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Abstract—Though immutability has been long-proposed as a
way to prevent bugs in software, little is known about how to
make immutability support in programming languages effective
for software engineers. We designed a new formalism that
extends Java to support transitive class immutability, the form of
immutability for which there is the strongest empirical support,
and implemented that formalism in a tool called Glacier. We
applied Glacier successfully to two real-world systems. We also
compared Glacier to Java’s final in a user study of twenty
participants. We found that even after being given instructions on
how to express immutability with final, participants who used
final were unable to express immutability correctly, whereas
almost all participants who used Glacier succeeded. We also
asked participants to make specific changes to immutable classes
and found that participants who used final all incorrectly
mutated immutable state, whereas almost all of the participants
who used Glacier succeeded. Glacier represents a promising
approach to enforcing immutability in Java and provides a model
for enforcement in other languages.

Keywords-immutability, programming language usability, em-
pirical studies of programmers

I. INTRODUCTION

Mutability in software has been frequently cited as a source

of bugs and security vulnerabilities [1], [2], [3], [4]. If a

component depends on mutable data, the architecture typically

must provide a facility for notifying the component when the

data has been modified in order to maintain consistency. If

mutable data is read and modified concurrently, there is a risk

of a race condition unless synchronization is used correctly.

These opportunities for bugs have led some experts, such

as Bloch [5], to advise designing software so that as many

structures as feasible are immutable: not modifiable through

any reference. Other experts, such as Helland, have touted the

benefits of immutability for distributed and database systems

[6]. Likewise, programming languages have included features

that facilitate formal specification of immutability. This offers

two advantages over informal specification: enforcement, so

that the compiler or runtime can inform the programmer when

immutability is violated; and accurate documentation, so that a

client of a component can know what immutability guarantees

the component provides. Unfortunately, existing systems are

either too hard to use or ineffective at preventing bugs [2].
The space of immutability is complex. Our prior work

identified eight dimensions along which a language can support

immutability [2]. If a programming language is to support the

specification and enforcement of immutability, what kinds of

immutability should the language support? Supporting as many

different kinds of immutability as possible results in a complex

system; to date, there are no usability studies published of

immutability specification systems. We previously found that

attempting to support many different kinds of immutability

at once can result in a system that is very difficult to use

effectively and correctly. Alternatively, a design that supports

a small set of immutability-related features might be easy to

understand and apply but fail to capture useful constraints. Such

a system might fail to achieve the goals of immutability systems:

preventing bugs and documenting and enforcing specifications.

This motivates our research question: can we select a subset of

immutability features and design a corresponding programming

language such that:

1) Real users can use the immutability restrictions effec-

tively with minimal training; and

2) Expressing immutability with the language actually

prevents bugs in situations where software engineers

have already decided on an immutable design?

To address these questions, we designed, implemented, and

evaluated Glacier, a type annotation system for Java. Type
annotations are an existing mechanism in Java that supports

extending the type system. Based on prior work that found that

programmers would benefit from strong guarantees [2], we

focused on transitive class immutability. Transitivity ensures

that immutable objects can never refer to mutable objects;

class immutability means that immutability of an object is

specified in its class’s declaration. Glacier, which stands for

Great Languages Allow Class Immutability Enforced Readily,

enforces immutability statically, with no effect on the runtime

and therefore no performance cost on the compiled software,

so that users can get strong guarantees at compile time.

We evaluated the practicality, applicability, usability, and

usefulness of Glacier in two case studies on existing code and

in a user study with 20 participants. In the case studies, we

successfully applied Glacier to a spreadsheet model component

and to a reusable immutable container class, observing that

Glacier is applicable to these real-world, existing software

systems. In applying Glacier, we also found two previously-

unknown bugs in the spreadsheet implementation. In the

user study, we compared Glacier with final, since final

is the current state-of-the-practice mechanism for specifying

immutability in Java. When given programming tasks, users

in the condition where they only had final all made various

errors that resulted in breaches of immutability, even after

receiving explicit training in how to use final correctly; in

contrast, although the participants who used Glacier had never
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seen it before, almost all of them succeeded in using it to specify

immutability correctly. We also asked participants to complete

programming tasks with immutable classes, and found that

although most users were able to complete the tasks, all users

of final wrote code that had bugs or security vulnerabilities

due to improper mutation; Glacier prevented these problems

at compile time.

This paper makes the following contributions:

1) A definition and formal model of transitive class im-

mutability as an extension to Featherweight Java [7];

2) An implementation of that model in a tool called Glacier,

which enforces transitive class immutability in Java. By

enforcing only the kind of immutability for which there

is the strongest empirical support, we have achieved

significant simplifications relative to existing systems;

3) Evaluations of Glacier in two case studies on real

software projects that showed that Glacier captures a

kind of immutability appropriate for those projects;

4) The first formal user study of any immutability system.

We compared Glacier to final and found that all ten

participants who used final wrote code that had bugs

or security vulnerabilities, even after having been trained

on correct final usage, in a situation in which Glacier

statically detects those problems. Almost all the Glacier

users were able to complete the tasks successfully.

II. BACKGROUND

Although it might seem that immutability is a simple concept,

designing an enforcement system requires making a collection

of design choices regarding what immutability means and

how it will be enforced. Prior work identified eight distinct

dimensions of immutability [2], resulting in at least 512

different combinations of features. As such, any proposal should

include a justification for its position in the design space. Some

key dimensions of immutability include:

1) Restriction type: assignability restricts assignment to

variables; read-only restrictions prevent writes through

particular references to an object; immutability prevents

writes through all references to an object.

2) Scope: object-based restrictions pertain to particular

objects, while class-based restrictions pertain to all

instances of a particular class.

3) Transitivity: transitive restrictions apply to all objects

reachable from a given object via its fields; non-transitive
restrictions apply only to the object’s fields.

