
A Constant-Factor Approximation for
Stochastic Steiner Forest ∗

Anupam Gupta
Computer Science Dept.

Carnegie Mellon University
Pittsburgh PA 15213

anupamg@cs.cmu.edu

Amit Kumar
Dept. of Computer Science and Engineering

Indian Institute of Technology
New Delhi India 110016
amitk@cse.iitd.ernet.in

ABSTRACT

We consider the stochastic Steiner forest problem: suppose
we were given a collection of Steiner forest instances, and
were guaranteed that a random one of these instances would
appear tomorrow; moreover, the cost of edges tomorrow will
be λ times the cost of edges today. Which edges should we
buy today so that we can extend it to a solution for the
instance arriving tomorrow, to minimize the expected to-
tal cost? While very general results have been developed
for many problems in stochastic discrete optimization over
the past years, the approximation status of the stochastic
Steiner Forest problem has remained open, with previous
works yielding constant-factor approximations only for spe-
cial cases. We resolve the status of this problem by giving a
constant-factor primal-dual based approximation algorithm.

Categories and Subject Descriptors: F.2.2 [Analysis
of Algorithms and Problem Complexity]: Nonnumerical Al-
gorithms and Problems

General Terms: Algorithms, Theory

Keywords: Approximation Algorithms, Stochastic Algo-
rithms

1. INTRODUCTION

Stochastic combinatorial optimization has received much at-
tention over the past couple of years: in this area, we con-
sider problems where the input is itself uncertain—but is
drawn from a probability distribution given to us as input—
and the goal is to find strategies that minimize the expected
cost incurred. Recent results have shown that for several
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problems, the stochastic case is “no harder than” the deter-
ministic case, at least from the viewpoint of their approxima-
tion guarantees. E.g., for problems like vertex cover, facility
location, and set cover, where one can (approximately) solve
the stochastic linear program to get fractional solutions—
even if costs and demands are both random—and the round-
ing ideas happen to be robust enough to obtain good integer
solutions.

The situation is fairly different for network design prob-
lems. In the deterministic case, the Steiner Forest prob-
lem [1, 11] is reasonably well-understood, as are many other
network design problems whose solutions are built on these
ideas. However, prior to this work, we did not understand
the approximability of the Stochastic Steiner Forest prob-
lem. This problem is easily stated: the input is a graph
G = (V, E) with edge costs ce, a probability distribution
π over sets of source-sink pairs, and an inflation parame-
ter λ ≥ 1. On Monday, we can buy some edges E0 ⊆ E.
On Tuesday, the actual demands D arrive, drawn from the
distribution π, and we can buy ED ⊆ E, so that E0 ∪ ED

connect up each source-sink pair in D. The objective is to
minimize the expected costP

e∈E0
ce + E D←π[ λ ·

P
e∈ED

ce ]. (1.1)

Theorem 1.1 There is a constant-factor approximation al-
gorithm for Stochastic Steiner Forest.

For this following discussion, assume that the distribution
π is uniform over some m explicitly given sets {Di}i∈[m]

of source-sink pairs—we see later that this assumption is
without much loss of generality. If we denote λ

m
by M , the

objective function becomes
P

e∈E0
ce + M ·

P
e∈EDi

ce.

Note the special case where each of the sets Di contains
just one source-sink pair: this is the (multi-commodity)
rent-or-buy problem, for which constant factor approxima-
tion algorithms are known using LP rounding [21] and the
boost-and-sample framework [14]. However, these two tech-
niques have not yet succeeded in giving a constant-factor ap-
proximation for the stochastic Steiner forest problem, even
though they do work for this special case of the problem.

The other promising approach has been to use primal-dual
algorithms, but the algorithms are fairly involved even for
the case of stochastic Steiner tree (where all demands share
a common sink), and the natural extensions of these ideas
become hopelessly complicated. At a high level, the general
approach in these algorithms is to run M +1 different moat-
growing processes, one for E0 (called the “core” moat) and



one each for the EDi (called the “scenario” moats). Now if
an edge is contributed to by M or more scenario moats, the
primal-dual algorithms should instead start loading the edge
by the core moat—this corresponds to the intuition that if
an edge belongs to more than M sets EDi , it should instead
be added to E0. In the single-sink case, since all the sources
want to be connected to a common sink, this transition from
scenario moats to core moat happens only once; however, in
the multiple-sink case, there is no such monotonicity prop-
erty, and if some source-sink pairs get satisfied the number
of active scenario moats might fall much below M , and so we
may have to stop growing the core moat and start growing
the scenario moats again. Such an algorithm was given for
the rent-or-buy problem [21]—but extending it to the case
of Stochastic Steiner forest case seems extremely daunting.

In this paper we use a combination of LP-rounding and
primal-dual techniques to simplify and extend the above
primal-dual algorithm. In particular, we first solve the LP
optimally, but instead of directly rounding this solution, we
use the primal solution to filter and decompose the origi-
nal LP into two different, “simpler” primal-dual LPs. Now
our algorithm consists of running dual-growth processes on
these two LPs in two “phases”: building part of the solution
first on one of these simpler LPs, and then on the other. Of
course, we have to show that each of these new LPs (suit-
ably scaled down) gives us a lower bound on the optimal
value—using these two duals, as well as a third lower bound
derived from the optimal LP solution—allows us to bound
the cost of the constructed solution.

As is apparent, several technical barriers have to be over-
come: for example, when we stop the dual process on the
first phase and begin running the second phase, we already
have built some partial solution. We do not see how to use a
“smooth” uniform dual-growth process employed by almost
all primal-dual algorithms, where all dual variables corre-
sponding to active sets are raised at the same rate—instead,
we use a hybrid dual-growth process which divides time into
intervals of exponentially increasing lengths, and (smoothly)
raises a carefully chosen subset of the active dual variables
during each of these time intervals. Some of these procedures
draw on techniques developed in [21]; however, the new idea
of decomposing the dual process into two dual processes (us-
ing the optimal LP solution) ends up giving a proof much
simpler than that in [21], even though our problem is a strict
generalization of the problem in that paper.

1.1 Related Work

The Steiner Forest Problem was one of the problems that
showcased the power of the primal-dual schema. A constant-
factor approximation was given by Agrawal et al. [1] and was
generalized by Goemans and Williamson [11] to a very large
class of network design problems.

The study of approximation algorithms for stochastic prob-
lems started with [7, 20, 22], and general techniques for solv-
ing many such problems were given by [16, 23]. For the
stochastic Steiner tree problem (with a common sink) in the
two-stage model, we know an O(log n)-approximation [20],
and O(1)-approximations due to [16, 18, 15]; this can be
extended to an 2k-approximation for k stages [17, 19]. All
these results hold when the inflation parameter λ is “uni-
form” (same for all edges): if the inflation can vary over
edges, the problem becomes label-cover hard [13]. In many

stochastic optimization problems, the support of the prob-
ability distribution π (i.e., the number of possible scenarios
on Tuesday) can be reduced from exponential to polynomial
(in the problem size and inflation factors); see, e.g., [4, 23]
for particularly useful forms of this sample average method.

The boost-and-sample technique [16] gave O(1)-approximation
algorithms for many two stage stochastic optimization prob-
lems with uniform inflation. The algorithm can be described
as follows: In the first stage, sample λ (the inflation param-
eter) times from the distribution π, and solve the problem
on this sampled input (e.g., in the case of Stochastic Steiner
Forest, connect these sampled pairs using a good Steiner for-
est). If there was a cost sharing mechanism for the determin-
istic version of the problem satsifying two key properties—
fairness and O(1)-strictness, then this is an O(1)-approximation
algorithm for the stochastic problem. Despite progress on
some special cases of strictness [9], obtaining these two proer-
ties for the Steiner forest problem remains an open problem.

The rent-or-buy problem is a special case of Stochastic
Steiner forest when the sets Di consist of just one source-
sink pair: here where we are given a set of source-sink pairs
and we need to connect them by single paths by either rent-
ing edges (pay ce times number of paths using e) or buy-
ing them (pay a fixed cost of M times ce). Several O(1)-
approximation algorithms are known both for the single sink
version [12, 10, 14, 24, 8] and also the multi-commodity ver-
sion [21, 14, 9]. There has been much work on buy-at-bulk
problems, where the cost of allocating bandwidth on edges
is concave and follows natural economies-of-scale: we know
an O(log n)-factor approximation [3] in the uniform case,
and a polylog approximation in the non-uniform case [5];
it is also known that it is NP-hard to get constant-factor
approximations [2].

