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ABSTRACT
Programming languages can restrict state change by pre-
venting it entirely (immutability) or by restricting which
clients may modify state (read-only restrictions). The ben-
efits of immutability and read-only restrictions in software
structures have been long-argued by practicing software en-
gineers, researchers, and programming language designers.
However, there are many proposals for language mecha-
nisms for restricting state change, with a remarkable diver-
sity of techniques and goals, and there is little empirical
data regarding what practicing software engineers want in
their tools and what would benefit them. We systematized
the large collection of techniques used by programming lan-
guages to help programmers prevent undesired changes in
state. We interviewed expert software engineers to discover
their expectations and requirements, and found that im-
portant requirements, such as expressing immutability con-
straints, were not reflected in features available in the lan-
guages participants used. The interview results informed
our design of a new language extension for specifying im-
mutability in Java. Through an iterative, participatory de-
sign process, we created a tool that reflects requirements
from both our interviews and the research literature.

CCS Concepts
•Software and its engineering → Language features;
Software development techniques;

Keywords
Programming language design, Programming language us-
ability, Immutability, Mutability, Programmer productivity,
Empirical studies of programmers

1. INTRODUCTION
Many designers of APIs and programming languages rec-

ommend using immutability in order to prevent bugs and

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ICSE ’16, May 14-22, 2016, Austin, TX, USA
c© 2016 ACM. ISBN 978-1-4503-3900-1/16/05. . . $15.00

DOI: http://dx.doi.org/10.1145/2884781.2884798

security flaws. For example, Bloch devoted a section of
his book Effective Java [6] to minimizing mutability. He
cited the following benefits of immutability: simple state
management; thread-safety; and safe and efficient sharing.
Oracle’s Secure Coding Guidelines for Java SE [33] states
that immutability aids security. Microsoft’s Framework De-
sign Guidelines recommends against defining mutable value
types in part because they are passed by copy, and program-
mers might write code that modifies copies but should in-
stead modify the original structure [31]. Some programming
languages, such as Rust [32], take these recommendations
into account by carefully managing mutability. The func-
tional programming language community is particularly con-
cerned with state management, producing languages such as
Haskell, which segregates code that manipulates state from
code that does not. Proponents of functional languages ar-
gue that avoiding mutable data structures facilitates rea-
soning about behavior of programs because one can reason
equationally about behavior rather than needing to know
about the global or even local program state [1].

There are questions, however, about what immutability
should mean and how to express immutability in program-
ming languages, as evidenced by the myriad of different
kinds of support that tools provide and the lack of empiri-
cal data to justify specific design choices. Some languages
support programmer-provided specifications of immutability
(expressing that certain data structures cannot be changed)
or read-only restriction (expressing that certain references
cannot be used to change a data structure). For example,
final in Java can express that a particular field cannot be
reassigned to refer to a different object, but the contents of
the referenced object may still change. Furthermore, there
is no way to express class-level immutability directly.

In C++, const data can still refer to non-const data,
which can then be changed. Furthermore, const provides
no guarantees regarding other references to the same object.
This means that in addition to not providing the expected
benefits of immutability to programmers, such as thread
safety and simple state management, these annotations also
do not provide the guarantees that would be needed for the
many compiler optimizations that require all of an object’s
behavior to be guaranteed to be fixed.

This paper makes the following contributions:
• After reviewing the existing literature and imple-

mented systems in this area, we develop a classification
system for mutability restrictions in programming lan-
guages (§2), show where some existing systems fit in
this classification (§3), and discuss possible usability
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implications of existing design choices (§4).
• We interviewed eight expert software engineers to find

out how practitioners feel about existing language fea-
tures and tools, and what their perceived needs are.
We show that existing programming language features
and research tools do not adequately address the issues
encountered by practitioners. We extract design rec-
ommendations from the results of our interviews (§5).
• IGJ is a Java extension that adds annotations speci-

fying immutability and read-only restrictions [44]. We
describe the design of IGJ-T, an extension to IGJ that
enforces transitive immutability, which addresses prob-
lems that our interview participants described. We it-
eratively evaluated IGJ-T with three pilot users and
refined our study based on the feedback (§6).

2. OVERVIEW OF CONCEPTS
In existing literature, the wide variety of approaches and

subtle differences among the different goals can make it dif-
ficult to understand which problems each system addresses.
Thus, it is important to distinguish among the many dif-
ferent meanings given to the term immutability and related
concepts. In this section, we will give an overview of the var-
ious mechanisms and issues. Up to this point, we have been
using the term immutability informally; here we synthesize
definitions from existing literature to form a definition that
will be used in the rest of the paper. A summary of the
concepts appears in Table 2.

We use object here to mean any kind of state, such as a C
struct or a functional language ref cell. State is data that is
stored in memory. As an abbreviation, we will use function
to refer to both functions and methods.

2.1 Type of Restriction
Immutability restricts modification through all references

to a given object (see §2.5 for exceptions). In contrast, read-
only restrictions disallow modification through read-only ref-
erences to a given object, but not necessarily through all ref-
erences. The distinction between read-only restrictions and
immutability is critical to the correctness of programs. For
example, an immutable object can be shared safely among
threads without locks, but a function that has a read-only
reference to an object has no guarantee that the object can-
not be modified, so that function must assume the object
may be mutable.

Assignability restrictions, such as final in Java, disal-
low assignment. In most imperative languages, variables
are backed by storage, so assignability restrictions repre-
sent non-transitive immutability (see §2.3). Java’s final

keyword on fields is an assignability restriction. Although a
final field can never point to a different object than the one
it was initialized to point to, the referenced object’s fields
may themselves still be modified. In contrast, the C decla-
ration const int *x provides read-only restrictions: x is a
pointer to int and might later refer to some other address,
but the reference x cannot be used to change the value at
any memory location to which x points.

