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Natural Programming Project 
• Researching better tools for programmers since 1978 
• Natural Programming project started in 1995  
• Make programming easier and more correct by making it 

more natural 
– Closer to the way that people think about algorithms and 

solving their tasks   (not  “Natural UIs”) 

• Methodology – human-centered approach 
– Perform studies to inform design 

• Provide new knowledge about what people do and think, & barriers 

– Guide the designs from the data 
• Design of programming languages and environments  

– Iteratively evaluate and improve the tools 

• Target novice, expert and end-user programmers 
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End User Programming 
• People whose primary job is not programming 
• In 2012, in USA at work: — Scaffidi, Shaw and Myers 2005 

– 3 million professional programmers 
– 6 million scientists & engineers 
– 13 million will describe themselves as programmers 
– 55 million will use spreadsheets or databases at work (and therefore 

may potentially program) 
– 90 million computer users at work in US 

• We should make better tools for all of these people! 
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Debugging 

• Study commissioned by NIST USA (2002) of 
14 software vendors 
– Software errors cost ~$60 billion annually 
– Software engineers spend 70-80% of time testing 

and debugging 
– Time for 1 developer to fix 1 bug was ~17.4 hours 

• Current debugging techniques same as for 
last 70 years 
– Same for end-user and professional environments 
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Program Complexity and Sophistication 

Goal: Gentle Slope Systems 
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Web Development 

CSS & HTML 

JavaScript 

editor 

Server-side 



Improve Developer Experience 

• Use human centered approaches to: 
 Make developers more effective 
 Reduce errors in resulting code 
 Insure that developer tools are useful 
 Understand developers’ barriers that cause 

wasted time 
 Direct efforts at most important issues 
 Address: programming languages, APIs, 

tools, documentation & resources 
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Why Would Being Natural be Good? 
• Programmers are People Too 

– Take the human into account 

• Language should be close to user’s plan 
– “Programming is the process of transforming a mental plan into one 

that is compatible with the computer.”  
— Jean-Michel Hoc 

• Closeness of mapping 
– “The closer the programming world is to the problem world, the 

easier the problem-solving ought to be.… Conventional textual 
languages are a long way from that goal.”    — Green and Petre 

 
• Depends on target population 

– Need studies 
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class HelloWorldApp { 
 public static void main(String[] args) { 
  System.out.println("Hello World!"); 
 } 
} 

Not so Natural! 

• 3 kinds of parentheses and 9 special words! 
• Compared to click and type: “Hello World!” 

Let Shape1.FillColor 
= &H00FF00FF& 
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First Natural Programming Studies 
• John Pane, PhD 2002 
• Studies: 

– How people naturally express programming 
concepts and algorithms 
1) Nine scenes from PacMan 
2) Transforming and calculating 

data in a spreadsheet 

– Specific issue of language design 
3) Selecting specific objects from a group (“and”, “or”, 

“not”) 

– Lots of interesting results 
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Examples of Results 
• Rule-based style 

 “If PacMan loses all his lives, its game over.” 

• “And”, “Or”, “Not” don’t match computer 
interpretation 
– … men and women, … not an apple or pear  

• Operations suggest data as lists, not arrays 
– People don’t make space before inserting 

• Objects normally moving 
 “If PacMan hits a wall, he stops.” 
– so objects remember their own state 

(             ) 
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New Language and System: HANDS 

• John Pane, PhD 2002 
• Properties: 

– Metaphor of agent (Handy 
the dog) operating on cards 

– All operations can operate 
on single items or sets 
of items 

– Integrated queries with language 
– Sets can be dynamically constructed and used 

• “Set the speed of all bees to 0” 

• See the video: http://web.cs.cmu.edu/~pane/HANDS/HANDS.MPG 
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Supporting “Natural” Data Types 
• Chris Scaffidi, PhD 2009 
• Ask users about types of data, say “Person name”, “age”, 

“date”, “Project code”, … 
• User-centered type system called “topes” 

– Structured 
– Constraints on the values and parts 

• May be “always” or “usually” true 
– “USA phone area code never ends in 11” 
– “USA Last names usually start with a capital letter” 

• Library for verifying & transforming values 
– Can be used from JavaScript  

for web and from VB for Excel 

• Editor for specifying 
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Study of Errors 

• Study of novice errors and debugging 
– Created a new model of barriers & kinds of errors 
– All of the observed debugging problems could be 

addressed by “Why” questions 
• 32% were “Why did”; 68% were “Why didn’t” 

• Current debugging techniques require user to 
guess where bug is or where to look 
– Most of initial guesses are wrong, even for 

experts 
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Whyline 

• Andy Ko, PhD 2008 
• Allow users to directly ask “Why” and 

“Why not” 

1:27 
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Whyline User Studies 

• Initial study: 
– Whyline with novices outperformed experts with Eclipse  
– Factor of 2.5 times faster 

• (p < .05, Wilcoxon rank sums test) 

