
Creating Dynamic World Wide Web Pages
By Demonstration

Robert C. Miller, Brad A. Myers

May 1997
CMU-CS-97-131

CMU-HCII- 97-101

Human Computer Interaction Institute
School of Computer Science
Carnegie Mellon University
Pittsburgh, PA 15213-3891

{rcm,bam}@cs.cmu.edu
http://www.cs.cmu.edu/~rcm

Abstract
Turquoise is an intelligent browser and editor for the World Wide Web (WWW) that
allows users to create dynamic pages by demonstration rather than by writing program
code. With Turquoise, users without programming experience can create scripts that
combine data from several Web pages, automate repetitive browsing or editing tasks,
convert other data formats into Hypertext Markup Language (HTML), and process
submitted forms. Scripts are demonstrated by familiar browsing and editing actions, which
Turquoise records and generalizes into a program. In order to generalize the locations of
the user’s actions on a page, Turquoise includes a novel pattern matcher that finds
locations within an HTML document. Turquoise infers patterns automatically by picking
from a knowledge base of pattern templates, heuristically chosen to be robust and
comprehensible to the user. With a good pattern knowledge base, Turquoise can often
infer the correct script after only a single demonstration.

Copyright © 1997 — Carnegie Mellon University

This research was partially sponsored by NSF under grant number IRI-9319969. Robert Miller is partially supported by a National
Defense Science and Engineering Graduate Fellowship. The views and conclusions contained in this document are those of the authors and
should not be interpreted as representing the official policies, either expressed or implied, of the U.S. Government.

Keywords: World Wide Web (WWW), end-user programming, programming-by-
demonstration, Hypertext Markup Language (HTML), Client Gateway Interface (CGI),
scripting languages.

1. INTRODUCTION

The World Wide Web’s enormous popularity shows that almost anyone can publish

documents on the Web. Would-be publishers do not even need to learn HTML, thanks to

what-you-see-is-what-you-get (WYSIWYG) editors like Netscape Navigator Gold,

Adobe PageMill, and AOLpress. These editors make publishing static documents on the

Web as easy as ordinary word processing.

Unfortunately, end-users get far less help with creating dynamic pages. Dynamic pages

are documents generated on-the-fly, typically by running a script through the Common

Gateway Interface (CGI) protocol [13]. Dynamic pages enable the Web to be used as a

medium for database access, commercial transactions, gateways to other information

systems, and even chat forums.

Automating repetitive tasks is another area where end-users get little help from today’s

Web tools. Web document maintainers often face tedious, repetitive chores. Existing

tools can help with the most typical chores, like finding broken links in a Web site, but

specialized tasks are beyond their reach. End-users often need some kind of personal

assistant to help them browse and edit the Web.

Creating dynamic pages and personal assistants is a major challenge for most end-users,

requiring intimate knowledge of both HTML and a programming language, such as Perl,

Tcl, Java, or C. Consider a typical Web user with no programming experience. How can

such a user do any of the following:

• create a customized newspaper, showing the weather forecast, news headlines, and a

favorite cartoon, all on a single Web page for easy reading?

• maintain a history of a stock portfolio by automatically retrieving new stock quotes

from a Web site each day and appending them to a table?

• provide colleagues with a Web-based form that collects orders for lunch, combining

them into a single list for easy ordering and delivery?

Typical users are unable to automate any of these tasks, without an appropriate existing

script or a programmer to help them. For these users, the World Wide Web must be

manually operated, with no way to retrieve, process, or generate data automatically.

There is an alternative to traditional scripting languages: creating the script by

demonstration. In programming-by-demonstration [11], the user describes a program by

operating on example data, while the system watches and attempts to infer the intent of

the user’s actions. The end result of the demonstration is an abstract, executable program.

Turquoise is a WWW browsing and editing system that supports the creation of dynamic

pages and personal assistants by demonstration. With Turquoise, a user demonstrates a

script like the customized newspaper by browsing to the desired news sources and using

cut-and-paste to construct an example of the newspaper. From this single example,

Turquoise can infer a script that regenerates the newspaper automatically, reflecting the

latest information from its sources.