2. NOTATION AND PRELIMINARIES
In all the problems in this section, we will be given a graph
G = (V, E) with edge costs ce ∈ Z≥0; we will denote this by
G = (V, E, ce) for brevity.

In the stochastic Steiner forest (SSF) problem, we are
given a graph G = (V, E, ce) and a probability distribution π
over 2(V

2), and an inflation parameter λ. The goal is to buy
a set of first-stage edges E0 and, for each D ∈ 2(V

2), a set of
second-stage edges ED such that (i) the edges in E0 ∪ ED

connect each of the pairs in D, and (ii) the expected costP
e∈E0

ce + λ ·ED←π[
P

e∈ED
ce] is minimized. The sample-

average approximation technique (see, e.g., [4]) implies that
to obtain an α(1+ε) approximation algorithm for this prob-
lem, it is enough to give an α-approximation for the problem
where π is the uniform distribution on m = poly(n, λ, ε−1)
sets D1, D2, . . . , Dm. Hence the objective function now is:P

e∈E0
ce + λ

m
·

Pm
i=1

P
e∈EDi

ce. (2.2)

The SSF problem is equivalent to the following group mul-
ticommodity rent-or-buy problem (GMROB) problem: we are
given a graph G = (V, E, ce), a collection of demand groups
D1, . . . , Dm, with each demand group Dk containing a set
of source-sink pairs. Now, for each k, we want to build a
Steiner forest Tk connecting all the source-sink pairs in the
demand-group Dk; the cost of an edge e in such a solu-
tion is ce × min{M, fe}, where fe is the number of forests
Tk which contain this edge. To see the equivalence, define
Tk = E0 ∪ EDk and set M = m/λ.



However, we will not deal directly with either of these
SSF or GMROB problems. Instead we will work with the
problem called group multicommodity connected facility lo-
cation problem (GMCFL): the input is exactly the same as
for the GMROB problem. Let the term “demand” refer to a
vertex in one of the demand groups. A solution opens a set
of facilities and assigns each demand j to a facility fj . It
also connects the open facilities by a Steiner forest T , which
satisfies the property that for every source-sink pair (sl, tl),
the facilities to which sl and tl are assigned should lie in the
same component of this forest. Moreover, for each facility
i and demand group Dk it builds a Steiner tree connecting
the demands in Dk which are assigned to i and the vertex i
– call this tree Ti(Dk). We want to minimize the cost of the
solution

P
k,i

P
e∈Ti(Dk) ce + M ·

P
e∈T ce. We shall often

call the first term as the rental cost and the second term as
the buying cost. Given an instance I of GMROB/GMCFL,
the following theorem relates the optima of two problems.

Theorem 2.1 Any solution for GMROB on I can be trans-
formed to a solution for GMCFL whose cost is at most twice
the original cost. Conversely, a solution for GMCFL on I
can be transformed to a solution for GMROB without in-
creasing the cost.

Proof. Let S be a solution for an instance I of GMCFL.
Let I′ be the corresponding instance of GMROB. Let T be
the Steiner forest used to connect the open facilities, and
T (Dk) = ∪iTi(Dk) be the Steiner forest corresponding to
demand-group Dk. We get a solution S′ for I′ as follows
– the forest Tk is just the union of T (Dk) and T . We rent
each edge in T (Dk) and buy every edge in T .

Conversely suppose we are given an instance I of GMROB.
Let S be a solution to this instance. We transform S to a
solution S′ for the corresponding instance I′ of GMCFL. Let
EB be the set of edges in S which get bought. It is clear
that EB is a forest, otherwise we can remove an edge from
a cycle in EB , and still get a feasible solution.

Start with a component C of EB . Consider a demand
group Dk – recall that the forest connecting the demands
for Dk is Tk. We can first assume that if a component of
Tk contains a vertex of C, then it contains all the edges and
vertices of C – indeed, we can merge all such components
of Tk into a single component without increasing the cost.
Further, we can also assume that this component is a tree
– otherwise we can delete some rented edges from Tk with-
out increasing the cost of the solution. Note that in this
transformation, we only remove rented edges. We do this
for all demand groups. We shall call this transformation as
simplifying the solution with respect to C.

For a demand group Dk, let T ′k be the component of Tk

which contains C (if there is such a component). Let E1

be the edges rented by Dk in T ′k and E2 be the bought
edges in T ′k − C. Let D′k be the demands in Dk present in
the component T ′k (note that D′k must contain pair of every
demand in it). Two cases arise:

• Total length of the edges in E1 is more than that of E2

: Dk rents all the edges in E2 – we charge the extra
rental cost to that of E1.

We open a facility at every vertex of C. Now we show
how to assign demands in D′k to facilities. Contract C
to a single vertex in T ′k. Since C forms a connected

set vertices in T ′k the resulting graph is still a tree T ′′.
The edges in T ′′ correspond to E1∪E2, all of which are
rented by Dk. Root T ′′ at the vertex corresponding to
C – call this vertex c. Let x be a child of c and con-
sider the subtree E′x rooted at x. The edge (c, x) cor-
responds to an edge (y, x) in the uncontracted graph
T ′k. Here y lies in C. We assign all the demands of D′k
lying in E′x to y, and connect them to y by the edges
E′x ∪ {(x, y)}. Now, we do not consider the edges in
T ′k in the set Tk, this way Dk does not charge to E1

again. Since we have already assigned D′k we remove
this set of demands from Dk as well.

• Total length of the edges in E1 is less than that of E2 :
we buy all edges in E1 – we charge the cost to that of
E2. Note that we do not charge to C in this process.
We update C to this new component.

Each demand in D′k itself becomes a facility and is
assigned to itself. We remove D′k from the set Dk.

We repeat this process with the set C as defined above. If
the second case above happened, C now contains the edges
in E2, and so we do not charge to E2 again. Further we
simplify the solution with respect to C. We repeat this
process as long as there is a component of Tk (for some
k) containing C. When this process ends, we set C to be
another component of bought edges and continue as above.
Thus we get a solution to I′. Further we pay at most twice
the cost of the solution corresponding to I.

3. LP RELAXATION FOR GMCFL
By the reductions from the previous section, it suffices to
give a constant factor approximation algorithm for the GM-
CFL problem. Fix an instance I of this problem as described
above. We now give an LP relaxation for this problem.

For each edge e, demand group Dk and vertex i, we have

a variable f
(k,i)
e which is 1 if this edge is used to connect

a demand from Dk to the facility i (i.e., e ∈ Ti(Dk)), 0
otherwise. For each edge e, we also have a variable ze which
is 1 if we use this edge to connect the facilities, 0 otherwise.
Finally, we have variables xij for each demand j and facility
i, which is 1 if we assign j to i, and 0 otherwise. We now
write the LP relaxation (we call this the main LP):

min
Pm

k=1

P
i

P
e f

(k,i)
e ce + M

P
e ce

(main-LP)

s.t.
P

i xij = 1 for all demands j (3.3)P
e∈δ(S) f

(k,i)
e ≥ xij ∀Dk, ∀j ∈ Dk, ∀i, S : j ∈ S, i /∈ S

(3.4)P
e∈δ(U) ze ≥

P
i∈U xisl −

P
i∈U xitl ∀U, (sl, tl) (3.5)P

e∈δ(U) ze ≥
P

i∈U xitl −
P

i∈U xisl ∀U, (sl, tl) (3.6)

xij , f
(k,i)
e , ze ≥ 0

Let OPT denote the optimal value of this LP. We now
show how to round this solution. Let Z be a large enough
constant.

3.1 High-Level Algorithm
Given the instance I, we first solve the main-LP to get an
optimal solution. We then round it to get an integral solu-
tion for the corresponding GMROB instance I′. We would



like to run a primal-dual algorithm, but the dual of this
LP looks very daunting. So we run our algorithm in two
phases, where each phase will run a primal-dual algorithm
on a simpler version of the main LP.

