5 5…
Another example of this is the sequence of x-coordinates
in the spiral shown in Figure 1, assuming the grid square
at the center of the spiral is at x=0:

Fig. 1: A spiral.

The sequence of x-coordinates is the following:
0 1 1 0 -1 -1 -1 0 1 2 2 2 2 1 0 -1 -2 -2 -2 -2 -2…

While these sequences have a readily inferable rule, they
do not qualify as linear recurrences, polynomials, or
other sequences. Therefore, most computer programs fail
to recognize these sequences. AILRs are capable of
inferring sequences like these, and can solve many
simple sequences involving runs of integers and
differences. While AILRs and other such sequence
inference methods cannot hope to infer all sequences, as
doing so would solve several open questions in
mathematics and compute uncomputable functions like
the Busy Beaver function[1], AILRs can solve many
simple sequences that humans would be able to solve but
computers would struggle to solve.

III. DEFINITIONS

Linear recurrence: An infinite sequence = ∈

} of real numbers with the property that there exists a d
and a collection of real coefficients < } such that
for all ≥ , = . The minimum such d
is called the degree of S.

Integer linear recurrence: A linear recurrence in which
every term is an integer.

Let S be an integer sequence, whether finite or infinite.

The difference sequence of S is the sequence
{ − | < − 1}

Before we define the underlying and mode sequences,
we define a partition P(S) < ()} such that

∈ and for all < , < () if ∈ and
 = then ∈ and otherwise ∈ .
() is the number of sets S needs to be partitioned into

this way, and can be infinite if S is infinite.

The mode sequence is the sequence of the cardinalities
of each Ai in order.

The underlying sequence is the sequence of the unique
integer in each Ai in order (the integer may appear many
times in each Ai).

Augmented Integer Linear Recurrences
by Aaron Snook, Manuel Blum (advisor)

 2

Note that the difference sequence of a sequence S along
with the first term of the original sequence is enough to
reconstruct S. Also, the mode and the underlying
sequences of a sequence S together contain enough
information to construct S.

This allows us to formally define an AILR:
A infinite sequence S is an AILR iff:

(1) S is an integer linear recurrence
(2) The difference sequence of S is an AILR
(3) The mode and underlying sequences of S are

both AILRs

The depth of an AILR S (ℎ()) is defined as
follows:
The depth of an integer linear recurrence is 0.
The depth of a sequence with an AILR S as its difference
sequence is ℎ() + 1.
The depth of a sequence with an AILR M as its mode
sequence and an AILR U as its underlying sequence is

{ ℎ(), ℎ()} + 1.

AILRs = ∈ } and = ∈ } are said to
be equivalent if for all ∈ , = .

The linear recurrence set of an AILR S (()) are
defined as follows:
If S is an integer linear recurrence, () is simply .
If S has an AILR T as its integer linear recurrence,
() = ().

If S has AILRs M and U as its mode and underlying
sequences respectively, = ∪ ().

IV. EXAMPLES
We use examples from the Online Encyclopedia of
Integer Sequences[3] (OEIS).
The difference sequence of a linear recurrence is a linear
recurrence (see Appendix, Claim 1). In light of this, (2)
in the definition of AILR may seem redundant.
However, in conjunction with (3), it allows AILRs to see
runs of differences, as shown in the following example.

Consider the sequence (A002260 in the OEIS)
1 1 2 1 2 3 1 2 3 4 1 2 3 4 5…
Its difference sequence is
0 1 -1 1 1 -2 1 1 1 -3 1 1 1 1…
The mode sequence of its difference sequence is
1 1 1 2 1 3 1 4…
The underlying sequence of its difference sequence is
0 1 -1 1 -2 1 -3…

Both the mode and underlying sequences are integer
linear recurrences; therefore, they both are AILRs by (1).
Therefore by (3) the difference sequence of S is an
AILR. Therefore, by (2) the original sequence is an
AILR.
Consider the sequence ∈ } where is the ith
smallest natural number that is not a square. (A000037
in the OEIS)

Its difference sequence is
1 2 1 1 1 2 1 1 1 1 1 2 1 1 1 1 1 1 1 …
The mode sequence of its difference sequence is
1 1 3 1 5 1 7…
and the underlying sequence of this difference sequence
is
1 2 1 2 1 2 1...
By (1) the mode and underlying sequence of the
difference sequence is an AILR, and by (3) that means
the difference sequence is an AILR. By (2), the original
sequence is an AILR.