The Web documents used by a script are liable to change from time to time – in fact, the

customized newspaper’s sources change every day. In order to handle changes gracefully,

Turquoise includes a pattern matcher designed to find portions of an HTML document.

A Turquoise pattern is an abstract description of a region of interest on a page, in terms of

HTML markup elements and text. For instance, the pattern “Bulleted List after Heading

containing ‘Headlines’” might describe how news headlines are presented by a particular

Web site. Like Halbert’s data descriptions [7], patterns are used to describe the

parameters of every command in a script. For the copy-and-paste commands used to build

the customized newspaper, both the copied region and the paste location are described by

patterns. Patterns are the essential abstractions that allow Turquoise scripts to be

generalized beyond the specific examples used in a demonstration.

Although Turquoise patterns could be written by the user (after some exposure to the

grammar and vocabulary), the challenge for Turquoise is to infer patterns automatically

from the user’s demonstration. A huge number of patterns might describe a selected

region, but few of them will be useful. To reduce the search space, we use a heuristic

knowledge base of pattern templates, which are patterns containing placeholders, like

“<HTML element> after Heading containing <text>”. When Turquoise needs a pattern

to describe a region, it tests the pattern templates against the selected region and

instantiates the placeholders as needed to make a matching pattern. If several matching

patterns are found in the template knowledge base, then Turquoise presents the

possibilities to the user for a final decision. If none of the guesses are appropriate, then

the user can edit the pattern directly to fix it.

The remainder of this paper is organized as follows. First we describe the system

architecture, which motivates a discussion of the kinds of scripts that Web users write, in

order to delimit the subset that can be usefully demonstrated. To illustrate, we give two

examples of demonstrating scripts with Turquoise. Next, we present the pattern language

used to describe regions of an HTML page, followed by the inference mechanism that

Turquoise uses to guess patterns automatically. Finally, we survey related work and

present some conclusions.

2. SYSTEM ARCHITECTURE

The Turquoise system is shown in Figure 1. It consists of the following components:

• a Web browser/editor;

• an inference engine, which watches the user’s actions and infers script commands;

• a pattern knowledge base, which provides the pattern templates that are used for

guessing what the user meant by a selection;

• a script interpreter, which replays scripts on demand, either for the local user or for

a remote Web user; and

• the scripts that the user has developed.

The Web browser/editor in the prototype system is AOLpress1, which is freely available

from America Online[1]. AOLpress is a WYSIWYG editor, enabling users to create and

edit pages without learning HTML, including pages containing forms and tables. Our

version of AOLpress has been specially instrumented to report the user’s browsing and

editing actions to an external program, in this case the inference engine.

1 AOLpress was originally known as NaviPress, and then GNNpress. It was one of the

first WYSIWYG editors for HTML.

User

World Wide Web

Web
Browser-

Editor

Inference
Engine

Scripts

Pattern
Templates

Script
Interpreter

Figure 1. Turquoise system architecture.

The inference engine receives the stream of user actions, watching for actions which

affect a browser window containing a Turquoise script. These actions are assumed to be

part of a demonstration. For each demonstrated action, the inference engine generalizes

the action’s parameters by searching for them in the pattern knowledge base. For

instance, when the user pastes text into a script window, the inference engine attempts to

find patterns describing the origin of the pasted text and the location where it is inserted.

After generalizing the action, the inference engine adds it as a command to the script.

The script interpreter runs the scripts that have been demonstrated and saved. Like

other Web resources, Turquoise scripts are identified by a uniform resource locator

(URL), so the local user can run a script simply by opening its URL in the Web browser.

The script interpreter also includes a small Hypertext Transfer Protocol (HTTP) server

that can run scripts for remote users, as long as the local user has identified those scripts

as publicly accessible. Scripts might also be invoked automatically, either at regular

intervals (such as hourly, daily, or weekly) or by events within the Web browser/editor.

For example, a script that updates a page’s last-modified date might be invoked whenever

the user saves an HTML document to disk.

The Turquoise prototype is written primarily in Java (with some C++ code at the

interface with AOLpress). The prototype currently runs on Windows 95 and NT, but it

could be ported readily to Macintosh or Unix, since its off-the-shelf components are also

portable to those platforms.

