Active Code Completion

Cyrus Omar, YoungSeok Yoon, Thomas D. LaToza, Brad A. Myers
Carnegie Mellon University, Pittsburgh, PA, USA

{comar,youngseok,tlatoza,bam}Qcs.cmu.edu

Abstract—Code completion menus have replaced standalone
API browsers for most developers because they are more tightly
integrated into the development workflow. Refinements to the
code completion menu that incorporate additional sources
of information have similarly been shown to be valuable,
even relative to standalone counterparts offering similar func-
tionality. In this paper, we describe active code completion,
an architecture that allows library developers to introduce
interactive and highly-specialized code generation interfaces,
called palettes, directly into the editor. Using several empirical
methods, we examine the contexts in which such a system
could be useful, describe the design constraints governing
the system architecture as well as particular code completion
interfaces, and design one such system, named Graphite, for
the Eclipse Java development environment. Using Graphite,
we implement a palette for writing regular expressions as our
primary example and conduct a small pilot study. In addition
to showing the feasibility of this approach, it provides further
evidence in support of the claim that integrating specialized
code completion interfaces directly into the editor is valuable
to professional developers.

Keywords-code completion, development environments

I. INTRODUCTION

Software developers today make heavy use of the code
completion support found in modern source code editors
[1]. Most editors provide code completion in the form of
a floating menu containing contextually-relevant variables,
fields, methods, types and other code snippets. By navi-
gating and selecting from this menu, developers are able
to avoid many common spelling and logic errors, eliminate
unnecessary keystrokes and explore unfamiliar APIs without
incurring the mental overhead associated with switching to
an external documentation tool or API browser.

Several refinements and additions to the code completion
menu have previously been suggested in the literature. These
have focused on leveraging additional sources of informa-
tion, such as databases of usage history [2][3], inheritance
information [3], API-specific information [3][4], partial ab-
breviations [5], examples extracted from code repositories
[6][7] and crowdsourced information [8][9], to increase the
relevance and sophistication of the featured menu items. As
with the standard form of code completion, many of these
sources of data can also be utilized via external tools (e.g.
Calcite [8] uses information that could already be accessed
using the Jadeite [10] tool). Empirical evidence presented
in these studies, however, suggests that directly integrating
these kinds of tools into the editor is particularly effective.

978-1-4673-1067-3/12/$31.00 (© 2012 IEEE

859

For example, users of the Calcite tool completed 40% more
tasks in a lab study (unfortunately, a Jadeite control group
was not included.)

In all of these systems, the code completion interface has
remained primarily menu-based. When an item is selected,
code is inserted immediately, without further input from the
developer. These systems are also difficult to extend: a fixed
strategy determines the completions that are available, so li-
brary providers cannot directly specify new domain-specific
or contextually-relevant logic. In this paper we propose
a technique called active code completion that eliminates
these restrictions!. This makes developing and integrating
a broad array of highly-specialized developer tools directly
into the editor, via the familiar code completion command,
significantly simpler. This technique is motivated by the
evidence discussed above and further evidence provided in
this paper that developers prefer, and make more effective
use of, tools that do not require leaving the immediate
editing environment.

In this paper, we discuss active code completion in the
context of object construction. For example, consider the
following Java code fragment:

public Color getDefaultColor () {
return .

If the developer invokes the code completion command at
the indicated cursor position (), the editor looks for a palette
definition associated with the type of the expression being
entered, which in this case is Color. If an associated palette
is found, a menu item briefly describing this palette is added
to the standard code completion menu. When selected, the
corresponding palette is shown, replacing the standard code
completion menu. Figure la gives an example of a simple
palette that may be associated with the Color class®.

The developer can interact with such palettes to provide
parameters and other information related to her intent, and
receive immediate feedback about the effect these choices
will have on the behavior of the object being constructed.
When this interaction is complete, the palette generates
appropriate source code for insertion at the cursor. Figure
1b shows the inserted code after the user presses ENTER.

IPortions of this work previously appeared in a poster abstract [11].
2A video demonstrating this process is available at
http://www.cs.cmu.edu/~NatProg/graphite.html.

ICSE 2012, Zurich, Switzerland

public Color getDefaultColor() {

public Color getDefaultColor() {

return return new Color(
i a,
navyl a,
128); // navy
EEOoEmCEDCE | | Enter ; // navy
]| }
R:0 G:0 B:128
(a) (b)
Figure 1. (a) An example code completion palette associated with the Color class. (b) The source code generated by this palette.

In accordance with best practices, we sought to address
the following questions before designing and implementing
our active code completion system:

What specific use cases exist for this form of active
code completion in a professional development setting?
What general criteria are common to types that would
and would not benefit from an associated palette?
What are some relevant usability and design criteria for
palettes designed to address such use cases?

What capabilities must the underlying active code com-
pletion system provide to enable these use cases and
user interface designs?

To help us answer these questions, we conducted a survey
of 473 professional developers (Section II). Their responses,
along with information gathered from informal interviews
and code corpus analyses, revealed a number of non-trivial
functional requirements for palette interfaces as well as the
underlying active code completion architecture (Section III).
Participants also suggested a large number of use cases,
demonstrating the broad applicability of this technique. We
organize these into several broad categories (Section IV).

Next, we describe Graphite, an Eclipse plug-in that imple-
ments the active code completion architecture for the Java
programming language (Section V), allowing Java library
developers to associate custom palettes with their own
classes. We describe several design choices that we made
to satisfy the requirements discovered in our preliminary
investigations and briefly examine necessary trade-offs.

Finally, we conducted a pilot lab study with a more
complex palette, implemented using Graphite, that assists
developers as they write regular expressions (Section VI).
The study provides specific evidence in support of the
broader claim that highly-specialized tools that are inte-
grated directly with the editing environment are particularly
useful. We conclude that active code completion systems
like Graphite are useful because they make developing,
deploying and discovering such tools fundamentally simpler.