In the first phase, we only rent edges. These rental edges
would be enough to account for the rental cost of our so-
lution. This should be thought of as the filtering step in
the facility location problem – the filtering step decides the
connection cost of each demand (upto a constant factor) in
the instance. We shall use the following observation in the
first phase : suppose there is a demand j and a set S, j ∈ S,
such that

P
i∈S xij < 0.9. Then the total rental capacity

across the cut S, i.e.,
P

e∈δ(S)

P
i f

(k,i)
e (here Dk is the de-

mand group containing j) is at least 0.1. So we can run
a primal-dual algorithm for renting edges for each demand
group Dk, where we can grow a moat S as long as it satisfies
the condition mentioned above. At the end of phase one, we
have a set of connected components of rental edges (for each
demand group Dk).

In the second phase, we shall both rent and buy edges.
But the cost of rental edges will be at most a constant times
that in the first phase. The key observation in the second
phase is this: suppose S is a set of vertices and (sj , tj) is
a demand pair such that

P
i∈S xisj −

P
i∈S xitj is at least

a constant. Then we know that there is a constant buying
capacity across this cut. So while running a primal-dual
algorithm for buying edges, we can grow a moat around
such a set S.

This idea has several problems though – (i) unlike phase
one, we cannot start with a moat as a single demand or a
vertex. In fact to start with, a moat will in general be a
ball around a demand j. So we need to make sure that the
demand j has enough rental edges to reach the boundary
of this ball; (ii) For different demands, these balls can be of
different radii. So we cannot start growing moats around all
of them simultaneously. We get around this by dividing this
phase into stages : in stage i, we grow moats around balls
of radius about Zi, where Z is a large constant. Achieving
these two properties requires several technical details, which
we outline in the algorithm description.

3.2 Phase I : Renting Edges Within Groups

For any v ∈ V , define the ball B(v, r) = {i ∈ V |d(j, i) ≤
r}, where d is the distance metric with respect to edge
costs ce in G. For a set S ⊆ V and demand j, define
A(S, j) :=

P
i∈S xij to be the assignment of j inside S. De-

fine the α-radius of j as the smallest radius r such that the
assignment to facilities within this ball is at least α; i.e.,
min{r | A(B(j, r), r) ≥ α}. Define rα(j) to be the α-radius
for j.

Definition 3.1 (Demand Type) A demand j is of type l
if its 0.8-radius lies in the range [Zl−1, Zl]; if the 0.8-radius
is less than 1 (i.e., it is 0), then j is of type 0.

Consider the following primal-dual pair, which we call LP1
and (with variables fk

e ≥ 0), and (DP1) (with variables yS ≥
0):

min
P

e fk
e · ce (LP1)

s.t.
P

e∈δ(S) fk
e ≥ 1, ∀S such that A(S, j) ≤ 0.9 for some j ∈ Dk

max
P

S yS (DP1)

s.t.
P

S:e∈δ(S) yS ≤ ce, for every edge e

Note that the variables yS are defined only for sets S such
that A(S, j) ≤ 0.9 for some j ∈ Dk. Let OPT1 denote the
optimal value of (LP1).

Claim 3.2 OPT1 ≤ 10 · OPT.

Proof. Consider an optimal solution to (main-LP). De-

fine fk
e =

P
i f

(k,i)
e . Constraint (3.4) implies that

P
e∈δ(S) fk

e ≥P
i/∈S xij , and hence if A(S, j) ≤ 0.9, (3.3) implies thatP
e∈δ(S) fk

e ≥ 1 − 0.9 = 0.1. Since 10 fk
e satisfies (LP1),

the value OPT1 of (LP1) is at most 10 · OPT.

3.2.1 The First-Phase Algorithm

We run the following algorithm for each demand group Dk

independently. We initialize dual variables yS ← 0 for the
relevant subsets S defined in (DP1). We run the Goemans
and Williamson (GW) moat-growing algorithm with the ini-
tial moats being the demands in Dk. A demand j remains
active as long as the moatM containing j satisfies the con-
dition that A(M, j) ≤ 0.9. A moat is active if it contains
at least one active demand. We grow the active moats at
the same rate. For each moat, we maintain a tree of tight
rented edges that connect all nodes in the moat. When two
moats meet, they merge into a single moat—note that one
of the two moats must have been active—and we get a single
component of rented edges inside the moat. Upon merging,
the moat might become inactive. While growing a moatM,
we also raise variables yS at the same rate, where S is the
set of vertices corresponding toM.

When the process stops, we get a forest F of rented edges—
each tree in this forest corresponds to a single moat. Now
we keep a subset F ′ of the edges in F , since we cannot pay
for all the edges in F . For an edge e ∈ F , let te be the time
at which e was added to F . For a demand j, let tj denote
the time at which j became inactive. We add e to F ′ if one
of the following conditions hold:

• There exist two demands j, j′ such that e lies on the
path between them in F and tj , tj′ ≥ te. (This is the
usual criterion used in primal-dual algorithms.)
• There exist two demands j, j′, each of type at least l,

such that e lies on the path between them in F , and
te ≤ Zl.

This completes the description of how we get the forest
F ′ connecting some of the demands in Dk. During our al-
gorithm we also assign charge to some of the demands as
follows: intially the charge of all demands is 0. For an ac-
tive moatM we increment the charge of a demand of highest
type in M at the same rate at which M is growing. Our
algorithm also maintains a set J of demands as follows: we
add a demand j to J if at the time tj when it becomes in-
active, j is the only inactive demand of its type in the moat
containing it (we are assuming that the times tj are distinct,
which can be forced by breaking ties in some arbitrary but
fixed order). Let Jl denote the set of demands of type l in
J .

We now bound the cost of the edges in F ′. Claim 3.2 shows
that the value of (LP1) lower bounds the value of (main-LP),



but this will not be strong enough, and hence we prove a
second lower bound on the value of (main-LP). We say that
a group of demands K are β-disjoint if there exist mutually
disjoint sets {Sj}j∈K such that A(Sj , j) ≥ β for all j ∈ K.

Theorem 3.3 Let J be a set of demands, and β > α > 0 be
constants. Let Jl be the set of demands in J whose α-radius
lies in the range [Zl−1, Zl], l ≥ 1. Further assume that the
demands in Jl are β-disjoint for all l. Then

P
l |Jl| · Zl =

O(OPT).

Proof. For each demand j ∈ J , let Sj be the set of facili-
ties given by the definition of β-disjointness: i.e., A(Sj , j) ≥
β, and moreover the sets Sj are disjoint for demands j ∈ Jl.
If j ∈ Jl, let S′(j) ⊆ Sj consist of those facilities {i | d(i, j) ≥
Zl−1}. Observe that

P
i∈S′(j) xij ≥ β − α, since the total

assignment of j to facilities at distance less than Zl−1 from
j is at most α (by the assumption of the theorem).

For a facility i, let ∆(i) =
P

e f
(k,i)
e · ce. Since the sets

S′(j) are disjoint for j ∈ Jl, at most one of these sets can
contain i: let this set be S′(jl) (if such a set exists). We now
claim that

P
l Zl · xijl = O(∆(i)). Indeed, consider a ball

B of radius between Zl−1 and Zl around i. Since jl+1 lies

outside this ball, at least xijl+1 amount of f
(k,i)
e value must

be entering this ball. Integrating over the radius of the ball,
we get the result.

Adding up over all i, we get
P

i

P
l Zl · xijl =

P
l Zl ·P

i xijl . But
P

i xijl =
P

j∈Jl

P
i∈S′(j) xij ≥ (β − α) · |Jl|.

Thus we get
P

i

P
l Zl · |Jl| = O

`P
i ∆(i)

´
= O(OPT). This

proves the theorem.

Corollary 3.4 Consider the set J constructed during the
algorithm. Let Jl be the demands of type l in J . ThenP

l |Jl| · Zl = O(OPT).

Proof. It satisfies to prove that J satisfies the conditions
of Theorem 3.3 with α = 0.8, β = 0.9. Let j, j′ ∈ Jl. Sup-
pose tj < tj′ and let M and M′ be the moats containing
j and j′ respectively at the time these demands become in-
active, i.e., at times tj and tj′ respectively. We claim that
M and M′ are disjoint: indeed, if they were not disjoint,
the nested structure of the moats would imply thatM′ con-
tainsM. But j′ should not have been added to the set J in
our algorithm, since at the time tj′ , the inactive demand j
would already belong to the moatM′.

Moreover, the very fact that j is inactive at time tj im-
plies that A(M, j) ≥ 0.9, and similarly for j′. Hence these
disjoint moats give us witnesses for the demands in Jl be-
ing 0.9-disjoint. The proof now immediately follows from
Theorem 3.3.

