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ABSTRACT 

Sometimes people cannot remember the names or locations 
of things on their computer, but they can remember what 
other things are associated with them. We created Feldspar, 
the first system that fully supports this associative retrieval 
of personal information on the computer. Feldspar’s contri-
butions include (1) an intuitive user interface that allows 
users to find information by interactively and incrementally 
specifying multiple levels of associations as retrieval que-
ries, such as: “find the file from the person who I met at an 
event in May”; and (2) algorithms for collecting the associa-
tion information and for providing answers to associative 
queries in real-time. A user study showed that Feldspar is 
easy to use, and suggested that it might be faster than con-
ventional browsing and searching for these kinds of re-
trieval tasks. Feldspar could be an important addition to 
search and browsing tools. 
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INTRODUCTION 

Finding information on your computer can be a difficult 
task, even if you are equipped with the latest tools. For ex-
ample, if you do not remember where you have put the item 
that you are looking for, then you cannot easily navigate to 
it with browsing tools. And if you also do not remember the 
name of the item or any text in it, then search tools also do 
not work. However, you may remember other things that go 

with the item. Indeed, people often recount chains of asso-
ciations [3, 19], like “I remember receiving a picture from a 
person who I met at an event that happened last May”. Cur-
rent search tools for the desktop are designed to support 
teleporting – to bring the users directly to their information 
targets, assuming the users remember keywords about 
them. The search tools do not support orienteering – where 
the users specify and navigate to their information targets in 
multiple relatively small steps, as seen in the example 
above, where each step is an association. This lack of orien-
teering support motivated us to create the Feldspar system 
(see Figure 1), the first tool to fully support multi-step asso-
ciative retrieval of personal information on the computer. 

Feldspar stands for Finding Elements by Leveraging Di-
verse Sources of Pertinent Associative Recollection. Feld-
spar works incrementally, letting people add one associa-
tion after another until the desired item is found. At every 
point, Feldspar presents the results of the query constructed 
so far, so the desired item can be found with as few query 
terms as possible. Additionally, Feldspar proposes possibly 
useful next query terms to add. These techniques can help 
avoid over-specifying with too many query terms, which 
can prevent the correct results from being found [1]. 
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Figure 1. The Feldspar user interface showing a user requesting 
the file related to the person related to the event in May 

 



 

 

The important contributions of Feldspar include: 

• A user interface that allows users to find information by 
interactively and incrementally constructing multi-level 
associative retrieval queries, which has been shown to be 
usable in a user test. 

• Algorithms for collecting the association information and 
for providing answers to associative queries in real time. 

RELATED WORK 

The psychology literature has shown that people often re-
member things through chains of associations [3, 19]. Our 
memory works by creating associations between things that 
we perceive together. When we try to recall one thing, we 
are reminded of another thing that is associated with the 
first one, which in turn reminds us of yet another, forming a 
chain of associations. A recent observational study con-
ducted by Teevan, et al. [18] supports this theory. The study 
shows that people use contextual information associated 
with their targets to guide their navigation in relatively 
small steps, as they gradually recall pieces of information 
associated with the targets. Furthermore, the researchers 
observed that people actually prefer to use this orienteering 
strategy, even when the teleporting strategy, as exemplified 
by typical search, would have worked. However, there has 
been a lack of support for this preferred, and arguably most 
natural, multi-level associative retrieval strategy, which 
Feldspar is designed to support. 

Many research and commercial systems have been created 
to support various forms of search and retrieval. For exam-

ple, desktop search programs such as Google Desktop, Mi-
crosoft Windows Desktop Search, and Spotlight for Apple’s 
OS X, help the user find information items by their key-
words, assuming the user remembers those words. Dourish, 
et al. [4] proposed an attributed-based method, similar to 
tagging, to help people categorize documents. Many sys-
tems, such as TimeScape [13] and the Lifestreams system 
[5] manage files by time, thus supporting time-based re-
trieval. Ringel, et al. [15] proposed a timeline-based visu-
alization of search results of personal content, showing ma-
jor events that a user may recognize to help the user retrieve 
information more easily. Nardi and Barreau [12] suggested 
the need for better location-based document management 
systems, after observing that people often placed together 
documents that share similar types, similar topics, or prox-
imity in creation times. Jones, et al. [6] proposed a project-
centric approach for organizing and retrieving electronic 
documents. Lamming and Newman [8] suggested an activ-
ity-based approach to support retrieval by continuously 
gathering users’ activity data and then using the data as 
contextual cues to assist retrieval. Rhode’s wearable Re-
membrance Agent [14] works similarly: it examines the 
user’s physical context to present information relevant to 
the context. Some more recent attempts include the com-
mercial tool Xobni (www.xobni.com) and the research sys-
tem Jourknow [7]. All of the above systems only support 
one level of association, not the multiple levels that people 
often remember. 

