
KuaFu: Closing the Parallelism Gap in Database
Replication

Chuntao Hong1, Dong Zhou2, Mao Yang1, Carbo Kuo2, Lintao Zhang1, Lidong Zhou1

1Microsoft Research Asia, Beijing, China
chhong, maoyang, lintaoz, lidongz@microsoft.com

2Tsinghua University, Beijing, China
dong.zhou.08, byvoid1@gmail.com

Abstract—Database systems are nowadays increasingly de-
ployed on multi-core commodity servers, with replication to
guard against failures. Database engine is best designed to scale
with the number of cores to offer a high degree of parallelism on
a modern multi-core architecture. On the other hand, replication
traditionally resorts to a certain form of serialization for data
consistency among replicas. In the widely used primary/backup
replication with log shipping, concurrent executions on the
primary and the serialized log replay on a backup creates a
serious parallelism gap. Our experiment on MySQL with a 16-
core configuration shows that the serial replay of a backup can
sustain only less than one third of the throughput achievable on
the primary under an OLTP workload.

This paper proposes KuaFu to close the parallelism gap on
replicated database systems by enabling concurrent replay of
transactions on a backup. KuaFu maintains write consistency
on backups by tracking transaction dependencies. Concurrent
replay on a backup does introduce read inconsistency between
the primary and backups. KuaFu further leverages multi-version
concurrency control to produce snapshots in order to restore the
consistency semantics. We have implemented KuaFu on MySQL;
our evaluations show that KuaFu allows a backup to keep up
with the primary while preserving replication consistency.

I. INTRODUCTION

We are witnessing two strong technological trends. First,
providing highly available database services on commodity
machines is becoming a common practice that makes database
replication a necessity, because server failures are no longer
negligible exceptions. Second, with the prevalence of multi-
core architecture, a database system must achieve high concur-
rency in transaction processing to fully exploit the potentials
in the underlying hardware. Somewhat surprisingly, those two
technological trends are creating a serious tension between
highly concurrent transaction processing and serialized execu-
tion imposed by traditional replication approaches to ensure
replica consistency. For example, MySQL, one of the most
popular open-source database systems, uses primary/backup
replication with log shipping, where a backup executes each
transaction in the log sequentially to ensure that the backup
is consistent with the primary. As a result, we are observing
a significant parallelism gap between a high degree of paral-
lelism on the primary and a serialized log replay on a backup.

Such parallelism gap could introduce serious problems in
practice. When the primary is heavily loaded with update
transactions, backups might no longer be able to keep up with

the primary. The system has to either suffer from increased
risks of data loss, or to throttle the primary and take a perfor-
mance hit. While so far not receiving the deserved attention in
the research community, there is sufficient evidence to suggest
that this is a real issue in practice [1] [2].

In this paper, we propose KuaFu to close the parallelism
gap by enabling concurrent replay on a backup. To strike a
balance among correctness, reusability, and ease of imple-
mentation, KuaFu applies to row-based logging with logged
events reflecting changes on table rows. To ensure consistency
between the primary and backups, KuaFu tracks transaction
dependencies and makes sure that a backup preserves the same
dependencies observed on the primary.

Tracking transaction dependencies ensures write consistency
between the primary and the backups. All conflicting writes
happen in the same order, and a backup reaches the same
state as the primary after log replay is completed. However,
write consistency does not constrain non-conflicting writes in
different transactions. With concurrent replay on a backup, two
non-conflicting transactions T1 and T2 might be executed in
different orders on the primary and on a backup, leading to
read inconsistency: If T1 completes before T2 on the primary,
but T2 completes before T1 on the backup, a read on the
backup might return a state that reflects the results of T2,
but not those of T1, a state that never exists on the primary.
To allow read operations to be served on backups without this
kind of read inconsistency, KuaFu further introduces barriers
to create snapshots that are consistent with some past states on
the primary by leveraging the existing support of multi-version
concurrency control.

In summary, this paper makes the following contributions.
First, we have defined the notion of parallelism gap in database
systems that arises with the technological trends of multi-
core architecture on commodity servers. We have also shown
the significance of the gap with evaluations on MySQL.
Second, we have developed a solution that leverages trans-
action dependencies to close the parallelism gap by allowing
concurrent replay on a backup. We have carefully analyzed
the consistency semantics in terms of write consistency and
read consistency, and provided a mechanism for a backup to
achieve the same consistency as in the sequential replay case.
Third, we have fully implemented KuaFu on MySQL with

less than 1,500 lines of code change. Our detailed evaluations
have confirmed that KuaFu allows a backup to keep up with
the primary on the same many-core machine, while preserving
the desirable consistency.

The rest of the paper is organized as follows. Section II
explains the causes and effects of the parallelism gap in
database replication with a case study. Section III describes the
design choices that KuaFu makes and presents its architecture,
with Section IV covering the implementation of KuaFu on
MySQL. We evaluate KuaFu and share our experiences in
Section V, discuss related work in Section VI, and conclude
in Section VII.

II. PARALLELISM GAP: A CASE STUDY

Most modern servers have multiple processor cores. To
leverage the power of all the cores, database servers usually
run multiple threads to execute transactions concurrently.
For high reliability, database replication is used to maintain
consistent states across multiple database servers. We observe
that traditional database replication mechanisms typically in-
volve some form of serialization to ensure consistency among
replicas. This is because concurrent executions tend to intro-
duce non-determinism due to thread-interleaving, which could
cause state divergence among replicas. Such replication-related
serialization is at odds with the need to support concurrent
transaction processing on multi-core processors.

In this section, we perform a case study to show the
existence and the severity of the parallelism gap. To show that
this is a real problem in practical database systems, we choose
MySQL, one of the most widely used open-source database
systems. MySQL supports primary/backup replication (pri-
mary and backup are also called master and slave in the
literature), typically using log shipping. A replicated MySQL
instance consists of a primary and one or more backups.
Transactions are first executed on the primary. The primary
generates logs recording the operations that these transactions
have performed, and ships the log entries to the backups.
Backups replay the log entries in a serial order to reach the
same state as the primary. Read-only transactions may also
be served on a backup although they might not reflect the
up-to-date states on the primary.

