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Abstract—This paper proposes a new sequence type, the 

Augmented Integer Linear Recurrence. This sequence type finds 
patterns in sequences with runs of the same integer present. 
AILRs use linear recurrence inference as a base, and uses 
invertible sequence transforms to transform sequences into 
others and recursively infers the post-transformation sequences.  

I.  INTRODUCTION 
A common technique used in solving mathematical 
problems is to solve the problem for simple cases and 
then extrapolate the results to more complex cases using 
sequence inference. This technique is frequently used by 
students to solve word problems. However, there are a 
considerable number of sequences that have a relatively 
simple pattern that do not fit common definitions of 
sequences, such as linear recurrences or polynomials. 
Paths through a two-dimensional Cartesian plane grid 
often have that the sequence of their x-coordinates or y-
coordinates has this property. This paper proposes a new 
kind of sequence definition, the Augmented Integer 
Linear Recurrence (AILR) as a solution to this problem. 
One of the main features of an AILR is the ability to 
recognize runs of the same integer repeated in a 
sequence and to see patterns in these runs. 

II. MOTIVATION 
 
The problem which motivates this definition is the “ten-
second sequence” problem – the fact that not all “easy” 
sequences fall under the definition of common sequence 
types. An example of this is the sequence 
1 2 2 3 3 3 4 4 4 4 5 5 5 5 5… 
Another example of this is the sequence of x-coordinates 
in the spiral shown in Figure 1, assuming the grid square 
at the center of the spiral is at x=0:  

 
Fig. 1: A spiral. 

 
 

 
The sequence of x-coordinates is the following:  
0 1 1 0 -1 -1 -1 0 1 2 2 2 2 1 0 -1 -2 -2 -2 -2 -2… 
         
While these sequences have a readily inferable rule, they 
do not qualify as linear recurrences, polynomials, or 
other sequences. Therefore, most computer programs fail 
to recognize these sequences. AILRs are capable of 
inferring sequences like these, and can solve many 
simple sequences involving runs of integers and 
differences. While AILRs and other such sequence 
inference methods cannot hope to infer all sequences, as 
doing so would solve several open questions in 
mathematics and compute uncomputable functions like 
the Busy Beaver function[1], AILRs can solve many 
simple sequences that humans would be able to solve but 
computers would struggle to solve. 

III. DEFINITIONS 
 
Linear recurrence: An infinite sequence   =       ∈

} of real numbers with the property that there exists a d 
and a collection of real coefficients < }  such that 
for all ≥ , =       . The minimum such d 
is called the degree of S. 
 
Integer linear recurrence: A linear recurrence in which 
every term is an integer.   
 
Let S be an integer sequence, whether finite or infinite. 
  
The difference sequence of S is the sequence 
{ −    |   < − 1} 
 
Before we define the underlying and mode sequences, 
we define a partition P(S) < ( )} such that 

∈ and for all < , < ( ) if ∈  and 
  =      then ∈     and otherwise ∈    . 
( ) is the number of sets S needs to be partitioned into 

this way, and can be infinite if S is infinite.  
 
The mode sequence is the sequence of the cardinalities 
of each Ai in order. 
 
The underlying sequence is the sequence of the unique 
integer in each Ai in order (the integer may appear many 
times in each Ai). 
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Note that the difference sequence of a sequence S along 
with the first term of the original sequence is enough to 
reconstruct S. Also, the mode and the underlying 
sequences of a sequence S together contain enough 
information to construct S.  
 
This allows us to formally define an AILR: 
A infinite sequence S is an AILR iff: 

(1) S is an integer linear recurrence 
(2) The difference sequence of S is an AILR 
(3) The mode and underlying sequences of S are 

both AILRs 
 

The depth of an AILR S ( ℎ( )) is defined as 
follows: 
The depth of an integer linear recurrence is 0. 
The depth of a sequence with an AILR S as its difference 
sequence is ℎ( ) + 1. 
The depth of a sequence with an AILR M as its mode 
sequence and an AILR U as its underlying sequence is 

{ ℎ( ), ℎ( )} + 1. 
 
AILRs =    ∈    } and    =       ∈    } are said to 
be equivalent if for all ∈    ,   =    . 
 
The linear recurrence set of an AILR S ( ( )) are 
defined as follows: 
If S is an integer linear recurrence, ( ) is simply . 
If S has an AILR T as its integer linear recurrence, 
( )   =    ( ).  

If S has AILRs M and U as its mode and underlying 
sequences respectively, =    ∪    ( ).  