Our earlier Iolite [16] system is the most closely related, but 
its user interface was never completed. Iolite’s focus was on 

 

Figure 2. The Feldspar user interface. 1: The Navigation Bar. 2: The Query Area for constructing queries. 3: The Results Area with the 
query represented as a sentence at the top.  4: The main query area. 5: The user can freely edit the type of an association and swap its 
order with other associations. 6: Items in queries are linked by the term “related to”. 7: The user can filter the results by typing a filter-
ing string into the textbox. 8:  The date picker panel, which allows the user to pick a data range such as May, or a specific date using a 

calendar dropdown. At any time, the user can edit the query by selecting different values and the results update immediately. 



 

designing some of the underlying algorithms, with rela-
tively little emphasis on the interface. The execution of the 
system was also not fast enough for real-world deployment. 

Although faceted search [20] also works incrementally, it is 
fundamentally different from Feldspar’s multi-level asso-
ciative retrieval. Faceted search allows the user to find an 
item by incrementally specifying its characteristics internal 
to the item itself. Multi-level associative retrieval, on the 
other hand, often requires both internal and external char-
acteristics. For example, in the query “find the file that was 
received from Bob, authored by Sue, and modified yester-
day”, modified yesterday is an internal characteristic of the 
file, while Bob is an external one. These two retrieval 
strategies require different algorithms.  

INTRODUCING FELDSPAR 

Feldspar is the first tool that fully supports multi-level asso-
ciative retrieval of personal information. We first show how 
Feldspar works in action through an extended example, 
which touches upon all the major features of Feldspar. After 
that, we will describe the features in greater depth.  

Extended Example Illustrating Interactions in Feldspar 

We will use the example from Figure 2: find the webpage 
mentioned in the email from the person who I met in May. 

Bringing up Feldspar, the user selects Webpage in the first 
column to indicate that the desired item is a webpage. The 
result is shown in Figure 3a. Note that in the figure, Feld-
spar is already showing a set of possible answers. Here, 
they are the most recent web pages viewed by the user. The 
desired target web page is not displayed yet, so the user 
continues refining the query.  

Next, the user wants to add email as the first association, 
because it is what the webpage is immediately related to. 
To add email, the user first clicks on the related to button to 
bring up the refine panel (Figure 3b). This panel provides 
the user with several ways to construct the association. The 
panel has rows for each data type. At the leftmost position 
of each row is the clickable name of the data type of that 
row. In the middle of each row are the top three suggested 
values of that type that Feldspar thinks are most relevant to 
the query, as determined by the Google Desktop’s sort or-
der. The Date data type, as an exception, has six suggested 
values, instead of three. We plan to experiment with differ-
ent machine learning techniques, such as those that improve 
suggestions by examining users’ past selections, to generate 
more meaningful sort orders, and therefore more relevant 
suggestions.  

Back to the example, since the user does not remember 
which email contains the web link, the user would just click 
on the word Email at the left end of the row in the refine 
panel, and that creates an association column with Email 
selected. 

Using a similar process, the user adds the third column for 
Person, and the fourth column for Event. The final thing the 
user remembers is that the event is in May, which is a spe-
cific time range that the user can indicate in Feldspar. 
Clicking on the related to button brings up the refine panel 
for dates. The month of May is not one of the top choices in 
the Date row (see Figure 3b), so the user clicks the more 
button at the right end of the column to bring up the date 
picker for more options (see Figure 2, at (8)). Here the user 
selects May. This completes the whole query. The web ad-
dress is shown in the Query Results Area (Figure 2, at (3)), 
and the user can double click to open it in the web browser. 