4) Polymorphism: restriction polymorphism allows one

function to accept inputs with several different kinds

of restrictions. In parametric restriction polymorphism, a

parameter can represent a restriction instead of a literal

restriction; then the actual restriction is according to the

value of the parameter.

5) Enforcement: static enforcement occurs at compile-time;

dynamic enforcement occurs at runtime.

Design recommendations. Our prior work included inter-

views with professional software engineers and concluded

that the transitive immutability subspace seemed to reflect the

needs of our interviewees. Immutability can provide particularly

useful guarantees: immutability provides guarantees regarding

state change, rather than guarantees regarding access (as in

the case of read-only restrictions). Relative to non-transitive

immutability, transitive immutability is more useful: the entire

state of an immutable object is immutable, rather than just a

part that depends on the object’s implementation. For example,

if a transitively immutable Person object has a reference

to an Address object, Address must be immutable as well.

As a result, objects that are transitively immutable can be

shared safely among threads without synchronization, and

invariants that are established regarding objects’ state are

always maintained. Our interviews also found evidence in

support of class immutability, with some engineers observing

that most classes serve a particular architectural role, and that

role typically either requires mutability or not.

III. THE DESIGN OF GLACIER

A. Evidence-based design

We designed Glacier using an evidence-based approach.

Based on our prior findings showing that transitive immutability

provides particularly useful guarantees, we concluded that

Glacier would support transitive immutability. In order to

facilitate practical usage of Glacier, since Witschey et al. found

that simplicity and ease of use are predictive of adoption

[8], we designed Glacier to be as simple as possible while

still enforcing immutability. Glacier is a static typechecker, so

it provides strong, compile-time guarantees and imparts no

runtime cost on programs. When invoking the existing Java

compiler on the command line, users can pass a command-

line argument that causes the compiler to invoke the Glacier

annotation processor; users of a build system can arrange

to always pass this argument by default. This approach has

practical advantages, since teams can adopt Glacier without

changing compilers and individual programmers can choose

when to invoke the checker, for example skipping checking to

temporarily use unsafe debugging code. However, it is possible

to circumvent these checks by not running the annotation

processor. For example, from a class that is compiled without

Glacier, one could modify a public field in an @Immutable

class defined in an external .jar file.

Favoring simplicity over expressiveness may limit adoption

by limiting applicability. For example, fields in immutable ob-

jects cannot be initialized lazily or include circular references.

B. Syntax and context

We were interested in evaluating our tool in the context

of an existing corpus of code and with programmers who

might be able to use it. As such, we implemented Glacier

in the context of Java, which has a large and active user

base. Java is also representative of a broad class of object-

oriented languages. Implementing Glacier as a type annotation

processor has several benefits over a from-scratch approach:

by using Java type annotations, Glacier uses only existing

Java syntax and can be parsed by the standard Java parser.

495497



Glacier is implemented within the Checker Framework [9],

which facilitated Glacier’s development. In Glacier, types

can be annotated with @Immutable to indicate that they are

immutable. Types that are not annotated are not guaranteed

to be immutable. Glacier represents this with an implicit

annotation of @MaybeMutable. Below is an example of a simple

@Immutable class:

@Immutable class Person { ... }

C. Class immutability

Some systems, such as IGJ [10], support both and class

immutability and object immutability. However, we seek to

design a system that is as simple as possible and yet still reflects

users’ needs. We found, perhaps surprisingly, that supporting

only class immutability and not object immutability resulted in

significant simplifications to the system. For example, suppose

@Immutable could be applied to objects and classes. Consider

an identity method:

interface DateUtilities {
public Date identity(Date d);

}

The declaration of identity does not specify whether its

argument is @Immutable. A caller of identity may require

that the annotation on the returned object is the same as the

annotation on the passed object, but the interface does not

provide that guarantee. Polymorphism addresses this problem:

interface PolymorphicDateUtilities {
public @I Date identity(@I Date d);

}

This notation means that the Date input to identity has

some annotation, @I, and the returned object has the same

annotation. Though polymorphism increases flexibility, adding

this feature increases the complexity of the language.

Another problem with object immutability pertains to the sub-

typing relationship between mutable and immutable instances of

a particular class. Consider a method that took an @Immutable

object as a parameter. Passing a @MaybeMutable object would

be unsafe because the method might assume that no state in

the object will change in the future, perhaps sharing it among

threads. Likewise, a method that expects a mutable object

cannot take an immutable object because the immutable object

lacks mutating methods. Therefore, in Glacier there is no direct

subtyping relationship between the mutable and immutable

types. By supporting only class immutability, the user can

decide whether each class should be mutable or immutable,

and then there is no question of subtyping among objects of the

same class. Alternatively, one could have a common supertype

of both the immutable and mutable subclasses. This requires

introducing a third type, again resulting in more complexity.

Either the user has to manually implement all three classes, or

there must be a system by which the user may specify how to

generate them.

Supporting only class immutability also simplifies error

messages: on seeing an error message pertaining to an annotated

type, the user can always know that the annotation came from

the class’s declaration or a conflicting local annotation, rather

than via type inference (which would otherwise be important

to avoid the proliferation of annotations on all types). When a

user sees a type name, the annotation is implicit; if there is a

declaration of @MaybeMutable class Date, then there is no

need to annotate any other usage of the Date type because every

Date is @MaybeMutable. Likewise, an object is immutable if

and only if its class is immutable, simplifying reasoning. These

semantics are formalized in Figure 1.