II. SURVEY

To validate our general conceptualization of active code
completion, develop concrete criteria to constrain our system

860

and palette designs, and create a list of use cases to justify
this effort, we began by conducting a large survey of
professional software developers.

A. Farticipants

We recruited participants for this survey® primarily from
a popular programming-related discussion forum hosted on
the popular website reddit.com [12]. An additional 22 par-
ticipants were computer science graduate students at CMU.

Recruitment materials in both cases stated that we were
seeking developers “familiar with an object-oriented pro-
gramming language like Java, C# or Visual Basic and an
integrated development environment like Eclipse or Visual
Studio”. Participants were told that the survey would take
approximately 20 minutes to complete, and no reward was
offered. Of the 696 people who started the survey, 473
participants (68%) completed it. We examine the responses
from completed surveys only in the analyses below.

B. Familiarity with Programming Languages and Editors

We first asked participants about their level of familiarity
with several programming languages, on a five-point Likert
scale*. 61.1% of the participants indicated that they were
an expert in at least one language, and an additional 35.7%
were “very familiar” with at least one language. On average,
participants rated themselves as very familiar with Java, C,
C++ and JavaScript, familiar with C#, Python and PHP and
somewhat familiar with Visual Basic and Perl.

We also asked participants to select which integrated
development environments (IDEs) and code editors that they
were familiar with. The Eclipse IDE was familiar to 87.1%
of participants. This was followed by Visual Studio at 66.0%,
Vi/Vim at 53.7%, Netbeans at 37.7%, Emacs at 24.8% and
IntelliJ IDEA at 16.4%. Participants could also enter “other”
choices and a number of editors and IDEs were entered,
including Xcode, Textmate and Notepad++.

3https://www.surveymonkey.com/s/2GLZP8V

>

4“None”, “Somewhat familiar”, “Familiar”, “Very familiar”, “Expert”

Regular Expressions SQL
Separate test script 29.6% 15.4%
Guess and check 14.0% 16.1%
External tool 37.9% 58.6 %
Search for examples 12.3% 5.1%
Other 6.2% 4.9%

Figure 2. Distribution of responses to survey questions asking about typical
strategies for writing regular expressions and SQL queries.

W .S - \C
o oy o e Ay 5 e o
et T jost Ogome g arel qenet

CLASS
Color 9.6% 22.1% 324% 282% 7.7%
RegExp 36.6% 295% 21.8% 73% 4.8%
SQL 182% 19.3% 309% 204% 11.4%
Figure 3. The distribution of responses to the question: “Consider

situations where you need to instantiate the [specified] class. What portion
of the time, in these situations, do you think you would use this feature?”

C. Palette Mockups

We presented participants with a series of mockup palettes
for a Color class (more complex than the one we ultimately
implemented in Figure 1a), a regular expression class, and
a SQL query class. Participants were also shown mockup
screenshots demonstrating how a user could invoke the
palette, and a mockup showing the code that would be
inserted once a selection had been made. Before presenting
each mockup, we gathered information about the strategies
that they would normally use to instantiate the class.

For the Color class, the majority of participants indicated
that they would look in the code completion menu (58.4%)
or in the class documentation (19.0%) for a predefined
constant if asked to instantiate an object corresponding to
the color “navy” (which is not, in fact, a standard color
in Java.) Another 14.0% indicated that they would use an
external tool (such as an image editor) to determine the RGB
values corresponding to the color.

Before asking participants about regular expressions and
SQL queries, we asked participants to rate their familiarity
with these concepts. Few participants (4%) indicated that
they were unfamiliar with regular expressions and no partic-
ipants were unfamiliar with creating SQL queries, providing
further evidence that our participants were not novice devel-
opers. Figure 2 summarizes the strategies that participants
generally preferred for instantiating regular expressions and
SQL queries. Using an external tool was a common strategy
in both cases, particularly for SQL queries, but several other
strategies were also represented.

Finally, after showing the series of mockup screenshots,
we asked participants to rate how useful the integrated
palette would be to them if they needed to instantiate the
corresponding class. The responses to this question for each
palette are summarized in Figure 3. In each case, more

861

than half of the participants indicated that they would use
active code completion at least some of the time. The regular
expression palette was considered particularly useful while
the color and SQL palettes showed a more reserved pattern
of responses.

In addition to asking for a simple rating for each palette,
we also solicited open-ended comments. A large number
of participants volunteered comments: 193 for the color
palette, 129 for the regular expression palette and 142 for
the SQL palette. These responses were highly valuable when
developing the design criteria below and helped to explain
the patterns observed in Figure 3.

III. DESIGN CRITERIA

Using the information gathered from the survey as well
as informal discussions with developers and researchers,
we developed design criteria constraining both the overall
system design as well as the design of individual palettes. In
the section headings below, the number of survey responses,
summed over the three palette mockups, that contained the
listed concern, as judged by the authors of this paper, are
listed in parenthesis. These criteria were useful in designing
Graphite (Section V) and we note that this collection of
criteria may also be relevant to researchers designing other
kinds of editor-integrated tools. Based on the variety of
concerns expressed by participants in our survey, the design
space for these tools appears to be quite complex.

A. Maintaining Separation of Concerns (183)

The most common issue participants had was that palettes
seemed to violate the principle of separation of concerns.
The color palette, for example, allows developers to insert
color constants directly into the program logic. Many devel-
opers noted that this is considered bad practice, or should be
limited to the prototyping phase of a project. This concern
was also expressed in responses to the SQL palette, which
required inserting parameters to connect to a database so
that the query could be tested. The resulting code included
initialization steps needed to connect to the specific database
that was entered, and several participants noted that much of
this information should appear in an external resource file
separated from the program logic. Few participants made
similar comments about the regular expression palette, how-
ever, indicating that regular expressions are considered a part
of the program logic rather than data by most developers.

