
1

Improving
Software Development

through
Human-Centered Approaches

Brad A. Myers
Human-Computer Interaction Institute

School of Computer Science
Carnegie Mellon University

http://www.cs.cmu.edu/~bam
bam@cs.cmu.edu

Natural Programming Project
• Researching better tools for programmers since 1978
• Natural Programming project started in 1995
• Make programming easier and more correct by making it

more natural
– Closer to the way that people think about algorithms and

solving their tasks (not “Natural UIs”)

• Methodology – human-centered approach
– Perform studies to inform design

• Provide new knowledge about what people do and think, & barriers

– Guide the designs from the data
• Design of programming languages and environments

– Iteratively evaluate and improve the tools

• Target novice, expert and end-user programmers

 2 © 2012 – Brad A. Myers

3 © 2012 – Brad A. Myers

End User Programming
• People whose primary job is not programming
• In 2012, in USA at work: — Scaffidi, Shaw and Myers 2005

– 3 million professional programmers
– 6 million scientists & engineers
– 13 million will describe themselves as programmers
– 55 million will use spreadsheets or databases at work (and therefore

may potentially program)
– 90 million computer users at work in US

• We should make better tools for all of these people!
90,000,000

55,000,000

13,000,000
6,000,000 3,000,000

0

20,000,000

40,000,000

60,000,000

80,000,000

100,000,000

Users Spreadsheets and
DBs

Self-Described
Programmers

Scientists &
Engineers

Professional
Programmers

Debugging

• Study commissioned by NIST USA (2002) of
14 software vendors
– Software errors cost ~$60 billion annually
– Software engineers spend 70-80% of time testing

and debugging
– Time for 1 developer to fix 1 bug was ~17.4 hours

• Current debugging techniques same as for
last 70 years
– Same for end-user and professional environments

4 © 2012 – Brad A. Myers

Program Complexity and Sophistication

Goal: Gentle Slope Systems

Difficulty
of

Use

Goal

Flash

ActionScript

C Programming

Visual Basic

Basic

C or C# Programming
Swing

Java

Low
Threshold

High
Ceiling

5 © 2012 – Brad A. Myers

Web Development

CSS & HTML

JavaScript

editor

Server-side

Improve Developer Experience

• Use human centered approaches to:
 Make developers more effective
 Reduce errors in resulting code
 Insure that developer tools are useful
 Understand developers’ barriers that cause

wasted time
 Direct efforts at most important issues
 Address: programming languages, APIs,

tools, documentation & resources

 6 © 2012 – Brad A. Myers

Why Would Being Natural be Good?
• Programmers are People Too

– Take the human into account

• Language should be close to user’s plan
– “Programming is the process of transforming a mental plan into one

that is compatible with the computer.”
— Jean-Michel Hoc

• Closeness of mapping
– “The closer the programming world is to the problem world, the

easier the problem-solving ought to be.… Conventional textual
languages are a long way from that goal.” — Green and Petre

• Depends on target population

– Need studies

7 © 2012 – Brad A. Myers

class HelloWorldApp {
 public static void main(String[] args) {
 System.out.println("Hello World!");
 }
}

Not so Natural!

• 3 kinds of parentheses and 9 special words!
• Compared to click and type: “Hello World!”

Let Shape1.FillColor
= &H00FF00FF&

 8 © 2012 – Brad A. Myers

First Natural Programming Studies
• John Pane, PhD 2002
• Studies:

– How people naturally express programming
concepts and algorithms
1) Nine scenes from PacMan
2) Transforming and calculating

data in a spreadsheet

– Specific issue of language design
3) Selecting specific objects from a group (“and”, “or”,

“not”)

– Lots of interesting results
9 © 2012 – Brad A. Myers

Examples of Results
• Rule-based style

 “If PacMan loses all his lives, its game over.”