V. MORE EXAMPLES

It can be shown that the following are AILRs:

The spiral (x-coordinate) (A174344 in the OEIS):

0, 1, 1, 0, -1, -1, -1, 0, 1, 2, 2, 2,
2, 1, 0, -1, -2, -2, -2, -2, -2, -1,
0, 1, 2, 3, 3, 3, 3, 3, 3

“A self-generating sequence” (A005041 in the OEIS)

1, 2, 2, 3, 3, 4, 4, 4, 5, 5, 5, 6, 6,
6, 7, 7, 7, 7, 8, 8, 8, 8, 9, 9, 9, 9,
10, 10, 10, 10, 10

VI. ALGORITHM
This definition allows for an algorithm to find such
sequences. Our algorithm’s goal, given a finite sequence
of integers, is to obtain a set of continuation functions
that are consistent with the sequence of integers. Our
algorithm first tests a finite set of integers to see if it is
consistent with an integer linear recurrence. If it is, we
add that linear recurrence as a continuation function to
our final list. We also take the difference, mode, and
underlying sequences of the input, and recursively obtain
all extension functions consistent with those sequences.
If we obtain extensions of the difference sequence, or
extensions of the mode and underlying sequences, we
construct extension functions of the original sequence
using extension functions found in these recursive calls.
(See the section “Continuation Functions” for details.)
We add all such constructed sequences to the final list

 3

and return. We note that linear recurrence inference is a
solved problem[1], and we use an algorithm to do this as
part of our algorithm.

VII. EXAMPLE OF ALGORITHM
Suppose the following finite sequence were input into
the algorithm above:
1 1 2 1 2 3 1 2 3 4 1 2 3 4 5
The algorithm would attempt to infer this as an integer
linear recurrence and fail. While any sequence of k
integers has a linear recurrence interpretation of degree
at most ⌊ ⌋, the interpretations may fail to be integer
valued; this is the case here.
The algorithm would also attempt to recursively infer the
mode and underlying sequences of this sequence, but
this will be fruitless in this algorithm, and we will not
focus on this.
The algorithm would then obtain the difference sequence
D: 0 1 -1 1 1 -2 1 1 1 -3 1 1 1 1
The algorithm would attempt to infer this as an integer
linear recurrence and fail.
The algorithm would then determine the mode and
underlying sequences of D:
Mode: 1 1 1 2 1 3 1 4
Underlying: 0 1 -1 1 -2 1 -3
which would be inferred as linear recurrences. The mode
would be inferred as = = 1, = 1, = 1, =
2, = 2 − and the underlying would be
inferred as = = 0, = 1, = −1, = 2,

= 2 − . For brevity’s sake, we will
represent the functions inferred as infinite sequences.
Mode: 1 1 1 2 1 3 1 4 1 5…
Underlying: 0 1 -1 1 -2 1 -3 1 -4…
We then combine these functions to obtain an extension
function for D. The mode and underlying functions are
combined by for each i starting at 0,
0 1 -1 1 1 -2 1 1 1 -3 1 1 1 1 -4 1 1 1 1 1…
We then use this sequence to construct an extension
function of the original sequence:
1 1 2 1 2 3 1 2 3 4 1 2 3 4 5 1 2 3 4 5 6…
which is a logical inference of the original sequence.

VIII. CONTINUATION FUNCTIONS

In the “Example of Algorithm” section, we represented
an AILR as an infinite sequence for simplicity. In
reality, we represent an AILR as a recursive function,
with linear recurrences as our base case. The AILR
inferred in “Example of Algorithm” would be
represented as ((, _2)),
where L1 and L_2 are as defined in the “Example of
Algorithm” section. This means that this AILR was

inferred since its difference sequence had mode
sequence L1 and underlying sequence L2.
To show how this is a continuation function, we need to
examine how to extend each kind of AILR by a term.

