

Designers’ Natural Descriptions of Interactive Behaviors

Sun Young Park
School of Design

Carnegie Mellon University
sunyoung@cmu.edu

Brad Myers, Andrew J. Ko
Human Computer Interaction Institute

Carnegie Mellon University
bam@cs.cmu.edu, ajko@cs.cmu.edu

Abstract

While a designer’s focus used to be the design of

non-interactive elements such as graphics or anima-
tions, today’s designers deal with various levels of
interactivity such as mouse, keyboard and touch screen
interaction. Unfortunately, it is challenging for design-
ers to create these diverse interactions since most im-
plementation tools such as Flash require the use of
conventional programming languages and do not sup-
port the natural expressions used by designers. To bet-
ter understand how designers think about interactive
behaviors, we conducted a lab study where designers
and programmers described various primitive and
composite interactive behaviors using their own lan-
guage. From this, we learned that there is significant
commonality among designers in terms of the verbs,
syntax, and structure when describing interactivity.
These results can help guide the way to building more
natural programming languages and environments for
designers to facilitate the development of interactive
behaviors.

1. Introduction
Most of the interactivity designed by interaction de-

signers involves pointer input, graphical objects, and
relationships between these over time [3]. Unfortunate-
ly, current commercial tools for interactive behaviors
seem to be focused on two approaches: either the de-
signer is given a very limited selection of behaviors to
select from a menu (such as the roll-overs and page
transitions in Dreamweaver), or else the designer is
assumed to only work on the appearance, with the be-
havior being created by a programmer using a conven-
tional programming language (this is the apparent
workflow of Microsoft’s Expression Blend). Unfortu-
nately, it is challenging for designers to explore the
diverse interactive behaviors that they want using ei-
ther of these approaches.

Is there a way to make the programming easier for
designers, while still supporting the expressive range
that they desire? Part of answering this question is un

derstanding how designers describe interactive beha-
viors. In this paper, we report a study investigating
how designers express behaviors with words given a
graphical prompt (see Figure 1). In addition, because
our prior study [3] showed that communication with
programmers is an important part of the process of
designers’ work, the new study compares the results
from designers and programmers to see where their
expressions for behaviors are the same and where they
differ. The extent to which programmers and designers
do not agree will help assess the applicability of our
results on different developer populations.

2. Related Work
Studying people’s use of natural language to inform

the design of a programming language is not new. The
psychology of programming literature [2] and previous
studies have shown that this is possible and can make
programming easier. For example, HANDS was suc-
cessfully designed for kids programming [4] and
Click! is a successful design for web developers. Davis
[1] gathered a collection of numerous informal anima-
tions to study the primitive operations that people want
to express in certain contexts, finding a number of ba-
sic operators for expressing complex animations. Vro-
nay and Wang [7] considered the domain of morphing
in animation, gathering people’s descriptions of the

Figure 1: Two examples from our study of be-
fore the user clicks the button (a), and after
(b). For #9, almost everyone used the same
language: “the red box appears”, but for #29,
the language varied significantly (“fades”,
“becomes transparent”, “opacity goes down”,
etc.).

2008 IEEE Symposium on Visual Languages and Human-Centric Computing (VL/HCC)

1-4244-2528-0/08/$25.00 ©2008 IEEE 185

shapes and transitions between a variety of morphing
examples. Most recently, Tullio et al. [6] investigated
people’s descriptions of the behaviors of systems that
rely on machine-learning algorithms. Most of these
studies inspired novel domain-specific programming
languages and authoring environments. We want to
apply the same principles to discover what would be
natural for interaction designers. Here, we define ‘natu-
ral’ to be that which designers would choose given
their actual experience and preference.

3. Method
In this lab study, all participants saw the same

screens in the same order. Before beginning the study,
participants filled out a questionnaire that asked about
basic background information. Next, they answered 56
questions that were presented in a web browser. The
pages were implemented in Flash, and there were three
parts consisting of five web pages total. Each part was
preceded by explanations of how the buttons and ques-
tion forms work and the format of the questions.

