
Strategy and Policy Learning for Non-Task-Oriented Conversational
Systems

Zhou Yu, Ziyu Xu, Alan W Black and Alex I. Rudnicky
School of Computer Science
Carnegie Mellon University

{zhouyu,awb,air}@cs.cmu.edu, ziyux@andrew.cmu.edu

Abstract

We propose a set of generic conversa-
tional strategies to handle possible sys-
tem breakdowns in non-task-oriented dia-
log systems. We also design dialog poli-
cies to select among these strategies with
respect to different dialog contexts. We
combine expert knowledge and the statis-
tical findings that derived from previous
collected data in designing these policies.
The dialog policy learned via reinforce-
ment learning outperforms the random se-
lection policy and the locally greedy pol-
icy in both the simulated and the real-
world settings. In addition, we propose
three metrics, which consider both the lo-
cal and global quality of the conversation,
to evaluate conversation quality.

1 Introduction

There are a variety of methods to generate re-
sponses for non-task-oriented systems, such as
machine translation (Ritter et al., 2011), retrieval-
based response selection (Banchs and Li, 2012),
and sequence-to-sequence recurrent neural net-
work (Vinyals and Le, 2015). However, these
systems still produce utterances that are incoher-
ent or inappropriate from time to time. To tackle
this problem, we propose a set of conversational
strategies, such as switching topics, to avoid pos-
sible inappropriate responses (breakdowns). An-
other difficulty is to decide which strategy to se-
lect with respect to different conversational con-
texts. In a multi-turn conversation, if the same
strategy is used repeatedly, the user experience
will be affected. We experiment on three dialog
policies: a random selection policy that randomly
selects a policy regardless of the dialog context,
a locally greedy policy that focuses on local dia-
log context, and a reinforcement learning policy

that considers the entire dialog context. The con-
versational strategies and policies are applicable
for non-task-oriented systems in general, regard-
less of the response generation method. The con-
versational strategies can prevent a possible break-
down. The probability of possible breakdowns can
be calculated using different metrics according to
different systems. For example, a neural network
generation system (Vinyals and Le, 2015) can use
the posterior probability to decide if the gener-
ated utterance would cause a system breakdown or
not. We implement a set of conversational strate-
gies and three policies in a keyword retrieval non-
task-oriented system. We use the retrieval confi-
dence as the criteria to decide whether a strategy
is needed to be triggered to avoid system break-
downs.

Reinforcement learning was introduced to the
dialog community two decades ago (Biermann
and Long, 1996) and has mainly been used in
task-oriented systems (Singh et al., 1999). Re-
searchers have proposed to design dialogue sys-
tems in the formalism of Markov decision pro-
cesses (MDPs) (Levin et al., 1997) or partially
observable Markov decision processes (POMDPs)
(Williams and Young, 2007). In a stochastic envi-
ronment, a dialog system’s actions are system ut-
terances, and the state is represented by the dialog
history. The goal is to design a dialog system that
takes actions to maximize some measure of sys-
tem reward, such as task completion rate or dia-
log length. The difficulty of such modeling lies in
the state representation. Representing the dialog
by the entire history is often neither feasible nor
conceptually useful, and the so-called belief state
approach is not possible, since we do not even
know what features are required to represent the
belief state. Previous work (Walker et al., 1998)
has largely dealt with this issue by imposing prior
limitations on the features used to represent the ap-
proximate state. In this paper, instead of focus-



ing on task-oriented systems, we apply reinforce-
ment learning to design a policy to select designed
conversation strategies in a non-task-oriented di-
alog systems. Unlike task-oriented dialog sys-
tems, non-task-oriented systems have no specific
goal that guides the interaction. Consequently,
evaluation metrics that are traditionally used for
reward design, such as task completion rate, are
no longer appropriate. The state design in rein-
forcement learning is even more difficult for non-
task-oriented systems, as the same conversation
would not occur more than once; one slightly dif-
ferent answer would lead to a completely different
conversation; moreover there is no clear sense of
when such a conversation is “complete”. We sim-
plify the state design by introducing expert knowl-
edge, such as not repeating the same strategy in a
row, as well as statistics obtained from conversa-
tional data analysis.