• “And”, “Or”, “Not” don’t match computer
interpretation
– … men and women, … not an apple or pear

• Operations suggest data as lists, not arrays
– People don’t make space before inserting

• Objects normally moving
 “If PacMan hits a wall, he stops.”
– so objects remember their own state

()

10 © 2012 – Brad A. Myers

New Language and System: HANDS

• John Pane, PhD 2002
• Properties:

– Metaphor of agent (Handy
the dog) operating on cards

– All operations can operate
on single items or sets
of items

– Integrated queries with language
– Sets can be dynamically constructed and used

• “Set the speed of all bees to 0”

• See the video: http://web.cs.cmu.edu/~pane/HANDS/HANDS.MPG

11 © 2012 – Brad A. Myers

Supporting “Natural” Data Types
• Chris Scaffidi, PhD 2009
• Ask users about types of data, say “Person name”, “age”,

“date”, “Project code”, …
• User-centered type system called “topes”

– Structured
– Constraints on the values and parts

• May be “always” or “usually” true
– “USA phone area code never ends in 11”
– “USA Last names usually start with a capital letter”

• Library for verifying & transforming values
– Can be used from JavaScript

for web and from VB for Excel

• Editor for specifying

12 © 2012 – Brad A. Myers

Study of Errors

• Study of novice errors and debugging
– Created a new model of barriers & kinds of errors
– All of the observed debugging problems could be

addressed by “Why” questions
• 32% were “Why did”; 68% were “Why didn’t”

• Current debugging techniques require user to
guess where bug is or where to look
– Most of initial guesses are wrong, even for

experts

13 © 2012 – Brad A. Myers

© 2012 – Brad A. Myers

Whyline

• Andy Ko, PhD 2008
• Allow users to directly ask “Why” and

“Why not”

1:27
14

Whyline User Studies

• Initial study:
– Whyline with novices outperformed experts with Eclipse
– Factor of 2.5 times faster

• (p < .05, Wilcoxon rank sums test)

• Formal study:
– Experts attempting 2 difficult tasks
– Whyline over 3 times as successful, in ½ of the time

15 © 2012 – Brad A. Myers

16 © 2012 – Brad A. Myers

Crystal
• Crystal: Clarifications Regarding Your Software

using a Toolkit, Architecture and Language
• Apply WhyLine idea to regular desktop applications (Word 2003)

• Lots of complexity in powerful features that people generally
like

• Ask “Why” about what
recently happened

• Architecture: supports
adding to application
with small overhead

WebCrystal
• Investigate CSS and
HTML responsible for
example behaviors

• Navigate around HTML
hierarchy

• Ask “how-do-I”
questions about look,
position and behavior

• Generates code in user-selected
format

• Combine code for multiple elements
• CHI’2012

17 © 2012 – Brad A. Myers

Study of Design Requirements for
Maintenance-Oriented IDEs

• Studied expert use of Java Eclipse IDE in a
lab setting (2004-2006)

• Focus on day-to-day maintenance tasks
such as bug repairs and feature
enhancements

• Lab study with detailed analysis
• Rich dataset multiple papers

18 © 2012 – Brad A. Myers

A Programmer’s Working Set

• A collection of
task-relevant
code fragments

• In modern
software
development,
dependencies
are distributed
and non-local

19 © 2012 – Brad A. Myers

Times for Bottlenecks

• Each instance of an interactive bottleneck
cost only a few seconds, but . . .

 = 35% of uninterrupted work time!

20 © 2012 – Brad A. Myers

© 2012 – Brad A. Myers

Jasper: Working Set Tool
• Jasper = Java Aid with Sets of Pertinent Elements for

Recall

• Allow programmers to grab arbitrary fragments of code to
represent working sets
– Allow programmers to view in one place, one screen

21

Study of APIs
• Started as PhD work of Jeff Stylos, 2009

– Inspired by Steven Clarke, Microsoft Visual Studio
group

• Application Programming Interface
– Libraries, frameworks, SDKs, …

• Which programming patterns are most usable?
• Barriers to use of APIs
• Measures: learnability, errors, preferences
• Expert and novice programmers
• Studied:

– Default parameters in constructors
– Factory pattern
– Object design
– SAP’s Web Services APIs

22 © 2012 – Brad A. Myers

“Factory” Pattern
• Instead of “normal” creation: Widget w = new Widget();

• Objects must be created by another class:
AbstractFactory f = AbstractFactory.getDefault();
Widget w = f.createWidget();