3. APPLICATION DOMAIN

The Turquoise architecture is well-suited for scripts that access, create, or modify

HTML or flat text documents, since such scripts can be readily demonstrated in a Web

browser/editor. In an informal survey of 50 existing CGI scripts whose source code was

publicly available, we found that the scripts available on the Web can be broken down into

seven categories (with significant overlap): composite pages, assistants, filters, form

processors, active pages, gateways, and applets. These categories are described next, and

most of them are suitable to be demonstrated to Turquoise.

Composite page scripts extract information from one or more dynamic sources to

produce a page of HTML. A typical example might be a customized newspaper which

retrieves news headlines from Yahoo/Reuters, sports scores from ESPN, and a weather

report from the National Oceanic and Atmospheric Administration, then reformats all the

retrieved information into a single page. Another example might be a meta-search which

submits a search phrase to several Web search engines simultaneously.

Assistants perform chores that the user encounters while browsing the Web or editing

HTML pages. Examples of typical chores include updating your stock portfolio history,

updating the last-modified date on an edited page, validating links, and downloading or

prefetching a set of links.

Filter scripts translate data between other textual formats and HTML, or from one

HTML layout into another. Examples of filters include converting Unix man pages to

HTML, converting Emacs info files to HTML, and generating a table-of-contents for a

page from its section headings.

Form processors accept a form as input and use the supplied information to access other

resources, invoke external processes, record some information, or otherwise change the

state of the Web. Examples include merchandise order forms, comment solicitation forms,

guest books, and Web-based bulletin boards.

Active pages contain scripting code embedded in the HTML that is executed by the

browser. The popular languages for active pages are JavaScript and VB Script. Active

pages are typically used for form validation, simple calculations, and eye-catching visual

effects.

Gateways translate non-HTML information sources or services into HTML. For

instance, there are gateways that allow Web users to browse other hypertext systems, like

HyperG, or retrieve information via the finger or whois services. Most Web browsers

include built-in gateways for FTP, Gopher, the local filesystem, and Usenet news.

Finally, applets contain an embedded user interface which is downloaded and run by the

Web browser. The latest hot tools for developing applets are Java and ActiveX.

The Turquoise architecture is capable of creating composite pages, assistants, filters,

form processors, and active pages (insofar as its Web browser/editor supports a client-side

scripting language like JavaScript or VB Script). These types of scripts are alike in that

they operate on HTML or plain text.

Applets and gateways, however, are beyond the scope of the architecture. Creating an

applet is tantamount to creating a graphical user interface, which cannot be done in a Web

browser/editor because it lacks the tools for drawing it. Even automating an interaction

with an applet is difficult for Turquoise, since it involves interpreting and controlling the

state of an arbitrary, unconstrained user interface. Likewise, most gateways are beyond

the ability of Turquoise to create, because the protocol on the other side of the gateway is

unconstrained, and usually involves access mechanisms that are not accessible to the Web

browser.

On the other hand, if the gateway already exists (either out on the Web or built into the

browser), then a Turquoise script can interact with it as it would any other WWW-based

information source. In order to extend the range of Turquoise, we plan to augment the

prototype system with several built-in gateways not normally found in Web browsers: a

calculator for numerical computation, a command line for executing external programs,

and an OLE interface for exchanging information with other Microsoft Windows

applications. These gateways will enable Turquoise scripts to do a wider variety of useful

processing.

4. DEMONSTRATING SCRIPTS

We present two examples to show how Turquoise might be used. The first creates a

composite page script for a customized newspaper. The second example is a form

processor for lunch orders submitted over the Web.

4.1 Creating a Customized Newspaper

Suppose Lucy wants to demonstrate to Turquoise how to assemble a customized

newspaper containing a weather report and news headlines (Figure 2). The demonstration

begins with Lucy opening a new script window within the Web browser. Initially the

script window is empty, indicating that the script has no output yet.

Lucy types “Weather” in the new script window and changes it to section heading style.

Since these actions were performed directly on the script window, Turquoise records them

as constant text in the script. Then, in a separate browser window, Lucy navigates to a

weather page, highlights the region of the page containing her local three-day weather

forecast, and copies it into the script window after “Weather” (Figure 2a).