Ownership systems define a system-specific notion of own-
ership and a way of specifying which objects a given object
owns. This enables enforcement of restrictions such as “an
object may only directly modify objects it owns”. Owner-
ship types [10] use a notion of object context to partition
the object store. This partitioning allows the systems to

ensure that aliases to objects do not escape their owners,
ensuring representation containment and defining a notion
of abstract state, since the abstract state (§2.5) of an ob-
ject includes only data it owns. Ownership is also useful
for ensuring thread safety of mutable structures by ensuring
that locks are acquired in a correct order according to the
ownership structure before accessing objects [7].

2.2 Scope
Object-based restrictions apply to a particular object.

Class-based restrictions apply to all of a class’s instances.
For example, final is object-based: it only applies to a
specific reference and there is no way of specifying that all
references to instances of a particular class are final.

Class restrictions, while commonly either only supported
as syntactic sugar for object restrictions (e.g. IGJ) or unsup-
ported entirely, are frequently needed in practice according
to our interview participants. By necessity, many program-
mers who want class immutability must improvise (§3.2).

2.3 Transitivity
Transitive restrictions pertain to all objects reachable

from a given object, including objects captured by closures
or methods. Non-transitive restrictions pertain only to the
immediate fields in a given object.

Non-transitive restrictions provide weak guarantees be-
cause they say little about the behavior of the abstraction
that the object’s interface provides. For example, if a list
object is non-transitively immutable, then the number of
items in the list is fixed, and the list always refers to the
same objects, but the contents of those objects can still be
changed. A function that needed to know that a list of inte-
gers only contained positive integers would need to re-check
all elements after every possible opportunity for mutation of
list elements. However, in order to ensure that an object is
immutable, one must verify that all objects in the transitive
closure of references from that object are immutable.

Though the assignability and read-only features provided
in many popularly-used languages are non-transitive, includ-
ing Java’s final and C++’s const, researchers have pro-
posed transitive restrictions in a variety of different systems.
Because of the important implications of this design decision
and the discrepancy between research and practice, we will
focus on this question in §6.1.

2.4 Initialization
Systems might relax restrictions during initialization in

order to facilitate initialization. A common method for cre-
ating a cyclic data structure involves modifying an element
after it is created. The cyclic data structure may be muta-
ble during initialization but immutable afterward. Alterna-
tively, systems can enforce restrictions during initialization.

2.5 Abstract vs. Concrete State
The abstract state of an object refers to the portion of the

state of an object that is conceptually a part of that object.
For example, in a splay tree, sometimes during a read oper-
ation the internal tree structure will be rotated in order to
move frequently accessed elements closer to the root. Even
though this is a change to the internal data structure, it is
not exposed to the caller and therefore read operations do
not change the splay tree’s abstract state. In contrast, the
concrete state includes the object’s entire representation.
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Table 1: Summary of Some Existing Systems (abbreviations are from Table 2)

System Type Scope Trans. Init. Abstr. Compat. Enforcement Polymorph.

Java final a o n e N/A c s n
C++ const r o n e a c s1 n
Obj-C immutable collections i o n e N/A c s1 n
.NET Freezable [23] i o n e N/A o d n
Java unmodifiableList r o n e N/A o d n
Guava ImmutableCollection i o n e N/A o s, d2 n
IGJ [44] i, r c, o n e a c s p
JAC [20] r o t e c c s n
Javari [40] r c, o t e a c s p
OIGJ [45] i, r, o c, o n r a c s p
immutable [17] i, r, o c, o t r a o s p
C# isolation extension [14] i, r, o c, o t r a c s p
JavaScript Object.freeze i o n e c o d n
1 These approaches provide static enforcement to the extent possible in these languages.
2 Static deprecation warning, runtime exception

Table 2: Summary of Dimensions

Dimension Possible choices

Type immutability, read-only restriction,
assignability, ownership

Scope object-based, class-based
Transitivity transitive, non-transitive
Initialization relaxed, enforced
Abstraction abstract, concrete
Backward compat. open-world, closed-world
Enforcement static, dynamic
Polymorphism polymorphic, non-polymorphic

Caches are often excluded from the abstract state because
the contents of the cache duplicate information available
elsewhere, and other than causing performance differences,
the contents of the cache are invisible to clients. The ab-
stract state might also exclude state kept only for debug-
ging purposes. By excluding the cache from the abstract
state of the object, writing to the cache can be considered a
benign operation and can therefore be done by clients with-
out write access. However, this allows the possibility of race
conditions if the cache is not thread-safe but a programmer
assumes it is because the object appears to be immutable.

Logical restrictions pertain to an object’s abstract state.
Bitwise restrictions govern an object’s concrete state; this
term arose in C, where programmers consider how struc-
tures are arranged in memory. Some languages provide fea-
tures that let programmers differentiate these: in C++, for
example, a mutable member variable can be modified even
through a const reference. Unfortunately, it may be tempt-
ing for a programmer to assume that if all references to an
object are const, the object is thread-safe, but the mutable

members may be mutated in a thread-unsafe way. Thus, an
object that is only logically-immutable may not be thread-
safe.

2.6 Backward Compatibility
When facilities for restrictions are added to a program-

ming language after the language is created, code that uses
the extended features may need to interface with code that

does not. If this is to be permitted, then there is a question
of what guarantees are made. For example, if a reference
to an immutable object is passed as input to an function
whose interface does not specify restrictions, then the called
function might mutate the object, violating the guarantee.
Systems that make a closed world assumption assume that
all code that uses code with restrictions itself has any re-
strictions declared. In contrast, the open world assumption
is that there may be interfaces with un-restricted code and
that the system must provide guarantees for this code too,
either by making conservative assumptions about these APIs
or by checking conditions dynamically. Open-world systems
that support class immutability must ensure that instances
of immutable objects encapsulate their representations be-
cause otherwise clients may mutate the representation ob-
jects directly. Furthermore, open-world systems that sup-
port object immutability must ensure that immutable ob-
jects are not exposed to unchecked clients [17].

The closed-world assumption can be a significant impedi-
ment to adoption for language extensions, since in a system
that makes a closed-world assumption, adoption in new code
requires that all clients of that code also adopt the system.