Theorem 3.5 The total cost of the edges in F ′ is O(
P

S yS+P
l |Jl| · Zl), where yS and J are as in the primal-dual al-

gorithm. Moreover, if C be a component in F ′ such that
C contains a demand of type l, then either the total charge
assigned to the vertices in C is at least Zl or C contains a
vertex of J≥l = ∪i≥lJl.

Proof. It is easy to see that the variables yS constructed
are feasible for the dual (DP1). If e ∈ F ′, then ce =P

S:e∈δ(S) yS . So it is enough to argue that
P

S δF ′(S) ·yS ≤
2 ·

P
S yS +

P
l Zl · |J≥l|, where δF ′(S) = |F ′ ∩ δ(S)|. As in

the analysis of the GW algorithm, we show that the increase
in LHS is bounded by the increase in the RHS.

Fix a time t between Zl−1 and Zl. Let S be the moats at
this time. Let S ′ be the active moats at this time. Suppose
we contract each moat in S to a single vertex. Let F ′′ be
the subset of F ′ remaining in this new graph. Let U and
U ′ be the set of vertices corresponding to the moats S and
S ′. We essentially need to argue that the average degree of
the nodes in U ′ in F ′′ is at most 2. In the GW analysis, it
is shown by the proving the following facts : (1) If degree
of a vertex in F ′′ is 1, then this vertex lies in U ′; (2) The
average degree of the nodes in a forest is at most 2.

For us we prove the following modified version of (1). Sup-
pose the degree of a vertex in F ′′ is 1. Let S be the moat
corresponding to this vertex in the original graph. Why is
δF ′(S) = 1 ? Let e be the edge in F ′ ∩ δ(S). Then e is in
F ′ because of one of the following two reasons (note that e
gets added after time t, so te > t) : (i) e joins two demands
which become inactive after time te > t – one of these must
be in S. But then S has to be active at time t; (ii) e joins
two vertices from J≥l : one of these vertices must be in S.
It must be inactive at time t (otherwise S will be active).
Then one of the vertices in S must belong to J≥l — the first
vertex in S of type at least l which became inactive belongs
to J .

Thus, the increase in RHS in a unit time can be bounded
by |J≥l| + 2|S ′|. Since the set Jl participates in this sum
only till time Zl, we are done. Now we prove the second
part of the theorem. It follows from the following simple
observation : if two demands of type at least l belong to the
same moat at time Zl, they lie in the same component of F ′.
Indeed, all edges connecting such vertices were added before
time Zl and so belong to F ′ (using rule (ii)). Now consider
a component C of F ′ containing a demand j of type l. Let
X be the component containing j at time t = Zl during the
dual raising algorithm. Let X ′ be the subset of X containing
jobs of type at least l. Then all of X ′ must be in C. Two
cases arise : (i) X is inactive at time t. Then X ′ must have
at least one vertex which gets added to J ; (ii) X is active
at time t – then the algorithm must have been charging at
least one vertex in X ′ during each time t′ < t. This proves
the theorem.

Thus we can account for the rental cost of F ′. We can also
associate the following charge with each component C in the
forest F ′ : Zl∗ , where l∗ = max{l : C has a demand of type l}.
This is so because the total charge of the demands is equal
to the total dual value raised; and every demand in Jl can
get paid Zl amount (Corollary 3.4).

3.3 Phase II: Connecting Demands

We now give the main algorithm in this section which shows
how to connect the demands. As mentioned earlier, we use
the following key observation : if S is a set of vertices such
that A(S, sj) − A(S, tj) ≥ 0.1(say), then

P
e∈δ(S) ze ≥ 0.1.

We identify such a subset S(j) for each demand j. These
subsets should be such that j can rent to any vertex in this
set. We would like to contract these sets and run the primal-
dual algorithm for Steiner forest. But these sets are of dif-
ferent radii and may intersect with many other sets. So we
solve this problem by dividing the primal-dual algorithm in
stages – in stage i, we only look at those demands for which



the radius of S(j) is at most Zi. Further, we pick a subset
of such demands so that the sets S(j) are far apart from
each other so that the effect of contracting these sets will
not make much difference, i.e., the distance between any
two points will get distorted by a constant factor and an
additive factor of about Zi. We will also make sure that
the moats will grow for at least Zi+1 units of time in stage
i. The dual value accrued during this moat growing process
will allow us to buy edges.

3.3.1 Some More Definitions

Recall Definition 3.1 defining the type of demands: assume
for all source-sink pairs (sk, tk) that the type of sk is at
most that of tk. We now define a slightly related quantity,
the class of a demand j.

Definition 3.6 (Demand Class) Given (sk, tk), define class(sk)
to be equal to its type, and class(tk) = max{class(sk), l},
where l is such that the 0.4-radius of tk lies between Zl−1

and Zl.

By definition, class(sk) ≤ class(tk). Note that the definition
is asymmetric: the reason for this asymmetry will become
clear in the analysis of our algorithm.

For each demand j, we define a set S(j) of facilities as fol-
lows. Define S(sk) = B(sk, r0.8(sk)), and S(tk) = B(tk, r0.4(tk))—
hence A(S(sk), sk) ≥ 0.8 and A(S(tk), tk) ≥ 0.4. Note that
the asymmetry in this definition matches the asymmetry in
the Definition 3.6 for class above.

3.3.2 The “Reduced” LPs

Consider the main LP. We say that a set S is valid for sk

if S contains S(sk), but A(S, tk) ≤ 0.7. We say that S is
valid for tk if S contains S(tk) and A(S, sk) ≤ 0.3. If S is
valid for some demand j, constraints (3.5, 3.6) imply thatP

e∈δ(S) ze ≥ 0.1. It turns out that this is the only property
of the ze variables required by our algorithm. So we can
write down an alternate linear program:

min M ·
P

e cez
′
e (LP2)

s.t.
P

e∈δ(S) z′e ≥ 1, for all S such that S is valid for some j

We argued above that 10 ·z is a feasible solution to (LP2),
and so the optimal value of (LP2) is a lower bound (upto a
factor of 10) on the optimal value of (main-LP). To write the
dual, define variables yS , where S is valid for some demand.

max
P

S yS (DP2)

s.t.
P

S:e∈δ(S) yS ≤M · ce (3.7)

3.3.3 The Various Graphs: G, GB, GR

Our algorithm will maintain three different graphs, each ob-
tained by contracting some vertices in G :

Graph GB: At any point of time, we would have bought
some edges in G. The graph GB is obtained by con-
tracting all the bought edges. Hence, each vertex of
GB corresponds to a connected subgraph of G.

Graph GR: As we raise the dual variables in (DP2), we
will declare some edges tight. This can happen for
edge e if (i) the inequality (3.7) for e gets satisfied

with equality, or (ii) we buy the edge e. The graph
GR is obtained by contracting all the tight edges in G.
Since all bought edges are declared tight, each vertex
in GB can be thought of as contained inside a unique
vertex in GR.

The relationship between these graphs is conceptually sim-
ple: the graph GB is obtained by contracting some edges in
G, and GR is obtained from GB by contracting some more
edges.

• For a vertex v ∈ GB , GR, define G[v] as the (con-
nected) subgraph of G corresponding to v. Similarly
define GB [v] for a vertex v ∈ GR.
• For a vertex v ∈ G, define v(GB) as the vertex in GB

which contains v. Similarly, define v(GR) for v in G
or GB .
• For a vertex v ∈ GR, there is a special vertex core(v) ∈

GB [v]. The idea behind the core is this: to build a
path through v, we will need to go from the boundary
of GB [v] to core(v) in GB .
• Each vertex v in GR will have a weight associated with

it. The weight will roughly denote the sum of the dual
variables yS for subsets S such that S ⊆ G[v] which
have not been used yet for buying edges; this weight
will be a power of some large constant Z.

3.3.4 Buying or Renting Edges in GR

At various points during our algorithm, we will buy an edge
e = (u, v) in GR. This corresponds to buying edges in GB

(and hence in G) to connect the cores of u and v as follows:
if the end-points of e in GB are u′ and v′ respectively (so
u′ ∈ GB [u], v′ ∈ GB [v]), then we buy a shortest-path from
core(u) to u′ in GB [u], the edge (u′, v′), and a shortest-path
from v′ to core(v) in GB [v]. To buy a path P from u to
v in GR, we buy paths for each edge in P as above, thus
buying a path from core(u) to core(v) in GB : denote this
path by P [GB ]. Similarly, renting a path in GR corresponds
to renting a path in GB .