This suggests that tool and palette designers may wish
to explicitly aprise users of relevant best practices and
acknowledge that palettes that generate constant data may
be most useful in the prototyping phase. It can be noted that
when transitioning from a prototype to production-quality
software the code generated by a palette or tool may be used
as template to be refactored as needed. It also suggests that
resource file and stylesheet editors may particularly benefit
from active code completion support.

B. Integration with Testing Frameworks (35)

The regular expression palette shown to the participants
allowed users to immediately test a pattern against provided
strings. These test strings and the results of performing
the match were inserted as comments below the generated
source code. A number of participants requested that unit
tests be generated instead, likely due to concerns that future
modifications might introduce bugs, or due to the desire to
conform to standard testing practices. To support the gener-
ation of unit tests, the active code completion architecture
would need to support code generation at locations other
than at the cursor.

C. Support for Reinvocation (19)

Several participants asked for the ability to reinvoke a
palette from previously generated source code. In order
to support this feature, the architecture must provide the
palette with enough information to reconstruct its state. To
complicate matters, however, users may wish to modify
the generated code between invocations of the palette and
have these modifications reflected in the palette’s state upon
reinvocation (e.g. modify the RGB values in the case of the
Color class). Moreover, there may be important aspects
of the palette’s state that are not directly available in the
generated code, such as parameters controlling the palette’s
user interface. Indeed, associating tool-related metadata with
code is known to be cumbersome in purely textual lan-
guages, since all metadata must be directly visible within
comments or annotations.

D. Support for Palette Settings and History (41)

A related feature important to many participants was
support for maintaining settings and usage history across
invocations of the same palette at different code locations.
For example, 20 participants requested that the Color palette
include a list of recent or favorite colors, and 12 participants
inquired about whether the database connection information
was maintained between invocations of the SQL palette.

E. Support for Nested Expressions (13)

In all of the examples that we gave, the parameters
entered into the palette interface corresponded to simple,
constant expressions, rather than complex expressions refer-
ring to variables from the surrounding context. A number
of participants noticed this limitation. For example, several
participants asked SQL query strings, as these are typically
constructed using user-generated data in practice. Although a
simple expression entry box may suffice in simple scenarios,
architectural support is needed for palettes that need to
inspect the code context (e.g. to verify well-formedness) or
if code highlighting, code completion and other advanced
editing features are needed within the palette itself.

862

F. Keyboard Navigability (12)

Although our mockup screenshots did not include any
completely mouse-driven interfaces, several participants
commented that the Color palette included interface ele-
ments taken from standard color dialog boxes that could
only be manipulated using the mouse. These comments
were generally severe in their condemnation of mouse-based
interfaces in developer tools, consistent with our finding that
a significant portion of our participants were using editors
like Vim that place a strong emphasis on keyboard shortcuts.

G. Responsiveness

A common theme in our discussions with developers (as
well as in comments left on our recruitment thread) was
that integrated development environments like Eclipse were
already too slow, and that an extension such as the one we
were proposing would only be acceptable if it did not affect
performance and responsiveness any further.

H. IDE and Language Portability

The mockups we showed users were based on the Java and
the Eclipse IDE. As we showed, a number of participants
preferred other languages or editors. Many of these partici-
pants made comments asking that the features we describe
be IDE and programming language independent. Indeed, the
palettes we demonstrated could be used with only slight
modifications in a variety of programming languages, given
suitable architectural support for porting palettes between
editing environments.

1. Varying User Needs

While some participants wanted simpler palettes, others
requested significant new capabilities, indicating that user
needs may vary substantially. For example, our initial color
palette (different from the one shown in Figure 1) was
deemed overly complex by many participants (26). Other
users wanted additional features, such as an “eyedropper”
tool (11) for selecting a color directly from an image on the
screen. The regular expression and SQL palettes were con-
sidered too simple (by 12, and 15 participants respectively).
Users suggested syntax highlighting, several mechanisms
for generating, testing and sharing regular expressions and
queries, and the ability to browse SQL databases.

Due to this wide range of user needs even for a single
class, it may be that support for multiple palettes or a tabbed
palette interface would be helpful in practice. To support
incremental improvements based on such user feedback, an
architecture that makes deploying new and updated palettes
relatively painless would also be valuable.

IV. USE CASES

At the end of the survey, we asked the the participants to
suggest other classes that could benefit from an associated
palette to support our claim that active code completion

is broadly applicable, and to allow us to characterize the
specific scenarios where it may be most useful. A total
of 119 participants made one or more suggestions, which
we classified into several broad categories (we omit a few
of these below due to space constraints). As above, the
number of participants suggesting a palette in each category
is listed in parenthesis. We also include suggestions made
by researchers and developers in private discussions without
including them in the provided counts.

A. Graphical Elements (27)

The most popular suggestions were graphical elements,
influenced perhaps by our demonstration of the Color
palette. Some participants suggested palettes for classes rep-
resenting primitive graphical objects, such as brush and font
selectors or polygon editors, while other participants were
focused on user interface elements, such as buttons, check
boxes and frame layouts. A few also suggested palettes for
manipulating 3D primitives, such as transformation matrices,
in a more direct and intuitive manner. A practitioner also
suggested that because setting up a plot or graph is often
significantly simpler using a direct manipulation interface,
it would be a natural candidate for a palette as well.

B. Query Languages (17)

The second most popular category of suggestions con-
sisted of various interfaces for query languages, also likely
due to the examples we provided to participants. In addition
to variants of the SQL and regular expression palettes,
developers also wanted to work with other types of queries
such as XPath or XQuery for XML.