D. Restrictions of immutability

Glacier enforces two restrictions on the fields of @Immutable

classes: all fields must be @Immutable, and fields cannot

be assigned outside the class’s constructors. Note that the

former requirement implements transitive immutability: an

@Immutable class’s fields must all be @Immutable, so the

referenced objects cannot have their fields reassigned or refer

to mutable objects, etc. final is permitted on fields but

is redundant with @Immutable on the containing class. For

example:

@Immutable class Person {
String name; // OK; String is @Immutable
Date birthdate; // Error; Date is @MaybeMutable

void setName(String n) {
name = n; // Error; Person is @Immutable

}
}

When a reference to an object is of @Immutable type, Glacier

guarantees that the referenced object is immutable. However,

if a reference type is not @Immutable, Glacier provides no

immutability guarantees. In particular, the referenced object

may dynamically be @Immutable. As a result, subclasses

of @Immutable classes must be @Immutable, but subclasses

of @MaybeMutable classes can be either @MaybeMutable or

@Immutable. Importantly, a subclass of a @MaybeMutable

class can only be @Immutable if no superclass has a non-

final field or field of @MaybeMutable type. Likewise, if an

interface is declared @Immutable, then all implementing classes

must be @Immutable, but a @MaybeMutable interface can be

implemented by an @Immutable class. All subinterfaces of

@Immutable interfaces must also be @Immutable. This ensures

that all subtypes of an @Immutable type are @Immutable.

It is not obvious that it should be permitted to declare an

immutable subclass of a mutable class. It might seem that

if the superclass has a guarantee of mutability, the subclass

should adhere to that guarantee. However, that is precisely

why the alternative to @Immutable is @MaybeMutable: a

@MaybeMutable class is not guaranteed to be mutable. A

significant disadvantage of this design decision is that adding

a non-final or @MaybeMutable field to a @MaybeMutable

class is a breaking change for @Immutable subclasses; this

disadvantage is compounded by the fact that subclasses may

not even be in the same package as the superclass and the

implementor of the superclass may not be aware of the

existence of subclasses. However, the problem of changes
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in superclasses unexpectedly breaking subclasses is long-

standing in object-oriented systems and is well-known as the

fragile base class problem [11]. Enabling immutable classes to

subclass certain mutable classes enables existing, commonly-

used design patterns to be compatible with Glacier. For example,

Google’s Guava libraries [12] provide an ImmutableList class

that (indirectly) extends java.util.AbstractCollection, which

cannot be @Immutable because it has mutable subclasses.

However, ImmutableList itself does not support mutation and

can be annotated @Immutable. Because practicality is a design

objective of Glacier, we considered allowing @Immutable

subclasses of @MaybeMutable classes a good tradeoff to make.

It might be possible to address the fragile base class problem

by supporting an additional annotation for classes that must not

refer to any mutable state but which may have @MaybeMutable

subclasses.

Java primitives, such as int, are @Immutable; assignment

to a primitive-type variable reflects binding the variable to a

different primitive, not a mutation of an existing value. Glacier

includes a list of JDK classes, such as String and Integer,

that are @Immutable, but that list does not currently include

all immutable classes in the JDK.

It is an error in Glacier to give an annotation to a type use

that is different from annotation given at the type’s declaration.

If no annotation is provided in the type’s declaration, then the

annotation @MaybeMutable is implicit. As a special exception,

both @Immutable Object and @MaybeMutable Object are

permitted, so that all @Immutable types have a common

supertype that specifies immutability. For example, one can

specify a container that can hold any immutable object.

@Immutable Object is a subtype of @MaybeMutable Object:

a @MaybeMutable Object can refer to any object at all. For

example:

@Immutable class ImmutableContainer
<T extends @Immutable Object> { ... }

class Container<T> { ... }

In the Checker framework, receiver annotations are con-

travariant with respect to overrides: an overridden method must

be called on an object with a supertype annotation of the

original method’s receiver. This ensures that if the method was

invokable on an object of superclass type, it will be invokable

on an object of subclass type as well. Glacier overrides this

to permit covariant annotation overriding in the receiver. This

allows methods of Object to be overridden in @Immutable

subclasses, and it is safe because dispatch to the method of an

@Immutable subclass implies that the @Immutable annotation

on the receiver is correct.

E. Additional annotations for arrays

Arrays are an older Java feature and their design has various

inconsistencies with other aspects of Java, so they pose some

special problems. For example, occasionally it is desirable to

write a method that can take both mutable and immutable

arrays; this is safe if the method can be statically guaranteed

to never reassign any of the array elements. Note that this

case does not arise with other kinds of objects because with

other objects, the types dictate the immutability annotation. To

address this case, Glacier includes an additional annotation,

@ReadOnly, which is used on array parameters to methods. A

@ReadOnly array can also be referenced by a field that has a

@ReadOnly array type.

The empty array poses a special problem: is it mutable or

immutable? It is fundamentally immutable because it has no

indices that can be modified, but it is also possible to declare

a mutable array and reference an empty array with it. One

workaround might be to declare two different empty arrays: one

mutable and one immutable. Instead, the Glacier type hierarchy

includes a bottom element, so named because it is a subtype

of all other types. The bottom element, @GlacierBottom,

applies to objects that have all properties of mutable and

immutable objects, and can therefore be used when one wants

either kind of object. One can declare an empty array of Ob-

ject as follows: static final Object @GlacierBottom []

EMPTY_ARRAY = new Object @GlacierBottom [0];. null

also has annotation @GlacierBottom because it can be as-

signed to references with any annotation.

When any new object is allocated, it is guaranteed to not

be aliased directly. For example, when the clone() method is

called on an array, there are no aliases to that array (though

there may be aliases to its elements). As a result, the result of

a clone() call may be assigned to an @Immutable array or to

a @MaybeMutable array; Glacier achieves this by annotating

the return type of clone() with @GlacierBottom. Certain

JDK methods also return @GlacierBottom arrays, such as

Arrays.copyOf.

Our experience is that most users do not use arrays regularly,

instead preferring collection classes, so the complexity of arrays

may not be a significant burden to most users.