Next, Lucy types in a section heading for “News” in the script window. She navigates

to a news page and copies the region containing the day’s headlines to the script window

just after “News” (Figure 2b).

Finally, Lucy saves the script, calling it “newspaper,” and runs it to check that it works

as expected. Running the script is simply a matter of reloading it into the browser. When

the script runs, it retrieves the weather page and the news page, extracts the regions of the

page that match the patterns, and inserts them after “Weather” and “News”, respectively.

The result is a page that looks the same as the demonstration. When Lucy comes back and

runs her newspaper script the next day, however, the script retrieves the latest weather

and news and displays an updated page (Figure 2c).

(a)

(b)

(c)

Figure 2. Demonstrating a customized newspaper script. In (a), the user copies the
forecast from a weather page, on the left, and pastes it into a new script window, on the
right. A similar operation copies the list of headlines from a news page (b). From these
actions, Turquoise infers a script that can produce a new version of the newspaper on
another day (c).

4.2 Collecting Lunch Orders

Harry’s workgroup likes to order lunch from a local sandwich shop, and they find it

convenient to send one person out every day with the entire group’s order. To automate

the process of collecting the sandwich orders, Harry wants to demonstrate a script that

accepts order forms over the Web and collates them into a single report.2

Harry starts by designing a form using the Web editor (Figure 3a). The form contains

fields for the person’s name, sandwich choice, and any special requests. Creating the form

requires a uniform resource locator (URL) to which it should be submitted, so Harry

creates a new Turquoise script “lunch” and uses its URL. Harry also designs a template

for the final report (Figure 3b), which will list the sandwich orders on one page for easy

ordering and delivery.

To begin the demonstration, Harry fills out the form with an example order, and

attempts to submit it. Since the “lunch” script is currently empty, the result is just an

empty window. In this window, Harry proceeds with the demonstration by loading the

report file. Since the load action occurs in the script window, Turquoise adds it as a

command to the script. Then, using copy-and-paste operations, Harry copies the order

form field-by-field to the end of the report, and saves the modified report back to disk.

Next, Harry wants to show how to construct a result page, which should be sent to the

form submitter to confirm that the sandwich order has been recorded (Figure 3c). He uses

the browser’s Back button to return to the script output page, which is still empty, and

designs a page that repeats the information in the form, again using cut-and-paste

operations.

By default, Turquoise scripts can be run only by the local user. In order to make the

lunch-ordering script accessible to his colleagues, Harry must mark the script as public,

which specifies that Turquoise should run the script in response to remote requests for it.

Every remote request runs the script on Harry’s machine, which is appropriate for a small

workgroup application like ordering lunch. Scripts which are frequently run or resource-

hungry should be translated to a conventional language, like Perl, C, or Java, and made

available on a high-speed Web server. We plan to extend Turquoise to perform these

translations automatically wherever possible.

2 This example does not yet work in the prototype, because AOLpress is not yet

instrumented to report user actions that occur in form controls.

(a)

(b)

(c)

Figure 3. Demonstrating a lunch ordering script. After
designing a form for the lunch order (a), the user
demonstrates how to process an example order – loading a
report file (b), copying fields from the form, and saving the
file back to disk. The user also demonstrates the script
output (c), which is returned to the form submitter to
confirm that the order has been received.

5. PATTERN MATCHING

As the examples show, Turquoise scripts operate on HTML documents – copying,

inserting, and deleting text and markup elements. These operations require a way to

identify locations within an HTML document. Although HTML provides a few

mechanisms for marking locations in a document (the most standard being the anchor tag,

<A>), this is not sufficient, because the documents we want to manipulate may not have

the markers we need.

Turquoise solves this problem by providing a pattern language for HTML (Figure 4).