• Formal study: 
– Experts attempting 2 difficult tasks 
– Whyline over 3 times as successful, in ½ of the time 
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Crystal 
• Crystal: Clarifications Regarding Your Software 

using a Toolkit, Architecture and Language  
• Apply WhyLine idea to regular desktop applications (Word 2003) 

• Lots of complexity in powerful features that people generally 
like 

• Ask “Why” about what 
recently happened 

• Architecture: supports 
adding to application 
with small overhead 



WebCrystal 
• Investigate CSS and 
HTML responsible for 
example behaviors 

• Navigate around HTML 
hierarchy 

• Ask “how-do-I”  
questions about look,  
position and behavior 

• Generates code in user-selected 
format 

• Combine code for multiple elements 
• CHI’2012 
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Study of Design Requirements for 
Maintenance-Oriented IDEs 

• Studied expert use of Java Eclipse IDE in a 
lab setting (2004-2006) 

• Focus on day-to-day maintenance tasks 
such as bug repairs and feature 
enhancements 

• Lab study with detailed analysis 
• Rich dataset  multiple papers 
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A Programmer’s Working Set 

• A collection of 
task-relevant 
code fragments 

• In modern 
software 
development, 
dependencies 
are distributed 
and non-local 
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Times for Bottlenecks 

• Each instance of an interactive bottleneck 
cost only a few seconds, but . . . 
 

 
 
 
 
 

  = 35% of uninterrupted work time! 
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Jasper: Working Set Tool 
• Jasper = Java Aid with Sets of Pertinent Elements for 

Recall 

• Allow programmers to grab arbitrary fragments of code to 
represent working sets 
– Allow programmers to view in one place, one screen 
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Study of APIs 
• Started as PhD work of Jeff Stylos, 2009 

– Inspired by Steven Clarke, Microsoft Visual Studio 
group 

• Application Programming Interface 
– Libraries, frameworks, SDKs, … 

• Which programming patterns are most usable? 
• Barriers to use of APIs 
• Measures: learnability, errors, preferences 
• Expert and novice programmers 
• Studied: 

– Default parameters in constructors 
– Factory pattern 
– Object design 
– SAP’s Web Services APIs  
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“Factory” Pattern 
• Instead of “normal” creation: Widget w = new Widget(); 

• Objects must be created by another class: 
AbstractFactory f =  AbstractFactory.getDefault(); 
Widget w = f.createWidget(); 

• Used frequently in Java (>61) and .Net (>13) and 
SAP 

• Results: 
– When asked to design on “blank paper”, no one designed 

a factory 
– Time to develop using factories took 2.1 to 5.3 times 

longer compared to regular constructors (20:05 v 9:31, 
7:10 v 1:20) 

– All subjects had difficulties getting using factories in APIs 
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Object Method Placement 
• Where to put functions when doing object-oriented design 

of APIs when multiple classes work together 
– mail_Server.send( mail_Message ) 

vs. 
mail_Message.send( mail_Server  ) 

• When desired method is on the class that they start with, 
users were between 2.4 and 11.2 times faster (p < 0.05) 

• Starting class can be predicted based on user’s tasks 
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Study of APIs for SAP 
• Study APIs for Enterprise 

Service-Oriented Architectures  (“Web Services”) 
• Naming problems: 

– Too long 
– Not understandable 
– Differences in middle are frequently missed 

CustomerAddressBasicDataByNameAndAddressRequestMessageCustomerSelectionCommonName 
CustomerAddressBasicDataByNameAndAddressResponseMessageCustomerSelectionCommonName 
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eSOA Documentation Results 
• Multiple paths: unclear which one to use 
• Some paths were dead ends 
• Inconsistent look and feel caused immediate 

abandonment of paths 
• Hard to find required 

information 
• Business background 

helped 



SAP’s NetWeaver® Gateway 
Developer Tools  

• Plug-in to Visual Studio 2010 for 
developing SAP applications 

• We used heuristic evaluation and 
cognitive walkthroughs to evaluate early 
prototypes 

• Our recommendations were quickly 
incorporated due to agile software 
development process 
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Our Tools to Help with APIs 

• Mica 

• Jadeite 

• Calcite 

• Euklas 

• Graphite 

• Apatite 
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Mica Tool to Help Find Examples 

• Makes Interfaces Clear and Accessible 
• Use Google to find relevant 

pages 
• Match pages with Java 

keywords 
• Also notes which pages 

contain example code 
or definitions 
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Jadeite: Improved JavaDoc 
• Jadeite: Java API Documentation with Extra 

Information Tacked-on for Emphasis 
http://www.cs.cmu.edu/~jadeite 

• Fix JavaDoc to help address problems 
– Focus attention on most popular packages and  

classes using font size 
– “Placeholders” for methods that users want to exist 
– Automatically extracted 

code examples for how 
to create classes 
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Calcite: Eclipse Plugin for Java 
• Calcite: Construction And Language Completion 

Integrated Throughout 
http://www.cs.cmu.edu/~calcite 

• Code completion in Eclipse augmented with 
Jadeite’s information 
– How to create objects of specific classes 
SSLSocket s = ??? 