2.7 Enforcement
Static restrictions are enforced at compile time. Dynamic

restrictions are enforced at runtime.
Static enforcement typically has a problem of virality : in

order to call a method on an object that has an immutability
or read-only restriction, the method typically must guaran-
tee that it will not modify state, but if the method itself calls
methods, then those methods must also be so guaranteed,
and so on for the transitive closure of methods called by
the first method. This can be burdensome if the guarantees
must be annotated by programmers. In addition, the static
analysis must be conservative, and therefore may give errors
on code that is actually safe. C++’s const is viral, and
programmers complain that “const-correctness” is therefore
difficult to achieve.

Anders Hejlsberg, the lead C# architect, when asked to
explain why C# did not offer C++’s const feature, stated
the problem quite bluntly:

We hear that complaint all the time too: “Why

738738



don’t you have const?” Implicit in the question
is, “Why don’t you have const that is enforced
by the runtime?” . . .

The reason that const works in C++ is because
you can cast it away . . . [43]

2.8 Polymorphism
Restriction polymorphism would mean that the same func-

tion can operate on inputs with different restrictions. Para-
metric polymorphism in restrictions is the most relevant ex-
ample: restrictions can be specified in a parameter rather
than explicitly so that one implementation can operate on
inputs with different restrictions, while still obeying those
restrictions. Non-polymorphic restrictions require program-
mers to write implementations that statically assume par-
ticular restrictions.

In C++, const restrictions are always expressed without
polymorphism in const: each method’s parameters and re-
sult are either const or not. The result is a common pattern:
the programmer must write const- and non-const versions
of many methods so that those methods can be invoked with
both const and non-const inputs. For example, in C++, it
is impossible to write a single “identity” method that takes
a const or non-const array and returns the same array with
the access restriction preserved; one must instead write two
(typically overloaded) different methods. In contrast, IGJ
[44] supports immutability parameters @I so that the re-
strictions can be expressed as a parameter of a type.

3. A SURVEY OF EXISTING SYSTEMS
Table 1 contains a summary of some related systems.

3.1 Historical and Research Systems
The functional programming community was one of the

first proponents of immutability : language features that en-
sure that once a data structure is created it will always have
the same value. In 1984 Abelson and Sussman [1] promoted
immutability on the grounds that it supports formal reason-
ing and makes concurrent programming easier. Programs
that use only immutable structures are called pure.

In contrast to functional languages, imperative languages
emphasize mutation of program state. By adding features
that allowed restrictions on what data structures could be
modified in each context, language designers hoped to fa-
cilitate reasoning about programs. At first, languages pro-
vided features restricting what functions could do to their
parameters. In Pascal [4], var parameters were passed in
by reference, but non-var parameters were passed by value,
preventing modification of the passed parameter. Modula-3
[9] provided a READONLY parameter annotation, which pre-
vented a function from using the formal parameter in a con-
text that would require an l-value, such as the left-side of an
assignment statement. In Ada [3] parameters to functions
could be declared in, out or in out to indicate whether the
function could read but not modify, modify but not read, or
both read and modify each parameter.

Later, support for modularity led to features that con-
trolled mutation in entire modules. In Turing [19], a variable
defined in module A could be imported non-var into module
B which would prevent the variable from being changed by
B, although A could still mutate it. A common attribute of
these features was that data structure mutation would be

permitted through some references but not others, i.e. these
represented read-only restrictions. Notice that these fea-
tures are all weaker than immutability: immutability guar-
antees that a data structure will never change, whereas read-
only restrictions only state that changes will not occur via
certain mechanisms or locations.

IGJ [44] provides Java annotations that implement im-
mutability. For example, @Immutable Date d is a reference
to an immutable date. No fields can be modified on an @Im-

mutable object; IGJ verifies that no non-@Immutable refer-
ences to an @Immutable object can be obtained. @Immutable
specifies non-transitive immutability: if an @Immutable ob-
ject’s fields are not @Immutable, then those objects’ fields
may still be assigned to. @Mutable, the default annota-
tion for unannotated fields, also grants exceptions permit-
ting modification of fields in @Immutable objects.
@Readonly in IGJ specifies a read-only reference. The

holder of a @Readonly reference cannot use that reference to
modify the referenced object, but there may be other non-
@Readonly references to the same object (aliases). IGJ also
supports a form of class immutability, in which specifying
@Immutable on a class serves as syntactic sugar in place of
adding annotations in a variety of other places. Finally,
IGJ supports an immutability parameter @I, which takes
the value of another annotation. For example, if @I is the
immutability parameter for a class and a field in that class
is annotated with @I, then that field in a particular instance
of the class will have an immutablity annotation according
to the annotation of that instance. This is the sense in
which IGJ supports transitive immutability: if all fields are
annotated with the class’s immutability parameter for all
fields transitively included in that class, then immutability
specified by a reference to an object will be transitive.

Unkel and Lam [41] generalized final to define stationary
fields, for which all writes occur before all reads, and pro-
vided an algorithm to find them. Of fields in their corpus,
44-59% were stationary, but only 11-17% were final.

Haack et al. designed a Java-like language with a class
modifier, immutable, which specifies that all class instances
are immutable, and uses ownership types (with ownership
annotations) to enforce encapsulation [17]. Later work by
Haack and Poll [16] avoided the need for ownership types and
supported object immutability, read-only references, and
class immutability. They also permitted temporary modi-
fication of read-only structures after initialization by using
stack-local memory regions to isolate new immutable ob-
jects.

Skoglund and Wrigstad [38] proposed a transitive read-
only restriction system for Java, which includes the ability to
check for read-only restrictions at runtime. Zibin et al. [44]
argued that allowing runtime checks of restrictions hampers
program understanding but there are no user studies con-
firming or refuting this claim. JAC [20] provides readonly

(a transitive read-only restriction) as well as readimmutable
(a transitive read-only restriction that also disallows reading
of transitively mutable state) and readnothing (providing
no access to state at all; suitable for pure functions). JAC
extracts a readonly portion of each class by restricting re-
turn types: methods return read-only references when called
on read-only objects. As a result, a programmer need only
provide one implementation of a class, and JAC can gener-
ate restricted versions of the class. However, this approach
has not been adopted by the Java community. In contrast,
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Javari [40] provides a simpler access rights system (for exam-
ple, JAC includes three different levels of read-only access,
but Javari only has one).