We conducted an experiment with an OLTP workload
on MySQL 5.5 with primary/backup replication using log
shipping. The OLTP workload is a TPC-C workload without
limiting the clients’ maximum operation rates. It uses 100
warehouses with a total of about 10GB of data. The trans-
actions in this workload consist of INSERT, UPDATE and
DELETE. Different transactions can conflict with each other
in this workload. We first run the workload on a primary server
for 30 seconds without any backups and generate a log. We
then start a backup and record the time it takes to replay the
log that the primary has generated. We divide the total number
of transactions by the processing time to get the number of
transactions per second for both the primary and the backup.

Figure 1 shows the transactions per second for the primary
and for the backup with different numbers of CPU cores.

427

672

807

223

177

128

256

512

1024

1 2 4 8 16

tr
a

n
sa

ct
io

n
s/

se
c

processor cores

primary

b-row

b-statement

Fig. 1. The throughput of MySQL primary, and the maximum replay
throughput of the backup, using different numbers of processor cores. Results
with row-base logging and statement-base logging are represented as b-row
and b-statement.

MySQL supports two logging methods: row-based logging and
statement-based logging. To confirm that the existence of the
parallelism gap is independent of the logging methods, we
evaluate the replay performance on a backup in both logging
methods. The primary data series show the throughput on
the primary, given different numbers of cores. The b-row
and b-statement series show the replay throughput on the
backup, using row-based logging and statement-based logging,
respectively. Because there is only a single thread used to
replay the log, the performance on the backup is almost
identical with different numbers of cores used.

The figure shows that, with a single core, the throughput on
the backup is actually higher than that on the primary. With
row-based logging, the replay performance is about 30% better
than that of the primary when both servers use a single core.
This is due to the lower cost of log replay compared to full
transaction execution, as well as the additional read queries
performed by the primary. However, when the primary uses
more than two cores, the throughput on the primary starts to
become higher than that on the backup. With 4 cores, the
throughput on the backup using row-based logging is only
half of that on the primary. The parallelism gap between the
primary and the backup widens even more as more cores are
used. When 16 cores are used, the replay on the backup can
sustain less than one third of the throughput achievable on the
primary.

III. DESIGN OF KUAFU

The root cause of the parallelism gap is the tension be-
tween determinism (needed for consistency in replication) and
concurrency (desirable for performance on multi-core architec-
ture). Any solution that is designed to close the parallelism gap
must resolve this tension, while at the same time lives with the
constraints from database replication. For example, because
database systems are often mature and highly optimized, any
complete re-design or even significant code modifications are
undesirable and usually impractical. We therefore try to strike
the right balance between generality and practicality. On the
one hand, we would like the design to rely on well-accepted
concepts in database systems and replication mechanisms and
to be able to accommodate different low-level implementa-
tions. On the other hand, we favor a practical solution that

can be readily incorporated into a production database system
like MySQL. In particular, we choose to focus on the widely
used primary/backup replication with log shipping, a setup that
we used in the experiment shown in Section II. In this section,
we describe the design choices we have made and present the
architecture of KuaFu.

A. KuaFu Design Choices

The basic idea of KuaFu is simple and straightforward.
We let the primary execute transactions concurrently as in
the non-replicated case and generate a log of the execution.
Instead of having a backup replay the log in serial, KuaFu
allows the backup to infer dependencies between transactions
and allow non-conflicting transactions to execute concurrently
during replay.

Making this basic idea work in practice involves careful
design decisions on what to log and how dependencies are
defined and inferred. A modern database system can be
considered as consisting of two logical layers: the SQL layer
and the storage layer. The SQL layer is responsible for
SQL related tasks such as parsing SQL queries and writing
transaction logs. It is also responsible for compiling SQL
queries into a series of operations on data tables, which
are maintained on the underlying storage layer. The storage
layer implements table manipulation and manages the physical
storage of tables. Database systems, such as MySQL and
Microsoft SQL Server [3], have explicit layered architecture
because the clean separation allows different storage engines
to be used for customized optimizations.

Replication can be done either at the SQL layer or at the
storage layer. KuaFu chooses to focus on replication at the
SQL layer, so that the solution is independent of the underlying
storage engines. There are further tradeoffs implied by this
choice. For replication at the SQL layer the logical semantics
(such as transactions and conflicts among transactions) are
easily captured in log entries, such logical information might
be unavailable when replicating at the storage layer. Moreover,
replication at storage layer might lead to a larger log size and
require more data to be transferred. On the flip side, replica-
tion at the storage layer suffers less from the parallelization
gap, because log replay is fast on the backups due to less
computation required to apply changes.

There are different ways to accomplish replication even at
the SQL layer. The row-based logging and statement logging
supported by MySQL are two examples. Statement logging
works at the higher level by logging all the SQL statements
being executed, while row-based logging works at a lower
level by recording all the rows that a transaction modifies.
Statement logging tends to result in smaller log sizes, but a
backup has to execute those statements fully during relay.
To ensure consistency, the execution of the logged SQL
statements must be made deterministic. SQL statements with
certain non-deterministic functions (e.g., RAND and DATE)
must be handled carefully. Re-executing each statement puts
extra overhead on a backup, making the parallelism gap more
severe as shown in Figure 1. Furthermore, it is hard to check

����������	

������

��������	����
��
��������� ��������

���������
���������
������	�

���������
�����

�����

�����������
������
�������
������	�

� ����!�����

"	���������
�����

�	
����������
��	�
��
��
����

��#���
������
���$���

��	�
��
��
����

� ����	������
�
�	
��

Fig. 2. KuaFu Architecture.

whether or not two transactions are in conflict with each other
by looking at their SQL statements.

In contrast, with row-based logging, we can easily obtain
the list of rows being modified for each transaction, making
dependency tracking and assessment easy. During replay, two
transactions are in conflict if and only if their write sets inter-
sect. Not having to worry about read-write conflict simplifies
implementation and increases the degree of parallelism. Row-
based logging is a form of result logging, compared to the
operation logging at the SQL statement level. A backup needs
only to update the rows with the values in the log, without
worrying about the read set of each transaction or re-executing
SQL statements. The down side of row-based logging is that
it might need to log more data. However, as shown in our
experiments, this is not a significant issue in the database
system we tested.