To extend a sequence of t terms { … } which has
been inferred as an integer linear recurrence with degree
d and rule = , obtain the t+1st term
using the inferred rule: = .

To extend a sequence of t terms { … } which has
been inferred by inferring its difference sequence S =
{ … }as an AILR, recursively extend S to t terms
and obtain by adding and .

To extend a sequence of t terms { … } which has
been inferred by inferring both its mode sequence
= { . . ’} and its underlying sequence =

 { . . ’}, we need a “bank” with two values n and k.
Whenever the sequence is extended, if n > 0, we add k
to the sequence and decrement k. If n = 0, we
recursively extend M and U by one, and set n to the last
term of M and k to the last term of U, and then extend
the sequence again.

IX. RUNTIME

The runtime of the algorithm described is O(3mm3)
where m is the number of sequence terms inputted and n
is the depth limit. To see this, note that the space of
sequences checked is a tree with a root of the original
sequence. Each node has branching factor 3 (its mode
sequence, its underlying sequence, and its difference
sequence). Furthermore, note that for any given
sequence S, the mode, underlying, and difference
sequences have strictly fewer terms than the original
sequence (unless the original sequence contains no runs
of length greater than one, which can be detected and
discarded easily.) At each point in the tree, Gaussian
elimination is used to determine the integer linear
sequence and whether or not it is integer valued. This
algorithm is O(m3) where m is the number of sequence
terms. Note that since we cannot gain terms this bound
applies at all points in the tree. This tree can be pruned
using several methods (an example would be to not
attempt to interpret the mode and underlying sequences
of a sequence with no consecutive terms identical). Also,
a maximum depth parameter n can be set to the tree to
limit its height, trimming the runtime to O(3nm3).
Having a finite depth parameter is recommended (and
the proof of Convergence depends on there being one.)

 4

X. NUMBER OF TERMS USED
The more important metric in calculating the efficiency
of this algorithm in practice is the number of sequence
terms used. For linear recurrences, it takes at least 2d
terms to calculate a linear recurrence of degree d[1]. The
algorithm implemented does not allow constants to be in
the linear recurrence relation. As an example, the form

= 0, = + 1 is not allowed. Linear
recurrences with a constant in their form can be
expressed using ones without such constants, though the
degree may increase slightly. For example, the previous
linear recurrence can be expressed as = 0, = 1,
 = 2 – , which is of higher degree (but not

support). However, AILRs could be implemented with a
linear recurrence algorithm that allows constants to be
added without changing any features of the program.
Furthermore, mode and underlying sequences may be
arbitrarily smaller than their originals (the size of the
original is the sum of the terms of the mode sequence),
preventing any meaningful mathematical guarantees on
number of sequence terms required to infer such a
sequence. Furthermore, it is possible that several
conflicting interpretations will appear for a given finite
integer sequence. Eliminating such interpretations may
require additional terms (see Convergence).

XI. CONFLICTS, INTEGER CONSTRAINTS

The reason why our definition of AILR includes the
requirement that sequence terms be integers is that this
filters out several interpretations. Without the integer
requirement, any finite sequence of numbers (of length
≥ 2) is an AILR since all such sequences can be
interpreted as the start of a linear recurrence[1] In
addition, we also filter out interpretations of a mode
sequence that include negative integers, since runs of
negative length do not exist. The integer requirement
does not filter out all undesired interpretations, however,
and so multiple differing interpretations can be reached.
False interpretations will be eliminated by providing
more terms of the sequence to the algorithm once the
number of terms given exceeds the number of terms
which the false interpretation agrees with the true
sequence, but new false interpretations may arise as the
number of terms given rises, since this algorithm will
infer linear recurrences of degree at most d/2, where d is
the number of sequence terms given. As k rises, the
space of integer linear recurrences grows. This fact
prevents convergence to a single AILR interpretation.
However, with an integral sorting function where AILRs
with low degree linear recurrences are ranked higher
than ones with ones that contain high-degree sequences,
we can ensure that eventually the sequences introduced

by adding more terms will all be ranked lower than a
single correct interpretation (see Convergence proof).