IV. EXAMPLES 
We use examples from the Online Encyclopedia of 
Integer Sequences[3] (OEIS). 
The difference sequence of a linear recurrence is a linear 
recurrence (see Appendix, Claim 1). In light of this, (2) 
in the definition of AILR may seem redundant. 
However, in conjunction with (3), it allows AILRs to see 
runs of differences, as shown in the following example. 
 
Consider the sequence (A002260 in the OEIS) 
1 1 2 1 2 3 1 2 3 4 1 2 3 4 5… 
Its difference sequence is 
0 1 -1 1 1 -2 1 1 1 -3 1 1 1 1… 
The mode sequence of its difference sequence is 
1 1 1 2 1 3 1 4… 
The underlying sequence of its difference sequence is 
0 1 -1 1 -2 1 -3… 

Both the mode and underlying sequences are integer 
linear recurrences; therefore, they both are AILRs by (1). 
Therefore by (3) the difference sequence of S is an 
AILR. Therefore, by (2) the original sequence is an 
AILR. 
Consider the sequence      ∈    } where  is the ith 
smallest natural number that is not a square. (A000037 
in the OEIS) 
 
Its difference sequence is 
1 2 1 1 1  2 1 1 1 1 1  2 1 1 1 1 1 1 1 … 
The mode sequence of its difference sequence is 
1 1 3 1 5 1 7… 
and the underlying sequence of this difference sequence 
is 
1 2 1 2 1 2 1... 
By (1) the mode and underlying sequence of the 
difference sequence is an AILR, and by (3) that means 
the difference sequence is an AILR. By (2), the original 
sequence is an AILR. 

V. MORE EXAMPLES 
 
It can be shown that the following are AILRs: 
 
The spiral (x-coordinate) (A174344 in the OEIS): 
 
0, 1, 1, 0, -1, -1, -1, 0, 1, 2, 2, 2, 
2, 1, 0, -1, -2, -2, -2, -2, -2, -1, 
0, 1, 2, 3, 3, 3, 3, 3, 3 
 
“A self-generating sequence” (A005041 in the OEIS) 
 
1, 2, 2, 3, 3, 4, 4, 4, 5, 5, 5, 6, 6, 
6, 7, 7, 7, 7, 8, 8, 8, 8, 9, 9, 9, 9, 
10, 10, 10, 10, 10 

VI. ALGORITHM 
This definition allows for an algorithm to find such 
sequences.  Our algorithm’s goal, given a finite sequence 
of integers, is to obtain a set of continuation functions 
that are consistent with the sequence of integers. Our 
algorithm first tests a finite set of integers to see if it is 
consistent with an integer linear recurrence. If it is, we 
add that linear recurrence as a continuation function to 
our final list. We also take the difference, mode, and 
underlying sequences of the input, and recursively obtain 
all extension functions consistent with those sequences.  
If we obtain extensions of the difference sequence, or 
extensions of the mode and underlying sequences, we 
construct extension functions of the original sequence 
using extension functions found in these recursive calls. 
(See the section “Continuation Functions” for details.) 
We add all such constructed sequences to the final list 
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and return. We note that linear recurrence inference is a 
solved problem[1], and we use an algorithm to do this as 
part of our algorithm. 
 

VII. EXAMPLE OF ALGORITHM 
Suppose the following finite sequence were input into 
the algorithm above: 
1 1 2 1 2 3 1 2 3 4 1 2 3 4 5 
The algorithm would attempt to infer this as an integer 
linear recurrence and fail. While any sequence of k 
integers has a linear recurrence interpretation of degree 
at most ⌊ ⌋, the interpretations may fail to be integer 
valued; this is the case here. 
The algorithm would also attempt to recursively infer the 
mode and underlying sequences of this sequence, but 
this will be fruitless in this algorithm, and we will not 
focus on this.  
The algorithm would then obtain the difference sequence  
D: 0 1 -1 1 1 -2 1 1 1 -3 1 1 1 1 
The algorithm would attempt to infer this as an integer 
linear recurrence and fail. 
The algorithm would then determine the mode and 
underlying sequences of D: 
Mode: 1 1 1 2 1 3 1 4  
Underlying: 0 1 -1 1 -2 1 -3 
which would be inferred as linear recurrences. The mode 
would be inferred as =    = 1, = 1, = 1, =
2, =   2 −  and the underlying would be 
inferred as = = 0, = 1, = −1, = 2,

=   2 − . For brevity’s sake, we will 
represent the functions inferred as infinite sequences.  
Mode: 1 1 1 2 1 3 1 4 1 5… 
Underlying: 0 1 -1 1 -2 1 -3 1 -4… 
We then combine these functions to obtain an extension 
function for D. The mode and underlying functions are 
combined by for each i starting at 0,  
0 1 -1 1 1 -2 1 1 1 -3 1 1 1 1 -4 1 1 1 1 1… 
We then use this sequence to construct an extension 
function of the original sequence: 
1 1 2 1 2 3 1 2 3 4 1 2 3 4 5 1 2 3 4 5 6… 
which is a logical inference of the original sequence. 