5.1 Pattern Language

A Turquoise pattern matches a region, which is a contiguous, possibly empty range of

characters and HTML markup. The primitive patterns are HTML elements, regular

expressions, and literal text. For the benefit of users who do not know HTML, patterns

pattern →
HTML-element (e.g. Paragraph, Bulleted List, Image)
“literal-text”
/regular-expression/
pattern identifier (e.g. Date, Number)
region identifier (e.g., Current Page, Selection)
URL
point (a cursor position)
everything
the only pattern
the first pattern
the last pattern
the nth pattern
pattern1 containing pattern2

pattern1 [just] after pattern2

pattern1 [just] before pattern2

pattern1 in pattern2

pattern1 at start of pattern2

pattern1 at end of pattern2

from pattern1 to pattern2

Examples
the first Image in “http://www.cs.cmu.edu/~rcm/”

(a picture of the first author)
the only Date in Address at end of Current Page

(the last-modified date on a page)
the 3rd List Item in Bulleted List in “http://www.yahoo.com/”

(a category in the Yahoo! Index of the Web)

Figure 4. The Turquoise pattern language.

refer to HTML elements by human-readable names like “Link” and “Paragraph”, rather

than their HTML tags.

A central feature of the Turquoise pattern language is its ability to represent

relationships between regions, using the operators in, containing, before, and after. For

instance, the pattern “Link in Address in http://…” would find only links (HTML element

<A>) appearing in the address (HTML element <ADDRESS>).

If a pattern might match more than once, the language can express assertions about the

particular occurrence desired. For instance, “the first Paragraph after the only

Horizontal Rule in http://…” asserts that only one horizontal rule (<HR>) will appear on

the page, and the pattern should match the first paragraph (<P>) appearing after it.

Patterns may be named and reused in other patterns. Turquoise will include a library of

predefined patterns, including commonly-used regular expressions, like Character, Word,

Sentence, Number, Date, and URL.

A pattern may also refer to a named region. Web pages are the simplest form of named

region, where the name is just the page’s URL. Turquoise also defines Current Page and

Selection to represent regions that the user has selected interactively, and Output to

represent the page returned by a script.

Finally, Turquoise patterns may contain placeholders of certain types: <literal text>,

<HTML element>, and <named region>. Patterns containing placeholders can be

instantiated by substituting a pattern of the same type. Thus, “<HTML element> in

<named region>” can be instantiated to “Table in http://…”. A pattern with placeholders

is called a pattern template. Pattern templates are used to infer patterns automatically

from examples, which will be explained later.

5.2 Implementation

To search for a pattern in an HTML document, Turquoise parses the document into an

explicit parse tree and walks over the tree trying to match the pattern. The prototype

pattern matcher uses a straightforward recursive implementation, which backtracks when a

subpattern fails. In the worst case, this implementation may take exponential time. In

practice its performance is acceptable for searching a typical Web page, which is less than

10 kilobytes long [3]. For searching larger documents, we are considering adapting one of

the algorithms devised by Kilpeläinen [9] for searching structured text databases.

6. INFERENCE

When the user demonstrates some actions, such as clicking on a link or pasting some

text, Turquoise must infer a command that would perform the same actions in the script.

Part of the Turquoise command language is shown in Figure 5. User actions are

translated into these commands by a fixed mapping. For example, the user might select an

picture on a Web page, copy it, and paste it into the script window. This sequence of

actions is always translated into the same script command, insert pattern1 at pattern2. The

challenge for Turquoise is to infer pattern1 and pattern2, which describe the copied picture

and the location to which it was copied, respectively.

An inferred pattern should satisfy four criteria. It should be:

• Correct: the pattern should correctly describe the region the user specified in the

demonstration, otherwise it is not a proper generalization of the user’s action.

• Eager: the inference engine should strive to guess the right pattern from only one

example.

• Robust: the pattern should continue to work if the world changes in irrelevant ways.

For instance, a pattern intended to describe the last-modified date from the bottom

of a page should not be affected by modifications to the rest of the page.

• Comprehensible: the pattern should be understandable by the user, so that an

incorrect inference can be detected and corrected. A comprehensible pattern should

be easily verified, so patterns involving large numbers or invisible HTML elements,

like “the 87th Word after Comment,” are not desirable.

The inference mechanism in Turquoise attempts to meet all these goals by using a

knowledge base of pattern templates. These templates are heuristically chosen to be

robust and comprehensible.

command →
insert pattern1 at pattern2

replace pattern1 with pattern2

delete pattern
go to pattern
save pattern [to pattern]

Figure 5. Turquoise script commands.