XII. RANKING SEQUENCES

An issue when inferring sequences in this way is that
there may be multiple ways in which a sequence meets
the definition of an AILR. For example, the sequence of
integers S = {1 2 2 3 3 3 4 4 4 4} satisfies the definition
of an AILR in the intuitive way: its repetition and mode
sequences are each AILRs (the sequences {1 2 3 4}).
However, S also can be interpreted as an AILR by virtue
of being consistent with a degree 5 linear recurrence that
happens to match S on the first 10 terms, but quickly
becomes very negative after that. This sequence is
generally considered undesirable. This brings up the
issue of sorting the various interpretations by relevance.
In general, in sequence inference, we generally consider
the simplest (lowest entropy) pattern to be most reliable:
lower degree linear recurrences are favored over higher
degree ones, lower degree polynomials are favored over
higher degree ones, and in general, given multiple
sequence interpretations, we would like the one with the
simplest Turing machine code to be ranked higher. That
is the general principle that we employ in ranking the
interpretations found, though there are multiple variables
to consider in this case. The major variables are
complexity of the linear recurrences involved in the
interpretation and the number of transformations used in
the interpretation. Both variables are important, and
favoring either one over the other has its drawbacks. If
we emphasize number of transformations over
complexity of linear recurrences, complex linear
recurrences will appear and be ranked highly as the
number of sequence terms given grows. If we emphasize
linear recurrence complexity over number of
transformations used, the program will have several
inexpensive transformation sequences available to it,
allowing it to often find a transformation sequence that
produces a simple linear recurrence. The two factors
should be given roughly equal weight, but the optimum
balance may vary depending on circumstance.
Furthermore, ranking functions can be human-aided –
whether manually or using databases of common
sequences such as the OEIS. One could rank inferred
AILRs by for each AILR extending the input finite
sequence by a few terms using the AILR’s rules,
entering the resulting finite sequence into OEIS, and
then obtaining the number of results. AILRs with more
results would be ranked higher.

A sample ranking function is as follows:

 5

If S is a linear recurrence, rank(S) is the degree of the
linear recurrence. If S has an AILR T as a difference
sequence, () = () + 1. If S has an AILR
M as its mode sequence and U as its underlying
sequence, () = { (), ()} + 1.

XIII. PROOFS

Inference

Claim: given an AILR S, there exists an N such that for
all ≥ , if the algorithm is given the first n terms
from S, S will be one sequence inferred.

Proof by structural induction:

Suppose that S is an integer linear recurrence of degree
d. Then, if there are at least d/2 terms from S given, S
will be inferred by the linear recurrence solver. Suppose
that S has a difference sequence T which is an AILR. By
our inductive hypothesis, there exists an N’ such that for
all ≥ ’, will be inferred if given n terms.
Therefore, if we have at least N’+1 terms of S, we will
recursively call the function on the difference sequence
with at least N’ terms, and thus T will be inferred and
thus S will be inferred as well. Suppose that S has mode
sequence = ∈ } and underlying sequence U
which are both AILRs. By our inductive hypothesis,
there exist N’, N’’ such that for all ≥ ’, can be
inferred with N’ terms, and U can be inferred with N’’
terms. Let ’’’ = { ’, ’’}, and let
 = ’’’ _ . Note that each represents

terms in S, and so the number of terms represented by
the first N’’’ terms is N. Therefore, if S is given N terms,
it will recursively call the algorithm with N’’’ terms on
M and U. By the induction hypothesis, M and U will be
inferred in the recursive calls, allowing us to infer S.

Convergence

Claim: if the sample rank function in “Ranking
Sequences” is used, and a depth limit k is fixed, the
following holds: given an AILR S with depth at most k,
there exists an N such that for all > , if the
algorithm is given the first n terms from S, an AILR
equivalent to S will be the top-ranked function given.