• Used frequently in Java (>61) and .Net (>13) and
SAP

• Results:
– When asked to design on “blank paper”, no one designed

a factory
– Time to develop using factories took 2.1 to 5.3 times

longer compared to regular constructors (20:05 v 9:31,
7:10 v 1:20)

– All subjects had difficulties getting using factories in APIs

23 © 2012 – Brad A. Myers

© 2012 – Brad A. Myers

Object Method Placement
• Where to put functions when doing object-oriented design

of APIs when multiple classes work together
– mail_Server.send(mail_Message)

vs.
mail_Message.send(mail_Server)

• When desired method is on the class that they start with,
users were between 2.4 and 11.2 times faster (p < 0.05)

• Starting class can be predicted based on user’s tasks

Time to Find a Method

0

5

10

15

20

Email Task Web Task Thingies Task

Ti
m

e
(m

in
)

Methods on
Expected Objects
Methods on
Helper Objects

24

25 © 2012 – Brad A. Myers

Study of APIs for SAP
• Study APIs for Enterprise

Service-Oriented Architectures (“Web Services”)
• Naming problems:

– Too long
– Not understandable
– Differences in middle are frequently missed

CustomerAddressBasicDataByNameAndAddressRequestMessageCustomerSelectionCommonName
CustomerAddressBasicDataByNameAndAddressResponseMessageCustomerSelectionCommonName

26 © 2012 – Brad A. Myers

eSOA Documentation Results
• Multiple paths: unclear which one to use
• Some paths were dead ends
• Inconsistent look and feel caused immediate

abandonment of paths
• Hard to find required

information
• Business background

helped

SAP’s NetWeaver® Gateway
Developer Tools

• Plug-in to Visual Studio 2010 for
developing SAP applications

• We used heuristic evaluation and
cognitive walkthroughs to evaluate early
prototypes

• Our recommendations were quickly
incorporated due to agile software
development process

27 © 2012 – Brad A. Myers

Our Tools to Help with APIs

• Mica

• Jadeite

• Calcite

• Euklas

• Graphite

• Apatite

28 © 2012 – Brad A. Myers

http://images.google.com/imgres?imgurl=http://www.orientaljadejewelry.com/DSCN0187.JPG&imgrefurl=http://www.orientaljadejewelry.com/bangles.htm&h=480&w=640&sz=33&hl=en&start=80&usg=__8TwN8oO0hOBrRBDl-NNOisyBsi4=&tbnid=7Hnu7F-4FzBLHM:&tbnh=103&tbnw=137&prev=/images?q=jadeite&start=60&ndsp=20&hl=en&rls=IBMA,IBMA:2006-17,IBMA:en&sa=N

Mica Tool to Help Find Examples

• Makes Interfaces Clear and Accessible
• Use Google to find relevant

pages
• Match pages with Java

keywords
• Also notes which pages

contain example code
or definitions

29 © 2012 – Brad A. Myers

© 2012 – Brad A. Myers

Jadeite: Improved JavaDoc
• Jadeite: Java API Documentation with Extra

Information Tacked-on for Emphasis
http://www.cs.cmu.edu/~jadeite

• Fix JavaDoc to help address problems
– Focus attention on most popular packages and

classes using font size
– “Placeholders” for methods that users want to exist
– Automatically extracted

code examples for how
to create classes

30

http://www.cs.cmu.edu/~jadeite
http://images.google.com/imgres?imgurl=http://www.orientaljadejewelry.com/DSCN0187.JPG&imgrefurl=http://www.orientaljadejewelry.com/bangles.htm&h=480&w=640&sz=33&hl=en&start=80&usg=__8TwN8oO0hOBrRBDl-NNOisyBsi4=&tbnid=7Hnu7F-4FzBLHM:&tbnh=103&tbnw=137&prev=/images?q=jadeite&start=60&ndsp=20&hl=en&rls=IBMA,IBMA:2006-17,IBMA:en&sa=N

31 © 2012 – Brad A. Myers

Calcite: Eclipse Plugin for Java
• Calcite: Construction And Language Completion

Integrated Throughout
http://www.cs.cmu.edu/~calcite

• Code completion in Eclipse augmented with
Jadeite’s information
– How to create objects of specific classes
SSLSocket s = ???

http://www.cs.cmu.edu/~calcite

© 2012 – Brad A. Myers

Euklas: Eclipse Plugin for JavaScript

• Euklas: Eclipse Users’ Keystrokes Lessened
by Attaching from Samples
http://www.cs.cmu.edu/~euklas

• Brings Java-like analysis to JavaScript
• Auto-correct uses

copy source context
for errors due to
copy & paste

32

http://www.cs.cmu.edu/~euklas

33 © 2012 – Brad A. Myers

Graphite: Eclipse Plugin for Literals

• Graphite: GRAphical Palettes Help Instantiate
Types in the Editor.