B. The Architecture of KuaFu

KuaFu chooses to focus on row-based logging and use
write sets to track dependencies among transactions, though
the basic idea can be applied to statement logging. Figure 2
shows an overview of KuaFu’s architecture, where the gray
components have been modified or added by KuaFu to an
existing two-layer database system.

The KuaFu system is consisted of three components: the
replication manager, the primary, and the backups. Replication
manager is responsible for dispatching SQL requests to the
servers. All write requests are sent directly to the primary
server, and read-only requests can be sent to primary or backup
servers depending on the load condition of the servers and
the consistency requirements of the queries. Write transactions
are first executed on the primary and then propagated to the
backups. As the primary commits a transaction, it logs the data
modified by that transaction with the writeset [4] extractor.
The writeset log records exactly what has been changed by
the transaction. By replaying the writeset log, the backups
are able to replicate all data modifications performed on the
primary. The writeset extractor works in SQL layer, so that
different storage engines can share the same extractor.

graph = empty_set()
ready_transactions = empty_queue()

dependency_tracker()
{

while(trx = next_trx_from_parser())
{

trx.extract_writeset()
vertex v = new_vertex(trx)
for each u in graph
{

if(u.writeset intersects with v.writeset)
{

u.followers.push(v)
v.n_incoming_edges++

}
}
graph.insert(v)
if(v.n_incoming_edges == 0)

ready_transactions.push(v)
}

}

executor()
{

// executed in each executor thread
while(v = ready_transaction.pop())
{

execute_transaction(v.trx)
for each u in v.followers
{

u.n_incoming_edges--
if(u.n_incoming_edges == 0)

ready_transaction.push(u)
}

}
graph.erase(v)

}

Fig. 3. Algorithms of the dependency tracker and executors.

A backup reads the writeset log from the primary, parses
the log entries using the writeset parser, and uses the parallel
executor to apply changes to the database tables concurrently
while respecting the transaction dependency provided by the
dependency tracker. The parallel executor and the dependency
tracker cooperate on a transaction dependency graph G. Graph
G is a dynamically changing directed acyclic graph (DAG),
in which each vertex denotes a transaction, and an edge from
vertex T1 to vertex T2 indicates that transaction T2 depends
on T1 and must be executed after T1 completes (as in the
commit order on the primary recorded on the log). For each
transaction T in the log, the dependency tracker adds a new
vertex v to the dependency graph G. It also adds edges linking
v to transactions that it depends on based on T ’s writeset. A
thread in the parallel executor takes a vertex with no incoming
edges to replay, and removes that vertex and its edges from
G when completed. The algorithms are shown as pseudo code
in Figure 3.

C. Consistency and Reading on Backup

It is obvious that KuaFu ensures write consistency in that (i)
for each row a backup applies the same sequence of updates
in the same order, and (ii) when log replay completes, the
backup reaches the same state as the primary. If all reads are
served by the primary as well, then KuaFu provides the same
consistency semantics as the original replication mechanism
that uses serialized replay. This is no longer the case if we
allow read transactions to be served on a backup.

In the original replication mechanism with serialized replay,
the state on a backup might lag behind because the backup

has not managed to replay all transactions that have been
committed on the primary. In order to read from backups,
clients must be able to tolerate such relaxed consistency. As
a running example, assume that the primary has committed
transactions T1, T2 and T3 in that particular order. When
transactions are replayed in serial, a backup will apply updates
in the same order as they are committed on the primary. The
state on a backup might reflect T1 and T2 only, while the last
transaction T3 is not yet replayed. The backup is therefore
only prefix consistent with the primary in that reading from
backup will get a prefix of all the updates committed on the
primary.

Executing transactions in parallel on backups introduces
read inconsistency that violates the original prefix consistency
semantics. Using the same example, if T1 and T2 are indepen-
dent, T2 might be applied before T1 on the backup. A read
operation might see T2 but not T1, which can never happen on
the primary. Such inconsistency is temporary until the backup
finishes replaying T1.

Such read inconsistency introduced by concurrent replay
on a backup might be undesirable. The consistent reader in
Figure 2 restores the consistency semantics as provided in the
original replication mechanism. It does so by placing a barrier
for every n updates such that all updates before a barrier must
have been replayed before any of the updates after the barrier
can start. We leverage MVCC (Multi-Version Concurrency
Control), a mechanism available in many modern databases,
to take snapshots at the barriers and only serve reads against
the latest snapshot. The snapshots are guaranteed to include a
prefixes of all the updates in the primary. By doing so, KuaFu
sacrifices performance and freshness for consistency.

IV. IMPLEMENTATION

We have implemented KuaFu on MySQL 5.5.15, which
has a layered architecture as in Figure 2 and supports several
different storage engines. Our implementation uses the default
transactional storage engine InnoDB. It supports row-level
locking and multi-version concurrency control (MVCC).

MySQL 5.5 has built-in replication support based on pri-
mary/backup with log shipping. It supports both statement-
based logging which records SQL statements, and row-based
logging, which records row modifications and other operations.
Our implementation directly uses the row-based log as the
writeset log, making it unnecessary to implement writeset
extractor. For other database systems, Plattner et al. [5] showed
how to design and implement a writeset extractor.

In MySQL’s row-based log, each operation is called a log
event. Row changes are recorded as row events. The log also
contains other events, such as those identifying the start and
the end of a transaction. Row events belong to the same
transaction are enclosed by the begin and commit events,
enabling us to identify transaction boundaries easily. There
are three types of row events, namely insert, update and
delete. Insert events record the images of the rows being
inserted. Update events record the before images of the rows

��������	

���

������

�����������
�������
���	������

���	
����

���
���	��

������

���

���������

�����������
 !�������

"#�
��$�����

%���������
���	��

&������� '���(
&�������
���

'�������� ���������

"#�
���������

�����

"������

 ������

"������

 ������

�	
����������

��(��

������

"��)���

Fig. 4. KuaFu implementation on MySQL.

being updated as well as the resulting after images. Delete
events record the images of the rows being deleted.