In order to infer a pattern for a specific region, Turquoise searches the pattern

knowledge base for patterns that match the region, instantiating placeholders as needed.

All the patterns that match are presented as possibilities to the user, but Turquoise

chooses one pattern as its best guess. In the prototype system, the knowledge base is

statically sorted, with the most robust and most frequently-used patterns first, so the

prototype inference engine just uses the first match as its best guess. In the future, we will

explore more sophisticated evaluation functions for determining the best pattern.

This inference mechanism guarantees correctness because only patterns that match the

example region are considered. It also attempts to be eager, by making its best guess

about the user’s intention and using it by default.

Advanced users can improve the inference mechanism by adding new pattern templates

to the knowledge base using a text editor. We may also experiment with providing

different knowledge bases for demonstrating different kinds of scripts. The user may

explicitly indicate which kind of script is being demonstrated, or Turquoise may use some

heuristics to guess which knowledge base is appropriate.

7. RELATED WORK

Turquoise is similar to other programming-by-demonstration systems. SmallStar [7], a

system for demonstrating macros in Xerox Star, introduced the notion of data

descriptions, which are like Turquoise patterns. TELS [16] infers programs for text

editing tasks, such as reformatting a bibliography. Like Turquoise, it abstracts the user’s

actions into abstract commands like insert and delete, but its data descriptions are limited

to flat text divided into words, lines, and paragraphs. Eager [5] infers repetitive tasks in

Hypercard. Eager includes a pattern language for data descriptions which is similar to the

Turquoise pattern language, but Eager never shows its patterns to the user. As a result,

Eager typically requires at least three examples to infer a program. By displaying the

possible patterns and allowing the user to verify or fix them, Turquoise can often infer

from only one example.

Other systems give end-users the ability to develop CGI scripts, though not by

demonstration. Several systems, like Zelig [15], represent a dynamic page as an HTML

template with variable fields, which are computed at runtime by database queries or script

code. Unlike Turquoise, these systems generally require knowledge of HTML.

WebWriter [4] allows users to create the templates without knowing HTML, in a

WYSIWYG editor. Since WebWriter is a CGI application itself, however, its editing

interface is limited to form fill-out, which can be tedious.

The Turquoise pattern language, which identifies locations in HTML, is similar to other

languages for representing transformations or doing searches in structured text.

Bonhomme and Roison [2] described a language for specifying HTML editing

transformations which allows an HTML editor to be extended with new transformations,

but this language can only match a local area of the HTML tree – a few nodes and their

immediate neighbors and children. Pattern matching of this kind has been called the

classic “tree matching problem” [8]. The Turquoise pattern language is more general,

however, permitting arbitrary intervening neighbors and descendants in its in, before, and

after patterns. Kilpeläinen [9] studied this general tree matching problem in the context of

searching large structured-text databases, and found algorithms that solve it in polynomial

time. Turquoise also draws ideas from p-strings [6], another language for searching

structured-text databases.

8. STATUS AND FUTURE WORK

The prototype system uses copy-and-paste events to infer composite page scripts. It

needs further development before it can be used to demonstrate a broader class of scripts.

One important area of future development is inferring conditional branches and iteration,

which are needed by many scripts. Much of the ease of using Turquoise stems from its

ability to infer from a single example, but conditions and iterations generally require

multiple examples to demonstrate. The prototype could be augmented to generalize from

multiple examples, possibly using hints from the user, as in Gamut [10].

More work is needed to develop good pattern knowledge bases for the kinds of scripts

we identified as demonstrable. We also want to explore different evaluation functions that

Turquoise can use to pick out a good pattern from all the matches in the knowledge base.

To extend the scope of Turquoise scripts, we plan to add a number of built-in gateways

to the prototype, including a calculator, a command shell, and an OLE interface. In

addition, a future version of the prototype will be capable of translating Turquoise scripts

into a traditional Web scripting language, such as Perl, Tcl, or Java.

We also plan to user-test the pattern language to determine whether users can read and

write patterns, and whether the system’s inferred patterns are comprehensible.