We implement and deploy a non-task-oriented
dialog system driven by a statistical policy to avoid
possible system breakdowns using designed con-
versation strategies. We evaluate the system on the
Amazon Mechanical Turk platform with metrics
that consider both the local and the global quality
of the conversation.

2 Related Work

Many generic conversational strategies have been
proposed in previous work to avoid generating in-
coherent utterances in non-task-oriented conversa-
tions, such as introducing new topics (e.g. “Let’s
talk about favorite foods!” ) in (Higashinaka et al.,
2014), asking the user to explain missing words
(e.g. “What is SIGDIAL?”) (Maria Schmidt and
Waibel, 2015). We propose a set of generic strate-
gies that are inspired by previous work, and test
their usability on human users. No researcher has
investigated thoroughly on which strategy to use
in different conversational contexts. Compared
to task-oriented dialog systems, non-task-oriented
systems have more varied conversation history,
which are thus harder to formulate as a mathemat-
ical problem. In this work, we propose a method
to use statistical findings in conversational study
to constrain the dialog history space and to use re-
inforcement learning for statistical policy learning
in a non-task-oriented conversation setting.

To date, reinforcement learning is mainly used
for learning dialogue policies for slot-filling task-
oriented applications such as bus information

search (Lee and Eskenazi, 2012), restaurant rec-
ommendations (Jurčı́ček et al., 2012), and sight-
seeing recommendations (Misu et al., 2010). Re-
inforcement learning is also used for some more
complex systems, such as learning negotiation
policies (Georgila and Traum, 2011) and tutoring
(Chi et al., 2011). Reinforcement learning is also
used in question-answering systems (Misu et al.,
2012). Question-answering systems are very sim-
ilar to non-task-oriented systems except that they
do not consider dialog context in generating re-
sponses. They have pre-existing questions that the
user is expected to go through, which limits the
content space of the dialog. Reinforcement learn-
ing has also been applied to a non-task-oriented
system for deciding which sub-system to choose to
generate a system utterance (Shibata et al., 2014).
In this paper, we used reinforcement learning to
learn a policy to sequentially decide which con-
versational strategy to use to avoid possible system
breakdowns.

Task completion rate is widely used as the
conversational metric for task oriented systems
(Williams and Young, 2007). However, it is not
applicable for non-task-oriented dialog systems,
as they don’t have a task. Response appropriate-
ness (coherence) is a widely used manual annota-
tion metric (Yu et al., 2016) for non-task-oriented
systems. However, this metric only focuses on
the utterance level conversational quality and is
not automatically computable. Perplexity of the
language model is an automatically computable
metric but is difficult to interpret (Vinyals and
Le, 2015). We propose three metrics: turn-level
appropriateness, conversational depth and infor-
mation gain, which assess both the local and the
global conversation quality. Although only Infor-
mation gain is automatically quantifiable, we use
supervised machine learning methods to built au-
tomatic detectors for turn level appropriateness
and conversational depth.

3 Conversational Strategy Design

We design three types of conversational strategies:
context tracking strategies, lexical semantic strate-
gies and general diversion strategies, to improve
TickTock’s response appropriateness. We first ran-
domly sample 10% of the conversations generated
using Text-TickTock 1.0 and classify the break-
downs of the system (turns that are rated “Inappro-
priate” or “Interpretable” based on Table 1) into



different types and evaluate them on the data col-
lected by Text-TickTock 2.0. In Text-TickTock
2.0, we apply all context tracking strategies to all
user utterances. If the retrieval confidence score
is high, we use the retrieved response directly. If
the retrieval confidence score is low, we first test if
lexical semantic strategies are applicable. If none
of them is applicable, we randomly select one of
the general diversion strategies. In Figure 1, we il-
lustrate how the strategies are applied in sequence.

3.1 Context Tracking Strategies
We design two conversational strategies to incor-
porate history information of the conversation to
generate responses.