The instructions asked participants to describe all of
the interactions, states, and feedback that occurred by
typing into textboxes. They were told that they needed
to be precise enough that a developer could implement
the behavior solely from their description. Participants
were told that there was no time limit, and there were
no particular rules for what their answers should con-
tain. However, they were not allowed to explain ver-
bally or to draw pictures. The software collected all of
the participant’s edits (to capture revisions) as well as
the final text for each item and timestamps. The textual
prompts for each question were as brief as possible, to
avoid influencing the participants’ word choices.

Our study focused on graphical pointer-based inter-
active behaviors. These can be described by three as-
pects: the pointer actions that the user does, the visible
responses to those actions on the screen, and the con-
straints on the causality and timing. We identified vari-
ous ways that each aspect works in user interfaces, and
designed a set of questions to see how designers would
express them.

Part 1 focused on detailed interactions with mouse
input, and explored how designers described the mouse
buttons and movement across different interaction
techniques. Part 2 contained 43 questions across 3
pages and focused on describing the response of graph-
ical objects. These questions covered the basic primi-
tive properties of graphical objects such as size, shape,
font, color, etc, (see Figure 1). Part 3 contained six
questions and focused on causality and time. The ques-
tions consisted of two changing entities that had a cer-
tain relation in their behaviors. For example, the
second object’s color might depend on the first object’s

color, or the length of a bar might be the same as a
number in a text box.

For all questions, we analyzed what specific nouns,
verbs, and parameterization the participants used. For
Part 1, we also evaluated to what extent they accurately
represented all the possible mouse button and move-
ment states. For Part 2, we also evaluated the vocabu-
lary and structure of the answers. For Part 3, we fo-
cused on the relationships among objects. Since this
was an exploratory study, we did not try to evaluate
statistical significance of any of the measures, and just
looked for trends. In conducting evaluations, all three
authors examined the data together and resolved the
few disagreements in interpretation.

In addition to examining designers who are the tar-
get audience of our programming language, we were
also interested in whether the results would generalize
to programmers, who are often part of designers’
teams. Therefore, we recruited both designers and pro-
grammers to participate in the study. Overall, 16 vo-
lunteers participated, including 10 designers (interac-
tion designers, information architects, web designers,
graphic designers) and 6 programmers. All of design-
ers had used Flash with 5 of them reporting that they
were skillful at Flash, and 3 of them having some expe-
rience with implementation (programming) as a part of
their job. None of programmers had used Flash, but
they had programmed as a part of their job and all
mainly used Java and C++. The study took about 1.5
hours, and participants were paid for their time.

4. Results
In analyzing participants’ textual descriptions, there

were two types of analyses performed: first, there were
several specific questions that we wanted to answer,
particularly regarding differences between program-
mers and designers. Second, we explored the descrip-
tions holistically, looking for patterns in the language
used to describe the various examples in our study.
This section describes results from these analyses.

4.1. Object Orientation
The notion of object constancy is important to de-

signers. We found that when objects change shape or
visibility, designers preferred to describe such changes
as two objects. In all other changes to size, color, gra-
dient and other properties, they only described a single
object. For example, when an object jumped from one
position to another, animated to a new position, or dis-
appeared and reappeared in a new location, all partici-
pants described this as movement of a single object.
However, when a second object appeared and after-
wards, the first object disappeared, then they used
wording showing they were thinking about two objects

186

(“another red box”, “a copy of the red box”). 7 design-
ers out of 10 assumed that the second square would
automatically adopt the properties of the first, using a
phrase something like “a second red square”.

In all of today’s programming environments and
graphical user interface (GUI) toolkits, some things
about objects can be changed as properties (e.g.,
rect.color = red;) and some can be changed by
calling a method (e.g., rect.setRGB(0xFF0000) in
Flash). The participants in our study did not make such
distinctions. Instead, they often neglected to even name
the property or behavior, instead just referring to the
new value. For instance, 8 out of 10 designers wrote
something like the “square changed to blue.” The other
two designers and 5 of 6 programmers specified the
property, as in “the square’s color changed to blue.”