F. Typecasts

Normally, Java permits unsafe downcasts at compile time and

checks for safety at runtime. Glacier has no runtime component,

so unsafe casts are forbidden. For example, if u is of type

@Immutable C, then Glacier reports a compile error on this

cast: ((@MaybeMutable C)u).

G. Type parameters

Suppose an @Immutable class has a type parameter:

@Immutable class Box<T> {
T obj;

}

If Box is instantiated with a mutable type for T, then Box

contains a mutable object, which is a violation of transitive

immutability. As a result, Glacier restricts type parameter

instantiations on @Immutable classes to @Immutable types.

This is a conservative approximation, since the type parameter

may never be used in a field. However, checking whether a type

parameter is used as a field depends on the implementation of

the referenced class, which might result in confusing errors

and which would violate modularity: if an immutable class was

changed from not using its type parameter in a field to doing

so, that would be a breaking change for clients that instantiated
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the class with a mutable type parameter. Furthermore, it is our

experience that most generic classes use their type parameters

in fields, so the conservative nature of this restriction is unlikely

to be important in many use cases.

H. Robustness to future changes

One of the problems with final is that although it restricts

assignability on fields to which it is applied, there is no way to

specify that all fields of a class are final. When adding a new

field to an immutable class, the author may neglect to mark

the field final. Likewise, final cannot specify restrictions

at the usage of a type, so clients of a class cannot ensure that

it is final. Glacier solves this problem by permitting users to

annotate any type use with an annotation. If that annotation is

inconsistent with the annotation used in the type’s declaration,

Glacier will report an error. This lets programmers specify that

they depend on the immutability of a particular class they are

using so that the compiler will report an error if that class is

ever edited to make it mutable in the future. Although this

offers an opportunity for authors of APIs to break clients,

we think of this as exposing an existing mechanism of client

breakage, which cannot currently be identified by the compiler.

I. Glacier formalization

To help inform the design of Glacier, we created a formal

model (shown in Figure 1). Our formalism is an extension of

Featherweight Java [7], which is a commonly-used minimal

core calculus for Java. Gray boxes show changes in Glacier.

For conciseness, not all rules from Featherweight Java are

presented; those not presented are still part of the system.

IV. EVALUATION: CASE STUDIES

A. Objectives

The restrictions that Glacier enforces were justified by prior

work [2], our goals of simplicity, and the recommendations of

experts [5], but do those restrictions reflect situations that arise

in real software? Can Glacier work in software systems that are

large and complex? Though we cannot infer from case studies

that Glacier is applicable to all systems (indeed, it likely is

not), the goal of case studies was to gain an understanding

of situations to which Glacier does apply and to refine the

design of Glacier itself. For example, we found in the second

case study that some immutable classes derive from classes

that also have mutable subclasses; a previous formulation of

Glacier did not reflect that use case. The case studies also drew

our attention to the problems of overriding methods defined in

Object. Finally, the case study systems provided a source of

interesting test cases and helped us make Glacier more robust,

particularly in the area of type parameters.

B. Case study: ZK Spreadsheet Model

ZK Spreadsheet is a commercial, partly open-source, Java

spreadsheet implementation [13]. It supports importing doc-

uments from Excel and provides a server-based spreadsheet

component that can be inserted into web pages via an Ajax

client-side component. As a case study of Glacier, we refactored

Syntax:
Mod ::= assignable | final

CL ::= [@Immutable] class C extends C implements I { Mod C f; K M}

IF ::= [@Immutable] interface I extends I {M-Decl}
K ::= C(C f) { super (f); this.f= f; }

M-Decl::= C m(C x)

M ::= M-Decl { return t; }
t ::= x | t.f | t.m(t) | new C(t) | (C) t | t.f = t |v ::= new C(v)

Subtyping:

@Immutable Object <: Object

[@Immutable] interface I extends J{. . .}
I <: Ji

[@Immutable] class C extends D implements I{. . .}
C <: D

[@Immutable] class C extends D implements I{. . .}
C <: Ii

Syntactic MUTABLE and IMMUTABLE judgements: If an @Immutable class includes mutable fields, it will be judged

IMMUTABLE but fail to typecheck.

class C extends D implements I {Mod C f, K M}MUTABLE

@Immutable class C extends D implements I {Mod C f, K M} IMMUTABLE

interface I extends I{M-Decl}MUTABLE

@Immutable interface I extends I{M-Decl} IMMUTABLE

MUT-FREE judgement: If a class’s fields, including all fields introduced by superclasses, are all final and immutable, then

the class may be used as a superclass of an immutable class. This is different from the IMMUTABLE judgement, which

requires a declaration of @Immutable. The MUT-FREE judgement is used only to specify the static semantics.

Object MUT-FREE

@Immutable class C extends D implements I {. . .}MUT-FREE

D MUT-FREE ∀i.Ai = final ∧ Ci IMMUTABLE

class C extends D implements I {Mod C f, K M} MUT-FREE

Static Semantics: The T-mutable-class rule is the same as in FJ except with the additional condition that D is mutable.

fields(D) = D g
M OK in C

K = C(D g, C f) {super(g); this.f = f; }
D MUT-FREE

∀i.Ci IMMUTABLE

methods(I) ⊂ (decl(M) ∪methods(D))

@Immutable class C extends D implements I {Mod C f, K M}OK

fields(D) = D g
MOK in C

K = C(Dg, Cf) {super(g); this.f = f; }
{super(g); this.f = f; }

DMUTABLE
∀i.Ii MUTABLE

methods(I) ⊂ (decl(M) ∪methods(D))

class C extends D implements I {Mod C f, K M}OK

Γ � t0 : C0 fields(C0) = Cf Γ � t2 : C
′
i C′

i <: Ci C0 MUTABLE

Γ � t0.fi = t2 : Unit

Casting: Casting is as in FJ.