C. Simplified or Domain-Specific Syntax (16)

Another interesting class of suggestions were cases where
a more natural syntax than the syntax provided by Java
is desirable. One suggestion was a palette that automati-
cally escaped strings containing quotation marks or escape
sequences. A related category of suggestions consisted of
palettes that offered a more natural interface for generating
strings containing code in other languages such as HTML
(e.g. offering syntax highlighting, escaping, tag matching
and other features.) Domain-specific syntax for complex
mathematical expressions and chemical formula were also
mentioned in discussions with practitioners.

An interesting suggestion that we investigated further
involved Java’s collection classes, such as ArrayList and
HashMap. A participant suggested that these classes could
be associated with a palette that offered a simplified literal
syntax for initialization, pointing toward other languages that
do offer such a literal syntax (e.g. JavaScript.) Without such
syntax, these classes must be tediously initialized using a
separate method call for each element. To determine whether
this usage pattern is common, we conducted a corpus anal-
ysis using 10 randomly selected projects from the Qualitas

863

Collection Class | Total | Literal | Percentage
ArrayList 464 44 9.5%
HashMap 56 19 33.9%
HashSet 122 62 50.8%
Hashtable 86 10 11.6%
Vector 729 31 4.2%
Total 1457 166 11.4%
Figure 4. Usage patterns for common Java collection classes in the

java.util package in our code corpus. Uses that fit a pattern that can
be captured by a literal make up a significant portion of all uses. Not all
possible usage scenarios of this type were captured by our analysis, so
these numbers are lower bounds.

Corpus [13] containing over 1M lines of code. We began by
searching for places in these projects where Java collection
classes were being instantiated, then looked to see whether
this instantiation code was immediately followed by method
calls that inserted items into the collection, indicating a case
where a literal may have been used if available. Figure 4
summarizes the results of this analysis, providing evidence
in support of the claim that a palette that simplifies this
process could be useful for general-purpose programming.

D. Unclear Parameter Implications (11)

Another category of use cases contains classes where
it can be difficult to predict what the run-time behavior
of a particular parameter choice may be. Examples given
included audio filters (e.g. pitch manipulation) and animation
descriptors (e.g. speed or shape parameters). By giving
immediate visual or auditory feedback using a preview
panel, these parameters can be tweaked without requiring
the execution of the full application.

E. Integrating with Documentation and Examples (7)

Some participants suggested integrating tutorials or lists of
relevant examples directly using a palette, so that these can
be discovered more easily by new users and inserted directly
into code, without requiring switching to a web browser and
executing a search.

F. Complex Instantiation and Cleanup Procedures (5)

A related category contains classes that require complex
instantiation and cleanup procedures. For example, in order
to read a text file in Java, the developer might want to
use BufferedReader class. This class can be difficult
to use because it requires try/catch block, and one must
remember to close the file after reading it. By using a palette
to choose a file or choose a variable which contains the file
path, the developers could easily instantiate these objects
and get an outline containing the full life-cycle of the file.
Similarly, palettes may help to alleviate the factory pattern
usability problem [14]. As long as the developers remember
which class to use, they will not need to remember how
to instantiate that class. We explore this further in our user
study in Section VL

G. Instantiation by Example (2)

In some cases, it is possible to describe an object by
example. For instance, a class that represents a shortcut key
combination may be most easily instantiated using a palette
that simply reads a shortcut key from the developer.

H. Proof Assistants

A proof assistant is a tool for constructing proof terms.
According to the well-known Curry-Howard isomorphism
between programming languages and formal logics, proof
terms correspond to expressions and propositions correspond
to types [15]. Active code completion works directly with
types to help developers construct expressions, so if applied
to a language with a cleanly-developed connection to formal
logic (e.g. Coq), palettes would be useful for constructing
interactive proof assistant interfaces.

V. SYSTEM DESIGN AND IMPLEMENTATION

After completing the survey, we built an active code com-
pletion system named Graphite, an acronym for Graphical
Palettes to Help Instantiate Types in the Editor. We chose
to build the system as an extension to Eclipse for Java
because this combination was the most widely-used amongst
participants in our survey. In the subsections below, we
describe how several novel design decisions made it possible
to satisfy design criteria from Section III and enabled several
use cases described in Section IV. The end result is a simple
system that allows an API’s developers, as well as external
developers, to build rich HTMLS5-based palettes that can
be associated with both in-built and user-defined classes
directly. Developers using an API can discover and invoke
these palettes through the standard code completion menu.

A. HTMLS5-Based Palettes

Palette developers build palettes using HTMLS5 technolo-
gies (HTML, CSS and JavaScript). We made this decision
for several reasons. Eclipse is written in Java and uses
the SWT and JFace graphical user interface toolkits, but
these are not widely used outside of the Eclipse ecosystem.
JavaScript was among the most well-known languages in our
study, just behind Java, C and C++, and is highly flexible. A
number of useful libraries are available (e.g. jQuery [16].)

As noted in Section IV-H, a number of participants in our
field study indicated that they hoped that our tool would be
available for other IDEs and other programming languages.
All major windowing toolkits feature a web browser control,
so HTMLS5-based palettes can easily be loaded by different
editor environments without developer intervention.

Deploying palettes using standard URLs is also simpler
than attempting to integrate them directly into Java libraries
and packages. It also eases the process of incremental
and rapid development, as all major browsers now feature
sophisticated debuggers and run-time inspection facilities.

864

B. Palette API

Palettes communicate with the host IDE using a simple
Javascript API. To access this API, the palette must include
a small script named graphite. js into their page. The
default implementation of this script provides an implemen-
tation of the API methods for testing in a standard web
browser. When loaded into an editor, the editor plug-in
replaces these methods with specialized implementations.
The API consists of the following methods, accessed through
a global object named graphite:

e insert (str): Inserts the specified string at the
cursor and closes the palette. The indentation is au-
tomatically inserted after any newlines in this string.

e cancel (): Closes the palette without inserting code.
Note that the ESC key cancels by default, and palettes
are modal so clicking outside a palette will not cancel.

e getSelectedText (): Returns the text that is cur-
rently selected in the editor, or an empty string if no text
has been selected. This method is used to implement
reinvocation — users simply select previously generated
code and invoke the palette as described in Section I.
The palette is responsible for parsing the selected text
to extract relevant parameters.

e getIDE (), getLanguage (): Return a string that
specifies the IDE and language that is being used,
“Eclipse” and “Java” in our implementation.