Another interesting pattern was the notion of the
origin of objects. Based on one question in which an
object’s size changed, 8 out of 10 participants consi-
dered the center to be the default position. When they
were shown the size change of the object that gets
smaller into the center point, they did not mention the
point. However, when the change happened from a
different point, then they explicitly mentioned from
where the object changed (9 out of 10). This is differ-
ent from how GUI toolkits work, which change size
from a corner by default.

4.2. Naming and Metaphors
With regard to word choice, designers described

some concepts with very similar words. All of the de-
signers used “appears/disappears” (for #9 in Figure 1)
and “fade in/out.” Other concepts had a larger set of
words used, such as: “extend”, “expand”, “increase”,
“grow”, “enlarge”, and “become larger” (See also #29
in Figure 1). Programmers, in contrast, used more va-
ried language on all of the questions.

Designers used common names from design soft-
ware such as Photoshop for property changes. For in-
stance, they use names such as “gradient” (10 out of
10) “mask” (5 out of 10), and “wipe effect,” “wipe
transition” (3 out of 10). However, none of the pro-
grammers used these expressions to describe the same
behaviors, and only one programmer used “gradient”
as designers did. They used more verbose descriptions,
such as “…get filled” or “appears and extends to the
right.” This difference shows that designer’s expe-
rience with tools like Photoshop and PowerPoint influ-
ences their natural expression of behaviors.

When the participants did not know the name of a
behavior, they would use metaphors and examples, as
indicated by phrases such as “as if” and “like”. For
example, 9 out of 10 designers described a square ro-
tating towards the viewer using metaphors: “As if the

door opens up into you,” “As if spinning,” “Like an
automobile,” and “Like a flat piece of cardboard.”

4.3. Modifiers
For the more complicated behaviors in our study, de-

signers used modifiers on the common verbs to de-
scribe subtle differences in interactivity and motion.
For example, modifiers described how an object
moved or appeared, as in “appears by fading out,” or
“moves to the right.” Participants also used modifiers
for object changes that happen over time, such as “ap-
pears immediately” or “fading out slowly.” Some par-
ticipants used quite general modifiers (“gradually”)
and other provided precise numbers (“doubles in thick-
ness”). Sometimes the numbers were modified with
words like “about” to be less precise (“about 25%”).

4.4. Relation between Entities
In Part 3 of our study, participants described rela-

tionships between entities. An earlier study of child-
ren’s expressions showed a preponderance of event-
based behaviors for user interfaces. In the present
study, however, it was hard to separate whether de-
signers found event-based expression or constraint-
based expressions more natural. Many modern pro-
gramming environments support both. For example,
Flash supports event handlers for property changes in
an event handler, but also dynamic values to tie the
properties of two objects together automatically.

One characteristic of participants’ descriptions that
did differ was in how participants dealt with delay. In
one question, 6 out of 10 designers used constraints
and events, whereas 4 out of 10 mentioned the time
value, as in “…a second after the first one” or
“…immediately after.” Also, designers with less inte-
raction design experience (i.e., conventional graphic
designers) avoided using constraints expression and
used event-based expressions if there was a time delay
(e.g. “The right box changes colors immediately after
the left box”). Such time delays did not affect the pro-
grammers’ expressions; in the same question, 4 out of
6 programmers used constraint-based expressions.

When designers did use an event-based verbal struc-
ture, they referred to things in reverse order such as
“…B happens after A” rather than “after A, then B
happens…”, whereas the latter is the way you would
have to express it in all event languages today. For
instance, “The box on the right is changing color a
fraction of a second after the first one,” “The square on
the right changes color to match the square on the left,
after a slight delay.” This is consistent with the results
in section 4.1 and of previous work, showing that
people prefer to express the main behavior first and
then exceptions and modifiers afterwards. Likewise,

187

while only 1 out of 6 programmers mentioned time
values, 6 out of 10 designers used time to emphasize
that the relationship of entities repeated.

5. Discussion
The study results suggest new kinds of language

features. For example, the object constancy and object
property results suggest a new form of object-oriented
programming, which blurs the line between data and
behavior. Objects should be highly malleable, allowing
moving, growing, morphing, and manipulation by ex-
pressive primitives. For example, it might be useful to
include many of the PowerPoint and Keynote transi-
tions and object animations, but make them polymor-
phic so that they can be used for any object transforma-
tion. This should allow morphing of all properties of an
object, including its shape.