A primary writes the updates to the log when executing
transactions. A backup then fetches the log entries from the
primary and replays the events in the log. In MySQL, a backup
has two threads: the IO thread is dedicated to reading the
log entries from the primary and storing them on local disk,
while the replay thread reads the log from local disk and
replays these events. Because only a single thread is in charge
of parsing and executing the log, log events are executed
consecutively regardless of whether it is a row event or other
type of event. When a row event is parsed, it contains the
type of the operations and the row images. These row images
are stored as raw bytes. Before performing the operations, the
replay thread must “unpack” these bytes into fields, which
requires knowledge of the relevant table schema. Unpacking
is actually a bottleneck for KuaFu, as we will see in the next
sections.

A. Implementation Overview

Figure 4 shows an overview of the KuaFu implementation,
corresponding to the design in Figure 2.

The implementation of the replication manager is straight-
forward: it analyzes incoming requests, sends the write re-
quests to primary, and sends read requests to primary or
backup servers. It keeps track of the version numbers of the
latest snapshots of each of the backup servers, so that it can
dispatch the read requests to the right backup servers to satisfy
freshness constraints.

As mentioned before, since MySQL is able to generate
row-based logs, there is no need to re-implement a writeset
extractor. We did not modify the code of MySQL for the
primary.

A KuaFu backup uses the same IO thread for fetching log
entries. After being read, log events need to be unpacked and
examined before being sent to multiple threads for replay.
Unpacking row images is actually quite expensive and will
become a bottleneck if the work is carried out by a single
thread. We parallelize the unpacking using multiple row un-
packer threads. We then use a dedicated thread to insert the

Log Reader

Transaction Queue

Row Unpackers

Graph Inserter

Dependency Graph

Transaction Executors

Database

Row-based Log

Fig. 5. Concurrent log replay in KuaFu.

transactions into the dependency graph. Therefore we have
five different types of replay-related threads on a backup: the
IO thread, the log reader thread, the row unpacker threads, the
graph inserter thread, and the transaction executor threads.

We also implemented a consistent reader on the backups to
take snapshots on a backup and serve all reads with the latest
snapshot. KuaFu leveraged InnoDB’s multi-version system to
reduce the cost of taking snapshots.

B. Replay-related Threads

Figure 5 illustrates how KuaFu replays log concurrently on a
backup using the five different types of threads. The log reader
thread parses log into log events. It packs row log events into
transactions and pushes them into a FIFO transaction queue.
Other types of events are executed directly in the log reader.
There is only a single log reader thread, because reading the
log and constructing event objects is I/O bound.

When transactions are pushed into the transaction queue,
they are originally marked as packed. Row unpacker threads
are used to unpack these rows. The job of a row unpacker is
to search for a packed transaction in the transaction queue,
unpack it, and then mark it as unpacked. Row unpackers
always search for unpacked transactions sequentially, starting
from the front of the FIFO queue.

The graph inserter takes the front item of the transaction
queue after it is marked as unpacked, and inserts it into the
dependency graph. We use a single graph inserter to guarantee
that transactions are dequeued one by one and inserted into
the dependency graph in the enqueue order. We will discuss
dependency graph maintenance in detail in the next section.

The transaction executor threads take the transactions that
do not depend on any other transactions from the graph, and
execute them. After a transaction commits, the corresponding
vertex is removed from the dependency graph, and the outgo-
ing edges are also removed.

In addition to row events, the row unpacker and transaction
executor threads need to handle “USE DATABASE” and
“TABLE MAP” events as well. Row unpacker threads execute
these events in order to get table schemas to unpack the
row images, and transaction executors execute them before

performing row operations. Therefore, we execute these op-
erations twice, which incur extra overhead. Fortunately, the
overhead is largely negligible. KuaFu must also handle log
events that alter a table schema or a database layout. We need
to make sure transactions committed before those events are
not affected by them. Because they are rare operations, KuaFu
treats them as barriers and simply waits for all previous events
to finish before executing them.

C. Inserting Transactions into the Dependency Graph

Graph inserter is responsible for inserting transactions into
the dependency graph. To do this, it needs to infer transaction
dependencies. A transaction Ti depends on Tj if Ti proceeds
Tj in the log, and Ti is in conflict with Tj . Because the
transactions are enqueued and dequeued in the same order, the
order in which the transactions are inserted into the graph are
guaranteed to be the same as their order in the log. Detecting
whether two transactions are conflicting involves checking
whether they modified the same row. Assuming Bi is the set
of before images of the rows modified by transaction Ti, and
Ai is the set of after images, then Ti is conflicting with Tj if
Bi ∩ Aj ̸= ∅ or Bj ∩ Ai ̸= ∅. Therefore it is easy to decide
whether two transactions conflict if we can detect whether
two row images are the same. If the table has a primary key,
then row equality can be determined easily by comparing the
primary keys. To avoid comparing the full row images, KuaFu
computes signatures for the rows without primary keys and
uses them to check row equality.

Each time a transaction is inserted into the graph, it must be
compared with all the existing transactions in the graph. The
time to insert a transaction is proportional to the number of
vertices in the graph. If the graph contains too many vertices,
it may take too much time for the graph inserter to insert
transactions. In our current implementation, we limit the max
number of vertices in the graph to be twice the number of
transaction executor threads, and throttle the graph inserter
when the number of vertices in the graph hits the limit.

D. Reading on Backup

To restore the consistency semantics when we allow reads
on backups, KuaFu takes snapshots periodically. Our current
implementation takes snapshots for every N transactions,
where N is a predefined constant. It is trivial to modify the
system to take snapshots with fixed time intervals. In order
to make sure that a snapshot is valid, we need to make sure
that, when a snapshot is taken, there exists some transaction
Ti, such that all the transactions preceding Ti (including Ti)
have been replayed, while no transaction following Ti has
been replayed. To achieve this, KuaFu creates a barrier in
the log reader, stopping it from reading more log events, and
waits until the transaction queue and dependency graph are
empty. At this time, KuaFu can be sure that all the transactions
processed by the log reader have been committed. KuaFu then
takes a snapshot and marks the version number of this snapshot
as the version of the last transaction seen by the log reader.