VIII. CONTINUATION FUNCTIONS 
 
In the “Example of Algorithm” section, we represented 
an AILR as an infinite sequence for simplicity. In 
reality, we represent an AILR as a recursive function, 
with linear recurrences as our base case. The AILR 
inferred in “Example of Algorithm” would be 
represented as ( ( , _2)), 
where L1 and L_2 are as defined in the “Example of 
Algorithm” section. This means that this AILR was 

inferred since its difference sequence had mode 
sequence L1 and underlying sequence L2. 
To show how this is a continuation function, we need to 
examine how to extend each kind of AILR by a term.  
 
To extend a sequence of t terms {   … } which has 
been inferred as an integer linear recurrence with degree 
d and rule   =   , obtain the t+1st term 
using the inferred rule:   = . 
 
To extend a sequence of t terms {   … } which has 
been inferred by inferring its difference sequence S = 
{   … }as an AILR, recursively extend S to t terms 
and obtain  by adding  and  .  
 
To extend a sequence of t terms { … } which has 
been inferred by inferring both its mode sequence 
= { . . ’} and its underlying sequence    =

  { . . ’}, we need a “bank” with two values n and k. 
Whenever the sequence is extended, if n > 0, we add k 
to the sequence and decrement k. If n = 0, we 
recursively extend M and U by one, and set n to the last 
term of M and k to the last term of U, and then extend 
the sequence again. 

IX. RUNTIME 
 
The runtime of the algorithm described is O(3mm3) 
where m is the number of sequence terms inputted and n 
is the depth limit. To see this, note that the space of 
sequences checked is a tree with a root of the original 
sequence. Each node has branching factor 3 (its mode 
sequence, its underlying sequence, and its difference 
sequence). Furthermore, note that for any given 
sequence S, the mode, underlying, and difference 
sequences have strictly fewer terms than the original 
sequence (unless the original sequence contains no runs 
of length greater than one, which can be detected and 
discarded easily.) At each point in the tree, Gaussian 
elimination is used to determine the integer linear 
sequence and whether or not it is integer valued. This 
algorithm is O(m3) where m is the number of sequence 
terms.  Note that since we cannot gain terms this bound 
applies at all points in the tree. This tree can be pruned 
using several methods (an example would be to not 
attempt to interpret the mode and underlying sequences 
of a sequence with no consecutive terms identical). Also, 
a maximum depth parameter n can be set to the tree to 
limit its height, trimming the runtime to O(3nm3). 
Having a finite depth parameter is recommended (and 
the proof of Convergence depends on there being one.) 
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X. NUMBER OF TERMS USED 
The more important metric in calculating the efficiency 
of this algorithm in practice is the number of sequence 
terms used. For linear recurrences, it takes at least 2d 
terms to calculate a linear recurrence of degree d[1]. The 
algorithm implemented does not allow constants to be in 
the linear recurrence relation. As an example, the form 

= 0,   =      +   1 is not allowed. Linear 
recurrences with a constant in their form can be 
expressed using ones without such constants, though the 
degree may increase slightly. For example, the previous 
linear recurrence can be expressed as = 0, = 1,
  =   2   –    , which is of higher degree (but not 

support). However, AILRs could be implemented with a 
linear recurrence algorithm that allows constants to be 
added without changing any features of the program. 
Furthermore, mode and underlying sequences may be 
arbitrarily smaller than their originals (the size of the 
original is the sum of the terms of the mode sequence), 
preventing any meaningful mathematical guarantees on 
number of sequence terms required to infer such a 
sequence. Furthermore, it is possible that several 
conflicting interpretations will appear for a given finite 
integer sequence. Eliminating such interpretations may 
require additional terms (see Convergence).  