 

http://www.cs.cmu.edu/~calcite
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Euklas: Eclipse Plugin for JavaScript 

• Euklas: Eclipse Users’ Keystrokes Lessened 
by Attaching from Samples 
http://www.cs.cmu.edu/~euklas 

• Brings Java-like analysis to JavaScript 
• Auto-correct uses 

copy source context 
for errors due to 
copy & paste 
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Graphite: Eclipse Plugin for Literals 

• Graphite: GRAphical Palettes Help Instantiate 
Types in the Editor. 

• Pop up a custom palette for specialized constants 
(literals) in Eclipse 
– Color palettes 
– Regular expression 

strings 

• Customizable               (ICSE’2012) 



Apatite Documentation Tool 
• Apatite: Associative Perusing of APIs That 

Identifies Targets Easily 
http://www.cs.cmu.edu/~apatite 

• Start with verbs (actions) 
and properties and find what 
classes implement them 

• Find associated items 
– E.g., classes that are often 

used together 
– Classes that implement or 

are used by a method 
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Studies of Code Understanding 
• Thomas LaToza, PhD 2012 
• Studies about how experts learn unfamiliar code 
• Programmers investigate reachability questions 

– How can this code be reached, either upstream or downstream 
– E.g., control flow from user scrolling  update status line 

• Identified over 100 hard-to-answer questions that 
developers asked 
– E.g., “What method implements this trigger?” 
– “Why was this designed this way?” 

• Survey shows such control flow questions are difficult 
and important 

• No easy way to discover with current tools 
– Call graphs are too general 
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REACHER 
• Visualize exactly the paths of interest 
• Search along the paths 
• Focused questions and answers enable effective analysis of 

complex codebases 
• Developers with Reacher 5.6 times more successful than 

those working with Eclipse only 0:53 



Fluorite Logger 
• PhD work of YoungSeok Yoon (in progress) 
• Fluorite: Full of Low-level User Operations Recorded In The 

Editor    http://www.cs.cmu.edu/~fluorite  
• Logger for all keystrokes & events in Eclipse 
• Analyzes frequencies and 

patterns 
• Deleting is a high percent 

of all the keystrokes 
• Also surveyed >100 

developers 
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Backtracking Results 

• All developers backtrack  for many reasons 
– Explorations, investigations, iterative design 

• People use comments to remove code, so they 
can restore it if necessary 
– But difficult to comment & uncomment correctly 
– Often non-local changes 

• Undo not used for exploration, just typo fixing 
• Future work: new tool to help developers 

backtrack 
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Summary 
• 30 studies; 17 systems in 16 years 

• Doing studies first provides new insights that 
can inspire significantly new designs for 
programming languages and environments 

• Need to understand software engineers’ real 
issues 

• New designs shown to be better 
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Interactive Software 
• Today: programmed with callbacks & side effects 
• Result: interdependent, complex code 
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Constraints 
• Relationships declared once and maintained 

automatically 
• Can help reduce the complexity of interactive code 
• In GUI programming, constraints have caught on for: 

– Data bindings (example: WPF, Silverlight) 
– Layout controllers (example: CSS) 
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ConstraintJS 
• Constraints for building interactive software 
• Integrates constraints with Finite-State Machines 

(FSMs) 
– Makes it easy to create constraints that sometimes hold 
– Result: Cleaner, clearer code 

• Works with Web languages (JavaScript, HTML, & CSS) 
• (paper to appear at UIST’2012) 
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Motivating Example 
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JavaScript implementation 

• Requires: 
– Four nested callback functions using side-effects to 

handle asynchronous communication 
• Ensuring correct scoping for nested callbacks is difficult 

– Significant code to ensure view is in sync with model 
– Significant error handling code 
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 1 friends = cjs.async(fb_request("/me/friends")); 
 2 pics    = friends.map(function(friend) { 
 3                return cjs.async(fb_request( "/" + friend.id 
 4                                                 + "/picture")); 
 5            }); 
 6  
 7 //... 
 8  
 9 {{#diagram friends.state}} 
10    {{#state pending }} Loading friends... 
11    {{#state rejected}} Error 
12    {{#state resolved}} 
13       {{#each friends friend i}} 
14          {{#diagram pics[i].state}} 
15             {{#state pending }} <img src = "loading.gif" /> 
16             {{#state resolved}} <img src = "{{pics[i]}}" />  
17             {{#state rejected}} <img src = "error.gif"   /> 
18          {{/diagram}} 
19          {{friend.name}} 
20       {{/each}} 
21 {{/diagram}} 

ConstraintJS implementation 
• Requires fewer callbacks and no side-effect code 
• Clearer and less interdependent code 
• Enhances HTML syntax to add flexibility while maintaining clarity 
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Current Work 
• Many interactive behaviors can be specified using 

only a combination of FSMs and constraints 
• Interactive tool for specifying FSMs & constraints 

– Spreadsheet-like for constraints, with columns for FSM 
states 
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