1. Anaphora Resolution. We find that users
use a lot of pronouns when talking to the
chatbot in the previous chapter. An example
input would be “I hate them” and here “then”
refers back to the topic, ‘’sports” in the pre-
vious conversational turn. Anaphora detec-
tion is difficult when the sentence structure
is complex. Luckily in the everyday chat-
ting conversation, the sentence structure is
relative simple. By substituting the pronoun
by the noun of the previous sentence already
covers 85% of the cases. Thus we only im-
plement this simple rule to resolve anaphoras.
This case triggered 30 times in the TickTock
2.0 generated conversations.

2. Response Ranking with History Similari-
ties. We first retrieve five candidate responses
from the database using keyword retrieval
methods. Then we adjust the rank of these
candidates based on how similar the candi-
date is to the previous user response. We
compute the two utterances response using
word2vec (Mikolov et al., 2013).

3.2 Lexical Semantic Strategies
We design four lexical semantic strategies that uti-
lize the lexical and semantic information to deal
with cases that no similar sentences can be found
in the chatbot database.

1. Don’t repeat. If the user repeat themselves,
the system confronts the user by saying:“You
already said that!”. It triggered 5 times in
the Text-TickTock 2.0 generated conversa-
tions and all of them are rated by the users
as “Appropriate”.

2. Ground on named entities. We perform a
shallow parsing to find the named entity in
the sentence, and then retrieve a short de-
scription of the named entity in a knowledge
base. Finally we use several templates to gen-
erate sentences using the obtained short de-
scription. One example reply is “Are you
talking about Chicago, the city in Illinois?”
This strategy is considered a type of ground-
ing strategy in human conversations. Users
feel like they are understood when this strat-
egy is triggered correctly. In addition, we
make sure we never ground the same named-
entity twice in single conversation. It trig-
gered 22 times in the Text-TickTock 2.0 gen-
erated conversations and 92% (20 out of 22)
of the times, users rated the system responses
as “Appropriate”. The cases that are rated
“Inappropriate” are mainly caused by the er-
rors generated by named entity detection.

3. Ground on out of vocabulary words. If the
user says a word that is out of the system’s
vocabulary, such as “confrontational”. Then
the chatbot asks: “What is confrontational?”
We expand our vocabulary with the new user-
defined words continuously, so we will not
ask for grounding on the same word twice. It
triggered 36 times in the Text-TickTock 2.0
generated conversations and 83% (30 out of
36) of the time the users rated the generated
response as “Appropriate”. The ones that are
rated “Interpretable” and “Inappropriate” are
mainly caused by using this strategy in se-
quence and the users find the response weird
once the system does it too often.

4. React to single-word sentence. If user
types in meaningless single word such as ‘d’,
‘dd’, or equations such as ‘1+2=’. Then the
chatbot replies: “Can you be serious and
say things in a complete sentence?” to deal
with such condition. It triggered 12 times
in the TickTock 2.0 generated conversations,
among them all the users rated the generated
responses “Appropriate”.

3.3 General Diversion Strategies

We design five general diversion strategies to
avoid system breakdowns when the retrieval confi-
dence score is low and none of the semantic lexical
strategies are applicable.



Label Definition Example

Inappropriate (Inapp) Not coherent with the user utterance Participant: How old are you?
TickTock: Apple. .

Interpretable (Inter) Related and can be interpreted Participant: How old are you?
TickTock: That’s too big a question for me to answer.

Appropriate (App) Coherent with the user utterance Participant: How is the weather today?
TickTock: Very good.

Table 1: Appropriateness rating scheme.

Figure 1: System information flow diagram

1. Switch a topic. The chatbot proposes a new
topic, such as “sports”, other than the current
topic. For example: “Let’s talk about sports.”
If this strategy is executed, the system up-
dates the tracked topic.

2. Initiate activities. The chatbot invites the
user to an activity. Each invitation is de-
signed to match the conversation topic. For
example, under the politics topic, the system
would ask: “Do you want to see the latest Star
Wars movie together?”

3. End topics with an open question. The
chatbot closes the current conversation topic
and asks an open question, such as “ Sorry
I don’t know. Could you tell me something
interesting?”.

4. Tell a joke. The chatbot tells a joke under
the conversation topic, such as: “Politicians
and diapers have one thing in common. They
should both be changed regularly, and for the
same reason”.