XI. CONFLICTS, INTEGER CONSTRAINTS 
 
The reason why our definition of AILR includes the 
requirement that sequence terms be integers is that this 
filters out several interpretations. Without the integer 
requirement, any finite sequence of numbers (of length 
≥ 2) is an AILR since all such sequences can be 
interpreted as the start of a linear recurrence[1] In 
addition, we also filter out interpretations of a mode 
sequence that include negative integers, since runs of 
negative length do not exist. The integer requirement 
does not filter out all undesired interpretations, however, 
and so multiple differing interpretations can be reached. 
False interpretations will be eliminated by providing 
more terms of the sequence to the algorithm once the 
number of terms given exceeds the number of terms 
which the false interpretation agrees with the true 
sequence, but new false interpretations may arise as the 
number of terms given rises, since this algorithm will 
infer linear recurrences of degree at most d/2, where d is 
the number of sequence terms given. As k rises, the 
space of integer linear recurrences grows. This fact 
prevents convergence to a single AILR interpretation. 
However, with an integral sorting function where AILRs 
with low degree linear recurrences are ranked higher 
than ones with ones that contain high-degree sequences, 
we can ensure that eventually the sequences introduced 

by adding more terms will all be ranked lower than a 
single correct interpretation (see Convergence proof). 

XII. RANKING SEQUENCES 
 
An issue when inferring sequences in this way is that 
there may be multiple ways in which a sequence meets 
the definition of an AILR. For example, the sequence of 
integers S = {1 2 2 3 3 3 4 4 4 4} satisfies the definition 
of an AILR in the intuitive way: its repetition and mode 
sequences are each AILRs (the sequences {1 2 3 4}). 
However, S also can be interpreted as an AILR by virtue 
of being consistent with a degree 5 linear recurrence that 
happens to match S on the first 10 terms, but quickly 
becomes very negative after that. This sequence is 
generally considered undesirable. This brings up the 
issue of sorting the various interpretations by relevance.  
In general, in sequence inference, we generally consider 
the simplest (lowest entropy) pattern to be most reliable: 
lower degree linear recurrences are favored over higher 
degree ones, lower degree polynomials are favored over 
higher degree ones, and in general, given multiple 
sequence interpretations, we would like the one with the 
simplest Turing machine code to be ranked higher. That 
is the general principle that we employ in ranking the 
interpretations found, though there are multiple variables 
to consider in this case. The major variables are 
complexity of the linear recurrences involved in the 
interpretation and the number of transformations used in 
the interpretation. Both variables are important, and 
favoring either one over the other has its drawbacks. If 
we emphasize number of transformations over 
complexity of linear recurrences, complex linear 
recurrences will appear and be ranked highly as the 
number of sequence terms given grows. If we emphasize 
linear recurrence complexity over number of 
transformations used, the program will have several 
inexpensive transformation sequences available to it, 
allowing it to often find a transformation sequence that 
produces a simple linear recurrence. The two factors 
should be given roughly equal weight, but the optimum 
balance may vary depending on circumstance. 
Furthermore, ranking functions can be human-aided – 
whether manually or using databases of common 
sequences such as the OEIS. One could rank inferred 
AILRs by for each AILR extending the input finite 
sequence by a few terms using the AILR’s rules, 
entering the resulting finite sequence into OEIS, and  
then obtaining the number of results. AILRs with more 
results would be ranked higher. 
 
A sample ranking function is as follows: 
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If S is a linear recurrence, rank(S) is the degree of the 
linear recurrence. If S has  an AILR T as a difference 
sequence, ( )   =    ( ) + 1. If S has an AILR 
M as its mode sequence and U as its underlying 
sequence, ( )   =    { ( ), ( )} + 1.  

XIII. PROOFS 
 
Inference 
 
Claim: given an AILR S, there exists an N such that for 
all ≥    , if the algorithm is given the first n terms 
from S, S will be one sequence inferred. 
 
Proof by structural induction: 
 
Suppose that S is an integer linear recurrence of degree 
d. Then, if there are at least d/2 terms from S given, S 
will be inferred by the linear recurrence solver. Suppose 
that S has a difference sequence T which is an AILR. By 
our inductive hypothesis, there exists an N’ such that for 
all ≥    ’, will be inferred if given n terms. 
Therefore, if we have at least N’+1 terms of S, we will 
recursively call the function on the difference sequence 
with at least N’ terms, and thus T will be inferred and 
thus S will be inferred as well. Suppose that S has mode 
sequence    =          ∈    } and underlying sequence U 
which are both AILRs. By our inductive hypothesis, 
there exist N’, N’’ such that for all ≥    ’,  can be 
inferred with N’ terms, and U can be inferred with N’’ 
terms. Let ’’’   =    { ’, ’’}, and let 
   =   ’’’ _ . Note that each  represents  

terms in S, and so the number of terms represented by 
the first N’’’ terms is N. Therefore, if S is given N terms, 
it will recursively call the algorithm with N’’’ terms on 
M and U. By the induction hypothesis, M and U will be 
inferred in the recursive calls, allowing us to infer S.  
 