Proof:

Let N’ be the number of terms required to infer S. Let
N’’ be the smallest number of terms such that all 3
transformation sequences of S have at least 2 ∗ ()

terms. Let ∗ = { ’’, ’}. Suppose we give the
first ∗ terms to our algorithm. By Inference, S will be
among the sequences inferred; let { | < } be the list
of all interpretations not equivalent to S ranked higher
than S with the input of the first N terms. where each
is a sequence not equivalent to S that is rated higher than
S and k is the number of such sequences. By definition
of non-equivalence to S, each disagrees with S in the
()th term. Let = { | < }. Suppose that
you give the first N terms to the algorithm. Then S will
still be inferred by Inference, but each will not be
inferred since they disagree with the first ∗th terms.
Suppose that there is an AILR T inferred with N terms
that is not inferred with ∗ terms. This means that there
must exist a linear recurrence in T’s linear recurrence set
that has > (), as otherwise T would
have been inferred with ∗ terms as well.
ℎ () > (). Therefore, this

interpretation is ranked below S.

Therefore, all interpretations ranked higher than S must
be equivalent to S, and therefore the top ranked AILR
will be equivalent to S for all > .

Intuitively, all incorrect sequences simpler than the
correct sequence will eventually have a witness to their
incorrectness, and therefore once all such sequences
have been refuted, the correct sequence will prevail.

Unfortunately, as N depends on S, which is generally
unknown prior to using this algorithm, this proof cannot
be used to verify that the algorithm will always produce
the correct AILR given a certain fixed number of terms,
even if the depth or rank of the AILRs is held below a
certain threshold. However, in most practical
applications, if the same sequence is ranked on the top
for several sufficiently large n, this proof can suggest
that you have the right answer.

XIV. RESULTS

When testing against the Online Encyclopedia of Integer
Sequences (OEIS), linear recurrences were inferred, as
they were in Sam Tetruashvili’s work. AILRs that were
not linear recurrences were not common, so the
inference rate on the OEIS would not be significantly
higher for AILRs than for Sam’s work. However, there
were several interesting sequences on OEIS which were
AILRs, not all of which were easy to guess:
The natural numbers in ascending order, except for the
perfect squares:
2 3 5 6 7 8 10 11 12 13 14 15 17 18 19…
An oscillating sequence:
0 1 0 -1 0 1 2 1 0 -1 -2 -1 0 1 2 3 2 1 0 -1 -2 -3 -2 -1 0…

 6

XV. FUTURE WORK

There is significant room for improvement in conflict
resolution strategy for this algorithm, as this is the
greatest obstacle from guaranteeing a particular result
from this algorithm.
Furthermore, the framework of AILRs suggests a more
general sequence-inferring technique. One could propose
the following:
A set F of algorithms that either infer a sequence or
report failure (in the case of AILRs, F contained only the
integer linear recurrence solve).
A set of transformations T (in the case of AILRs, T
contained the difference, mode, and underlying
transformations), partitioned into sets { , … }
where each Ti is a set of transforms which together can
be used to deduce the original sequence.
Then, one could construct a inference function G in the
following way:
Let S be a given sequence. Attempt to apply all functions
in F to S to find an extension. Otherwise recursively
apply all transformations in T to S. If there is any i such
that all transforms in Ti transform S into a inferable
function by G, extend each of the transformed sequences
and use them to construct an inference for the original
sequence.

In addition, as AILRs are strong with grid related
sequences, one could imagine using a generalization of
AILRs in a space of higher dimension – the notions of
mode, underlying, and difference sequences can be
generalized to two-dimensional space. Jerene Yang[2] did
work in inference of 2-dimensional sequences, and she
used several strategies that were similar to what was
done here.

XVI. APPENDIX

Claim 1: Suppose that S is a linear recurrence. Then S’s
difference sequence is also a linear recurrence.

Proof:

Suppose S is an integer linear recurrence of degree d. Let
the form of S be = … = , =
 . Note that the difference sequence of S
then can be written as = − … = −
 , = (− = .

REFERENCES
[1] Tetruashvili, Sam and Blum, Manuel. Inductive Inference of
Integer Sequences. May 9, 2010.
[2] Yang, Jerene, (2012). Graphical Numerical Inference: AKA Brain
Surgery for Excel. Unpublished manuscript..
[3] OEIS Foundation Inc. (2011), The On-Line Encyclopedia of
Integer Sequences, http://oeis.org