3.4 The Primal-Dual Algorithm

Initially the graphs are identical GR = GB = G, and for
all v ∈ GR, core(v) = v and weight(v) = 0. Our algorithm
starts with the feasible dual solution yS = 0 for all S. We
shall say that a demand ω is active if we have not routed it
to its mate yet; initially all demands are active.

The primal-dual algorithm will run in several stages: we
ensure that each dual variable increases by a (roughly) ex-
ponential amount in each stage. We assume that any two
demands in G are either co-located at the same vertex or the
distance between them is at least Z—this can be achieved
by initially scaling the distances in G.

For the demand group Dk, we will maintain a collection
C(k) of connected components; we start off with the con-
nected components formed in Phase I. For each connected
component C ∈ C(k), we associate a charge of Zl, where l is
the highest type of any demand in C. (Note that this is dif-
ferent from the weights of vertices in GR.) As the algorithm
proceeds, we may connect these components together (using
rented or bought edges), and hence the set C(k) will change.
Whenever we merge two connected components C1, C2 in
C(k), the charge of the new component will be the max-
imum of the charges of C1 and C2. Define C(k, i) as the



set C(k) at the beginning of stage i in the algorithm below
(so C(k, 0) is the initial set of connected components from
Phase I). Recall that for a demand j and set S, A(S, j) is
the assignment of j inside S. Here S is a subset of vertices
in G, but we shall extend this definition to the case when S
is a subset of vertices in GR in natural manner.

3.4.1 Stage i of the Algorithm

Let us now describe a generic stage i of the primal-dual
algorithm. The algorithm starts with i = 0.

Step 1: Merging Components. If there are two compo-
nents C1, C2 in C(k) for some k with charges Zl1 , Zl2 respec-
tively such that (i) i ≤ l1 ≤ l2 and (ii) the distance between
them in GR is at most Zl1+2, we rent edges on the shortest
path between them in GB to connect the two components.
The charge associated with the resulting new component is
Zl2 . We repeat this step as long as possible.

Step 2 : Deactiviating Demands. An active demand
pair (sp, tp) ∈ Dk is made inactive if one of the following
conditions hold (with preference for case (i) over case (ii)):

(i) if sp and tp belong to the same component of C(k).
(ii) if class(sp) ≤ i ≤ class(tp), let B denote the ball of ra-

dius 10 · Zi+1 around sp(GR). If A(B, tp) ≥ 0.7, then
let BG denote the set of vertices in G corresponding to
B, i.e., BG = ∪v∈BG[v]. We say that sp gets associ-
ated with the set BG. While we make the pair (sp, tp)
inactive, we do not connect sp and tp right now: we
shall call such pairs special and connect them after the
last stage, as explained in Section 3.4.2.

Step 3: Choosing Representatives. In this step we se-
lect some vertices in GR around which we shall grow moats.
Let J1 ⊆ GR be the set of vertices v of weight Zi such that
G[v] contains S(j) for some active demand j of class less
than i. Let Ai be the set of active demands of class i. We
greedily pick a maximal subset A′i of these active demands
Ai which has the following property—for any ω ∈ A′i, the
distance of ω(GR) from ω′(GR) for any other ω′ ∈ A′i, or
from any vertex in J1 is at least Zi+1. Define J2 = {ω(GR) |
ω ∈ A′i} ⊆ GR. Let J = J1 ∪ J2.

Step 4: In this step, we connect each demand in Ai to
one of the vertices in J . Consider the group Dk and some
component C of the forest C(k, 0) for Dk at the beginning
of Phase II. Define Ak

i = Ai ∩ Dk and Ak
i (C) to be the

demands in Ak
i which belong to C. We find a maximal

subset of demands Ak
i (C)′ of Ak

i such that dGR(j, j′) ≥ Zi+1

between any two demands j, j′ in this subset. For every
vertex j ∈ Ak

i (C)′, we find a vertex vj ∈ J closest to it
and rent the following path: first we rent a path in GR

from j(GR) to vj . This gives a path in GB from core(u)—
where u = j(GR)—to core(vj). Then we rent a path in GB

from j(GB) to core(u) in GB [u]. Thus we connect j(GB) to
core(vj) in GB . We do this for every component C ∈ C(k, 0)
and every demand group Dk (see Figure 3.4.1).

Step 5: Growing Moats and Duals. We grow moats
in GR at the same rate around all vertices in J for 4 · Zi+1

units of time. As usual, when two moats meet, we buy edges
between the centers of the moats.

Since this moat-growing process happens on GR, we need
to specify how to raise the dual variables of (DP2), which

Figure 1. C is a component in C(k, 0) in Step 4. The vertices
with large circle represent vertices in Ak

i (C)′. The square vertices
represent vertices in J and and the dotted lines represent rental paths
from the vertices in Ak

i (C)′ to the nearest vertex in J

correspond to sets in G. We will show (in Lemma 4.9) that
at the beginning of this step, the distance in GR between
any two vertices in J is at least Zi+1. Hence, for the first
Zi+1/4 units of time, no two moats shall meet in the moat-
growing process on GR. We raise the duals during the time
interval [Zi, Zi+1/4] thus: For a moat M around a vertex
v ∈ J , we raise yS at M times the rate at which the moatM
was grown (during this time period), where S = ∪x∈MG[x].
We prove (in Theorem 4.10) that S is valid for some demand
ω.

When the process stops, we contract each moat into a
single vertex in GR and give this vertex a weight of Zi+1.
The core of this vertex is defined to be the new vertex in
GB obtained by contracting the union of the cores of each
of the vertices in J which belong to this moat, along with
the edges bought to connect these cores.

Step 6: Cleaning Up. Suppose we find a path P between
two vertices u, v ∈ GR, each having weight Zi+1, such that
(a) P does not contain an internal vertex of weight Zi+1,
and (b) lengthGR

(P ) ≤ γ ·
P

x∈P weight(x), where γ is a
constant to be specified later. Then we buy the path P (i.e.,
the edges in P [GB ]), and contract P to a single vertex x.
We set weight(x) to Zi+1, and the core of x is the vertex
in GB obtained by contracting the path P [GB ].1 We repeat
this process until no such path exists.

This completes the description of stage i of the algorithm;
let the last stage be denoted f − 1. It remains to show how
to connect the special pairs.

3.4.2 The Final Step: Connecting Special Pairs

We show how to connect special pairs belonging to a de-
mand group Dk; this procedure is done for each value of
k. Let C(k, f) be the set of components C(k) at the end
of the last stage. Observe that if (sp, tp) and (sp′ , tp′) are
two special pairs such that sp, sp′ and tp, tp′ lie in the same
component of C(k, f) respectively, then it is enough to con-
nect sp to tp. Define an equivalence relation on the special
pairs where (sp, tp) and (sp′ , tp′) are related if they satisfy
the property above: pick a representative pair from each

1An (important) aside: Finding such a path P is computationally
infeasible in general. However, if such a path P exists, then we can
efficiently find a path Q in satisfies property (a) and has length at
most twice that promised by (b). For this, we guess lengthGR

(P )
and use a 2-approximation algorithm for the orienteering prob-
lem [6], with the profit of each vertex x set to γ ·weight(x). Using
this path Q suffices for our algorithm.



equivalence class, and call this set of special pairs S—note
that it is enough to connect these pairs.

For each l, define S(l) be those pairs (sp, tp) ∈ S such that
class(tp) = l. We build a digraph Gl = (V l, El) with vertex

set V l = {sp | (sp, tp) ∈ S(l)} as follows. Let S(l,i) be those
vertices sp ∈ V l such that sp becomes inactive in stage i.
By the requirements of Step 2(ii), it follows that any such sp

satisfies class(sp) ≤ i ≤ l. Let BG(sp) be the set of vertices
in G associated with it in Step 2(ii). We further classify

each demand sp ∈ S(l,i) as old if class(sp) < i and as new if

class(sp) = i. For the arc set El, consider sp ∈ S(l,i), sp′ ∈
S(l,i′) with i < i′. We create an arc (sp′ , sp) ∈ El if the
associated balls intersect (that is, BG(sp′) ∩ BG(sp) 6= ∅)
and sp, sp′ are either both new or both old. The proof of
the following claim appears in Section 4.3.