5. Elicit more information. The chatbot asks
the user to say more about the current topic,
such as “ Could we talk more about that?”.

4 Dialog Policy Design

In Text-TickTock 2.0, we use a random selec-
tion policy that randomly chooses among gen-
eral diversion strategies whenever lexical semantic
strategies are not applicable. We find that the sen-
timent polarity of the utterance has an influence
on which general diversion strategy to select that
leads to appropriate response. People tend to rate
the switch strategy more favorably if there is neg-
ative sentiment in the previous utterances. For ex-
ample:

TickTock: Hello, I really like politics. Let’s talk
about politics.

User: No, I don’t like politics.
TickTock: Why is that?
User: I just don’t like politics.
TickTock: OK, how about we talk about movies?

In another scenario, when all the previous three
utterances are positive, the more strategy (e.g.
Do you want to talk more about that?) is pre-
ferred over the switch strategy (e.g. Do you like
movies?).

We set out to find the optimum strategy to deal
with the user utterance given the sentiment polar-
ities of its previous three utterances. We generate
five different versions of the conversations by re-
placing the original used general diversion strat-
egy with other general diversion strategies. We



ask people to rate the strategy’s appropriateness
given its three previous utterances. For each con-
versation, we collect ratings from three different
raters and use the majority rating as the final score.
Then we construct a table of a distribution that
represents the system response’s appropriateness
regarding each strategy. We collect 10 ratings
for each strategy under each context. We use the
Vader (Hutto and Gilbert, 2014) sentiment predic-
tor for automatic sentiment prediction. The sen-
timent predictor produces a label with three cat-
egories: positive (pos), negative(neg) and neutral
(neu).

We find that the results of the rating task sup-
ports our hypothesis that different strategies are
preferred with respect to different sentiment con-
text. In Table 2, we show the distribution of the
appropriateness ratings for all the general diver-
sion strategies in a context when all their previous
utterances are positive. Users rated the more strat-
egy more appropriate than the end strategy and the
switch strategy. One interesting observation is that
the joke strategy is rated poorly. We examine all
the cases and find that the low appropriateness rate
is mostly due to the fact that the joke is unexpected
given the context. The initiation strategy can be
appropriate when the activity fits the previous con-
tent semantically.

In another sentiment context, when there are
consecutive negative utterances, the switch strat-
egy and the end strategy are preferred. We can
see that which strategy is appropriate is heavily
dependent on the immediately sentiment context
of the conversation. Sentiment polarity captures
some conversational level information which is a
discriminating factor. We use these findings to de-
sign the locally greedy policy. The system deal
with user’s utterance uses the strategy that is rated
as the most appropriate given the utterance’s three
previous utterances sentiment polarity .

We conduct another Amazon Mechanical Turk
study to test if sentiment context beyond three ut-
terances would influence the preferred strategy or
not. To reduce the work load, we test on one con-
dition which is when the previous three utterances
are all positive. We provide the complete conver-
sation history of that dialog to the raters instead of
only three previous utterances. We find that strate-
gies used most recently are rated less favorably if
used again. This motivates us to include informa-
tion that relates to the usage of the previous strat-

egy and a longer history to design policy that cares
about global context.

Strategy App Inter Inapp
switch 0.1 0.3 0.6
initiation 0.2 0.4 0.4
joke 0.1 0.2 0.7
end 0.1 0.3 0.6
more 0.4 0.5 0.1

Table 2: Appropriateness rating distribution when
the recent three utterances are positive.

5 Reinforcement Learning

We model the conversation process as a Markov
Decision Process (MDP)-based problem, so we
can use reinforcement learning to learn a con-
versational policy that makes sequential decisions
by considering the entire context. We used Q-
learning, a model-free method to learn the conver-
sational policy for our non-task-oriented conversa-
tional system.