One impediment to understanding and reasoning about
programs is the general alias problem of determining what
references exist to a given object. With a precise alias analy-
sis, one could find out whether a given object might be mod-
ified by a particular call. Unfortunately, a precise may-alias
analysis is undecidable [21]. Therefore, various approaches
have been developed that facilitate reasoning about aliases
by restricting which aliases can exist.

Noble, Vitek, and Potter [28] presented a system for flexi-
ble alias protection that provides several aliasing mode dec-
larations that allow aliasing invariants to be checked stat-
ically. For example, one mode ensures that “a container’s
representation objects may be read and written, but must
not be exposed outside their enclosing container. . . ”. Other
approaches for alias protection include balloon types [2] and
islands [18], which prevent external references to objects that
are encapsulated by other objects’ interfaces.

Servetto et al. proposed placeholders as a technique for
safely initializing circular immutable

Ownership types, introduced by Clarke [10], use a notion
of object context to partition the object store. Many of
these, including Clarke’s original approach, restrict aliasing.
Other approaches, such as universe types [12], restrict mu-
tation but not access to owned objects. In contrast, Rust
[32] expresses ownership without explicit object contexts;
instead, it works at the level of variable bindings to ensure
that no more than one binding exists to a given resource.
Rust provides facilities for borrowing ownership at function
call boundaries in order to make function calls more conve-
nient. The ownership system OIGJ [45] extends IGJ with a
notion of ownership so that objects cannot leak outside their
owners. Potanin’s chapter on immutability [29] gives more
detail on ownership types and immutability in general.

Gordon et al. [14] focused on providing safe parallelism
by combining immutable and isolated types, with sup-
port for polymorphism over type qualifiers. They provided
writable, readable, immutable, and isolated qualifiers.
An isolated reference ensures uniqueness: “all paths to
non-immutable objects reachable from the isolated reference
pass through the isolated reference.”

Another approach is to use capabilities, which pair point-
ers with policy information that specifies what access rights
accompany those pointers [8]. This changes the default
on references from “no restrictions” to “all restrictions” but
specifies all attributes positively, for example permitting
writing. This approach is in contrast to all of the approaches
described above, which use language features to express re-
strictions relative to a default of no restrictions.

3.2 Popular Languages and Libraries
We show through examples below that despite the fact

that some popular languages offer read-only restrictions,
programmers still desire immutability guarantees and at-
tempt to implement them using the features that they have
available. This often leads to misunderstandings, if not by
the original programmer, then by other programmers that
have to read and maintain the code.

For example, the CERT C Secure Coding Standard [36]
says “Immutable objects should be const-qualified. Enforc-
ing object immutability using const qualification helps en-

sure the correctness and security of applications.” C does
not have any features that guarantee immutability in gen-
eral, though const does provide some guarantees for fields.
In particular, if one has a pointer allowing const access to
an object, there may be other non-const pointers to that
same object. For example, consider this C code, which uses
const to express constraints in an interface:

void threadUnsafePrintIfPositive(const int *x) {

if (*x > 0) {

printf("%d", *x);

}

}

Even though x is a pointer to a const int, this only means
that threadUnsafePrintIfPositive cannot modify the ref-
erenced int. This function is not thread safe because it
dereferences x twice and *x may change between the deref-
erences. If *x were immutable rather than just read-only,
then the above code would be safe, but such immutability
cannot be expressed in C.

As we described in §2.1, the requirements for making a
Java class immutable are complex. If a method returns a
reference to an internal data structure and cannot ensure
that it cannot be modified by a caller, the structure must be
copied before being returned to prevent a caller from being
able to mutate it. This is often easy for programmers to ig-
nore or forget, and the results in security-sensitive code can
be serious. For example, Java’s “Magic Coat” security bug
was caused by the getSigners() method returning a refer-
ence to a mutable array holding the signers of a class [22].

Rather than supporting immutability or read-only restric-
tions in programming languages, some authors have added
limited support in libraries. These typically convey these
restrictions in names and documentation, resulting in ad
hoc (i.e. expressed informally, rather than formally in lan-
guage constructs) class-based restrictions. The result is that
a client for whom immutability of a data structure is re-
quired cannot rely on the compiler to give an error if the
data structure is later made mutable.

For example, the Foundation framework [30] provided
with Objective-C separates immutable and mutable classes
in many cases by making the mutable classes subclasses of
the immutable classes: the subclasses have additional meth-
ods that expose mutation. This ensures that mutating meth-
ods cannot be invoked on immutable objects (except that
Objective-C is not type-safe). Likewise, the Java JDK pro-
vides a collection of immutable classes, such as String and
Number, but these are not specified as being immutable in
any formal way. In Java, to make a class immutable, Bloch
[6] recommends doing all of the following: provide no meth-
ods that modify an object’s state; prevent subclassing; make
all fields final and private; and ensure exclusive access to mu-
table components. If a programmer wants to know whether
a class is immutable, complicated manual (but mechaniz-
able) verification is necessary, but even this does not guar-
antee that the class will be immutable in the future, since
a new version of the code can easily make the class mutable
in a way that does not cause the compiler to produce any
error messages for clients.

The Java JDK provides Collections.unmodifiableList,
which wraps a given collection object with a wrapper that
throws exceptions on modification. However, modifica-
tions to the original list are still permitted, so this ap-
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proach is an example of a read-only restriction, not im-
mutability. Furthermore, the objects in the list may still
be modified, so the restriction is non-transitive. In con-
trast, Google’s Guava library copies all the elements when
constructing an ImmutableCollection from a Collection.
However, ImmutableCollection retains the mutating meth-
ods from its superclass, so though the compiler gives a
deprecation warning, code that attempts to modify an
ImmutableCollection compiles and raises exceptions at
runtime. Furthermore, ImmutableCollection can contain
mutable objects, so the immutability is non-transitive.