Claim 3.7 Given the digraph Gl = (V l, El) above, the set
V l can be partitioned into a set of disjoint in-arborescences
T l such that:

(i) For each tree T ∈ T l, the demands {tp : sp ∈ T}
belong to the same component of C(k, f);

(ii) The sets in {BG(sT ) : sT is the root of a tree
T ∈ T l and is a new demand } are mutually disjoint.
Similarly, the sets BG(sT ) for those trees T such that
sT is old are mutually disjoint.

By Claim 3.7(i), it is sufficient to connect all vertices in
such a tree T ∈ T l to tT , the mate of sT . To do this, for
any tree T ∈ T l, and for each arc e = (sp′ , sp) ∈ E(T ), rent
edges from sp′(GB) to sp(GB) in GB . Furthermore, rent
edges from sT (GB) to tT (GB), thus connecting all demands
in T to tT , and hence to their respective mates. Doing this
for all arborescences T ∈ T l, and for all values of l, would
connect up all the special pairs.

In the next section, we will analyse the cost of all these
connections, as well as the cost incurred over all stages of
Phase II of the algorithm.

4. ANALYSIS OF THE ALGORITHM

To analyse the algorithm we first show that in stage i, the
metrics in GR and GB are close to each other. More for-
mally, the distance between two points in GB is at most
a constant times the distance between the corresponding
points in GR plus an additive factor of about Zi. Thus the
length of a path bought or rented in Steps 1, 4, 5, 6 in GB

is only within a constant factor of the length of the corre-
sponding path in GR. Next we prove that we can account for
the rental cost in Steps 1 and 4 to the charge of the compo-
nents. Accounting for the rental cost for connecting special
pairs turns out to be more tricky. Finally, we prove that the
dual solution obtained in Step 5 is feasible – this essentially
follows from the fact that the only problematic cases were
the special pairs, which we declare inactive before this step.
Accounting for the cost of the bought edges turns out to be
much easier – the dual solution obtained in Step 5 accounts
for the weight of the vertices. This weight is used for buying
edges. We prove these claims over the next few sections: in
Section 4.1 we prove some important facts about distances
in the various graphs, after which we prove the above claims
in the subsequent three sections.

4.1 Relating Distances in GR and GB

Let G
(i)
B , G

(i)
R be the graphs GB and GR at the beginning of

stage i respectively.

Theorem 4.1 The following invariants hold at the begin-
ning of stage i :

(i) For every vertex v of weight Zi in G
(i)
R , the distance

of any vertex in G
(i)
B [v] from core(v) is at most 10 ·Zi.

(ii) If P is a path in G
(i)
R , then the length of P [GB ]

between the core of the end-points of P is at most
2 lengthGR

(P ) + 40 · Zi.

Proof. Clearly the invariant holds for i = 0. Now as-
sume these conditions hold at the beginning of stage i. We
now consider stage i. In Step 5, consider a moat M. Sup-
pose it gets contracted to a vertex v. Let u ∈ M and w ∈
J ∩M. Then dGR(u, w) ≤ 4 · Zi+1 and in fact such a path
lies inside the moatM. So induction hypothesis implies that
dGB (core(u), core(v)) ≤ 9 · Zi+1 and such a path lies inside
GB [v]. So if u′ ∈ GB [u], then we get that (using induction
hypothesis), dGB (u′, core(v)) ≤ 10 ·Zi +9 ·Zi+1 ≤ 10 ·Zi+1.
Since any vertex x ∈ GB [v] must be belong to GB [u] for
some u ∈ M, we have shown that invariant (i) holds at the
end of step 5. Therefore invariant (i) continues to hold dur-
ing Step 6 as well because when we create a new node v by
merging several nodes, then the core of v contains the core
of all the merged vertices.

Now we show that invariant (ii) also holds at the end of
stage i. Consider the point of time at the end of Step 6. Let
P be a path in GR – if it does not contain a vertex of weight
Zi+1, we are done by induction hypothesis. So assume it
contains vertices of weight Zi+1 – x1, . . . , xk ordered from
left to right. Consider the path Pi between xi and xi+1.
The path GB [Pi] between the core of xi and the core of
xi+1 has length at most length(Pi) + ·20 ·

P
v∈Pi

weight(v)

(using invariant (i)). But length(Pi) > δ ·
P

v∈Pi
weight(v)

(otherwise we would have contracted this path in Step 6).
So length of GB [Pi] is at most twice the length of Pi. Let
P ′ be the part of P from x1 to xk. We get length(GB [P ′]) ≤
2 · length(P ′). Let y be the vertex preceding x1 and u be
the left end-point of P . Let P ′ be the part of P from u
to y. Since the highest weight of a vertex in P ′ is at most
Zi, we can use induction hypothesis on P ′. The length of
GB [P ′] is at most 2·length(P ′)+40·Zi. Further the distance
between the core of y and the core of x1 (using (i)) is at most
10 ·Zi +10 ·Zi+1 + le =≤ 11 ·Zi+1 + ce, where e is the egde
joining y and x1. Arguing similarly on the part of P to
the right of xk, we see that the length of GB [P ] is at most
2 · length(P ) + 40 · Zi+1. This proves the theorem.

4.2 Paying for the Rental Cost

Lemma 4.2 Suppose v is vertex of weight Zi in GR at the
beginning of stage i such that G[v] contains S(j) for some
active demand j of class l < i. Then the end of stage i,
there is a vertex x of weight Zi+1 containing v, such that
the core of x contains that of v. More formally, G[v] ⊆ G[x]
and G[core(v)] ⊆ G[core(x)].

Proof. The vertex v belongs to the set J1 defined in
Step 3, and hence we grow a moat around v. At the end of
Step 5, we contract this moat to a vertex x of weight Zi+1



such that the core of w contains that of v. In Step 6, we can
only merge x into a new vertex of weight Zi+1, whose core
again contains that of x. This proves the lemma.

Lemma 4.3 Consider demand j ∈ Dk of class l < i which
is active at the beginning of stage i. Then there exists a

vertex v ∈ G
(i)
R of weight Zi such that G[v] contains S(j)

and j(GB) is connected to core(v) in GB by rented edges.

Proof. For the demand j of class l, let us first consider
stage l. If j is active at the end of Step 2 of this stage,
then j belongs to the set Al as defined in Step 3. Sup-
pose j ∈ Ak

l (C), for some C ∈ C(k, 0). Then Step 4 im-
plies that we can find a demand j′ ∈ Ak

l (C)′ such that
dGR(j(GR), j′(GR)) ≤ Zl+1, such that Step 4 connects j′

to a vertex vj′ ∈ J . Hence, in the graph GB , j(GB) and
core(vj′) belong to the same component of C(k).

In Step 5 of the algorithm, we grow a moat around vj′ for

4·Zl+1 units of time. We claim that this moat will contain all
the vertices u(GR) for u ∈ S(j). Indeed, dGR(vj′ , u(GR)) ≤
dGR(vj′ , j

′(GR))+dGR(j(GR), j′(GR))+dGR(j(GR), u(GR)) ≤
Zl+1 + Zl+1 + Zl, the first two bounds of Zl+1 from the
definition of J and of Al

k(C)′, and the last bound of Zl fol-
lows from the definition of S(j) and the definition of class.
Hence the distance dGR(vj′ , u(GR)) < 3Zl+1, and we grow

the moat for 4Zl+1 units of time; hence the moat contain
all these vertices. At the end of Step 5, this moat contracts
to a vertex v whose core contains core(vj′), and hence the
lemma holds at the beginning of stage l + 1. This proves
the lemma for stage i = l + 1; Lemma 4.2 implies that the
invariant is maintained for subsequent steps as long as j is
active, which proves the lemma.

Lemma 4.3 also shows that eventually all demands will
become inactive. Indeed, as long as a demand is active, the
set J1 (and hence J) constructed in Step 3 will be non-empty,
and we will make progress.

Claim 4.4 Consider a C ∈ C(k) such that C contains a
demand of type l, then the charge of C is at least Zl.

Proof. The claim follows by induction on the number
of steps in the algorithm. It is true at the beginning of
the algorithm (by definition of the charge of a component).
Suppose it is true at the beginning of some step t. If we
merge two components at this time, the charge of the new
component is equal to the maximum of the two components.
So this invariant holds at the end of this step as well.

We now show how we can pay for the rental cost in stage
i.