By limiting the complexity of this API, we reasoned that
developers would be able to create specialized palettes more
easily. A simple hello world palette is only two lines of code,
for example. An additional benefit is that the developers
of other editing environments should also be able to create
plug-ins that support Graphite palettes with minimal effort.

C. Falette Discovery

Graphite currently provides two methods for associating
a palette with a particular class so that the editor plug-in can
include it in the code completion menu when relevant.

1) Annotation-based: For user-defined classes that the
palette developer has the authority to modify, the
@GraphitePalette annotation associates a palette with
the class. The annotation must specify the URL of the
palette, and can contain some other optional information
(e.g. the description that is shown in the code completion
menu). This allows API providers to provide palettes that
are specialized to their libraries and distribute them directly
alongside their code. The benefit of this approach is that
users of the API are not required to discover that an external
tool exists and explicitly install it into their IDE.

2) Explicit: In cases where a palette developer cannot
modify a class directly (such as palettes for classes in the
Java standard library), end-users can explicitly associate
a palette with the fully qualified name of a class via a
preference pane in the Eclipse IDE.

public static void main{String[] args) {
Pattern p =
}

(enter a positive test case above)

(] Ignore Case

(enter a negative tesf case above)

Figure 5.

D. Design Trade-Offs

The design that we have described is light-weight, highly
flexible and does not significantly impact IDE responsive-
ness. It also lays foundations for IDE and language porta-
bility. However, this design also leads to trade-offs:

« Because palettes are implemented in Javascript, any dif-
ferences between the semantics of Java and Javascript
can be problematic. For example, color names are
slightly different between Java and Javascript, as are
the regular expression engines. Although a Java applet
could be used in cases where these differences are
critical, this is still more difficult than it would be if
the palettes were implemented in the same language.

« The palette user interface must stay within its bounding
box — user interface elements like pop-up menus (unless
they are provided by the browser itself) are thus more
difficult to implement and may require additional API
support in the future.

« Several use cases could benefit from greater access to
the surrounding code, or even the surrounding project.
Implementing this modularly is particularly difficult,
and the Eclipse API does not easily allow for seri-
alization of the sum of its contextual knowledge for
consumption by a palette.

« Because the reinvocation mechanism relies on parsing
the selected code, the burden is high for both palette
developers (although Javascript libraries for parsing
Java code are available) and palette users. A better
solution would be one where palette-related metadata
is stored directly with the generated code. This could
be partially addressed by the use of special comments
to delimit sections of generated code and store palette
metadata, but a more elegant solution would require a
change in how Java source code is represented.

E. Palettes

We implemented two palettes using the jQuery library for
basic functionality [16], which we used in the pilot study
described below.

1) Color Selection: The color selection palette we ul-
timately developed was significantly simpler than the one
shown in the preliminary survey, due to user comments. It
allows users to enter any valid CSS color string, satisfying

865

The regular expression palette developed using Graphite and used by subjects in the treatment group of the user study described in Sec. VI.

the requirements for keyboard navigability. The entered
color is syntax checked and a preview is shown. Standard
Java colors are also available as swatches that can be selected
by the mouse if desired. Reinvocation support is provided.
This palette took about 500 lines of code and markup, not
including the jQuery library. Much of this was needed to
translate arbitrary CSS color strings into RGB values, rather
than for user interface logic.

2) Regular Expressions: Writing correct regular expres-
sion patterns is difficult. The regular expression palette,
associated with the Pattern class in the Java standard
library, allows users to enter and test regular expression
patterns interactively before inserting them into their code.
The focal point of this palette is the pattern input area. As
the user enters a pattern into this input area, syntax errors
are indicated with a red background; the background remains
white when the pattern is valid.

In addition to the pattern, a regular expression consists of
flags that can change its matching behavior in various ways.
Our palette allows users to toggle the case-sensitivity flag
of the regular expression using a small checkbox labeled
Ignore Case, placed next to the input area. A keyboard
shortcut is also available, indicated using the underlined
letter (Ctrl+I).

To allow users to test the behavior of the regular ex-
pression that they have entered, two columns are available
below the expression input area. The left column contains
an input area labeled “Should match...” and the right column
contains an input area labeled “Should NOT match...”. Users
use these to enter lists of test strings into each column. The
background colors behind these strings change to indicate
whether the regular expression that has been entered matches
or does not match that string. Green indicates that the pattern
matched the string and red indicates that it does nor match,
regardless of the column that the test is in (this scheme
was chosen based on feedback from an initial pilot of this
palette, the results of which are not included below.) A key
describing this color scheme is displayed after the first test
has been entered (not shown above, see video).

Users can navigate the palette using the keyboard using
standard Tab cycling behavior. The label in each text area
remains visible until some input has been entered, rather
than disappearing immediately on focus. When a user is
satisfied with the regular expression that they have entered,

she can press the Enter key to insert the appropriate
Java source code. Because Java requires that the regular
expression pattern be placed inside a string literal, additional
escape sequences are needed in front of backslashes. This
can be tedious and error-prone if done manually. The palette
automatically inserts these escape sequences. In addition to
the source code itself, the tests are retained in a comment
beginning on the next line. If the user wishes to modify the
regular expression or change the test set, she can highlight
the code that was inserted and then invoke the palette once
again. The palette parses the selected text to extract the
regular expression and tests.

This palette required about 700 lines of code and markup.