 

Figure 3. (a) Feldspar after the user has selected Webpage. (b) Feldspar after user has clicked “related to” 



 

 

USER INTERFACE 

The Feldspar user interface is composed of three main areas 
(see Figure 2). The Navigation Bar at the top (1) contains 
the Back and Forward buttons for moving to the previous 
and next screen. Underneath is the Query Area (2) for con-
structing the query visually and interactively. Finally, be-
low the Query Area is the Results Area (3).  

The Query Area is primary space where the user interacts 
with Feldspar. The user can incrementally construct a query 
and immediately see the updated query results at the Query 
Results Area. The query is presented as a question that be-
gins with “Where’s the …” and the user selects the desired 
type of item by clicking on the corresponding data type in 
the first column.  

The user can mouse over a column to have the frame of the 
column to show up, as shown in Figure 2(5), and on top of 
the frame are the header and the close button for the col-
umn. Clicking the close button removes the column. Click-
ing and dragging the header can move a column around and 
exchange its order with other columns. 

Recall in our extended example that the user brings up the 
Date picker (8). Other data types besides Date also have 
their own suggestion panels that can be brought up by click-
ing on their corresponding more buttons in the refine panel. 
Figure 4a shows the suggestion panel for Person with two 
people selected. After clicking “Ok”, Feldspar shows the 
selected values (Figure 4b). If the user wants to change the 
selected values, clicking on the Person label or the con-
stants in Figure 4b will return to the refine panel (Figure 
4a) to enable editing. To cancel the selection of values, the 
user can double click on the selected type. The double-
clicked column would be removed and the refine panel 

would re-appear so that the user can select another type for 
the column again. All of the supported types except Date 
currently use a list view like Figure 4a as their refine panel. 

IMPLEMENTATION 

Feldspar is developed with Microsoft Visual Studio 2008 
beta 2 and Microsoft Expression Blend 2 (for its UI), and is 
written in C#, utilizing features from Microsoft .NET 3.5 
beta 2 programming framework.  

Feldspar is a heavily data-driven application; it maintains a 
graph data structure, called the association graph, which 
stores the association information among items. The user 
interacts with this data structure though Feldspar’s user 
interface, which serves as both a query construction tool 
and query results presentation tool. 

Obtaining Items via the Google Desktop Database 

Before generating any associations among information 
items, we must first obtain the items themselves. We de-
scribe how we do this in the following sections. 

The Seven Item Types 

We are using Google Desktop to create the database for 
indexing and keeping track of the information items used 
by Feldspar. We can query the database by using the 
Google Desktop Search API. 

Potentially, there are many types of information on a per-
son’s computer, so we must choose which to focus on for 
Feldspar. We did not start from scratch; instead, we first 
looked at the information that Google Desktop indexes, 
which includes a person’s emails, files (including image 
files), visited web pages, calendar events from the Outlook 
calendar, media files, and more. We also examined its 

 

Figure 4.    (a) The suggestion panel for Person, with two people selected.  (b) Two people selected as constants for the second column. 



 

Timeline feature that allows people to search by date. Based 
on what Google Desktop supports and what has been pro-
vided by prior systems, we decided to initially support a 
total of seven data types, which we thought were the most 
common things that people need to find. They are Email, 
Person, File, Folder, Webpage, Event, and Date. Eventu-
ally, we could add more types, but these serve quite well as 
a proof of the concept. 

Retrieving Emails, Events, Web Pages, and Files 

Email, Event, Webpage and File items (shown as solid cir-
cles in Figure 5) can be directly retrieved from the Google 
Desktop database through its Query API. For example, to 

retrieve Email items, we pass in the query string file-

type:email to the API, and Google Desktop returns all of 

its indexed emails (shown as green circles) as result objects, 
the same format used by all information items returned by 
Google Desktop. Many relevant pieces of information about 
the email are included in the result object, such as the 
sender’s name and email address, the email subject, receiv-
ing date, etc. 

Using a similar process, we retrieve objects of calendar 
events (shown as blue circles), visited web pages (brown 
circles), and files (yellow circles). For files, we queried for 
all the popular file types.  