Microsoft’s .NET framework provides a Freezable class
[23], which is a superclass for objects that can have a state
in which they are immutable. The author of a class that de-
scends from Freezable must add calls to specific APIs before
and after modifying state, so enforcement is dynamic and se-
mantics depend on the placement of those calls. JavaScript
includes Object.freeze, which dynamically enforces shal-
low immutability [24].

3.3 Empirical Evaluation
Though empirical studies of the effects of mutability on

programmer productivity and program comprehension have
been conducted, they have been quite limited. For example,
Dolado et al. [13] provided initial empirical data regarding
the influence of side effects, which mutate data structures,
on program comprehension. They compared pre- and post-
increment to explicit assignment in C, finding that program-
mers answered questions about program behavior more ac-
curately with explicit assignment than with pre- and post-
increment (e.g. x=y+1; y=y+1 vs. x=++y). However, this
comparison was limited to properties of syntax and does not
provide recommendations for other design questions, such as
on how to enforce encapsulation.

Stylos and Clarke [39] examined the process by which pro-
grammers write code that instantiates objects in C++, C#,
and VB.NET and found that users prefer and are more ef-
fective at instantiating mutable classes. When instantiating
immutable classes, the programmer must supply all param-
eters to the constructor at initialization time (the required
construtor pattern); in contrast, with mutable classes, it
is possible to supply none or only some of the parameters
at initialization time and defer setting the rest until later
(the create-set-call pattern). When figuring out how to call
the constructor of an immutable class, programmers must
interrupt their work to figure out how to instantiate the ar-
guments, which may themselves have arguments, and so on.
The create-set-call pattern, in contrast to the required con-
structor pattern, lets participants defer understanding how
to create the required arguments until after they had finished
calling the first constructor. The authors concluded that in
contrast with the common advice to prefer immutability over
mutability, immutability sometimes interferes with usability.

The paucity of empirical work in this area motivated us to
conduct our own interviews with programmers. Our aim was
to find out how immutability-related language constructs
affect programmers (see §5 below). However, significantly
more work will be required in this area if we are to base
language design decisions on empirical data.

4. USABILITY OF FEATURES
The large collection of different possible language features

supporting state change restrictions presents an interesting

design problem. Many of the features are compatible with
each other and, indeed, more recent systems have included
a collection of different features so that programmers can
choose which features to use. However, including all of the
possible features at the same time makes a system more
complex, and more complex systems are harder to use. For
example, one of our interview subjects mentioned that in
C++, it is common practice to only use const for point-
ers to const objects and never for const pointers to mu-
table objects because it’s too hard to keep the distinction
straight. const int * x, int const * x, int * const x,
and int const * const x are all legal C declarations; the
first two denote pointers to const integers, the third denotes
a const pointer to a variable integer, and the fourth denotes
a constant pointer to a const integer.

It might seem that a more expressive language — one that
allows the programmer to be more precise about what in-
variants should be checked — would always be better than a
less-expressive language. However, this is not necessarily the
case. The Cognitive Dimensions of Notations framework [15]
provides guidelines for evaluating and comparing usability of
different notations. The error-proneness dimension refers to
the probability of making mistakes, particularly ones where
the consequences are hard to find. Language features for
restricting state change exist primarily to prevent bugs and
clarify meanings. However, in many cases, using the wrong
restriction results in a weaker guarantee than intended but
no obvious immediate problems. For example, in a situation
that requires object immutability, the programmer might
specify a read-only restriction instead by mistake. This may
typecheck but not provide the needed guarantee. Likewise, a
programmer might annotate an interface as returning a read-
only object when in fact the returned object is immutable.
This might lead clients of the interface to go to extra trouble
and degrade performance, such as by adding locks to ensure
thread-safety, when the object was already immutable.

In contrast to the disadvantages of complexity, the hid-
den dependencies dimension of Cognitive Dimensions, which
refers to problems that occur when dependencies are not ob-
vious, confirms a positive aspect of state change restrictions:
when a reference to mutable state exists, a programmer may
write code that mutates that state without being aware of
the reference. This situation reflects a hidden dependency,
so this dimension suggests not only that immutability is
likely to be helpful, but also that transitive immutability
is likely to be better than non-transitive immutability.

Nielsen’s heuristic evaluation technique [27] offers a col-
lection of heuristics that can be applied when evaluating
user interface designs. These heuristics are particularly use-
ful when user studies with real users cannot be conducted,
perhaps due to an incomplete implementation or cost con-
straints. The“be consistent”heuristic, which is also included
in the Cognitive Dimensions framework, suggests that fea-
tures that correspond with different concepts should have
different names. When different features are given similar
names, users may be confused; this problem can be seen in
C’s const syntax, where the position of const is significant
but it is not obvious which position has which meaning. The
differences between proposed features can be subtle on the
surface even though the features represent significantly dif-
ferent meanings. For example, the system by Haack et al.
includes qualifiers RdWr, Rd, and Any [16]. One might guess
that Any is equivalent to RdWr because read and write would
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seem to be the only available kinds of access, but in fact
RdWr corresponds to a mutable object, Rd corresponds to an
immutable object, and Any corresponds to a read-only re-
stricted reference. Any means that the actual immutability
invariant is either RdWr or Rd and therefore a holder of a ref-
erence to an Any-object cannot write to it because it might
be immutable (Rd). It is easy to imagine users confusing
these different terms, based on the heuristic evaluation ev-
idence; we lack stronger evidence since Haack and Poll did
not publish a usability study of their system.

This problem of features with potentially confusing names
is not limited to just one system. IGJ [44] supports an
object annotation @Immutable. However, in order to make
immutability transitive, one must use the immutability pa-
rameter on fields in the transitive closure of objects that
are referenced by the @Immutable object. This means that
when a programmer has a reference to an @Immutable ob-
ject, it is necessary to locate and read an arbitrary amount
of class implementation code to determine what immutabil-
ity means for this particular object. Furthermore, a future
code edit may invalidate the programmer’s reasoning, result-
ing in the programmer making an immutability assumption
that is later violated by a programmer who was unaware of
the previous reasoning. This is a hidden dependency and
may cause bugs. Systems that support removing fields from
the abstract state, such as C++’s mutable, have a similar
problem. However, the real-world implications of these de-
sign choices have not yet been tested.