In reinforcement learning, the problem is de-
fined as (S,A,R, γ, α), where S is the set of states
that represents the system’s environment, in this
case the conversational context. A is a set of ac-
tions available per state. In our setting, the actions
are strategies available. By performing an action,
the agent can move from one state to another. Ex-
ecuting an action in a specific state provides the
agent with a reward (a numerical score), R(s, a).
The goal of the agent is to maximize its total re-
ward. It does this by learning which action is op-
timal to take for each state. The action that is op-
timal for each state is the action that has the high-
est long-term reward. This reward is a weighted
sum of the expected values of the rewards of all
future steps starting from the current state, where
the discount factor γ is a number between 0 and
1 that trades off the importance of sooner versus
later rewards. γ may also be interpreted as the
likelihood to succeed (or survive) at every step.
The algorithm therefore has a function that cal-
culates the quantity of a state-action combination,
Q : S × A → R. The core of the algorithm is a
simple value iteration update. It assumes the old
value and makes a correction based on the new in-
formation at each time step, t. See Equation (1)
for details of the iteration function.

The critical part of the modeling is to design
appropriate states and the corresponding reward



Qt+1(st, at)← Qt(st, at) + αt(st, at) ·
(
Rt+1 + γmax

a
Qt(st+1, a)−Qt(st, at)

)
(1)

Turn-level appropriateness ∗ 10 + Conversational depth ∗ 100 + round(Information gain, 5) ∗ 30 (2)

function. We reduce the number of the states by
incorporating expert knowledge and the statistical
findings in our analysis. We use another chatbot,
A.L.I.C.E. 1 as a user simulator in the training pro-
cess. We include features: turn index, times each
strategy was executed previously, and the senti-
ment polarity of previous three utterances. We
construct the reward table based on the statistics
collected from the previous experiment. To make
the reward table tractable, we impose some of the
rules we constructed based on expert knowledge.
For example, if certain strategy has been used be-
fore, then the reward of using it again is reduced.
If the trigger condition of any lexical semantic
strategies are met, the system chooses them over
all general diversion strategies. This may result in
some less optimum solutions, but reduces the state
space and action space considerably. During the
training process, we constrain the conversation to
be 10 turns. The reward function is only given
at the end of the conversation, which is a com-
bination of the automatic predictions of the three
metrics that consider the conversation quality both
locally and globally. We will discuss them in de-
tail in the next section. It takes 5000 conversa-
tions for the algorithm to converge. We look into
the learned Q table and find that the policy prefers
the strategy that uses less frequently if the context
is fixed, which resonant with our previous find-
ings. We name the version using the reinforcement
learning policy as Text-TickTock 3.0.

6 Evaluation Metrics

In the learning process of the reinforcement learn-
ing, we use a metric which is a combination of
three metrics: turn-level appropriateness, conver-
sational depth and information gain. Conversa-
tional depth and information gain measure the
quality of the conversation across multiple turns.
Since we use another chatbot as the simulator,
making sure the overall conversation quality is
good is critical. All three metrics are related to
each other but cover different aspects of the con-
versation. We use a weighted score of the three
metrics for the learning process, which is shown

1http://alice.pandorabots.com/

in Equation (2). The coefficients are chosen based
on empirical heuristics. We build automatic pre-
dictors for turn-level appropriateness and conver-
sation depth based on annotated data as well.

6.1 Turn-Level Appropriateness

Turn-level appropriateness reflects the coherence
of the system’s response in each conversational
turn. See Table 1 for the annotation scheme. The
inter-annotator agreement between the two experts
is relatively high (kappa = 0.73). We collapse
the “Appropriate” and “Interpretable” labels into
one class and formulate the appropriateness detec-
tion as a binary classification problem. Our de-
signed policies and strategies intend to avoid sys-
tem breakdowns (the inappropriate responses), so
we built this detector to tell whether a system re-
sponse is appropriate or not.

We annotated the appropriateness for 1256
turns. We balance the ratings by generating more
inappropriate examples by randomly pairing two
utterances. In order to reduce the variance of the
detector, we use five-fold cross-validation and a
Z-score normalizer to scale all the features into
the same range. We use early fusion, which sim-
ply concatenates all feature vectors. We use a v-
Support Vector (Chang and Lin, 2011) with a RBF
Kernel to train the detector. The performance of
the automatic appropriateness detector is 0.73 in
accuracy while the accuracy of the majority vote
is 0.5.