• Step 1 connections: If we connect C1 and C2, The-
orem 4.1 implies the rental cost is O(Zl1). hence the
charge for C1 can pay for this connection, leaving the
C2’s charge for the resulting component.

• Step 4 connections: Fix a demand group Dk and
component C ∈ C(k, 0). Consider the demands in
Ak

i (C)′: the cost paid for connecting each such de-
mand in the graph GB to the nearest vertex in J is
O(Zi+1) (again using Theorem 4.1).

How can we account for this cost? We can take Zi

from the charge of C (since, by the definition of Ai,

the component C contains a demand of class i); since
different stages would take exponentially increasing
amounts from C, this would be fine. However, Ak

i (C)′

may contain more than a constant number of demands,
each costing O(Zi+1). Let EC(i) be the edges of C
which are “uncontracted” at the beginning of stage i
in the graph GR. For each j ∈ Ak

i (C)′ consider a ball
B(j) of radius Zl+1/2 around j(GR). By the fact that
all j ∈ Ak

i (C) are well-separated, these balls are dis-
joint. Now, the total cost of the edges in each ball
B(j) ∩ EC(i) is at least Zl+1/2, since EC(i) has an
edge incident to j(GR), it has an edge incident to a
vertex j′ ∈ Ak

i (C)′ outside the ball B(j) and it is a
connected set of edges. So we charge the rental cost
paid by j to the edges of EC(i) in B(j). Note that
we never charge to these edges again in later stages,
because as in the proof of Lemma 4.3, the edges in any
such set EC(i) will be covered by a single moat around
some vertex v ∈ J , contracted to a single vertex, and
never be charged again.

This accounts for all rental costs except those incurred
to connect the special demand pairs (put aside in Step 2 of
each stage and connected at the end of the process): these
we consider in the following section.

4.3 Rental Cost II: Special Pairs Unit

Lemma 4.5 If (sp, tp) is a special pair, then class(sp) <
class(tp) (i.e., they are not equal).

Proof. For a contradiction, let class(sp) = class(tp) =
l. Since this is a special pair, it must have been declared
inactive during Step 2(ii) of stage l. Hence the ball B
around sp(GR) of radius 10 · Zl+1 (as in Step 2(ii)) must
satisfy A(B, tp) ≥ 0.7. Since A(S(tp), tp) ≥ 0.4, the set
BG = ∪v∈BG[v] must contain a vertex of S(tp). But, since
class(tp) = l, the 0.4-radius of tp is at most Zl. By the
triangle inequality, dGR(sp(GR), tp(GR)) ≤ 11 · Zl+1.

Now since the type of a demand is at least its class, the
types of both sp, tp are at least l. So if sp and tp lie in
components C1 and C2 respectively, Claim 4.4 implies that
the charge of both these components is at least Zl, and hence
these components would have been merged in Step 1 of stage
l, if not earlier. But then we would have used Step 2(i)
for this pair, contradicting the fact that (sp, tp) is a special
pair.

Recall that class(tp) = max{class(sp), l} where l is such
that r0.4(tp) ∈ [Zl−1, Zl]. Lemma 4.5 implies that if (sp, tp)
is special, then class(tp) = l.

Fix a demand group Dk for the rest of the section. Con-
sider the set S(l) as defined in Section 3.4.2. Recall that for
two pairs (sp, tp) and (sp′ , tp′) ∈ S(l), if tp, tp′ share a com-
ponent of C(k, f), then sp, sp′ do not. Also, observe that

by Lemma 4.5, if (sp, tp) ∈ S(l), then class(tp) = l, and
class(sp) < l.

Claim 4.6 Suppose sp ∈ S(l,i), sp′ ∈ S(l,i′) for i ≤ i′ ≤ l,
and BG(sp) ∩ BG(sp′) 6= ∅. At the end of stage l, tp and
tp′ are in the same component of C(k). In particular, if

(sp′ , sp) ∈ El, then tp and tp′ are in the same component of
C(k).



Proof. Let v ∈ BG(sp) ∩ BG(sp′). By the definition of
BG(sp), the distance between v(GR) and sp(GR) in stage i is
at most 10 ·Zi+1, and A(BG(sp), tp) ≥ 0.7. Hence BG(sp)∩
S(tp) 6= ∅; let w lie in this intersection. Now since w ∈ S(tp),
the distance dGR(w(GR), tp(GR)) ≤ Zl. By the triangle
inequality, dGR(tp(GR), v(GR)) ≤ dGR(tp(GR), w(GR)) +
dGR(w(GR), sp(GR))+dGR(sp(GR), v(GR)) ≤ Zl+10Zl+1+
10Zl+1 ≤ 21Zl+1. Subsequently, the distance between tp(GR)
and v(GR) can only decrease.

A similar argument shows that dGR(tp′(GR), v(GR)) ≤
21·Zl+1 at the beginning of stage i′, and dGR(tp(GR), tp′(GR) ≤
42 ·Zl+1 < Zl+2. Now since each of tp, tp′ have type at least

l, the components containing them have charge at least Zl

(by Claim 4.4), Step 1 of stage i′ would connect their com-
ponents. Hence, for at the end of any stage l ≥ i′, tp, tp′

share the same component.

Claim 4.7 If sp, sp′ ∈ S(l,i) both have directed paths in Gl

to a common vertex sr, then sp and sp′ must lie in the same
component of C(k, f).

Proof. Take such a path P = {sp = s1, s2, . . . , sh = sr},
such that sg ∈ S(l,ig) for all g ∈ [1, h]. By the construction
of the arc set El, it follows that i1 > i2 > · · · > ih, and
that these vertices are either all new, or all old. As in the
proof of Claim 4.6, the distance in GR between sg(GR) and
sg+1(GR) at the beginning of stage i is O(Zig ). The re-
sulting geometric sum implies the distance between sp(GR)
and sr(GR) is O(Zi). An identical argument holds for sp′ ,
and so the distance dGR(sp(GR), sp′(GR)) = O(Zi) by the
triangle inequality.

Now two cases arise—sp and sp′ are either both new, or
both old. If they are both new, then both have class = i, and
hence their components have charge at least Zi; thus Step 1
of stage i would ensured they lie in the same component.
In the other case, if both are old, then Lemma 4.3 implies
that at the beginning of stage i, vertices sp(GR), sp′(GR)
have weight Zi; since the previous paragraph bounded their
distance by O(Zi), they would have been connected by edges
bought in Step 6 of stage i − 1. Finally, Lemma 4.3 also
implies that core(sp(GR)) and sp are connected in GB by
rented edges, and the same holds true for core(sp′(GR)) and
sp′ . Putting this all together, sp and sp′ lie in the same
component of C(k, i).

We can now give the proof of Claim 3.7, which relies on
the machinery developed in this section.

Proof of Claim 3.7. To construct the set T l, let J l de-
note the set of sink vertices in the digraph Gl. We find
node-disjoint in-arborescences rooted at the vertices of J l

such that each vertex in V l appears in exactly one such in-
arborescence. This is the set T l. For any T ∈ T l, Claim 4.6
implies that the set {tp | sp ∈ T} is contained in a single
component of C(k, f).

To prove part (ii) of the claim, let J l
o be the old de-

mands in J l, and J l
n be the new ones. We claim the sets

BG(sp) for sp ∈ J l
o are disjoint; an identical argument holds

for sets corresponding to sp ∈ J l
n. For sp, sp′ ∈ J l

o, let

sp ∈ S(l,i), sp′ ∈ S(l,i′). If i′ 6= i, the sets BG(sp), BG(sp′)
are disjoint else we would have added an arc between them,
contradicting the fact that they are both sinks. The other
possibility is that i′ = i: suppose the two sets intersect. Let

v ∈ BG(sp) ∩ BG(sp′). Then at the beginning of stage i,
dGR(v(GR), sp(GR)), dGR(v(GR), sp′(GR)) ≤ 10 · Zi+1. So
dGR(sp(GR), sp′(GR)) ≤ 20 · Zi+1. Therefore the demands
sp and sp′ must lie in the same component of C(k) at the
end of step 1 of this stage. This is true for tp, tp′ also (by
Claim 4.6); but this gives us a contradiction to the construc-
tion of S. 2

Finally, we bound the cost of connecting all the special
vertices.

Lemma 4.8 For any tree T ∈ T l, the total rental cost of
connecting the demands in T and then sT to rT is O(Zl).
Also, the total cost of connecting the special pairs is O(OPT).