VI. PiLOT STUDY

We conducted a small controlled pilot study to evaluate
the usefulness and usability of the Graphite system for a
specific development task — writing regular expressions —
and found significant benefits for the treatment group.

A. Study Methods

1) Between-Subjects Design: We used a between-subjects
design by randomly assigning the participants to either the
control group or the treatment group. In the control group,
subjects were not shown or able to use any palettes. In
the treatment group, subjects were shown the simple color
palette shown in Figure 1, and allowed to discover and use
the regular expression palette shown in Figure 5 if they
wished. No specific training on the use of this palette was
provided, to simulate realistic usage scenarios.

We chose a between-subjects design because a within-
subjects design would have required us to produce pairs
of tasks with equal difficulties. This turned out to be very
challenging. Second, we could not easily ignore a learning
effect during the experiment if we had used a within-subjects
design. We observed that this effect was quite strong, as most
subjects had not used regular expressions recently.

2) Training: Only the participants in the treatment group
were shown how to invoke Graphite palettes in the context of
an Eclipse code editor with a palette for the Color class. We
chose to demonstrate the tool using a color palette instead
of the regular expression palette itself because we wanted
to simulate the condition where a user had discovered the
palette naturally. The demonstration of the Color palette
was brief, taking about two minutes. We then described the
nature of the task to the subject and allowed them to begin,
giving them 45 minutes to complete all tasks, in any order.

3) Tasks: There were a total of 9 tasks to be com-
pleted in 45 minutes. The first 6 tasks involved writing
regular expressions to validate various data formats (e.g.
temperatures), and the remaining 3 tasks involved writing
regular expressions to retrieve data from a document. The
participants were allowed to move back and forth while
doing the experiment, and they were allowed to use any

866

external resources, including the internet, local console, and
so forth (we did not observe any usage of programs other
than the web browser, however). The only restriction we
placed on their activity was that they were NOT allowed
to directly search for the answer to a task online. We
omit descriptions of each individual question due to space
limitations.

B. Participants

We recruited 7 PhD students from CMU. The subjects
were randomly assigned into two groups: 4 subjects were
assigned to the control group, and the other 3 subjects to
the treatment group. There were six male participants and
one female participant. Participants were compensated in the
amount of 15 dollars for their participation.

All subjects had prior experience with both Java and
regular expressions, assessed using a preliminary survey
similar to the one described in Section II. Of note, the
subjects in this study were slightly less skilled with Java
and regular expressions than in the previous survey. This
is consistent with the responses of the PhD students who
participated in the online survey, who were also slightly less
experienced on average. The only other significant difference
in responses was that the PhD students were slightly less
likely to prefer the use of external tools. The difference in
the case of regular expressions was 13%.

C. Hypotheses

In designing the regular expression palette, we had hy-
pothesized that users would experience difficulties with two
particular aspects of the Java Pattern API: that it used a
factory pattern for instantiation, as opposed to the standard
instantiation construct [14], and that it required special care
with escape sequences — escape sequences in the pattern
must themselves be escaped, because the regular expression
is written as a Java string literal. We observed difficulties
with both of these issues in the control group, but not in
the treatment group. The treatment group also completed
more tasks than the control group on average (7 vs. 6.) The
behaviors observed in these groups are described below.

D. Preliminary Reading

All subjects were somewhat rusty on the details of the
Java Pattern API. After reading the prompt for the first
task, all subjects began by searching for and reviewing
documentation related to regular expressions. In all but one
of these cases, the subject looked at the API documentation
for the Java Pattern class during this initial review. The
remaining subject, a member of the control group, referred
to quick reference documentation provided by an external
tool. In all cases, the documentation was left accessible
in a browser window throughout the study, often displayed
simultaneously alongside the coding window due to the large
screen available for the study.

E. Control Group

In our previous online survey, we had found that no
single strategy for writing regular expressions dominated the
others. We observed each of the common strategies — use of
external tools, test scripts and guess-and-check.

One subject began by using an external tool called regex-
pal.com. After writing a full regular expression and attempt-
ing to test it using the tool, the subject became dissatisfied
with it and switched to a different tool, regextester.com. This
tool too appeared to be unsatisfactory, as all subsequent tasks
were performed without the aid of external tools or tests.

The other subjects chose to write their regular expressions
directly within Eclipse from the beginning. One of these
subjects never compiled or checked the accuracy of the
regular expressions beyond making sure Eclipse errors were
addressed, while the other two attempted to write Java stubs
within the test files to test the regular expression that they
had written. They experienced considerable difficulty with
this task, with one subject taking over 10 minutes to write
the test code. The code could only check one example at
a time and the subject used it to check a single positive
example per task.

One of the four control subjects tried the new Pattern
construct. An Eclipse error alerted the subject to the problem
shortly thereafter. After referring to an example in the inline
API documentation for the class, the subject was able to
correct this error. The remaining subjects all noticed this
example beforehand, and were able to avoid this problem.

Three of the four control subjects experienced significant
difficulties associated with escape sequences. One subject
recognized the error fairly quickly after Eclipse complained
that the escape sequences used in the pattern were invalid
(they were, in fact, valid escape sequences for regular
expression patterns, but not for string literals.) The subject
continued to miss escape sequences occasionally throughout
the remainder of the study, but was able to fix them quickly
after Eclipse alerted the subject to the error. For the other two
subjects, the problem was more severe. In both cases, they
noticed the error that Eclipse gave, but thought it indicated a
problem with their pattern itself. One subject thought that the
uses of symbolic escape sequences like \ (were incorrect.
He decided to replace these with ASCII escape sequences
(\050) after looking up an ASCII conversion table. This
was an unnecessary and overly complex solution to the
problem. The other subject thought that the problem was
in his use of the whitespace escape sequence, \s. Thus, he
spent several minutes looking up how to match whitespace
correctly. In doing so, he found a description of the double-
escape problem in Java and fixed the problem after that.