We use three sets of features: the strategy
used in the response, the word counts of both the
user’s and TickTock’s utterances, and the utterance
similarity features. The utterance similarity fea-
tures consist of a feature vector obtained from a
word2vec model (Mikolov et al., 2013), the co-
sine similarity score between the user utterance
and the system response, and the similarity scores
between the user response and all the previous
system responses. For the word2vec model, we
trained a 100-dimension model using the collected
data.



Turn Participant TickTock
1 I am not sure. What’s on your mind? Well, you know, I’m not sure. Let me tell you something,

politicians and diapers have one thing in common. They
should both be changed regularly, and for the same reason.

2 Wow. That’s funny and insightful. Uhh, I can’t answer this. Can we talk about something
else?

3 How about movies. Have you seen any good movies? Of course. What do you think?
4 I love super hero movies. Have you seen Deadpool? Are you talking about Deadpool,the animation character?
5 Yes, exactly. They made a movie of him. That sounds really interesting.

Table 3: An example conversation with TickTock in the real-world setting

Turn A.L.I.C.E. TickTock
1 When do I do it? I don’t know.
2 That is interesting. Do you want to go to my friend’s party tonight?
3 Sure, just download me to your notebook or PDA and

take me along.
Sounds great. Do you want to play board games together
some time.

4 I like to play the Turing Game. I don’t know how to play it. Is it difficult to play?
5 Interesting gossip. It could be. Possibly.

Table 4: An example conversation of TickTock in the simulated setting

Conversational depth Consecutive utterances
Shallow < 6
Intermediate [7, 10]
Deep > 10

Table 5: Conversational depth annotation scheme

6.2 Conversational Depth
Conversational depth reflects the number of con-
secutive utterances that share the same topic. We
design an annotation scheme (Table 5) based on
the maximum number of consecutive utterances
on the same topic. We annotate conversations into
three categories: “Shallow”, “Intermediate” and
“Deep”. The annotation agreement between the
two experts is moderate (kappa = 0.45). Users
manually labeled 100 conversations collected us-
ing Text-TickTock 1.0 and 2.0. We collapse “Shal-
low” and “Intermediate” into one category and for-
mulate the problem as a binary classification prob-
lem. We use the same machine learning setting
as the turn level appropriateness predictor. The
performance of the automatic conversational depth
detector is 72.7% accuracy, while the majority
vote baseline accuracy is 63.6%. The conversa-
tional depth detector has three types of features:

1. The number of dialogue exchanges between
the user and TickTock, and the number of
times TickTock uses the continue, switch and
end strategy.

2. The count of a set of keywords used
in the conversation. The keywords are

“sense”, “something” and interrogative pro-
nouns, such as “when”, “who”, “why”, etc.
“Sense” often occurs in sentence, such as
“You are not making any sense” and “some-
thing” often occurs in sentence, such as “Can
we talk about something else?” or “Tell me
something you are interested in.” Both of
them indicate a possible topic change. In-
terrogative pronouns are usually involved in
questions that probe users to express more on
the current topic.

3. We convert the entire conversation into a vec-
tor using doc2vec and also include the cosine
similarity scores between adjacent responses
of the conversation.

6.3 Information Gain
Information gain reflects the number of unique
words that are introduced into the conversation
from both the system and the user. We believe
that the more information the conversation has, the
better the conversational quality is. This metric is
calculated automatically by counting the number
of unique words after the utterance is tokenized.

7 Results and Analysis

We evaluate the three policies with respect to
three evaluation metrics: turn-level appropriate-
ness, conversational depth and information gain.
We show the results in the simulated setting in
Table 6 and the real-world setting in Table 7. In
the simulated setting, users are simulated using a



Policy Appropriateness Conversational depth Info gain
Random Selection 62% 32% 50.2
Locally Greedy 72% 34% 62.4
Reinforcement Learning 82% 45% 68.2

Table 6: Performance of different policies in the simulated setting

Policy App Inter Inapp Conversational depth Info gain
Random Selection 30% 36% 32% 30% 56.3
Locally Greedy 30% 42% 27% 52% 71.7
Reinforcement Learning 34% 43% 23% 58% 73.2

Table 7: Performance of different policies in the real-world setting.

chatbot, A.L.I.C.E.. We show an example sim-
ulated conversion in Table 4. In the real-world
setting, the users are people recruited on Amazon
Mechanical Turk. We collected 50 conversations
for each policy. We compute turn-level appropri-
ateness and conversational depth using automatic
predictors in the simulated setting and use manual
annotations in the real-world setting.