Further Extraction for Person Items 

After retrieving Email and Event items, we extract Person 
items (shown as red squares) from the to, from and cc fields 

of emails and the organizer and attendees fields of events. 
We also get people from the index of Outlook’s contacts. 

Identifying Files’ Common Containing Folders 

All File items returned by Google Desktop contain the full 
file paths, so it is possible for us to identify the folders con-
taining those files at run-time. However, in practice, the list 
of files is often very long, thus making it computationally 
expensive to dynamically generate the folder lists. As a 
solution, we created a Folder item (shown as yellow cir-
cles) for every unique folder identified from the full list of 
files, and record the folder locations in the Folder items in 
advance of run time. 

Generating Date Items at Run Time 

The Date data type items are not stored in Feldspar’s asso-
ciation graph (or in the Google database); instead, they are 
dynamically generated from the date attributes of other data 
types, such as from the date field of an Event.  

The Association Graph: the Heart of Feldspar 

Information items and the associations among them natu-
rally form a graph, where items are vertices and associa-
tions are edges. Thus, we store this information with a 
graph data structure – we call it the association graph. 

The association graph is the central component in Feldspar. 
It keeps all the association information, yet it is relatively 
lightweight. It generally uses less than one twentieth of the 
hard disk space that the Google Desktop database requires. 
For example, on the first author’s hard disk, Google Desk-
top’s database is 1 GB, while Feldspar’s is 50MB. We re-
duced the space requirement of the association graph by 
only including the minimal information needed for keeping 
track of associations. For example, we do not keep the in-
dexed content or the identified keywords of an email in the 
Email object. We keep only the unique ID that Google 
Desktop has assigned to the item, and then at run time, we 
can retrieve that item’s full information from the Google 
Desktop when needed. 

Constructing the Association Graph 

Currently, we construct the association graph using the 
Graph Builder, a software module that we developed sepa-
rately from Feldspar. 

The association graph is a directed graph, implemented 
using the QuickGraph 2.0 open source graph data structure. 
The graph is directed because certain associations, such as 
“the email from the person”, are directional. The Graph 
Builder first gathers items of all types and stores them as 
vertices in the graph. Then it creates an edge between each 
pair of related items. For example, it looks at the to and 
from fields of an email to identify the email’s sender and 
recipients, and then it retrieves the vertices in the graph that 
represent those people and builds edges between those ver-
tices and the email’s vertex. Likewise, it extracts people 
from the organizer and attendees fields of events, and asso-
ciates the corresponding person items to the events. Follow-

Figure 5. Bottom: Indexed items can be extracted from the 
Google Desktop database via the Google Desktop Query API.  
Items represented as solid circles, such as Emails, can be directly 
retrieved from the database. Square items are extracted from the 
circle items. Date items are dynamically generated during run 
time and are not stored in the association graph Top: The associa-
tion graph links related items together. Its edges are labeled and 
directional. 



 

 

ing this approach, we identify associations among all items 
to construct the complete association graph.  

Producing Query Results 

In this section, we describe how our algorithm generates the 
results for a given query. For easier discussion, we use the 
example query for finding “the folders that contain the at-
tachments received through email from Spence”.  

As the first step, the algorithm transforms the query into the 
list of associations “folders – files – emails – Spence” that it 
recognizes. Then, the algorithm uses one results generator 
for every pair of association A—B (A items related to B 
items) in the query to generate intermediary query results. 
Specifically, every result generator takes in a list of B items 
and returns a list of A items that are related to the B items. 
In our example, we need the following three results genera-
tors:  (1) folders—files, (2) files—emails, (3) emails—
persons. 

Our algorithm starts processing the query from the last pair 
of associations, the emails – persons (Spence) pair. The 
emails—persons generator locates the vertex corresponding 
to Spence in the association graph and examines all of its 
in- and out- edges that are connected to email vertices. This 
gives us the emails to or from Spence. All these emails are 
then aggregated into a list, which is the output of the gen-
erator. 

The algorithm then passes this list of emails as the input 
into the second generator, the files—emails generator, 
which outputs a list of files that are related these emails. In 
our example, the files would be attachments on any of the 
emails. 