JAC [20] provides a larger collection of features:
writable, readonly, readimmutable, and readnothing.
Readimmutable methods can only read the parts of an ob-
ject’s state that are immutable after initialization. The au-
thors say that readimmutable may be useful for objects used
as keys in hash tables, since the parts of those objects that
contribute to the hash code must not change while the ob-
jects are used as keys. However, it is unclear whether this
complexity is warranted; perhaps it would be better to sim-
ply require that the entire object be immutable. We view
this question as a tradeoff between flexibility and simplicity
rather than assuming that more flexibility is always better.

5. INTERVIEWS WITH DEVELOPERS

5.1 Methodology
Given the large collection of immutability- and read-only

restriction-related design choices that must be made in order
to construct a concrete programming language or language
extension, we wanted to find out how practicing software
engineers think about state when writing software. We ob-
tained IRB approval and conducted semi-structured inter-
views with a convenience sample (N=8) of software engineers
at several US- and Europe-based organizations. We focused
on software engineers who work on large software projects,
with the assumption that these projects would be the most
likely (relative to smaller projects) to encounter interesting
problems with state management. Likewise, due to the par-
ticipants’ expertise, any problems raised are likely to come
up in a wide variety of situations and be relevant problems
for consideration in a language design. Our participants had
spent a long time as software engineers, with a mean pro-
fessional experience of fifteen years and a minimum of seven
years. They typically had worked on projects with millions
of lines of code and hundreds of people. Participants re-

ported significant usage of immutable and access-restricted
interfaces and they had a multitude of strong opinions about
state management in large software systems. Their experi-
ence was primarily in C++, Java, and Objective-C. Addi-
tional information about methodology can be found in an
extended version of this paper [11].

5.2 Results
Relevance. Asked about bugs caused by state changing

when it should not have, one participant exclaimed,

“Oh God, like, most of them!. . . my favorite is
where you have data that is supposed to be im-
mutable and is only settable once in theory but
that’s not well enforced and so it ends up getting
re-set later either because it gets re-initialized
or because someone is doing something clever
and re-using objects or you have aliasing where
two objects reference the same other object by
pointer and you make changes. . . ”.

Another participant cited library boundaries as a problem:
this engineer’s module depended on data that got changed
by a third-party library, resulting in half-updated or not-
updated state. This resulted in mistrust among the groups
because it was frequently unclear which team was responsi-
ble for any given bug. All the participants who worked on
software with significant amounts of state said that incorrect
state change was a major source of bugs.

General techniques. All of the participants reported
using various techniques to ensure that state remained valid.
Techniques included ensuring that lifecycle and ownership
are well-defined using conventions such as C++’s RAII; re-
stricting access with private variables and interfaces; using
consistency checkers and writing repair code; unit and man-
ual testing; and assertions. According to one participant,
good design is better than using const: “if you simply do
not depend on an object, there is no way you could possibly
modify it directly.”Another participant uses immutability as
a key part of the architecture: “By design, we’ve made the
key data structures immutable. We never update or delete
any data objects. This ensures that an error or problem can
never put the system into an undesirable state.”

C++ const. Several participants used const in C++
to make sure state does not change, but it does not meet
their needs. First, there is no way to make special cases
for fields on a per-method basis: either fields are part of
an object’s abstract state or not. One participant reported
removing const from a collection of methods rather than
making a particular field mutable. Second, the viral nature
of const makes using it a significant burden, since declaring
a method const requires transitively annotating all methods
that the first method calls. One participant wished for tools
that automatically added const as needed in such cases;
for Java, Vakilian et al. proposed a tool that would help
programmers add similar annotations [42].

One participant complained that const applies to meth-
ods and fields but not to whole classes. In contrast, an-
other participant said that marking methods const is very
helpful, as is having two interfaces to every object: a mu-
table interface and a const interface. The former approach
corresponds to class immutability if all methods are marked
const; the latter approach implements read-only restrictions
if all methods in one interface are const.
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Participants said that there were many situations in which
they wanted to use const but it did not express the invariant
they needed. One participant wanted to restrict access in a
more fine-grained way than just mutability: for example, by
disallowing access to particular methods even though those
methods did not change state, or permitting some kinds of
state changes but not others. Another participant cited the
discrepancy between abstract and concrete state: though
one can mark particular fields as mutable in C++, it would
be preferable to be able to show that the value of a field has
no effect on views of the object.

Thread safety. We were particularly interested in how
participants used immutability to manage state that was
shared across threads, since free sharing across threads is a
frequently-cited benefit of immutable data structures. We
asked participants what techniques they use to ensure state
is safe when accessed concurrently. Two participants de-
scribed architectural techniques that hide concurrency from
users, avoiding this problem. Immutability did not seem to
be a commonly used technique; participants cited traditional
methods, such as serial queues and mutexes. One partici-
pant, a framework designer, mentioned a focus on minimiz-
ing dependencies on mutable state across threads. A major
theme that arose was about reuse: when reusing existing
structures, participants had to assume that structures were
mutable because they had no guarantees otherwise. One
participant mentioned taking advantage of immutability if
it was already present. Another participant pointed out
that it is rare to be able to design a component from the
ground up, so there is usually some synchronization needed.
This suggests that when designing components for reuse, it
is helpful to be able to specify to consumers of the compo-
nents which aspects are immutable. We conclude that exist-
ing techniques for specifying immutability in the languages
these participants used are insufficient for facilitating reuse
in concurrent systems.

Immutable classes. We asked participants about their
use of immutable classes and found that immutable classes
are used very frequently but that languages the participants
use do not provide any explicit support for them. In fact,
one participant pointed out that some languages make im-
mutable classes difficult to write and use. In C++, copy-
ing objects is difficult and error-prone, so one company’s
style guide recommends disabling copy and assignment op-
erations. As a result of the difficulty of copying objects,
objects tend to be mutable.