The policy learned via reinforcement learning
outperforms the other two policies in all three
metrics with statistical significance (p < 0.05)in
both the simulated setting and the real-world set-
ting. The percentage of inappropriate turns de-
creases when the policy considers context in se-
lecting strategies. However, the percentage of ap-
propriate utterances is not as high as we hoped.
This is due to the fact that in some situations,
no generic strategy is appropriate. For example,
none of the strategies can produce an appropriate
response for a content-specific question, such as
“What is your favorite part of the movie?” How-
ever, the end strategy can produce a response, such
as: “Sorry, I don’t know, tell me something you
are interested.” This strategy is considered “Inter-
pretable” which in turn saves the system from a
breakdown. The goal of designing strategies and
policies is to avoid system breakdowns, so using
the end strategy is a good choice in such a sit-
uation. These generic strategies are designed to
avoid system breakdowns, so some times they are
not “Appropriate”, but only “Interpretable”.

Both the reinforcement learning policy and the
locally greedy policy outperform the random se-
lection policy with a huge margin in conversa-
tional depth. The reason is that they take context
into consideration in selecting strategies, while the
random selection policy uses the switch strategy
randomly without considering the context. As a

result, it cannot keep the user on the same topic for
long. However, the reinforcement learning policy
only outperforms the locally greedy policy with a
small margin. Because there are cases when the
user has very little interest in a topic, the reinforce-
ment learning policy will switch the topic to sat-
isfy the turn-level appropriateness metric, while
the locally greedy policy seldom selects the switch
strategy according to the learned statistics.

The reinforcement learning policy has the best
performance in terms of information gain. We be-
lieve the improvement mostly comes from using
the more strategy in the right context. The more
strategy elicits more information from the user
compared to the other general diversion strategies.

In Table 4, we can see that the simulated user is
not as coherent as a human user. In addition, the
simulated user is less expressive than a real user,
so the depth of the conversation is generally lower
in the simulated setting than in the real-world set-
ting.

8 Conclusion

We designed a set of generic conversational strate-
gies, such as switching topics and grounding on
named-entities, to handle possible system break-
downs to power non-task-oriented systems. We
also learned a policy that considers both the local
and the global context of the conversation for strat-
egy selection using reinforcement learning meth-
ods. The policy learned by reinforcement learning
outperforms the locally greedy policy and the ran-
dom selection policy with respect to three evalua-
tion metrics: turn-level appropriateness, conversa-
tional depth and information gain.



References
Rafael E Banchs and Haizhou Li. 2012. Iris: a chat-

oriented dialogue system based on the vector space
model. In Proceedings of the ACL 2012 System
Demonstrations, pages 37–42. Association for Com-
putational Linguistics.

Alan W Biermann and Philip M Long. 1996. The com-
position of messages in speech-graphics interactive
systems. In Proceedings of the 1996 International
Symposium on Spoken Dialogue, pages 97–100.

Chih-Chung Chang and Chih-Jen Lin. 2011. LIB-
SVM: a library for support vector machines. ACM
Transactions on Intelligent Systems and Technology
(TIST), 2(3):27.

Min Chi, Kurt VanLehn, Diane Litman, and Pamela
Jordan. 2011. Empirically evaluating the ap-
plication of reinforcement learning to the induc-
tion of effective and adaptive pedagogical strategies.
User Modeling and User-Adapted Interaction, 21(1-
2):137–180.

Kallirroi Georgila and David R Traum. 2011. Rein-
forcement learning of argumentation dialogue poli-
cies in negotiation. In INTERSPEECH, pages 2073–
2076.