Finally, the algorithm inputs the list of files to the last gen-
erator, the folders—files generator and obtains a list of fold-
ers that are related to the files. In our example, they are the 
folders that contain any of the files which have been stored 
from the email onto the hard disk. The folders are also the 
final query results displayed to the user. 

This chaining mechanism is efficient in producing query 
results, and more importantly, it allows the addition of new 
data types and their querying without having to change the 
algorithm itself. We just need to implement the new results 
generator for the new data types, which will be very man-
ageable since Google Desktop supports only a small num-
ber of data types. In our current system, there are a total of 
7x7 = 49 possible generators that can be implemented. 
However, not all pairs of associations make sense. For ex-
ample, folders cannot currently be related to events. Of the 
49 pairs, we implemented 38.  

Some of the pairs required some thought as to what they 
would mean. For connecting files to people, we can use the 
author property that the file system maintains, but we also 
include files sent by that person in an email (implicitly add-
ing a “...related to email related to...” in between the person 
and file). We will be further experimenting with which as-

sociations people expect Feldspar to keep track of for the 
various combinations. 

Scalability and Optimization 

We have not evaluated the scalability of Feldspar. How-
ever, from the experience of the first author using Feldspar 
on three of his computers, and also from the responses of 
the participants of our user study (see the Evaluation sec-
tion), we have observed that Feldspar has been very respon-
sive during run time, even when a complex query is being 
constructed and the database is large. 

However, our current implementation of the association 
graph is not optimal. We currently store the graph on the 
hard disk, and load it into memory every time Feldspar is 
launched. This incurs a start-up delay that varies from a few 
seconds to up to about 10 seconds depending on the graph 
size.  However, once the graph has been loaded into mem-
ory, Feldspar runs smoothly. We plan to implement a graph 
database for storing the association graph, which would 
allow us to keep the graph on the hard drive and load the 
necessary information from the graph on demand. 

EVALUATION 

Feldspar is designed for people to use when they remember 
something associated with what they are trying to find. To 
try to simulate this in a controlled laboratory experiment, 
we told subjects what they should pretend to remember, to 
see if that would be sufficient for finding the target infor-
mation. This setup is for evaluating the usability of Feld-
spar’s user interface. We plan to evaluate Feldspar’s effec-
tiveness over extended use in a future longitudinal study. 

Participants 

Eight participants volunteered for our study, by signing up 
at an experiment website managed by our university. Their 
ages ranged from 20 to 39, with an average age of 26. Two 
participants were female. All participants were screened for 
their familiarity using Google Desktop and Microsoft Out-
look 2003 for reading and writing emails and scheduling 
calendar events. Each study lasted for about 75 minutes, 
and the participants were paid $15 for their time. 

The participant as the Computer Owner 

We told the participants that they would be finding or look-
ing at information on a computer that we provided. We em-
phasized to the participants that those information would be 
unfamiliar to them, and therefore they should not try to 
make any inferences about the information. (e.g., they 
should not try to infer the content of a file by just looking at 
the file name.) We then asked the participants to pretend to 
be Blake Randal, the fictitious owner of the computer. 

Information on the Computer 

All participants used the same desktop computer that we 
provided, which was populated with fictitious emails, files, 
and calendar events, and visited web pages. 



 

We imported into Outlook an email corpus, containing 711 
emails, which was developed as part of the Radar project 
and is freely available for research purposes [17]. We modi-
fied the receiving dates of the emails, so that they spread 
randomly across April and September 2007. 

For files, we downloaded the first 50 files returned by 
Google for the popular file types: pdf, doc, xls, and ppt, by 
doing wildcard searches (typing “filetype: doc” into Google 
returns search results of doc files.) We distributed the files 
randomly into some file folders, with various hierarchy 
depths, that we created inside My Documents. We attached 
some of the files to the emails in Outlook so they would be 
both email attachments and on the hard disk. 

To create web page browsing history, we visited the top 30 
most popular web sites in the US, as listed on Alexa. Some 
web addresses were mentioned in the content of emails that 
we downloaded. And we injected a few more in the emails 
for the experiment. 

We created calendar events spreading across April through 
September 2007 in Outlook, and we assigned people ap-
pearing in the email corpus as the event attendees. 