Component Lines of code Modified files
Log Reader 107 1
Row Unpacker 539 3
Graph Inserter 112 1
Transaction Executor 147 1
Read Support 150 4
Miscellaneous 397 2
Total 1452 11

TABLE I
IMPLEMENTATION EFFORTS FOR THE COMPONENTS OF KUAFU.

CPUs cores hw threads DRAM network
M8 1 4 8 24GB 1Gbps
M48 4 48 48 96GB 1Gbps

TABLE II
MACHINES USED IN THE EXPERIMENTS.

In MySQL, taking a snapshot is an internal mechanism of
the storage engine and is hidden from the SQL layer. We
modified the interface between the SQL layer and the storage
engines, exposing the snapshot related APIs. In particular, we
expose two functions in the interface: taking a snapshot, and
assigning a snapshot for a transaction. When taking a snapshot,
KuaFu invokes the snapshot function at the SQL layer. When
serving a read request on the backup, KuaFu assigns the latest
snapshot to the request.

E. Implementation Effort

Table I shows the components, the numbers of lines of code
used to implement them, and the number of files we modified.

We have modified a total of 1,452 lines of code, a relatively
small modification considering the complexity of the MySQL
code base. This validates our design choices, which is practical
even for a widely used production database system.

V. EVALUATION

A. Experiment Setup

To evaluate the performance of KuaFu, we have conducted
experiments on two types of machines, namely M8 and M48.
The configurations of these machines are shown in Table II.
M8 machines support hyper-threading, with two hardware
threads on each core, while the M48 machines have only
one hardware thread for each core. In our experiments, the
M48 machines are used for testing the scalability of MySQL
and KuaFu, while the M8 machines are used for micro-
benchmarks. All machines run Windows Server 2008 R2.

An OLTP workload and a set of micro-benchmarks are used
in the tests. The OLTP workload is a TPC-C-like workload,
with no limitations on the clients’ maximum operation rate.
It uses 100 warehouses with a total of about 10GB of data.
The transactions in this workload is write intensive, each in-
cludes at least one INSERT, UPDATE or DELETE operation.
Different transactions might be in conflict with each other in
this workload. Aside from the OLTP workload, we also use
micro-benchmarks to gain insights into the system. The micro-
benchmarks use a single table with a size of about 100MB.

807

223

1150

128

256

512

1024

2048

1 2 4 8 16 32 48

tr
a

n
sa

ct
io

n
s/

se
c

processor cores

primary

orig-repl

Kuafu

Fig. 6. Throughput of the primary server (primary), the replay throughput
of original replication (orig-repl), and replay throughput of KuaFu (KuaFu)
on M48, using different numbers of cores on an OLTP workload.

Different operations are performed on the table in different
micro-benchmark tests.

Unmodified MySQL 5.5.15 is used on the primary servers,
and a modified version is used on the backups. Both versions
of MySQL are compiled with Visual C++ 2010. During the
tests, the servers are configured with a 16GB buffer, and they
flush log files whenever a transaction is committed. For all
experiments, we warm the memory cache by performing a
checksum on all the tables. The machines are connected with
Gigabit Ethernet. In our experiments, the network is not a
bottleneck. We observed that enabling logging on the primary
server introduces less than 2% overhead, which indicates that
disk IO is not a bottleneck, either.

In the following experiments, we first show the overall
performance of MySQL and KuaFu on the OLTP workload.
We then analyze the overhead due to read-related barriers. We
further use micro-benchmarks to test the impact of conflict-
ing transactions on the performance of primary and backup
servers. Finally, read performance on the backup servers is
presented using the micro-benchmark workload.

B. Scalability and Replay Efficiency

In this subsection, we present the experimental results on the
scalability of the primary and the backup servers. We use the
OLTP workload in these tests to simulate real-world scenarios.
In order to push the scalability of the servers to the limit, we
used the 48-core M48 machines. We measure the performance
of the servers in terms of transactions per second.

Figure 6 shows the performance of the systems on the
M48 machine. There are three sets of data shown in the
graph. Primary shows the throughput when we execute the
OLTP workload on the primary server, with no backups. The
orig-repl line shows the replay throughput of the original
replication mechanism in MySQL, using row-based logging.
In this experiment, we first run the primary alone, and then
replay the log generated on the backup. The replay throughput
can then be obtained by dividing the number of transactions
in the log by the time it takes for the backup server to replay
the log. The KuaFu line shows the throughput of KuaFu. To
show how the performance varies with number of cores used,
we bind MySQL processes to specified processor cores. We
also adjust the number of threads used by MySQL accordingly.

Figure 6 shows that the primary server scales well until the
number of cores reaches 16. After 16 cores, the throughput
falls. Further investigation reveals that this is due to the high
cost of inter-cpu-socket locks. The M48 machine has 4 CPUs,
each with 12 cores. When we use less than 12 cores, we can
bind all the threads to the cores on the same CPU. However,
if we use more than 12 cores, we have to use at least 2 CPUs,
which means that the locks are now inter-socket. Our profiling
results show that the inter-socket locks have poor performance
on this machine. As a result, the time used in locks increases
dramatically when we scale from 8 threads to 16 threads. For
the same reason, KuaFu does not scale beyond 16 cores on
M48 either.

A Backup using the original MySQL replication scheme
has a throughput about twice the primary when a single core
is used. The OLTP workload has transactions composed of
both read and write operations. The primary server has to
parse and process all the SQL queries, while the log only
records the resulting row updates. Replaying the log is faster
than fully executing the corresponding queries, making backup
faster than the primary when both use a single processor core.
Unfortunately, the original replication scheme does not scale.
With two cores, a backup can just barely catch up with the
primary. Backup begins to fall behind when the primary uses
more than four cores.