Ryuichiro Higashinaka, Kenji Imamura, Toyomi Me-
guro, Chiaki Miyazaki, Nozomi Kobayashi, Hiroaki
Sugiyama, Toru Hirano, Toshiro Makino, and Yoshi-
hiro Matsuo. 2014. Towards an open-domain con-
versational system fully based on natural language
processing. In COLING, pages 928–939.

Clayton J Hutto and Eric Gilbert. 2014. Vader: A par-
simonious rule-based model for sentiment analysis
of social media text. In Eighth International AAAI
Conference on Weblogs and Social Media.

Filip Jurčı́ček, Blaise Thomson, and Steve Young.
2012. Reinforcement learning for parameter esti-
mation in statistical spoken dialogue systems. Com-
puter Speech & Language, 26(3):168–192.

Sungjin Lee and Maxine Eskenazi. 2012. Pomdp-
based let’s go system for spoken dialog challenge.
In Spoken Language Technology Workshop (SLT),
2012 IEEE, pages 61–66. IEEE.

Esther Levin, Roberto Pieraccini, and Wieland Eck-
ert. 1997. Learning dialogue strategies within the
markov decision process framework. In Automatic
Speech Recognition and Understanding, 1997. Pro-
ceedings., 1997 IEEE Workshop on, pages 72–79.
IEEE.

Jan Niehues Maria Schmidt and Alex Waibel. 2015.
Towards an open-domain social dialog system. In
Proceedings of the 6th International Workshop Se-
ries on Spoken Dialog Systems, pages 124–129.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jef-
frey Dean. 2013. Efficient estimation of word

representations in vector space. arXiv preprint
arXiv:1301.3781.

Teruhisa Misu, Komei Sugiura, Kiyonori Ohtake,
Chiori Hori, Hideki Kashioka, Hisashi Kawai, and
Satoshi Nakamura. 2010. Modeling spoken deci-
sion making dialogue and optimization of its dia-
logue strategy. In Proceedings of the 11th Annual
Meeting of the Special Interest Group on Discourse
and Dialogue, pages 221–224. Association for Com-
putational Linguistics.

Teruhisa Misu, Kallirroi Georgila, Anton Leuski, and
David Traum. 2012. Reinforcement learning of
question-answering dialogue policies for virtual mu-
seum guides. In Proceedings of the 13th Annual
Meeting of the Special Interest Group on Discourse
and Dialogue, pages 84–93. Association for Com-
putational Linguistics.

Alan Ritter, Colin Cherry, and William B Dolan. 2011.
Data-driven response generation in social media. In
Proceedings of the conference on empirical methods
in natural language processing, pages 583–593. As-
sociation for Computational Linguistics.

Tomohide Shibata, Yusuke Egashira, and Sadao Kuro-
hashi. 2014. Chat-like conversational system based
on selection of reply generating module with rein-
forcement learning. In Proceedings of the 5th In-
ternational Workshop Series on Spoken Dialog Sys-
tems, pages 124–129.

Satinder P Singh, Michael J Kearns, Diane J Litman,
and Marilyn A Walker. 1999. Reinforcement learn-
ing for spoken dialogue systems. In Nips, pages
956–962.

Oriol Vinyals and Quoc Le. 2015. A neural conver-
sational model. ICML Deep Learning Workshop
2015.

Marilyn A Walker, Jeanne C Fromer, and Shrikanth
Narayanan. 1998. Learning optimal dialogue strate-
gies: A case study of a spoken dialogue agent for
email. In Proceedings of the 36th Annual Meet-
ing of the Association for Computational Linguis-
tics and 17th International Conference on Computa-
tional Linguistics-Volume 2, pages 1345–1351. As-
sociation for Computational Linguistics.

Jason D Williams and Steve Young. 2007. Partially
observable markov decision processes for spoken
dialog systems. Computer Speech & Language,
21(2):393–422.

Zhou Yu, Ziyu Xu, Alan Black, and Alexander Rud-
nicky. 2016. Chatbot evaluation and database ex-
pansion via crowdsourcing. In Proceedings of the
chatbot workshop of LREC.