Furthermore, the expression of the changes should
be allowed either as methods (set-x) or as properties
obtaining new values (x=). As in HANDS [4], the tar-
get of the operation could be set of objects instead of a
single object, for example to move or count a set of
objects without requiring the creation of extra data
structures. Changes to objects should be allowed to
occur immediately or slowly (e.g. fade-out should be
similar to becoming invisible). This is similar to Alice,
in which properties can change over time [5], but also
allowing such changes to be parameterized. For exam-
ple, a movement could be modified to have a specified
path, or a color change could be modified to be a gra-
dient. Given that designers wanted new objects to be
similar to existing objects, allowing a modifier to ref-
erence existing objects might be natural (e.g., to
change color to be the same as another object).

Most participants used metaphors to describe beha-
vior. The idea of using metaphors has been an accepted
practice for graphical tools, but not in programming
languages. Physical metaphors such as an underlying
physics engine might be included (as is available in
game engines), to help make objects move similar to
real-world situations involving gravity, bouncing, and
other behaviors. It would be interesting to investigate
language mechanisms for “breaking” these rules of
physics (defying gravity, etc.) to achieve some of the
subtle effects desired in by participants in our prior
study [3].

Although our study did not reveal a strong tendency
towards event or constraint based language, our results
do suggest that the only perceived difference between
the two is whether there is a delay between a change
and its effects. This suggests the need for a more flexi-
ble language constructs that allows the expression of
relationships that occur on a variety of time scales.

There are several limitations to our study. First is the
small sample size and the informal analysis techniques.
The results also cannot fully cover the designers’ lan-
guage usage, since the study environment was fixed
and participants were asked to type into small text box-
es. In many cases, the most natural way for the design-
ers to express these behaviors might instead be to draw
pictures or create animations like those we presented to
them. All of the designers in our study had some expo-
sure to interactive programs like Flash, which may
have biased their answers.

Despite these limitations, our study does provide
some guidance for designing new programming lan-
guages and interactive tools for expressing interactive
behaviors. We plan to use these results to guide the
design our future tool, and expect that the results re-
ported here will produce a system that is easier to learn
and use than previous ones, and hope that these results
will be useful to others, and will inspire similar studies
to guide their designs.

Acknowledgements
This research was supported in part by a grant from

Adobe, Inc., and in part by the NSF under Grant No.
IIS-0757511. Any opinions, findings and conclusions
or recommendations expressed in this material are
those of the author(s) and do not necessarily reflect
those of the National Science Foundation.

References

[1] Davis, R.C. and Landay, J.A. “Informal Animation
Sketching: Requirements and Design,” in AAAI 2004 Fall
Symposium on Making Pen-Based Interaction Intelligent
and Natural. October 21-24, 2004. pp. 42-48.

[2] Green, T.R.G. and Petre, M., “Usability Analysis of Vis-
ual Programming Environments: A 'Cognitive Dimensions'
Framework.” Journal of Visual Languages and Compu-
ting, 1996. 7(2): pp. 131-174.

[3] Myers, B., Park, S.Y., Nakano, Y., Mueller, G., and Ko,
A. “How Designers Design and Program Interactive Beha-
viors,” VL/HCC' 2008. To appear.

[4] Pane, J.F. and Myers, B.A. “The Impact of Human-
Centered Features on the Usability of a Programming Sys-
tem for Children,” in Extended Abstracts for CHI'2002.
Apr 1-6, 2002. Minneapolis, MN: pp. 684-685.

[5] Pausch, R., et al., “Alice: A Rapid Prototyping System
for 3D Graphics.” IEEE Computer Graphics and Applica-
tions, 1995. 15(3): pp. 8-11. May.

[6] Tullio, J., Dey, A.K., Chalecki, J., and Fogarty, J. “How
IT works: a field study of non-technical users interacting
with an intelligent system,” in CHI'2007. San Jose, CA:
pp. 31-40.

[7] Vronay, D. and Wang, S. “Designing a compelling user
interface for morphing,” in CHI'2004. April 24 - 29, 2004.
Vienna, Austria: pp. 143-149.

188