KuaFu performs slightly worse than the unmodified backup
when a single core is used. This is because KuaFu has some
extra overhead over the original scheme. The main sources of
overhead are data communication and thread synchronization
among the log fetcher, the graph inserter, and the transaction
executor threads. On the positive side, KuaFu shows good scal-
ability up to 16 cores. Most importantly, a backup in KuaFu
always outperforms the primary given the same number of
processor cores. This means that, unlike the original scheme,
in KuaFu the backups will always be able to catch up with the
primary on the same hardware, and will not be a bottleneck
for the whole system.

C. Impact of Read-related Barriers

In order to provide read consistency on a backup, KuaFu
places barriers between log operations. When a backup hits
a barrier, it executes all the transactions before this barrier,
takes a snapshot, and then proceeds with the transactions after
the barrier. Read requests on a backup are served on the most
recent snapshot in order to provide the same prefix consistency
as in the original replication scheme.

Frequency of the barriers can affect both read and replay on
a backup. The more frequently we place barriers, the fresher
the snapshots. On the other hand, barriers limit the number of
transactions that can be executed in parallel. They also force
the system to wait for the slowest thread, introducing extra
overhead. In our current implementation, we place a barrier
after every n transactions, where the parameter n is adjustable.
It is also easy to put barriers every m millisecond and to
impose a hard limit on the latency between snapshots.

1092 1110

223

1150

0.94
1.85

0.001

0.01

0.1

1

10

128

256

512

1024

1 2 4 8 16 32 64 128 256 512 1024 2048

la
te

n
cy

(s
e
co

n
d

s)

tr
a

n
sa

ct
io

n
s/

se
c

barrier distance

barrier

single executor

no barrier

latency

Fig. 7. Replay throughput with different barrier distance (number of
transactions between two barriers).

In this section, we test the performance impact of the barri-
ers. We vary the number of transactions between two barriers,
and measure the replay throughput. The same workload and
test methodology as in the scalability experiments are used.
We use 16 cores of the M48 machine, the configuration that
offers the best performance.

In Figure 7, the line labeled barrier shows the replay
throughput when we vary the number of transactions between
barriers. For reference, two other sets of data are presented.
The no barrier line shows the replay throughput when there
is no barrier. And the single executor line shows the replay
throughput when there is a single transaction executor thread
with no barrier. The latency line is the calculated values of
the latency between two snapshots.

When the barrier distance is 1, i.e., there is a barrier after
each transaction, the replay performance is about 30% lower
than the single executor case. As the number of transac-
tions between two barriers increases, the barrier overhead
is amortized among the transactions. When there are more
than 1024 transactions between barriers, the overhead becomes
negligible: the barrier line gradually approaches the no barrier
line.

D. Effect of Conflict Ratio

Conflicting transactions cannot be replayed in parallel. The
conflict ratio of the transactions can significantly affect the
performance of KuaFu.

Because we cannot change the conflict ratio of the OLTP
workload, we use a micro-benchmark to test the effect of
conflict on replay performance. In this benchmark, we send
queries with varying conflict ratios and record the performance
of the primary and the backup. The table is divided into row
groups, each containing 10 rows. Fifty clients continuously
generate transactions, each updating all the rows in a random
row group. When there is only a single row group, all the
transactions are in conflict with each other, and with two row
groups, each transaction will be in conflict with half of the
other transactions, and so on. The reason we make transactions
work on a group of rows instead of a single row is to generate
enough work in each transaction to amortize the overhead of
BeginTransaction/EndTransaction.

Figure 8 shows the throughput of primary and the backup
when different numbers of row groups are used. The exper-

1623

1783

2570

0

500

1000

1500

2000

2500

3000

1 2 4 8 10 20 40 100 1000 10000 NC

tr
a

n
sa

ct
io

n
s/

se
c

row groups

primary

backup

Fig. 8. Throughput with different transaction conflict ratio. The more row
groups used, the less conflict; NC stands for no conflict.

3000

15250

0

5000

10000

15000

20000

25000

0 100 300 500 700 1000 1200 1400 1500 1600

q
u

er
ie

s/
se

c

transactions/sec for update

primary qps

backup qps

Fig. 9. Read performance of a two-machine system with different update
rates.

iment was conducted on the M8 machine, using 8 hardware
threads. The result shows that the throughput of the backup
is always higher than the primary, no matter what the conflict
ratio is. With only a single row group, all the transactions are
in conflict with each other, thereby forcing the primary into
serial execution. Worse, some transactions might get aborted
and retried due to contention. On the backup, transactions
are found to be dependent and hence only one transaction is
executed at a time, avoiding contention between threads. As
a result, when there is only a single row group, the backup
outperforms the primary by a wide margin. The conflict ratio
is reduced as more row groups are added, and the primary’s
throughput improves. Nevertheless, the throughput of backup
grows as well. Even at the other extreme, when the workload
contains no conflicting transactions (marked as NC, achieved
by assigning different portions of the table to different clients),
the throughput of backup remains higher than that of the
primary.

E. Read Performance

In this experiment, we test the read performance of the sys-
tem under different update rates. We use the micro-benchmark
with 50 clients updating the table continuously and another
50 clients sending read queries at the same time. We use a
system composed of a primary and a backup, each with the
same hardware configuration as the M8 machine.

Figure 9 presents the numbers of queries per second that
the servers are able to serve as we vary the update rates
on the primary. The result shows that the read performance
on both the primary and the backup decreases as the update
rate increases. When there are no updates, the primary and
the backup can both serve 20,000 read requests per second.
When there are update requests, the backup is able to serve

more reads than the primary, because replaying an update on
the backup incurs only about half the workload as it takes
to execute the query on the primary. Moreover, read queries
on the primary conflict with update transactions, leading to
further slowdown. This argues for the need to dispatch read
requests to the backups.

VI. RELATED WORK

Replication in database systems is a rich field and has been
carefully examined by many researchers over the years. We
will cover only the most relevant work in this section. A well-
known paper by Jim Gray [6] proposes to categorize database
replication approaches in two dimensions. The first dimension
is where updates take place. Different approaches in this
dimension includes primary copy (also called primary/backup
or master/slave) and update everywhere. KuaFu focuses on
the primary/backup class of replication. The second dimension
distinguishes between eager and lazy replication approaches,
where eager replication keeps all replicas synchronized by
updating all the replicas as part of the transaction, while
lazy replication propagates updates to other replicas after the
transaction commits. KuaFu can be applied to both.