Experiment Design 

The study used a within-subjects design, with two main 
conditions for completing tasks: the Feldspar condition, 
where participants used only Feldspar, and the Control con-
dition, where participants used conventional desktop appli-
cations, including Outlook and its built-in browsing and 
querying mechanisms, Google Desktop, and the Windows 
Explorer. 

The test consisted of 14 tasks that are divided into two 
blocks. Every participant completed the first block of tasks 
in one condition, and then moved on to complete the second 
block of tasks in the second condition. The order of the two 
conditions was counterbalanced. 

We created matched sets of 7 tasks each, Task Set A and B, 
ranging from easy to very hard, and counterbalanced which 
set was used with which condition, to guard against any 
unintended differences in difficulty. We used two sets of 
tasks to ensure that the subjects did not remember the an-
swers from one condition to the other. The two sets differed 
only in the specific values used for parameters such as the 
associated person name or date. 

The dependent measures in the study were the task comple-
tion times and completion rates. The following three factors 
could affect the dependent measure: (1) Software – Feld-
spar or the control group software; (2) Task Set – the Task 
Set used with the Software; (3) Software Order – which 
Software was used first. 

Participants were randomly assigned to one of the following 
four conditions, with an equal number of subjects in each 
condition. 

(Feldspar + Task Set A) then (Control + Task Set B) 
(Feldspar + Task Set B) then (Control + Task Set A) 
(Control + Task Set A) then (Feldspar + Tasks Set B) 
(Control + Task Set B) then (Feldspar + Tasks Set A) 

Tasks 

We designed the tasks based on an informal survey of situa-
tions in which people had problems finding information on 
their computers, but remembered things associated with the 
information. The tasks in Task Set A were: 

1) Open the last email received on July 27, 2007 

2) Open all the email attachments of type .txt 

3) Find out who had email conversations with the 
person who sent out the file file.doc 

4) Find out who attended the event in which Cara 
was present. 

5) Find all the events that were attended by anyone 
who has sent you a file. 

6) Open the file folders that contain email attach-
ments from Spence. 

7) Open the webpage mentioned in the email from 
the person you met in an event in May. 

The specific values used in the tasks are shown above in 
italic. Task Set B used the same tasks in the same order, but 
with a different set of specific values. 

Tasks 1, 3, and 4 were simpler, while tasks 2, 5, 6, and 7 
were more difficult Our hypothesis was that for simple 
tasks, Feldspar would achieve performance comparable to 
that of the control software, and for difficult tasks, Feldspar 
would be significantly faster than the control in both effi-
ciency and accuracy. 

Procedure 

Before the participants started with each task block, they 
were given instructions on the software that they would be 
using. For the Control software, we went over the browsing 
and querying mechanisms of Google Desktop and Outlook, 
with which the participants should have already been very 
familiar. For the Feldspar software, we gave an overview of 
the different parts of the Feldspar user interface, the interac-
tion techniques used in constructing queries, and the types 
of information that Feldspar is able to find. For both condi-
tions, the participants were allowed to ask questions during 
these overview periods.  

Then, we moved on to the first block of tasks. We in-
structed the participants to work quickly and accurately for 
all tasks. They were told that they had four minutes to per-
form each task, and that they could not move on to the next 
task until either the current task was finished, or the four 
minutes had passed.  

Before starting each task, participants were asked to face 
away from the computer screen. They were given the in-
struction for that task to read. They could ask clarifying 
questions about the instruction. When they were ready to 



 

 

begin, we asked them to turn around and press the start but-
ton of a timer located next to the computer mouse on the 
desk, and when they decided they were done with the task, 
the should press the stop button on the timer. Then the ex-
perimenter would check the results, and if incorrect, the 
participants were instructed to start the timer again and to 
keep trying.  This self-timing approach was necessary so 
the participant’s times would be stopped only when they 
knew that they had successfully completed the task, instead 
of when they were told so. This also provided more accu-
rate task completion times. If the participants failed to fin-
ish a task within the allotted time, we stopped them, and 
recorded that as a failure. 

After the participants finished the first block of tasks, they 
moved on to the next block. Finally, the participants filled 
out a questionnaire that asked for their subjective impres-
sions about the software they used. 