Participants mentioned using immutable classes for copy-
on-write situations; for objects that manage relationships
between other objects; and for wrapping an existing mutable
class in order to enforce a particular invariant. One partic-
ipant mentioned avoiding changing classes from immutable
to mutable because then anything holding a reference to the
object would suddenly depend on whatever could now cause
mutations. This again is a notion of class immutability, not
object immutability. That is, instances of a class serve a
particular role in an architecture, and the class defines the
role; making all instances mutable would violate invariants
of many of the clients of that class.

Security. Since many recommendations in favor of im-
mutability come from the security community [37] [33], we
asked participants about their experiences with security con-
siderations in state management. One participant talked
about a security-related object that the team wanted to

make immutable but which needed to be modified as part
of the teardown process, so it had to be made mutable in-
stead. None of our participants had a focus on security in
their jobs, though most of them worked on software that
could potentially have security problems. Their perspec-
tive was generally that security was important in security-
related components, such as authentication, but otherwise
not a primary concern. One participant, who worked in part
on cloud-based software, mentioned that privacy is a more
difficult issue than security because the requirements are less
clear and because privacy issues come up in more contexts.

5.3 Implications on language design
From the above interview findings, we extracted the fol-

lowing observations that are relevant for the design of pro-
gramming languages and tools. Since the interviews were
of programmers working on large, object-oriented systems,
our interview findings are most applicable to object-oriented
languages that are intended to be used for large systems.
• Both read-only restrictions and immutability are used

in practice for different purposes, but the languages
that our participants used do not reflect their needs.
• State management is a core issue that developers con-

sider when designing architectures and APIs, and de-
velopers do use read-only references and immutability
(when available) to enforce encapsulation.
• Existing mechanisms do not solve the problems that

developers have when building concurrent systems, in
part because they frequently re-use existing code that
does not provide immutability guarantees. Lack of
transitivity of existing mechanisms results in guaran-
tees that are too weak to be useful.
• Incorrect state change is a frequent cause of bugs. As a

result, programming language features that help devel-
opers manage state have a good chance of preventing
many bugs and so research about such features is a
worthwhile endeavor.
• Even limited read-only restriction mechanisms, such

as const, can be too hard for programmers to use ef-
fectively. Designs must emphasize simplicity and us-
ability, or the features will not get used.
• Facilitating immutability is a core issue in program-

ming language design; languages that make copying
objects onerous or expensive discourage programmers
from using immutability-related features.

5.4 Limitations
Our small sample size resulted in several limitations to our

findings. We do not know whether programming languages
used for small projects or for short-lived projects would have
the same design considerations, since many of the justifica-
tions for the recommendations came from experiences with
large, long-lived projects. It is unclear to what extent the
participants’ backgrounds biased our findings, since nearly
all of them had formal computer science training, whereas
across the industry, software engineers come from a vari-
ety of different backgrounds. Furthermore, our participants
were very experienced; novices may benefit from different
language design choices than experts do.

6. ITERATIVE DESIGN OF FEATURES
Following techniques from the human-computer interac-

tion community [26], we are conducting a user-centered, it-
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erative design process to create language features with which
users can express state change constraints in a way that is
both usable and useful. Rather than assuming that users
need all possible features, we are starting from the assump-
tion that the language should be as simple as possible while
still providing what users need to address their problems.
There is a tradeoff between simplicity and completeness:
adding keywords for all possible features that users might
need might make addressing more problems feasible but also
make the system so complex that users cannot successfully
use those features correctly. By designing our system ac-
cording to the needs that practitioners have expressed and
iteratively testing specific designs with users, we hope to ar-
rive at a practical solution that addresses many, but likely
not all, of the problems that practitioners face in this space.

We must distinguish between requests from practitioners
and their actual needs. Users frequently do not know what
features would benefit them most [5], so asking them what
features they want is only the beginning of the process. We
grounded our interviews by asking primarily about their ex-
periences and only secondarily about their feature requests;
by basing our designs on the requirements of the systems the
users were building, we increase the chance that our system
is effective on real-life problems.

6.1 Transitivity
Based on our finding that some programmers want guar-

antees that can only be provided by transitive immutability
and the disparity in transitivity support between research
languages and commonly-used languages, we focused on the
question of transitivity. We piloted a user study compar-
ing a non-transitive subset of IGJ [44] with a modified ver-
sion that always enforces transitivity, which we call IGJ-T.
We started with IGJ due to its availability and practicality:
it can be used by experienced Java programmers and re-
quires learning only how IGJ annotations are processed, not
a whole new programming language. Initially IGJ was an
extension to Java using generics [44], but we used a revised
version based on the Java annotation system [34].

Because we wanted to compare always-non-transitive im-
mutability to always-transitive immutability in our study,
we only told our participants about the @Immutable anno-
tation, not any of the others. This forced a non-transitive
approach to immutability for the participants in the control
condition. For the transitive case, which we wanted to be
identical to IGJ except for transitivity, we created a version
of IGJ, IGJ-T. In IGJ-T, if a class has a constructor that re-
turns an @Immutable result, then all fields of that class must
be transitively @Immutable. The implementation of IGJ-T
works by visiting all methods when typechecking; for meth-
ods that are constructors that are annotated @Immutable, it
recursively visits the types of the class’s fields and verifies
that all of them are marked @Immutable.

The design of IGJ greatly facilitated verification of tran-
sitive immutability relative to writing an analyzer from
scratch. IGJ is implemented as part of the Checker frame-
work [35], which provides a collection of related facilities for
checking properties with annotations in Java. In particu-
lar, the Checker framework made it very easy to extend IGJ
with a new verification on constructors. IGJ-T gives error
messages like the following example:

error: [transitivity.invalid] Cannot declare

Simple() with annotation @Immutable because Simple

Figure 1: Class diagram of starter code

transitively contains @Mutable Date d on path

@Immutable AContainer a -> @Mutable Date d

@Immutable Simple () {

^

IGJ-T gives the full field path to the erroneous field so
that programmers can easily find the cause of the problem.