Proof. First observe that for any i ≤ l, the tree T con-
tains at most one demand from S(l,i); if there were two such
demands sp, sp′ , then Claim 4.7 would imply that they are
in the same component of C(k, f). Moreover, Claim 4.6 im-
plies that tp, tp′ also share a component of C(k, f)—but then
these pairs would be equivalent and could not both belong
to S.

Consider a single arc (sp′ , sp) of T , with sp′ ∈ S(l,i′), sp ∈
S(l,i) and i′ > i. As in Claim 4.6, the distance in GR at

the end of stage i′ between sp(GR) and sp′(GR) is O(Zi′),
and hence the rental cost in GB corresponding to this arc

is O(Zi′), by yet another invocation of Theorem 4.1. Since
at most one demand in T can belong to any particular set
S(l,i), and since i ≤ l for all the demands, adding the cost
over all the arcs in T gives us a geometric sum which is
at most O(Zl). Finally, the distance between the root sT

and its mate tT in GR is at most O(Zl) using arguments
similar to those in the proof of Claim 4.6, and hence the
cost of connecting them in GB is again at most O(Zl) by an
application of Theorem 4.1.

Now summing over all trees in T l, the total cost incurred
in connecting all the special pairs in Sl is O(|J l| · Zl), and
the total cost is

P
l O(|J l| · Zl). We would like to use The-

orem 3.3 to bound this quantity by OPT. To do that,
note that Claim 3.7(ii) implies that for sp, sp′ ∈ J l

o, we have
BG(sp) ∩ BG(sp′) = ∅. But A(BG(sp), tp) ≥ 0.7 by the
construction of the special pairs, and hence the demands in
J

l
n = {tp | sp ∈ J l

n} are 0.7-disjoint. Similarly, we can ar-
gue that the demands in J

l
o = {tp | sp ∈ J l

o} are 0.7-disjoint.
Now applying Theorem 3.3 (with α = 0.4, β = 0.7) to J

l
o and

J
l
n now implies that

P
l |J

l
o| · Zl =

P
l |J

l
o| · Zl = O(OPT)

and
P

l |J
l
n| · Zl =

P
l |J

l
n| · Zl = O(OPT), completing the

proof.

4.4 Dual Feasibility

We now turn to the moat-growing process being executed
on GR, and the corresponding dual-raising process that is
carried out in Steps 4-5 of the algorithm; we have to show
we generate a feasible dual (which is a valid lower bound
on the optimal cost). When we raise yS in Step 5, we just
have to ensure that S is valid for some demand. The moat
growing procedure will make sure that we always satisfy the
constraints (3.7).

Lemma 4.9 Consider the set J constructed in Step 3 of
stage i. For any v, w ∈ J , dGR(v, w) ≥ Zi+1.



Proof. Let v, w ∈ J1 in the graph G
(i)
R . For contradic-

tion, suppose the distance between them in G
(i)
R is less than

Zi+1. Let P be a shortest path between these two vertices,
and v′, w′ be two consecutive vertices of weight Zi on this
path—there must exist two such vertices, since both the end-
points v, w have weight Zi. The length of the subpath P ′

between u′, v′ is less than Zi+1 ≤ 2γZi ≤ γ
P

x∈ bP weight(x),
and hence we would have contracted this subpath P ′ in
Step 6 of the previous stage (we are assuming that γ is at
least 2 · Z). This ensures the desired lower bound on the
distance between nodes in J1; the vertices in J2 = J \ J1

have at least this distance by construction.

Consider a vertex v ∈ J at the beginning of Step 5 in
stage i. We define the active demand j associated with v
as follows: If v ∈ J1, then by definition of J1, there exists
an active demand j with class(j) < i such that S(j) ⊆ G[v]
(and j can reach core(v) through rented edges in GB)—we
associate this demand j with v. If v ∈ J2, then v = j(GR)
for some j ∈ A′i—we associate this demand j with v.

Recall that we grow a most M around v in Step 5, and
also raise yS during the period [Zi, Zi+1/4], where S =
∪w∈MG[w]. To prove that S is a valid cut for some de-
mand, we show this for the demand j associated with v.

Theorem 4.10 The cut S remains valid for j during the
time interval [Zi, Zi+1/4].

Proof. If v ∈ J1, then the very criterion for inclusion
into J1 ensures that S(j) ⊆ G[v]; hence S(j) ⊆ S during
this process. If v ∈ J2, then v = j(GR) for some class-i
demand j ∈ A′i. Note that class(j) = i implies that S(j)
has radius at most Zi in G, and hence after time Zi the
set S will contain all the vertices in S(j). So in either case,
the set S contains S(j) during this time interval. We now
need to show that S does not get too much assignment from
j’s mate. Since some of our definitions are asymmetric, we
consider two cases, depending on whether j = sp or tp.

Case I: Suppose j = sp. In this case, recall that the
set S remains valid if A(S, tp) ≤ 0.7 over the relevant time
period. We know that class(sp) ≤ i; the first subcase is
when class(tp) < i. Lemma 4.3 argues that there is a vertex
w of weight Zi such that G[w] contains S(tp), and so w ∈
J as well. Note that w 6= v, else both sp, tp would lie in
the same component of C(k, i), and cannot be active. By
Lemma 4.9 the GR-distance between v and w is at least
Zi+1, and so the moat M containing sp cannot capture w
in the time interval [Zi, Zi+1/4]. Since G[w] contains S(tp),
the assignment A(M, tp) is at least 1 − A(S(tp), tp) ≤ 0.6,
and hence S remains valid for sp during the entire time
period.

Now consider the other subcase when class(tp) ≥ i. Let
B′ be the ball of radius Zi+1 around sp(GR). We know
that A(B′, tp) < 0.7, otherwise we would have declared this
demand inactive (and special) in Step 2(ii). So the set S
remains valid for sp during this time period.

Case II: Now for the case j = tp; recall now that the
set S remains valid if A(S, sp) ≤ 0.3 over the relevant time
period. If class(tp) < i, the argument is identical to the
one above for the case when class(sp) ≤ i, class(tp) < i.
The other case is when class(tp) = i; note that class(sp) ≤
class(tp) = i. In this case tp(GR) ∈ J2, and the distance in

GR between sp(GR) and tp(GR) is at least Zi+1, otherwise
we would not have added tp to A′i (if class(sp) < i), or
we would have merged the components of sp, tp together in
Step 1 (if class(sp) = i). Now consider some x ∈ S(sp), the
distance in GR between sp(GR) and x(GR) is at most Zi,
since class(sp) ≤ i. We claim that x(GR) 6∈ S during the
time interval [Zi, Zi+1]; indeed, that would make the GR-
distance between sp(GR) and tp(GR) would be Zi+1/4 +
Zi < Zi+1. Hence S and S(sp) are disjoint for this time
interval, and hence A(S, sp) ≤ 1 − 0.8 = 0.2 < 0.3, and
hence S remains valid for tp.

The above theorem implies that the dual solution for (DP2)
constructed during Step 2 (over all the stages) is a feasible
solution, and hence gives us a lower bound for OPT.

4.5 Paying for the Buying Cost

Since Sections 4.2 and 4.3 have already accounted for the
edges rented by the algorithm, it now suffices to show that
the edges bought in Steps 5 and 6 of the algorithm can be
paid for.

The weight of a vertex is accounted for by the dual values
raised during Step 5. Consider a moat M formed at the
end of Step 5 in stage i, and suppose it contains m vertices
from J—call this set J ′. These vertices in J ′ raised a total
dual value of Ω(m ·Zi+1). Moreover, the total edges bought
inside the moat M is proportional to (m − 1) · Zi+1, since
when two moats meet, the distance between their centers is
at most 2 · 4 · Zi+1, and Theorem 4.1 ensures that length
of all the edges bought in GB is also proportional to Zi+1.
Hence, out of the dual value raised, O((m− 1) · Zi+1) goes
towards accounting for the edges bought and Ω(Zi+1) goes
towards accounting for the weight of the new vertex obtained
by contractingM.

Finally, to account for the edges bought in Step 6, we
again use Theorem 4.1 to infer that the total cost of edges
bought in P [GB ] can be paid by the weights of all the ver-
tices of P except one of the end-points. The weight of this
remaining vertex gets transfered to the new vertex formed
by collapsing this bought path, and hence we can pay for
the bought edges in Step 6.
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