Fig. 1. Formalization of Glacier; gray boxes show differences with
Featherweight Java.
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the model portion of ZK Spreadsheet 3.8.3 (comprising about

36 KLOC) so that cell styles were immutable (cell styles record

information required for correct visual rendering of cells, such

as background color, font, etc.). We also updated the rest of

the spreadsheet implementation (comprising about 21 KLOC)

to use the new model. We added annotations so that Glacier

could enforce immutability statically. The refactoring took the

first author approximately 20 hours, not counting time spent

fixing bugs in Glacier; this would likely have been less if we

had already been familiar with the ZK codebase. In the process,

we identified two previously unknown bugs in the spreadsheet

implementation, one of which was due to incorrect copying

code; in our revised version, no copying was necessary because

immutable objects can be shared safely. The other bug related

to font cache misses when changing fonts in cells.

Before starting, we asked the authors of ZK Spreadsheet

whether they used any immutable structures, and they explained

that they did not because they were wary of the performance

cost of copying that would be likely if objects were immutable.

However, cell styles can be shared among many cells, and

ZK Spreadsheet has no data structure tracking which cells

use a given style. Thus, to modify a cell’s style, the system

must make a fresh style, since modifying the existing style

might incorrectly affect other cells. As a result, though the cell

class was mutable, it was copied on nearly every modification.

We believe the performance cost of using immutable styles is

minimal; in fact, immutable styles may increase performance

by facilitating safe sharing.

Our refactoring primarily used three strategies to convert

mutable classes to immutable ones. In most cases, clients that

mutated classes changed a small number of parameters at a

time; in these cases, we added a new constructor that took

the previous instance and the new value of the parameter.

This approach was similar to that used by Kjolstad et al in

their automatic refactoring tool [14]. Other classes had many

attributes that typically needed to be modified at once; if those

constituted most of the state of the object, the client called a

constructor; otherwise, we used a mutable Builder object [15]

to represent the collection of changes. This approach prevented

overly verbose, inefficient implementations that would have

resulted from using the first approach alone.

From our case study, we conclude that Glacier can be adopted

to express and enforce transitive class immutability in some

complex, real-world systems with a practical amount of effort.

C. Case study: Guava ImmutableList

After our initial case study on application software, we

wanted to see how Glacier might be used on a very different

system. Google’s Guava project includes several immutable

collection classes, including ImmutableList; though relatively

small, this library is designed to be used in a wide range of

projects. We annotated ImmutableList and its superclass,

ImmutableCollection, with @Immutable and made the

appropriate changes necessary to make them compile. As a

result of the use of generics in ImmutableList, when using

Glacier, it was necessary to specify annotations for the bounds

of the type parameters. For example, the original declaration

of ImmutableList included: public abstract class

ImmutableList<E> extends ImmutableCollection<E>.

With Glacier, however, E is restricted to immutable objects,

so the new declaration reads @Immutable public abstract

class ImmutableList<E extends @Immutable Object>

extends ImmutableCollection<E>. This constrains E to

descending from @Immutable Object, expressing an upper
bound on the type parameter. One might expect to write

@Immutable E rather than E extends @Immutable Object,

but Java specifies that @Immutable E expresses a lower bound

on E rather than an upper bound; that is, it specifies that E

must be a supertype of @Immutable Object, not a subtype.

ImmutableList included this method: static

Object[] checkElementsNotNull(Object... array).

checkElementsNotNull took and returned a mutable

array, but callers passed an immutable array to

checkElementsNotNull, which was an error. Because

Java methods cannot be overloaded with different annotations,

we were unable to provide an alternative method with the

same name that takes and returns an immutable array. This is

one case in which polymorphism might be desirable. However,

because checkElementsNotNull never modifies the input

array, it is not actually necessary to return an array. We

addressed this problem by refactoring this method to only do

the checking and not return the input array.

The only aspect of ImmutableList that we were unable to

represent in Glacier is a cache in ImmutableCollection, which

caches an ImmutableList representation of the collection. Some

languages, such as C++, permit exclusion of specific fields

from enforcement of immutability. Glacier has no provision for

allowing mutable fields in immutable objects so that Glacier

can provide strong guarantees. A workaround would be to

populate the cache inside the ImmutableCollection constructor,

but this would have a performance cost if the list representation

is never needed. We hope to extend Glacier in the future to

permit lazy initialization of fields in immutable objects; such

initialization could be done safely if it is based only on state

that was available at initialization time.

V. USER STUDY

Our user study of Glacier was designed to see whether Java

programmers could use Glacier effectively with little training.

We found that they could; in contrast, Java programmers with-

out Glacier were unable to use final to express immutability

correctly even after receiving appropriate training. We also

found that Java programmers without Glacier wrote code that

mutated immutable state, creating bugs and security flaws;

Glacier detects these errors statically. Though there is a wide

variety of proposals in the literature for systems that support

immutability, we have not found any others that have been

evaluated in a formal user study.

A. Methodology

We recruited 20 experienced Java programmers to participate

in our study, which was approved by our IRB. For each
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sequential pair of participants, we randomly assigned one to

a control condition, in which the participant used final, and

the other to a treatment condition, in which the participant

used Glacier, resulting in ten participants in each condition.

After obtaining informed consent, we gave participants a pre-

study questionnaire regarding their programming experience,

including an assessment of their prior understanding of final.

Participants in the final condition were asked to read three

pages of documentation on final; participants in the Glacier

condition completed a two-page paper-based tutorial on using

Glacier. Participants were permitted to ask questions during

this phase of the study. The remainder of the study consisted

of four programming tasks in three different Java packages.