9. CONCLUSION

The Turquoise architecture is suitable for demonstrating a broad range of Web scripts,

including composite pages, assistants, filters, form processors, and active pages. With

Turquoise, Web users only need their familiar browsing and editing skills to create

dynamic pages and automate repetitive tasks on the Web.

The Turquoise pattern language satisfies the need for identifying locations in HTML

documents. Unlike HTML anchors, which must be explicitly inserted in a document by its

author, Turquoise patterns allow an arbitrary user to identify regions of a page for

extraction, reformatting, or other processing, without needing to change the original

document. By inferring patterns from example, Turquoise puts these capabilities in the

hands of users who do not know HTML.

10. ACKNOWLEDGMENTS

For help with this paper, we would like to thank Ellen Borison, Laura Cassenti, Edwin

Chance, Richard McDaniel, and Eric Tilton. We also gratefully acknowledge Dave Long

and America Online for providing a special version of AOLpress for the Turquoise

prototype.

11. REFERENCES

1. America Online. AOLpress. http://www.aolpress.com/

2. Bonhomme, S., and Roisin, C. Interactively restructuring HTML documents. In
Proc. 5th Intl World-Wide Web Conference, WWW’96 (Paris, France, May 1996).
http://www5conf.inria.fr/fich_html/papers/P16/Overview.html

3. Bray, T. Measuring the Web. In Proc. 5th Intl World-Wide Web Conference,
WWW’96 (Paris, France, May 1996).
http://www5conf.inria.fr/fich_html/papers/P9/Overview.html

4. Crespo, A., and Bier, E.A. WebWriter: a browser-based editor for constructing Web
applications. In Proc. 5th Intl World-Wide Web Conference, WWW’96 (Paris, France,
May 1996). http://www5conf.inria.fr/fich_html/papers/P35/Overview.html.

5. Cypher, A. Eager: programming repetitive tasks by example. in Proc. of CHI ’91
(New Orleans, May 1991), ACM Press, 33-39.

6. Gonnet, G.H., and Tompa, F.W. Mind your grammar: a new approach to modelling
text. In Proc. 13th Very Large Databases Conference (Brighton, 1987), 339-345.

7. Halbert, D. SmallStar: programming by demonstration in the desktop metaphor. in
Watch What I Do: Programming By Demonstration, Allen Cypher, ed. MIT Press,
Cambridge MA, 1993, pp. 104-123.

8. Hoffmann, C.M., and O’Donnell, M.J. Pattern matching in trees. JACM 29, 1
(January 1982), 68-95.

9. Kilpeläinen, P. Tree Matching Problems With Applications to Structured Text
Databases. Technical Report A-1992-6, Department of Computer Science, University
of Helsinki, Finland. November 1992.

10. McDaniel, R. Improving communication in programming-by-demonstration. In
CHI'96 Conference Companion (Vancouver BC, Canada, April 1996), 55-56.

11. Myers, B. Demonstrational interfaces: a step beyond direct manipulation. IEEE
Computer 25, 8 (August 1992), 61-73.

12. Myers, B., et al. The Amulet 2.0 Reference Manual. Carnegie Mellon University
Computer Science Dept Technical Report CMU-CS-95-166-R1. April 1996.

13. National Center for Supercomputing Applications (NCSA). The Common Gateway
Interface. http://hoohoo.ncsa.uiuc.edu/cgi/

14. Nielsen, H.F., and Håkon, W.L. Towards a uniform library of common code. in Proc.
2nd Intl World-Wide Web Conference, WWW’94, (Chicago, IL, December 1994.
http://www.w3.org/pub/WWW/Library/User/Paper/LibraryPaper.html

15. Varela, C.A., and Hayes, C.C. Providing data on the Web: from examples to
programs. in Proc. 2nd Intl World-Wide Web Conference, WWW'94 (Chicago IL,
December 1994).
http://www.ncsa.uiuc.edu/SDG/IT94/Proceedings/DDay/varela/paper.html.

16. Witten, I.H., and Mo, D. TELS: learning text editing tasks from examples. in Watch
What I Do: Programming By Demonstration, Allen Cypher, ed. MIT Press,
Cambridge MA, 1993, pp. 183-203.