Replication by Log Shipping. Primary/backup replication
is typically implemented via log-shipping [7], [8]. Many
primary/backup schemes for replicating databases have been
proposed [4], [5], [9], [10], [11], [12]. Plattner et. al [4],
[5] proposed Ganymed, a primary/backup scheme for repli-
cating snapshot isolated databases in clusters of machines. In
Ganymed, a primary handles all update transactions, while
read-only transactions are handled by backups. Transactions
are serialized at the commit time on the primary and their
writesets are extracted for updating. However, during update
propagation, transactions commit serially at the backups in
order to guarantee that the backups converge to the same state
as the primary. Many popular database systems use a similar
mechanism to implement replication. KuaFu is designed to
address the parallelism gap in this setting.

Daudjee et.al [9] proposed a lazy database replication
scheme that guarantees strong session one-copy serializable
(1SR). Their algorithms can be applied directly in KuaFu to
guarantee strong session 1SR if the original database sys-
tem guarantees serializability. They further proposed another
scheme to achieve snapshot isolation in a lazily replicated
database systems. If the underlying DBMS has snapshot isola-
tion [13], then their scheme can not only ensure Strong Session
Snapshot Isolation, but also apply updates on the backups
concurrently. KuaFu eliminates the requirement of snapshot
isolation by automatically inferring transaction dependency.
KuaFu requires that the storage engine take snapshot in a
backup to support consistent read on a backup.

Replication via Consensus. Consensus protocols such as
Paxos [14] can be used to build a replicated state machine for
database systems. Traditional state-machine replication suffers
from the same tension between parallelism (for performance)
and serialized execution (for consistency). KuaFu can be

extended to address this tension for state-machine replication.
Unlike in the primary/backup replication with log shipping,
where transactions are committed on the primary first before
forwarded to the backups, replicas must reach a consensus in
state-machine replication before a transaction is committed.
This can be done in the same way as in Tribble [15],
with the mechanism in KuaFu used for record and (parallel)
replay: a replica acting as a leader execute the transactions
to generate the logs, while the others replaying the logs.
In contrast, Tribble adopts a general approach of recording
the dependencies of requests by logging their synchronization
operations and preserving their orders during replay, which
incurs high overhead for most database systems that use light-
weight locks extensively.

The main complication of extending KuaFu to state-machine
replication is related to leader changes (or even multiple
leaders in some cases). Although the consensus protocol
ensures consistency, a demoted leader might need to roll
back transactions that the replicas fail to reach consensus on,
while ensuring that the effects of those transactions are never
exposed. Such rollbacks are possible with the writeset logs,
but KuaFu has not implemented this feature yet.

M. Kapritsos et. al. [16] advocated the notion of execute-
verify for replicated state machine on multi-core servers. This
approach allows a backup to execute requests in parallel
speculatively and to roll back in case of state divergence. This
technique works best for workloads with low conflict ratio.

Replication at Different Layers. Primary/backup replication
can be implemented at different layers of a database system,
including the SQL-statement layer, the table-row layer and the
virtual-machine layer.

Thomson et. al [11] presents a transactional database execu-
tion model which guarantees equivalence to a predetermined
serial execution. Their approach can be adopted in databases
to implement replication on the SQL statement layer. Database
replicas running exactly the same database software with the
same initial state and receiving identical sequences of SQL
requests will have identical state. However, as noted by the
authors, the deterministic scheme lowers throughput when
there are long-running transactions.

RemusDB [12] provides high availability of database sys-
tems by running database systems on virtual machines and
replicating the virtual machines. This method effectively puts
replication on the memory and disk layer. Such replication
scheme removes the dependency on database systems, at the
expense of increased communication cost.

Deterministic Replay and Execution. KuaFu is also related
to deterministic record and replay because a backup is essen-
tially replaying the log from the primary to reach an identical
state. Deterministic recording and replay has attracted a lot
of attentions recently in the systems community [17], [18],
[19], [20]. Although in theory, a generic record and replay tool
can be used by treating a database system as a multi-threaded
program, the overhead tends to be high. KuaFu is designed
specifically for database systems. It leverages writesets to

track dependencies among transactions, and can thus avoid
recording a massive amount of low-level information such as
thread interleaving.

Deterministic execution by Jimenez-Peris et. al. [21] and
Wenbing et. al. [22] proposed a deterministic thread scheduler
to make sure that each replica executes transactions with
multiple threads, whereas our work does not control thread
scheduling and targets database replication specifically.

Database Replication in the Industry. Due to performance
concerns, most commercial database systems, such as Or-
acle 11g [23], IBM DB2 [24] and Microsoft SQL Server
2008 [3] use log-shipping to implement replication. In the
open source community, two of the most popular database
systems, MySQL [25] and PostgreSQL [26] both use log-
shipping as their built-in replication solution. KuaFu focuses
specifically on this form of log-shipping based replication.

Ad-hoc approaches do exist to close the parallelism gap.
Among them, sharding, also called data partitioning, is the
most widely accepted [27]. In this approach, a data set is
divided into several database instances to get concurrency at
the database level. There are also proposals to leverage the
group-commit capability of a database system by replaying
the group committed transactions in parallel [28]. Other pro-
posals include speculative execution of logged transaction,
and configuring backups with better hardware [1] [2]. These
approaches are largely orthogonal to KuaFu, as KuaFu tackles
the problem directly by executing non-conflicting transactions
in parallel on a backup.

VII. CONCLUSION

Concurrency for performance and replication for reliability
are driven by the prevalence of multi-core architecture and
the wide-spread use of commodity-machine clusters. Yet the
tension between the two creates a significant practical problem
of the parallelism gap. A serialized execution on backups
limits the throughput of highly concurrent transaction pro-
cessing on existing database systems. By making a set of
important design choices, KuaFu provides a simple, effective,
and practical solution to close the parallelism gap. It involves
a small number of changes to the existing database systems,
requires no changes to the non-replicated database systems,
and is shown to close the gap on a real database system while
preserving the consistency semantics.