FE. Treatment Group

One subject was already familiar with an external tool,
regexpal.com (also used by a subject in the control group),
and used it variously throughout the task. In most cases, the

867

subject used the external tool’s quick reference documen-
tation while using our palette for authoring and testing. At
other times, the subject used the external tool itself. The
subject indicated that in some cases, he was not sure that
our palette was free of bugs (when something unexpectedly
matched or did not match. We did not observe any actual
errors related to regex matching in our tool, however.),
and also because the external tool provided syntax and
substring highlighting, a useful feature for complex regular
expressions. When done with the external tool, the subject
pasted the pattern into our tool to generate the appropriate
code. As such, the subject had no difficulties with escaping
or factory pattern instantiation.

The other two subjects in the treatment group did not
use any external tools. Both subjects decided not to use our
palette for the first task (likely because they forgot that it
was available, since they spent some time looking up API
documentation after our initial demo with the color palette.)
They both recognized the need for the factory pattern and
also both had an initial error related to escaping that they
were able to resolve before moving on. One of these subjects
also began to write tests within a main method.

Beginning with the second task, both subjects remem-
bered that a palette may be available and were able to invoke
it correctly. They all recognized that the primary input box
was where the regular expression should be entered and that
the two other input boxes were for positive and negative
tests, respectively. Two of the subjects did not initially
realize that multiple tests could be entered, and that entering
even a single test required pressing the Enter key. One
subject never fully understood this, relating after the study
that he thought that the palette would notify him when he
was done if the example that he had entered was not matched
by the pattern. The other subject was able to use the test case
input boxes correctly after initial experimentation. This was
perhaps due to the wording of the prompts under these entry
boxes: “enter a [positive | negative] test case above”. This
problem was corrected in a version of the palette developed
following this study.

Two of the subjects used the reinvocation feature of the
palette, but neither highlighted the test cases, meaning that
they had to enter new test cases every time they reinvoked
the palette. This may have been due to the fact that our
example with the Color palette involved only a single line
of text (unlike the example in Figure 1). The third subject
never used this feature.

Two of the subjects expressed confusion about the mean-
ing of the green and red backgrounds on the test cases.
Although we provided a key saying that green meant that
“pattern matches string”, the headings of the two columns:
“[should | should NOT] match:”, may have caused con-
fusion. We had changed the meaning of these colors due
to feedback from our initial presentation of the tool, so

it is clear that regardless of the interpretation given, some
subjects were confused.

Despite these difficulties, however, the basic functionality
of the palette seemed to help all of the subjects. None
struggled with issues related to escaping and instantiation,
for example. Although the sample size is not large enough
to make many quantitative judgements, it was observed that
the treatment group completed more of the tasks than the
test group on average (7 tasks for the treatment group vs. 6
for the control group). All of the subjects in the treatment
group, as well as members of the control group who were
shown the palette after the study, indicated that they felt
that the palette was helpful, and several provided specific
suggestions for improvements.

G. Threats to Validity

In addition to the small sample size and the sampling bias
discussed earlier, subjects in the treatment group may have
been biased to use our features due to their novelty (although
two subjects did not use the palette until their second task).
We only tested a regular expression palette, so other types of
palettes may not necessarily be as useful, and this palette had
significant flaws that were corrected only after this study.

VII. RELATED WORK

In addition to the code completion work discussed in the
introduction, some other research areas are related to active
code completion.

A. Active Libraries

We named this technique active code completion because
of its relation to the general concept of active libraries [17].
Active libraries are libraries that contain program logic that
is invoked at either compile-time or, here, design-time.

B. Visual Languages

Because active code completion involves graphical user
interface elements but ultimately generates textual source
code representations, it can be considered a hybrid approach
that borrows interaction techniques from visual languages
while remaining compatible with conventional programming
languages. This hybrid approach may help address some of
the usability challenges previously associated with visual
languages (cf. [18]).

Editing environments like Barista [19] and the RBA editor
[20] also merge concepts from both text-based and struc-
tured editors by allowing for alternative code representations
within a relatively conventional layout. Barista provides
the opportunity for rich type-specific interfaces, but it is
an IDE generation framework, so new extensions require
recompilation. The RBA editor focuses on code readability
rather than new modes of interaction, but new registrations
can be added relatively easily. Both tools use a custom
domain-specific language, which is likely to be unfamiliar
to many users.

868

In future work, we hope to explore an extensible,
keyboard-driven, code-generation based approach that lever-
ages structured code representations to eliminate the diffi-
culties associated with reinvocation and maintaining palette
state described in this paper.

C. Specific IDE Features

There exist some IDE features that have been specifically
designed for certain types. For example, CodeRush [21] and
Resharper [22] have color dialogs that allow developers to
launch a color picker directly from the code editor. IntelliJ
IDEA has an inline regular expression palette, driven by
its Intentions system, as well [23]. However, these IDE
specific features are hard-coded — user-defined types cannot
provide similar functionality. Recent versions of Visual
Studio support user-defined palettes associated with specific
fields, rather than classes, of user interface widgets [24].
These are shown only in the property pane when using the
graphical window layout editor.

VIII. CONCLUSION

Motivated by evidence that integrating highly-specialized
tools directly into a developer’s workflow is useful, we have
developed the concept of active code completion as a gen-
eralization of conventional code completion. We validated
the usefulness by generating a number of use cases and
developed general design constraints for such tools, as well
as the underlying architecture, by conducting an extensive
survey of professional developers. Based on these findings,
we developed Graphite, an active code completion archi-
tecture that makes several novel design decisions that ease
the development, deployment and discovery of user-defined
palettes. We created palettes for color and regular expression
classes and validated the latter palette’s usefulness with a
pilot study, providing evidence for the more general claim
that integrating palettes into code completion is useful. We
claim that active code completion systems like Graphite will
considerably ease this process.