Participants used the IntelliJ IDEA Community 2016.2 Inte-

grated Development Environment (IDE) with Java 1.8 on a 15”

MacBook Pro; we recorded audio and a video of the screen for

analysis. We helped participants as needed with issues related

to the computer system and IDE they were using, such as

how to find a web browser and how to copy/paste, but did not

answer questions about Glacier or final.
A study replication package is available [16], including all

materials that were used in the study.
Task 1: making Person immutable. The Person package

only included two classes: Person and Address. We asked

participants: “Please make any necessary changes so that

‘Person’ in the ‘person’ package is immutable. After you’re

done, there should be no way to change an instance of a class

after it is created.” Participants had 22 minutes to complete

this task.

public class Person {
String name;
Address address;
...

}

We expected that some participants in the final condition

would neglect to mark Address as final.
Task 2: making Accounts immutable. The Accounts

package represents all of the user accounts on a computer

system. We asked participants: “Please make any necessary

changes so that ‘Accounts’ in the ‘useraccounts’ package is

immutable. After you’re done, there should be no way to

change an instance of a class after it is created.” Participants

had 20 minutes to complete this task.

public class Accounts {
User [] users;
...

}

We expected that some participants in the final condition

would neglect to modify the User class; in addition, making

this class immutable required defensively copying the users

array because there is no way in Java to make array elements

final, and we expected that some participants would forget.
Glacier participants who did not complete tasks 1 and 2 in

the allotted time were told how to finish because otherwise the

resulting compiler errors would interfere with the next tasks.
Revision with advice. After they completed tasks 1 and 2,

participants in the final condition were given a copy of page

73 from Effective Java [5], which outlines how to make a class

immutable:

1) Don’t provide any methods that modify the object’s state.

2) Ensure that the class can’t be extended.

3) Make all fields final.

4) Make all fields private.

5) Ensure exclusive access to any mutable components.

Participants could ask any questions for clarification; then, they

were told they could revise their work from the previous tasks.

Task 3: FileRequest.execute(). We were interested in

whether using Glacier would prevent programmers from

creating security vulnerabilities in their software. The Java

getSigners() bug [17] involved a private array being returned

from an accessor, enabling any client to modify the contents of

the array. We replicated the structure of the getSigners() bug

in the context of the code from the previous task. Participants

were told: “A FileRequest represents a request for a particular

file from a web server, represented by a WebServer object.

Normally, third-party clients implement their own types of

requests, so it is important that the Accounts object that a

Request gets access to is secure. As a test of the Accounts

system, please implement FileRequest.execute() so that it does

the appropriate access checks before granting access. In the

process, you will need to implement User.getAuthorizedFiles().”

Participants had 20 minutes to complete this task.

Although implementing User.getAuthorizedFiles() was stated

as an incidental task, we were primarily interested in whether

participants who used final remembered to copy the private

array, authorizedFiles. Neglecting to do so would result

in a security vulnerability similar to the getSigners() bug,

since then any client of User could change which files a User

was authorized to access. In the Glacier condition, participants

could either copy the private array before returning it, or change

the return type to return an @Immutable array; by enforcing

transitive immutability of User, Glacier would identify all

unsafe handling of the array. Participants in the final condition

who did not copy the array but told the experimenter they were

done with the task were given a sample of exploit code and

then given an opportunity to revise their solution.

Task 4: HashBucket.put(). We wanted to know whether

Glacier could prevent users from accidentally inserting mutation

into existing immutable classes in real-world-like situations; is

this an error that many programmers make without Glacier? We

based our task on bug #1297 [18] in BaseX, which is an open-

source XML database [19]. In that bug, the delete method

on an implementation of an immutable hash map incorrectly

modified the old hash map’s data structures. In order to replicate

this in a user study, we simplified the implementation to use

a much simpler data structure while leaving the external API

and comments in place as much as possible. The result was

code that should be substantially easier to read and understand

than the original and included many hints that the class was

immutable, such as the fact that all modification methods

returned a new object and the fact that the implementations of

the provided methods made extensive use of copying.
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final Glacier
Correctly enforced immutability in Person 0/101 10/10

Correctly enforced immutability in Accounts 0/101 9/102

FileRequest.execute() tasks
without security vulnerabilities

4/8 7/7

HashBucket.put() tasks without bugs 3/10 7/7

TABLE I
SUMMARY OF USER STUDY RESULTS

We gave participants our hash map, which was implemented

with an array of buckets, each of which contained lists of

keys and values. The instructions to participants included:

“HashBucket.put() is only partially implemented. Please finish

the implementation by replacing the placeholder ‘return this’

with the right code.” Since this task was last, we gave

participants as much time as they needed to complete this task

except when the total study period was exhausted. Users in the

final condition who erroneously modified the old object’s data

structures and declared that they were done, if time allowed,

were given an additional test case that exhibited the problem

and the opportunity to fix their implementations.

B. Participants

We solicited participation from several different degree

program mailing lists at Carnegie Mellon and from our

acquaintances. Most of the participants were either Master’s or

Ph.D. students. We recruited twenty Java programmers, six of

whom were female, and paid them $15 after they completed our

study, which took about an hour and a half. Their programming

experience ranged from four to nineteen years, with a mean

of 9.5 years. Everyone had at least a year of Java experience;

the mean was three years. They had an average of two years

of professional experience writing software. We also asked

participants to self-report their level of Java expertise, selecting

from “novice,” “intermediate,” and “expert.” Three participants

identified themselves as experts; the rest considered themselves

intermediate-level. Fifteen (75%) had used Java annotations

before; eighteen (90%) had used final before.

We asked participants five questions about the behavior of

final; the average score was 3.45/5. 11 participants knew

what final meant when specified on a class, and 11 knew

what final meant when specified on a method declaration. 17

participants knew that final does not forbid assignment in a

constructor; 17 knew that it forbids assignment in setters; 13

knew that it does not forbid calling setters on final fields. We

found no relationship between experience using Java and the

number of these questions participants answered correctly.

C. Results

Results are summarized in Table I. The denominators vary

because some participants did not complete all tasks.

After participants revised their code according to the advice

from Effective Java, we counted errors (shown in Table II)

1After participants made corrections.
2Including extra time and compensating for searching; see §V-C.