REFERENCES

[1] B. Schwartz, “MySQL limitations part 1: Single-threaded replica-
tion,” Website, 2010, http://www.mysqlperformanceblog.com/2010/10/
20/mysql-limitations-part-1-single-threaded-replication.

[2] P. Zaitsev, “Fighting MySQL replication lag,” Website, 2009,
http://www.percona.com/ppc2009/PPC2009 Fighting MySQL
Replication Lag.pdf.

[3] K. Delaney, P. Randal, and K. Tripp, Microsoft SQL Server 2008
Internals. Microsoft Press, 2009.

[4] C. Plattner and G. Alonso, “Ganymed: Scalable replication for transac-
tional web applications,” in Proceedings of the 5th ACM/IFIP/USENIX
International Conference on Middleware, 2004, pp. 155–174.

[5] C. Plattner, G. Alonso, and M. T. Özsu, “Extending DBMSs with
satellite databases,” The VLDB Journal, vol. 17, pp. 657–682, 2008.

[6] J. Gray, P. Helland, P. O’Neil, and D. Shasha, “The dangers of replication
and a solution,” in Proceedings of the 1996 ACM SIGMOD International
Conference on Management of Data, 1996, pp. 173–182.

[7] C. A. Polyzois and H. Garcı́a-Molina, “Evaluation of remote backup
algorithms for transaction-processing systems,” ACM Transaction on
Database Systems, vol. 19, pp. 423–449, 1994.

[8] R. P. King, N. Halim, H. Garcı́a-Molina, and C. A. Polyzois, “Manage-
ment of a remote backup copy for disaster recovery,” ACM Transaction
on Database Systems, vol. 16, pp. 338–368, 1991.

[9] K. Daudjee and K. Salem, “Lazy database replication with ordering
guarantees,” in Proceedings of the 20th International Conference on
Data Engineering, 2004, pp. 424–435.

[10] D. Khuzaima and S. Kenneth, “Lazy database replication with snapshot
isolation,” in Proceedings of the 32nd International Conference on Very
Large DataBases, 2006, pp. 715–726.

[11] A. Thomson and D. J. Abadi, “The case for determinism in database
systems,” Proceedings of VLDB Endowment, vol. 3, pp. 70–80, 2010.

[12] U. F. Minhas, S. Rajagopalan, B. Cully, A. Aboulnaga, K. Salem,
and A. Warfield, “RemusDB: Transparent high availability for database
systems,” in Proceedings of the 37th International Conference on Very
Large DataBases, vol. 4, 2011, pp. 738–748.

[13] P. A. Bernstein, V. Hadzilacos, and N. Goodman, Concurrency Control
and Recovery in Database Systems. Addison-Wesley, 1987.

[14] L. Lamport, “The part-time parliament,” ACM Transactions on Computer
Systems, vol. 16, pp. 133–169, 1998.

[15] Z. Guo, C. Hong, M. Yang, L. Zhou, and L. Zhuang, “Paxos made
parallel,” Microsoft Research Asia, Tech. Rep. 118, 2012.

[16] M. Kapritsos, Y. Wang, V. Quema, A. Clement, L. Alvisi, and M. Dahlin,
“All about Eve: Execute-verify replication for multi-core servers,” in
Proceedings of the 10th USENIX Conference on Operating Systems
Design and Implementation, 2012, pp. 237–250.

[17] G. Altekar and I. Stoica, “ODR: Output-deterministic replay for multi-
core debugging,” in Proceedings of the ACM SIGOPS 22nd Symposium
on Operating Systems Principles, 2009, pp. 193–206.

[18] G. W. Dunlap, D. G. Lucchetti, M. A. Fetterman, and P. M. Chen,
“Execution replay of multiprocessor virtual machines,” in Proceedings of
the Fourth ACM SIGPLAN/SIGOPS International Conference on Virtual
Execution Environments, 2008, pp. 121–130.

[19] M. Xu, R. Bodik, and M. D. Hill, “A “flight data recorder” for enabling
full-system multiprocessor deterministic replay,” in Proceedings of the
30th Annual International Symposium on Computer Architecture, 2003,
pp. 122–135.

[20] D. Lee, B. Wester, K. Veeraraghavan, S. Narayanasamy, P. M. Chen, and
J. Flinn, “Respec: Efficient online multiprocessor replay via speculation
and external determinism,” in Proceedings of the Fifteenth Edition of
ASPLOS on Architectural Support for Programming Languages and
Operating Systems, 2010, pp. 77–90.

[21] R. Jimenez-peris, M. Patino-Martłnez, S. Arevalo, and J. Carlos, “De-
terministic scheduling for transactional multithreaded replicas,” in Pro-
ceedings of the IEEE 19th Symposium on Reliable Distributed Systems,
2000, pp. 164–173.

[22] W. Zhao, L. E. Moser, and P. M. Melliar-Smith, “Deterministic schedul-
ing for multithreaded replicas,” in Proceedings of the 10th IEEE Inter-
national Workshop on Object-oriented Real-time Dependable Systems,
2005, pp. 74–81.

[23] K. Deshpande, Oracle Streams 11g Data Replication. McGraw-Hill,
2008.

[24] L. J. Gu, L. Budd, A. Cayci, C. Hendricks, M. Purnell, and C. Rigdon, A
Practical Guide to DB2 UDB Data Replication v8. IBM Corporation,
2002.

[25] MySQL 5.5 Manual, http://dev.mysql.com/doc/refman/5.5/en/
replication-howto.html.

[26] PostgreSQL 9.1.3 Documentation, http://www.postgresql.org/docs/9.1/
interactive/high-availability.html.

[27] L. Soares, “Feature preview: The multi-threaded slave,”
Website, 2011, http://d2-systems.blogspot.com/2011/04/
mysql-56x-feature-preview-multi.html.

[28] Knielsen, “Parallel replication of group-committed transactions,” Web-
site, 2011, http://askmonty.org/worklog/Server-RawIdeaBin/?tid=184.