IX. AVAILABILITY

Graphite is free, open-source software available from the
URL on the first page. We encourage readers to install it
and tell us about any interesting palettes that they develop.

ACKNOWLEDGMENT

We would like to thank the participants in our survey and
pilot study, Jonathan Aldrich, the PLAID group, the students
of 05-899D, anonymous reviewers and the UIUC Software
Engineering Seminar group for valuable feedback. This ma-
terial is based upon work supported by the National Science
Foundation under Grant No. CCF-0811610. CO is supported
by a DOE CSGF under Grant No. DE-FG02-97ER25308 and
NSF grant CCF-1116907, and YY is supported by the Korea
Foundation for Advanced Studies.

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

[10]

[11]

REFERENCES

G. C. Murphy, M. Kersten, and L. Findlater, “How are java
software developers using the eclipse IDE?” IEEE Software,
vol. 23, no. 4, pp. 76-83, 2006.

R. Robbes and M. Lanza, “How program history can improve
code completion,” in Proc. 23rd IEEE/ACM International
Conference on Automated Software Engineering (ASE’08),
2008, pp. 317-326.

D. Hou and D. Pletcher, “An evaluation of the strategies
of sorting, filtering, and grouping api methods for code
completion,” in Proc. 27th IEEE International Conference on
Software Maintenance (ICSM’11), 2011, pp. 233 -242.

H. M. Lee, M. Antkiewicz, and K. Czarnecki, “Towards a
generic infrastructure for framework-specific integrated de-
velopment environment extensions,” in Proc. 2nd Interna-
tional Workshop on Domain-Specific Program Development
(DSPD’08), co-located with OOPSLA’08, 2008.

S. Han, D. R. Wallace, and R. C. Miller, “Code com-
pletion from abbreviated input,” in Proc. 2009 IEEE/ACM
International Conference on Automated Software Engineering
(ASE’09), 2009, pp. 332-343.

M. Bruch, M. Monperrus, and M. Mezini, “Learning from
examples to improve code completion systems,” in Proc.
7th European Software Engineering Conference & ACM
SIGSOFT Symposium on the Foundations of Software En-
gineering (ESEC/FSE’09), 2009, pp. 213-222.

J. Brandt, M. Dontcheva, M. Weskamp, and S. R. Klemmer,
“Example-centric programming: integrating web search into
the development environment,” in Proc. 28th ACM Confer-
ence on Human Factors in Computing Systems (CHI’10),
2010, pp. 513-522.

M. Mooty, A. Faulring, J. Stylos, and B. Myers, “Calcite:
Completing code completion for constructors using crowds,”
in Proc. 2010 IEEE Symposium on Visual Languages and
Human-Centric Computing (VL/HCC’10), 2010, pp. 15-22.

“Snipmatch.” [Online]. Available: http://languageinterfaces.
com/

J. Stylos, A. Faulring, Z. Yang, and B. A. Myers, “Improving
API documentation using API usage information,” in Proc.
2009 IEEE Symposium on Visual Language and Human-
Centric Computing (VL/HCC’09), 2009, pp. 119-126.

C. Omar, Y. Yoon, T. LaToza, and B. Myers, “Active code
completion,” in Proc. 2011 IEEE Symposium on Visual Lan-
guages and Human-Centric Computing (VL/HCC’11), 2011,
pp. 261-262.

869

[12]

(13]

(14]

[15]

(16]

(17]

(18]

[19]

(20]

(21]

[22]

(23]

(24]

“reddit - programming.” [Online]. Available: http://www.
reddit.com/r/programming

E. Tempero, C. Anslow, J. Dietrich, T. Han, J. Li, M. Lumpe,
H. Melton, and J. Noble, “Qualitas corpus: A curated collec-
tion of java code for empirical studies,” in Proc. 2010 Asia
Pacific Software Engineering Conference (APSEC’10), 2010.

B. Ellis, J. Stylos, and B. Myers, “The factory pattern in API
design: A usability evaluation,” in Proc. 29th International
Conference on Software Engineering (ICSE’07), 2007, pp.
302-312.

B. C. Pierce, Types and Programming Languages. ~ MIT
Press, 2002.

“jquery: The write less, do more, javascript library.” [Online].
Available: http://jquery.com/

T. L. Veldhuizen and D. Gannon, “Active libraries:
Rethinking the roles of compilers and libraries,” in Proc.
1998 SIAM Workshop on Object Oriented Methods for
Inter-operable Scientific and Engineering Computing, 1998.
[Online]. Available: http://arxiv.org/abs/math/9810022

P. Miller, J. Pane, G. Meter, and S. Vorthmann, “Evolution
of novice programming environments: The structure editors
of carnegie mellon university,” Interactive Learning Environ-
ments, vol. 4, no. 2, pp. 140-158, 1994.

Ko, A. J., Myers, and B. A., “Barista: An implementation
framework for enabling new tools, interaction techniques and
views in code editors,” in Proc. ACM Conference on Human
Factors in Computing Systems (CHI’06), 2006, pp. 387-396.

S. Davis and G. Kiczales, “Registration-based language ab-
stractions,” in Proc. ACM international conference on Object
oriented programming systems languages and applications

(OOPSLA’10), 2010, pp. 754-773.

“Show color - online documentation - developer express
inc.” [Online]. Available: http://documentation.devexpress.
com/#CodeRush/CustomDocument8887

“Color assistance.” [Online]. Available:
http://www.jetbrains.com/resharper/webhelp/Coding_
Assistance__Color_Assistance.html

“How to check your regexps in intellij idea 117" [Online].
Available: http://blogs.jetbrains.com/idea/tag/regexp/

“Custom design-time control features in visual studio
.net.” [Online]. Available: http://msdn.microsoft.com/en-us/
magazine/cc164048.aspx