Quantitative Results 

The task completion time and complete rate data were ana-
lyzed using a mixed model analysis of variance with fixed 
effects for software, software order, and task set, and a ran-
dom effect for participants. This analysis method is more 
appropriate for our within-participants study than a tradi-
tional ANOVA because individual error terms are synthe-
sized for each participant [10].  

Task Completion Times 

We tested the task completion time data for the effects of 
all possible combinations of software, software order, and 
tasks set on task time, and we found significant effect only 

for software, indicating adequate counterbalancing for soft-
ware order and matched difficulty for the two task sets. 

Figure 6a shows the average task time for each task. Note 
that the maximum possible time is 240 seconds since we 
stopped subjects if they could not finish a task in 4 minutes, 
and we counted all failed attempts as taking 4 minutes. The 
main effect of software was significant on the completion 
times of task 2 (F1,7=25.31, p<.0015), task 5 (F1,7=30.16, 

p<.0009), task 6 (F1,7=17.75, p<.0040), and task 7 (F1,7=225.00, 

p<.0001). In other words, participants were significantly 
faster when they completed these four tasks with Feldspar. 
Incidentally, those four tasks were also the more difficult 
ones for the Control software. These tasks involve multi-
level wildcard searches, which Feldspar greatly simplifies. 
For example, for task 7 – open the webpage mentioned in 
the email from the person you met in an event in May – 
participants using the control software would have to look 
at all the events in May, and then for each event, they 
would need to find all the attendees who have sent an email, 
and for each email, check for web links in the email con-
tents. Overall, the average difference in time (91 vs. 174 
seconds, or a factor of 1.91, almost 2 times slower) was also 
statistically significant (F1,7=41.71, p<.0003). 

Task Completion Rates 

Using similar analysis, we tested the task completion rate 
data, and found significant effect only for software. Figure 
6b shows, for each task, the number of participants who 
failed. Significantly more participants failed task 5 
(F1,7=49.0, p<.0002), task 6 (F1,7=7.0, p<.0025), and task 7 
(F1,7=21.0, p<.0025) in the control condition. The total num-
ber of failed tasks was 24 for the Control condition, com-

 

Figure 6. (a) Average task completion times. (b) Total number of failed tasks. (c) Likert-scale measures for both groups of software, with 
taller being better. (d) Participants comparing the two groups of software. For (a) and (b), error bars represent ±1 stdev and items with * are 
statistically significant. 



 

paring to only 2 for the Feldspar condition; this difference 
is statistically significant (F1,7=24.20, p<.0017), showing par-
ticipants were dramatically more successful in finishing 
tasks when using Feldspar (a factor of 12). 

Feldspar performed well across all tasks, in terms of both 
task completion times and completion rates. And impor-
tantly, Feldspar maintained almost constant performance 
time even for difficult tasks – with Feldspar, the times for 
the difficult tasks were not much different than the times for 
the easier tasks. In contrast, the Control condition suffered 
severely – participants either took much longer to complete 
those tasks, or failed them.  

Subjective Results 

As measured by 5-point Likert scales filled out at the end of 
the study, participants felt that Feldspar was better than the 
Control software in all of the 6 aspects asked (see Figure 
6c). This is a very encouraging result. More importantly, 
the participants enjoyed using Feldspar and found it easy to 
use. Furthermore, most participants perceived Feldspar to 
be easier to learn, easier to use, more enjoyable and better 
liked (Figure 6d). One participant commented “[Feldspar] is 
helpful to accomplish some complex set of activities. Helps 
a lot because you can relate data while searching. Ex-
tremely easy to use.” Also, all participants felt that Feldspar 
was either more accurate than or as accurate as the Control 
software.  

DISCUSSION 

The study results were positive, both quantitatively and 
qualitatively, confirming Feldspar’s interface to be highly 
usable for the test tasks. We believe the most important 
factor that contributes to Feldspar’s success is that it allows 
the user to easily take advantage of the connections (asso-
ciations) between entities (pieces of information) when re-
trieving information. Although this may seem to be what 
some search algorithms, such as PageRank [2] have already 
been doing, there is an important difference – Feldspar pro-
vides users with a simple way to specify the connections 
that they want to use, while typical search programs attempt 
to choose associations automatically. For complicated tasks, 
like those from the user study, it is unlikely that search tools 
could easily guess what connections to use. Furthermore, 
search engines are not designed to handle the multi-level 
connections that Feldspar can express.  