• Pop up a custom palette for specialized constants
(literals) in Eclipse
– Color palettes
– Regular expression

strings

• Customizable (ICSE’2012)

Apatite Documentation Tool
• Apatite: Associative Perusing of APIs That

Identifies Targets Easily
http://www.cs.cmu.edu/~apatite

• Start with verbs (actions)
and properties and find what
classes implement them

• Find associated items
– E.g., classes that are often

used together
– Classes that implement or

are used by a method

34 © 2012 – Brad A. Myers

http://www.cs.cmu.edu/~apatite

Studies of Code Understanding
• Thomas LaToza, PhD 2012
• Studies about how experts learn unfamiliar code
• Programmers investigate reachability questions

– How can this code be reached, either upstream or downstream
– E.g., control flow from user scrolling update status line

• Identified over 100 hard-to-answer questions that
developers asked
– E.g., “What method implements this trigger?”
– “Why was this designed this way?”

• Survey shows such control flow questions are difficult
and important

• No easy way to discover with current tools
– Call graphs are too general
35 © 2012 – Brad A. Myers

36 © 2012 – Brad A. Myers

REACHER
• Visualize exactly the paths of interest
• Search along the paths
• Focused questions and answers enable effective analysis of

complex codebases
• Developers with Reacher 5.6 times more successful than

those working with Eclipse only 0:53

Fluorite Logger
• PhD work of YoungSeok Yoon (in progress)
• Fluorite: Full of Low-level User Operations Recorded In The

Editor http://www.cs.cmu.edu/~fluorite
• Logger for all keystrokes & events in Eclipse
• Analyzes frequencies and

patterns
• Deleting is a high percent

of all the keystrokes
• Also surveyed >100

developers

37 © 2012 – Brad A. Myers

http://www.cs.cmu.edu/~fluorite

Backtracking Results

• All developers backtrack for many reasons
– Explorations, investigations, iterative design

• People use comments to remove code, so they
can restore it if necessary
– But difficult to comment & uncomment correctly
– Often non-local changes

• Undo not used for exploration, just typo fixing
• Future work: new tool to help developers

backtrack

38 © 2012 – Brad A. Myers

Summary
• 30 studies; 17 systems in 16 years

• Doing studies first provides new insights that
can inspire significantly new designs for
programming languages and environments

• Need to understand software engineers’ real
issues

• New designs shown to be better

39 © 2012 – Brad A. Myers

40 © 2012 – Brad A. Myers

Thanks to:
• Funding:

– NSF under IIS-1116724, IIS-0329090, CCF-0811610, IIS-0757511 (Creative-
IT), NSF ITR CCR-0324770 as part of the EUSES Consortium

– SAP
– Adobe
– IBM
– Microsoft Research RISE

• >30 students:
 Htet Htet Aung
 Jack Beaton
 Ruben Carbonell
 John R. Chang
 Kerry S. Chang
 Polo Chau
 Luis J. Cota
 Michael Coblenz
 Dan Eisenberg
 Brian Ellis

 Andrew Faulring
 Aristiwidya B. (Ika) Hardjanto
 Erik Harpstead
 Sae Young (Sophie) Jeong
 Andy Ko
 Thomas LaToza
 Joonhwan Lee
 Leah Miller
 Mathew Mooty
 Gregory Mueller
 Yoko Nakano

 Stephen Oney
 John Pane
 Sunyoung Park
 Chotirat (Ann)