 
Convergence 
 
Claim: if the sample rank function in “Ranking 
Sequences” is used, and a depth limit k is fixed, the 
following holds: given an AILR S with depth at most k, 
there exists an N such that for all    >    , if the 
algorithm is given the first n terms from S, an AILR 
equivalent to S will be the top-ranked function given. 
 
Proof: 
 
Let N’ be the number of terms required to infer S. Let 
N’’ be the smallest number of terms such that all 3  
transformation sequences of S have at least 2 ∗ ( ) 

terms. Let ∗   =    { ’’, ’}. Suppose we give the 
first ∗ terms to our algorithm. By Inference, S will be 
among the sequences inferred; let {   |      <    }  be the list 
of all interpretations not equivalent to S ranked higher 
than S with the input of the first N terms. where each  
is a sequence not equivalent to S that is rated higher than 
S and k is the number of such sequences. By definition 
of non-equivalence to S, each  disagrees with S in the 
( )th term. Let    =    {   |      <    }. Suppose that 
you give the first N terms to the algorithm. Then S will 
still be inferred by Inference, but each  will not be 
inferred since they disagree with the first ∗th terms. 
Suppose that there is an AILR T inferred with N terms 
that is not inferred with ∗ terms. This means that there 
must exist a linear recurrence in T’s linear recurrence set 
that has    >    ( ), as otherwise T would 
have been inferred with ∗ terms as well. 
ℎ    ( )   >    ( ). Therefore, this 

interpretation is ranked below S. 
 
Therefore, all interpretations ranked higher than S must 
be equivalent to S, and therefore the top ranked AILR 
will be equivalent to S for all    >    .  
 
Intuitively, all incorrect sequences simpler than the 
correct sequence will eventually have a witness to their 
incorrectness, and therefore once all such sequences 
have been refuted, the correct sequence will prevail. 
 
Unfortunately, as N depends on S, which is generally 
unknown prior to using this algorithm, this proof cannot 
be used to verify that the algorithm will always produce 
the correct AILR given a certain fixed number of terms, 
even if the depth or rank of the AILRs is held below a 
certain threshold. However, in most practical 
applications, if the same sequence is ranked on the top 
for several sufficiently large n, this proof can suggest 
that you have the right answer. 

XIV. RESULTS 
 
When testing against the Online Encyclopedia of Integer 
Sequences (OEIS), linear recurrences were inferred, as 
they were in Sam Tetruashvili’s work. AILRs that were 
not linear recurrences were not common, so the 
inference rate on the OEIS would not be significantly 
higher for AILRs than for Sam’s work. However, there 
were several interesting sequences on OEIS which were 
AILRs, not all of which were easy to guess: 
The natural numbers in ascending order, except for the 
perfect squares: 
2 3 5 6 7 8 10 11 12 13 14 15 17 18 19… 
An oscillating sequence: 
0 1 0 -1 0 1 2 1 0 -1 -2 -1 0 1 2 3 2 1 0 -1 -2 -3 -2 -1 0… 
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XV. FUTURE WORK 
 
There is significant room for improvement in conflict 
resolution strategy for this algorithm, as this is the 
greatest obstacle from guaranteeing a particular result 
from this algorithm. 
Furthermore, the framework of AILRs suggests a more 
general sequence-inferring technique. One could propose 
the following:  
A set F of algorithms that either infer a sequence or 
report failure (in the case of AILRs, F contained only the 
integer linear recurrence solve). 
A set of transformations T (in the case of AILRs, T 
contained the difference, mode, and underlying 
transformations), partitioned into sets { , … } 
where each Ti is a set of transforms which together can 
be used to deduce the original sequence. 
Then, one could construct a inference function G in the 
following way: 
Let S be a given sequence. Attempt to apply all functions 
in F to S to find an extension. Otherwise recursively 
apply all transformations in T to S. If there is any i such 
that all transforms in Ti transform S into a inferable 
function by G, extend each of the transformed sequences 
and use them to construct an inference for the original 
sequence. 
 
In addition, as AILRs are strong with grid related 
sequences, one could imagine using a generalization of  
AILRs in a space of higher dimension – the notions of  
mode, underlying, and difference sequences can be 
generalized to two-dimensional space. Jerene Yang[2] did 
work in inference of 2-dimensional sequences, and she 
used several strategies that were similar to what was 
done here. 
 

XVI. APPENDIX 
 
Claim 1: Suppose that S is a linear recurrence. Then S’s 
difference sequence is also a linear recurrence. 
 
Proof:  
 
Suppose S is an integer linear recurrence of degree d. Let 
the form of S be  = … = , =
   . Note that the difference sequence of S 
then can be written as = − … = −
   , =    ( −     =  . 
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