6.2 Study design and pilot results
We designed four tasks, intended to take 90 minutes to-

tal, in the context of a program to track outcomes of chess
games (Figure 1 summarizes the architecture). After obtain-
ing IRB approval, we recruited a convenience sample (N=3)
of PhD students experienced in Java to pilot our study. Two
participants completed a pre-test regarding their program-
ming experience and understanding of final. Of these, one
participant with over a year of Java experience, on hearing
an explanation of the fact that final only applies to as-
signment but not to the referenced objects, exclaimed, “no
one ever highlighted that key thing [before]!” The tasks are
summarized below:

1. Suppose your language has a feature that lets you spec-
ify that once a Game has happened, it should not be
changed. Please make any changes necessary to the ex-
isting program to express this using whatever language
feature you think would be best.

2. Now, we will show you the feature we have designed,
which we call @Immutable. (Participants were then
given a description of IGJ or IGJ-T depending on the
experimental condition to which they were assigned).
For the following sample code, please write which lines
would give compile errors to test your understanding
of @Immutable. (The sample code included a Per-
son class with fields for eye color and name; the eye
color was supposed to be fixed and the name could
be changed. The instructions showed how @Immutable

could be used to make the eye color immutable and
compared @Immutable with final, which would not
suffice when used only on the eye color field because
the eye color was a reference to a Color object.)

3. Please implement the updatePlayerName() method to
change the name of a player.

4. Please implement the changeGameOutcome() method
to update the history for a corrected game outcome.
Game must remain @Immutable.

The first task was designed to elicit how the participants
would want to express the immutability concepts, if given
free reign. This is a form of participatory design that we
call the natural programming elicitation approach [25], since
it tries to reveal how users would naturally express these
concepts. Note that the prompt (and the instructions be-
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forehand) did not use the word immutable in order to try to
avoid biasing the participants’ vocabulary choice.

The second task introduced the design of the immutability
construct that participants would be using and verified that
they understood it in a small test. All of the participants
understood their version of @Immutable.

In the third task, we expected participants in the IGJ con-
dition to erroneously mutate an object that was used as a
key in a hash table, resulting in a bug; we expected partic-
ipants in the IGJ-T condition to spend longer on the task
but avoid the bug. In the fourth task, we expected partic-
ipants in the IGJ-T condition to spend extra time solving
the problem but reap little benefit.

Though we have only begun our user study — so far we
have piloted it with three participants and the first was only
given the first two tasks — we have learned helpful insights
about Java programmers’ expectations. In the first task, one
participant used immutable as a qualifier on the Game class
declaration; the other added a freeze qualifier on a Game
parameter to one of the constructors of GameList (neither
participant used the Java annotation syntax).

The third task required participants in the IGJ-T case to
essentially rewrite the entire game history; in the IGJ case,
a simpler rewriting was possible. In both cases, however,
the participants were surprised that they had to rewrite
data structures rather than modifying them in place: “It
seems complicated because even if you want to change the
name you have to reconstruct everything.” Some Java pro-
grammers appear to find immutable data structures confus-
ing, and encountering them forces a difficult problem-solving
process. By completing the study, we hope to better under-
stand the tradeoffs of immutability: in what situations is it
beneficial to make structures immutable, and in what situ-
ations do the costs of immutability outweigh the benefits?

One participant in the non-transitive case had recently
been doing more functional programming, so we expected
that this experience might make immutability more intu-
itive. However, this participant modified Person in place,
not realizing that this would break various aspects of the
data structures, in part because Person was being used as a
hash table key. When this participant discovered the prob-
lem while testing and debugging, the participant exclaimed,
“this is what happens when you mutate [stuff] in place!” and
commented that maybe upon switching back to an impera-
tive programming context, it was hard to remember all the
problems that are inherent in imperative programming.

Due to the time spent on the third task, one participant
did not start the fourth task; the other two found it similar
to the third task. We plan to adjust the tasks to reduce the
time required for the third task and make the fourth task
more meaningful.

Though we restricted our study to a small subset of IGJ,
some participants had difficulty understanding its error mes-
sages while trying to fix their bugs. For example, one partic-
ipant spent over two minutes debugging this error message:

error: [method.invocation.invalid] call to

setBlackPlayer((@org.checkerframework.checker.igj.

qual.Immutable :: t_starter.Player)) not allowed

on the given receiver.

game.setBlackPlayer(newPlayer);

^

found : @Immutable Game

required: @Mutable Game

The participant kept checking the argument to
setBlackPlayer, but the problem was that game was
@Immutable and the solution was to create a new Game

object instead of modifying the existing one. Note that this
error was an existing part of IGJ. In our limited pilot, only
one user used IGJ-T, and that user did not encounter any
transitivity error messages.

The pilot user studies we have completed so far are only
the beginning; we are still refining the study. However,
threats to validity include the small set of tasks we used
in comparison to the wide variety of tasks that real soft-
ware engineers perform; the small codebase and short time-
frame of the study; and the relative inexperience of our
participants, who are mostly graduate students with small
amounts of professional experience. Eventually, however,
we hope to compare effectiveness of the two language exten-
sions across the different tasks and find out whether tran-
sitive immutability prevents bugs and whether it imposes a
significant time cost on programmers due to its complexity.

7. FUTURE WORK
The studies we are investigating are focused on comparing

transitive to non-transitive immutability in Java, but as can
be seen from §2, there is large design space of features for
immutability. Because of the potential large impact of im-
mutability on programmer productivity and software qual-
ity, it will be important in the future to develop an empirical
basis for designing and using immutability features in pro-
gramming languages. We are also planning to refine the
design of IGJ-T to more easily facilitate class immutability.
Finally, to mitigate the threats to validity and improve ex-
ternal validity, we hope to follow our lab study with a more
longitudinal study to evaluate to what extent our findings
generalize to real-world software projects.

8. CONCLUSIONS
Despite the vast design space for language features sup-

porting immutability in programming languages and plen-
tiful advice regarding how programmers should use them,
there is only scarce empirical evidence supporting these rec-
ommendations. We presented a classification of immutabil-
ity features and an analysis of their tradeoffs, challenging
the notion that providing a very flexible feature set is best.
We have begun experiments with users to find out how users
interact with immutability features along the transitivity de-
sign dimension, but future work will be necessary to under-
stand what features and usage patterns best benefit users.
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