Ratanamahatana
 Christopher Scaffidi
 Jeff Stylos
 David A. Weitzman
 Yingyu (Clare) Xie
 Zizhuang (Zizzy) Yang
 YoungSeok Yoon

http://www.nsf.gov/

41

Improving
Software Development through
Human-Centered Approaches

Brad A. Myers
Human-Computer Interaction Institute

School of Computer Science
Carnegie Mellon University

http://www.cs.cmu.edu/~bam
bam@cs.cmu.edu

Better Tools for Authoring
Interactive Behaviors:

ConstraintJS
Brad Myers & Stephen Oney

Human-Computer Interaction Institute
School of Computer Science
Carnegie Mellon University

1 © Carnegie Mellon - 2012

Interactive Software
• Today: programmed with callbacks & side effects
• Result: interdependent, complex code

2 © Carnegie Mellon - 2012

Constraints
• Relationships declared once and maintained

automatically
• Can help reduce the complexity of interactive code
• In GUI programming, constraints have caught on for:

– Data bindings (example: WPF, Silverlight)
– Layout controllers (example: CSS)

3 © Carnegie Mellon - 2012

ConstraintJS
• Constraints for building interactive software
• Integrates constraints with Finite-State Machines

(FSMs)
– Makes it easy to create constraints that sometimes hold
– Result: Cleaner, clearer code

• Works with Web languages (JavaScript, HTML, & CSS)
• (paper to appear at UIST’2012)

4 © Carnegie Mellon - 2012

Motivating Example

5 © Carnegie Mellon - 2012

JavaScript implementation

• Requires:
– Four nested callback functions using side-effects to

handle asynchronous communication
• Ensuring correct scoping for nested callbacks is difficult

– Significant code to ensure view is in sync with model
– Significant error handling code

6 © Carnegie Mellon - 2012

© Carnegie Mellon - 2012

 1 friends = cjs.async(fb_request("/me/friends"));
 2 pics = friends.map(function(friend) {
 3 return cjs.async(fb_request("/" + friend.id
 4 + "/picture"));
 5 });
 6
 7 //...
 8
 9 {{#diagram friends.state}}
10 {{#state pending }} Loading friends...
11 {{#state rejected}} Error
12 {{#state resolved}}
13 {{#each friends friend i}}
14 {{#diagram pics[i].state}}
15 {{#state pending }}
16 {{#state resolved}}
17 {{#state rejected}}
18 {{/diagram}}
19 {{friend.name}}
20 {{/each}}
21 {{/diagram}}

ConstraintJS implementation
• Requires fewer callbacks and no side-effect code
• Clearer and less interdependent code
• Enhances HTML syntax to add flexibility while maintaining clarity

7

Video 4:14

Current Work
• Many interactive behaviors can be specified using

only a combination of FSMs and constraints
• Interactive tool for specifying FSMs & constraints

– Spreadsheet-like for constraints, with columns for FSM
states

9 © Carnegie Mellon - 2012

Acknowledgements
• Microsoft SEIF Award, 2011
• Joel Brandt & Adobe
• Ford Foundation
• National Science Foundation

Website: www.constraintjs.com

10 © Carnegie Mellon - 2012

	Improving�Software Development through�Human-Centered Approaches
	Natural Programming Project
	End User Programming
	Debugging
	Goal: Gentle Slope Systems
	Improve Developer Experience
	Why Would Being Natural be Good?
	Not so Natural!
	First Natural Programming Studies
	Examples of Results
	New Language and System: HANDS
	Supporting “Natural” Data Types
	Study of Errors
	Whyline
	Whyline User Studies
	Crystal
	WebCrystal
	Study of Design Requirements for�Maintenance-Oriented IDEs
	A Programmer’s Working Set
	Times for Bottlenecks
	Jasper: Working Set Tool
	Study of APIs
	“Factory” Pattern
	Object Method Placement
	Study of APIs for SAP
	eSOA Documentation Results
	SAP’s NetWeaver® Gateway Developer Tools
	Our Tools to Help with APIs
	Mica Tool to Help Find Examples
	Jadeite: Improved JavaDoc
	Calcite: Eclipse Plugin for Java
	Euklas: Eclipse Plugin for JavaScript
	Graphite: Eclipse Plugin for Literals
	Apatite Documentation Tool
	Studies of Code Understanding
	REACHER
	Fluorite Logger
	Backtracking Results
	Summary
	Thanks to:
	Improving�Software Development through�Human-Centered Approaches