Error # users
Provided mutating methods 0
Person not final 6
Address not final 10
Accounts not final 2
User not final 9
Fields of Person not final 2
Fields of Address not final 6
Accounts.users not final 1
Fields of User not final 4
Fields of Person not private 4
Fields of Address not private 8
Accounts.users not private 2
Fields of User not private 7
Omitted copying users in Accounts constructor 4
Omitted copying users in Accounts.getUsers() 2
Omitted copying authorizedFiles in User constructor 8

TABLE II
ERRORS MADE BY PARTICIPANTS USING FINAL FOR IMMUTABILITY THAT

REMAINED AFTER REVISION. ERRORS CONSIST OF FAILURES TO FOLLOW

THE ADVICE IN Effective Java [5].

participants made with respect to that advice. Despite having

the recommendations available while editing, every participant

using final made mistakes. Two users made no non-transitive

mistakes (i.e. mistakes directly in the Person and Accounts

classes). No users remembered to make Address final, even

though an instance of Address was used in Person. We

conclude that enforcing immutability with Java as it currently

exists is too complicated and error-prone for Java programmers

to do effectively.

We stopped one user in each task at the time limits (22

minutes and 20 minutes, respectively). The average initial (pre-

revision) time for Person and Accounts were 4 and 6 minutes,

respectively. Participants spent an average of 6 minutes revising

after receiving the Effective Java page. Among participants

who said they were done with both tasks, the total average

time, including revisions, was 15 minutes.

Making Person and Accounts immutable with Glacier.

All of the Glacier participants successfully annotated Person

with Glacier. Three did not finish modifying Accounts within 20

minutes, though one was given additional time and succeeded

after 6 extra minutes. A common obstacle in the Accounts task

was initializing an immutable array. The starter code included:

String[] files = {"RootUserBankAccounts.txt"};

Unfortunately, Java forbids annotations in an obvious place:

String @Immutable [] files =
@Immutable {"RootUserBankAccounts.txt"}; // ERROR

Participants needed to write instead:

String @Immutable [] files =
new String @Immutable [] {"RootUserBankAccounts.txt"};

Most users solved this with an Internet search, but the time

required to do this was very variable. If we ignored this time,

then two additional participants (9/10) would have succeeded

within 20 minutes.

Several of the earlier participants did not annotate one of

the classes until the next task due to a problem with the build

system, in which it failed to rebuild all files that depended on
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the changed files; we later revised the instructions to avoid this

problem. Correcting for this and deducting the time spent on

array initialization resulted in an average total annotation time

(across both tasks) of 11 minutes; applying these corrections

to final users results in an average of 14 minutes for those

users. The difference compared to the average time for final

users is significant with p < 0.1 (Wilcoxon rank sum test).

FileRequest.execute(). Seven of the Glacier users success-

fully completed this task. One participant encountered an

unrelated build system bug; two did not finish within 20

minutes. One of these two misinterpreted the starter code and

attempted to implement getAuthorizedFiles() as a much

more complex method than the accessor that was intended.

Eight of the final users said within 20 minutes that they were

done. Though Glacier prevented any security problems for

the Glacier users, four of the final users (half of those who

finished) did not copy the private authorizedFiles array, causing

a security vulnerability similar to the Java getSigners() bug.

HashBucket.put(). All of the final users said they com-

pleted the task within 27 minutes, but they required up to an

additional 11 minutes to fix their bugs after we showed them the

additional test case. The average total time for final users was

18 minutes; the average total time for Glacier users who finished

was 14 minutes. The difference in times was not significant.

Seven of the final users incorrectly modified the HashBucket’s

internal data structures, resulting in a bug. In addition, six

final participants returned the existing HashBucket instance

rather than creating a new one. One Glacier user gave up after

29 minutes, having gotten an error from Glacier after trying to

modify an immutable array and could not figure out another way

to solve the problem. In addition, two Glacier users had already

exhausted the overall study period and could not be given

enough time to finish. Overall, 3 of 10 final users completed

the task correctly; Glacier detected the problem statically, and 7

of 9 Glacier users who started the task completed it successfully.

D. Discussion

We had hypothesized that participants would spend signifi-

cantly less time specifying immutability with Glacier than with

final because using Glacier required only adding annotations,

whereas using final required making several kinds of changes,

such as copying arrays in constructors. Variance in time was

high in both tasks, as is typical in studies of programmers [20].

For example, some users (particularly in the final condition)

wrote test code to see if they could cause data to be mutated;

others wrote no tests (time spent writing and executing tests

was included in the task times above). In addition, final

users would have spent more time if they had completed all of

the work required to do the tasks correctly. However, even if

Glacier did not save users any time in specifying immutability

relative to final, it likely took users the same amount of time

to enforce a much stronger property while avoiding mistakes.

One might have expected final participants to make fewer

errors than they did, since all of the participants in that

condition had used final before. However, some of the

participants had never attempted to use final to enforce

immutability. One participant remarked when starting to read

the final documentation: “I’ve only used final on integers

before, so this will be instructive.” Some participants vocalized

considering and rejecting Bloch’s advice, for example reasoning

that since a class had no setters, it was immutable, so other

changes (such as making the class final) were unnecessary.

When using final for immutability, then, it is not sufficient

to say that a class should be immutable; one must say exactly

what kinds of future changes the class should be robust to.

In the final condition, the requirement to defensively

copy arrays in constructors and accessors was particularly

problematic. For example, 80% of the participants omitted a

defensive copy of the authorizedFiles array in the User con-

structor. Some participants complained about the performance

impact of this strategy: after implementing defensive copying in

getUsers(), one participant remarked, “I’m not really happy.