Another important factor is Feldspar’s ability to chain to-
gether non-specific constraints (list of associations where 
only the association types are specified) to produce specific 
results (items that match the constraints). That is, Feldspar 
returns results even before a constant value is provided for 
the last column. Often, the user will find the result and stop 
before the query is even finished being formed. This is 
something that today’s search tools cannot handle at all. 
The feature is very useful because although people often 
have difficulties remembering the exact details about the 

things they want to find, they usually have some general 
ideas about them. 

The approach used in Feldspar actually focuses more on the 
connections between entities, and much less on the entities 
themselves. Similar approaches have been used in other 
domains, such as in social network analysis, detection of 
fraudulent transactions in online marketplaces, finding ter-
rorist networks, and we expect to see even more examples 
in the future. We believe this is a natural trend, because as 
the number of information items increases, so do the num-
ber of connections between them. These connections often 
tell us many new things about the individual items, which 
may not be found if we just inspect the items in isolation.  

However, we believe the associative approach will not be 
replacing but, rather, complementing the search and brows-
ing approaches. For example, Feldspar currently does not 
look into the contents of emails. However, we could imag-
ine incorporating Google Desktop’s full-text search func-
tion into Feldspar such that we can even build queries that 
involve associating an item with another item that contains 
certain text. 

FUTURE WORK 

Feldspar, in the current version, shows that associative in-
formation finding can work well, and it provides many fea-
tures that people may find helpful. We have also designed a 
number of other features that are not yet implemented. We 
share these ideas here and hope they will stimulate discus-
sions and help inspire even more design ideas. 

We have used the general term “related to” to describe the 
association between items. In the future, we would want to 
allow users to change “related to” into a more specific asso-
ciation. For example, users would be able to select emails 
“from” or “to” people, or people who “attend” or “organ-
ize” events. In the user interface, we would provide a menu 
with the possible associations, which would pop up when a 
user clicks on the “related to” text or link. We note how-
ever, that the more general “related to” seems to work sur-
prisingly well, and the specialization would only be needed 
when there are too many results. 

Similarly, we would also want to allow people to specify 
whether they want to do an AND or OR across the multiple 
values that they select for a type. Currently, selecting email 
A and email B as values produces a query for items related 
to email A OR email B. We would also want to allow peo-
ple to draw multiple “related to” links out of an item, to 
find items related to multiple other items of various types. 

Currently, associations used in Feldspar are those that are 
easily detectable. In the future, we would like to support 
many more kinds of associations, some of which would 
require tapping more into the operating system to obtain. 
For example, we could associate two files together if we 
detect some data is copied from one file and pasted into the 
other. Furthermore, we could employ entity resolution algo-
rithms [11] to resolve people having several email ad-



 

 

dresses or variations in the spelling of their name; mapping 
those email addresses and name variations to the same per-
son in Feldspar internally. 

Currently Feldspar obtains its data from the Google Desk-
top database. Alternatively, other database, such as the 
Windows Desktop Search or the Macintosh Spotlight data-
base, could have been used, to make Feldspar more port-
able. We also want Feldspar to support gathering data from 
more sources, like from the Palm Desktop calendar and 
contact list. Another idea is to allow users to define addi-
tional sources of data associations. For example, to identify 
people related to a conference event, Feldspar could be 
given the list of authors or attendees. 

Finally, we hope to release Feldspar for general use and 
collect feedback and ideas from the community about its 
usefulness and how to improve it. 

CONCLUSIONS 

We have presented Feldspar, the first system that supports 
multi-level associative retrieval of desktop information. 
Specifically, Feldspar provides a novel interface that allows 
people to easily construct, edit and visualize a chain of as-
sociations as retrieval query. Indeed Feldspar is powerful in 
that it allows people to find things with non-specific re-
quirements (such as using only data types). More impor-
tantly, the non-specific requirements can be chained to-
gether to produce specific results. Feldspar could be a use-
ful addition to search and browsing, extending the ways 
people find and manage their personal information. 
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