If there’s a lot of users and getUsers is called frequently. . . that

will slow down the performance.” Two participants, after

reading the Effective Java page, asked for an explanation of

why defensive copies were necessary, but even after hearing the

explanation, one of these two users omitted required defensive

copying. We conclude that although following the advice would

result in certain protections against mutation, few users can

successfully apply the advice to even a simple programming

project, even when given the advice immediately before needing

to use it, and even with access to the recommendations while

programming; we believe the problem is one of complexity,

lack of enforcement, and lack of understanding that the

recommendations are relevant.

Some Glacier users reported that the two annotations on

arrays—one on the array itself and one on the component type—

were confusing. Though this a fundamental aspect of containers,

we believe that one of the reasons users faced difficulty is that

the design of arrays (a relatively old feature) is inconsistent with

the approach used in generic classes, in which the component

type is specified in angle brackets rather than next to the

container name. The user study did not include tasks involving

annotated type parameters; our experience suggests that using
them is straightforward, but writing parametrized classes can

be difficult due to the need to specify type parameter bounds.

Our impression from observing participants was that

Glacier’s error messages tended to force users to understand

transitivity; final users who misunderstood our definition of

immutability received no such feedback. Future studies should

distinguish between behavioral changes caused by a clearer

understanding of immutability (fostered by training or tooling)

and behavioral changes caused by compiler enforcement.

E. Limitations

The main threats to validity are of our study are due to

the simplicity and limited nature of our tasks and the relative

inexperience of our participants. Likewise, our participants

came from a relatively narrow set of backgrounds. It is possible

that more-expert Java programmers would have been able

to use final more successfully and that the training we

provided for final was insufficient. We think it is unlikely

502504



that programmers would be less likely to incorrectly mutate

immutable structures in a more complex codebase than the one

we provided, but perhaps more-expert programmers would be

better at identifying the implicit immutability requirements. We

selected our tasks to expose opportunities to mutate structures

incorrectly; though we have shown that these tasks do result

in incorrect mutation, the fraction of real-world programming

tasks that are similar is unknown.

VI. RELATED WORK

Usability analysis of programming languages has been

pursued by a variety of different researchers when considering

different aspects of language designs [21]. Endrikat et al.,

for example, found that static typing improves software

maintainability [22]. However, Uesbeck et al. found that

although C++ lambdas are a highly-touted feature of C++,

they actually impose costs to programmers [23]. Together,

these results suggest that although static typechecking can be

beneficial, it is important to do usability studies to assess the

impact of any proposed language feature.

Though there is a large collection of immutability-related

systems proposed in the literature, we have not found any

usability studies of these systems. A more comprehensive

review of these can be found in prior work [2], [1]. IGJ

[10] implemented class- and object- immutability as well as

read-only references and supported polymorphism, but did not

enforce transitivity; this work included case studies but no

user studies, so it is unknown whether other Java programmers

can use IGJ effectively. Haack and Poll [24] proposed a type

system for object immutability, read-only references, and class

immutability that supported initialization outside constructors,

but the only evaluation of this system was theoretical. Skoglund

and Wrigstad [25] proposed a type system for read-only

references in Java, but it only supported a subset of Java

and it does not appear that they implemented their system.

Java final and C/C++ const do not express transitive class

immutability. .NET Freezable and JavaScript Object.freeze

are enforced dynamically, not statically.

Pure4j is an annotation processor for Java that provides

@ImmutableValue [26], and, like Glacier, enforces that anno-

tated classes are transitively immutable. However, it provides

no solution for arrays, assuming that all arrays are mutable. It

requires that all fields be declared final, which is redundant

in Glacier. Unlike Glacier, it requires that public methods of

immutable classes take only immutable parameters and that

instance methods that are not inherited from a base class be

pure. This is a stronger restriction than immutability and forbids

access to global state, whereas immutability in Glacier pertains

only to state reachable specifically via fields of objects. Though

method purity can be helpful in certain cases, such as that of

thread safety, it also restricts applicability. For example, a pure

method cannot read or write files or the network. Our focus on

immutability rather than purity reflects the evidence we have

of what developers need [2].

Immutables is another annotation processor for Java [27],

but rather than enforcing immutability, it generates immutable

classes from abstract value classes. It can also automatically

generate builders and factories. Kjolstad et al. proposed a tool,

Immutator [14], to automatically make immutable versions of

classes and conducted an experiment showing that programmers

make errors when refactoring classes to be immutable; our

focus here was on enforcing immutability, not refactoring.

Some functional languages, such as Haskell, emphasize

immutability. Isolating code that has side effects is a core part

of Haskell, so it is unclear what the usability impact of this

design decision is. Other functional languages, such as SML,

promote immutable value types, but do not prevent mutable

state or provide any way of forbidding it inside modules.

VII. FUTURE WORK

Future work should expand the range of situations to which

Glacier applies by adding support for delayed initialization

of fields (for example, caches) in immutable objects and

support for initialization of circular data structures. In addition,

Glacier does not consider external sources of mutability, such

as the filesystem or network; future work should analyze to

what extent these kinds of hidden mutability compromise the

guarantees that Glacier provides. A future corpus study could

analyze to what extent the system applies to existing code. A

refactoring tool could help software engineers adopt Glacier

more easily and also be used in a corpus study of applicability.

We have not found data regarding to what extent (and in

what situations) designing components to be immutable is

beneficial. Understanding when to make components immutable

is a critical step in using immutability systems effectively.

VIII. CONCLUSION

We have designed, formalized, and implemented Glacier,

which enforces transitive class immutability in a Java annotation

processor. We conducted a user study and found that Java

programmers could generally specify immutability effectively

with it; in contrast, Java programmers in our study could not

use final to specify immutability even though they had advice

on how to do so. We also found that programmers incorrectly

mutate immutable data structures when they only have final,

whereas Glacier detects those errors statically. Glacier rep-

resents a promising approach to enforcing immutability in

real-world Java software and implements a model that could

be extended to other languages as well.
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