
How to Go Really Big in AI:
Strategies & Principles for Distributed Machine Learning

Eric Xing
epxing@cs.cmu.edu

School of Computer Science
Carnegie Mellon University

Acknowledgement:
Wei Dai, Qirong Ho, Jin Kyu Kim, Abhimanu Kumar, Seunghak Lee, Jinliang Wei, Pengtao Xie, Yaoliang Yu, Hao Zhang, Xun Zheng

James Cipar, Henggang Cui,
and, Phil Gibbons, Greg Ganger, Garth Gibson 1

Machine Learning:
-- a view from outside

2

Inside ML …

• Nonparametric
Bayesian Models

• Graphical
Models

• Deep Learning
• Sparse Coding

• Spectral/Matrix
Methods

• Regularized
Bayesian Methods • Sparse Structured

I/O Regression
• Large-Margin

• Network switches
• Infiniband

• Network attached storage
• Flash storage

• Server machines
• Desktops/Laptops
• NUMA machines

• GPUs • Cloud compute
(e.g. Amazon EC2)

• Virtual Machines

Hardware and infrastructure

3

1B+ USERS
30+ PETABYTES

645 million users
500 million tweets / day

100+ hours video
uploaded every minute

32 million
pages

Massive Data

4

Google Brain
Deep Learning

for images:
1~10 Billion

model parameters

Topic Models
for news article

analysis:
Up to 1 Trillion

model
parameters

Collaborative filtering
for Video recommendation:

1~10 Billion
model

parameters

Multi-task Regression
for simplest whole-

genome analysis:
100 million ~ 1 Billion

model
parameters

Growing Model Complexity

5

The Scalability Challenge

Pathetic

Good!

Pr
oc

es
si

ng

po
w

er
/s

pe
ed

Number of “Machines”
6

Today’s AI & ML imposes high CAPEX and OPEX

� Example: The Google Brain AI & ML system

� High CAPEX
� 1000 machines
� $10m+ capital cost (hardware)
� $500k+/yr electricity and other costs

� High OPEX
� 3 key scientists ($1m/year)
� 10+ engineers ($2.5m/year)

� Total 3yr-cost = $20m+

� Small to mid companies and the Academic
do not have such luxury

� 1000 machines only 100x as good as 1 machine!

Why need new Big ML systems?

7

MLer’s view
� Focus on

� Correctness
� fewer iteration to converge,

� but assuming an ideal system, e.g.,
� zero-cost sync,
� uniform local progress

for (t = 1 to T) {
doThings()

parallelUpdate(x,θ)
doOtherThings()

}

θ
θ θ

θ
θ

θ θ θ

θθ
θ θθ

Parallelize over
worker threads

Share global model
parameters via RAM

0
1000
2000
3000
4000
5000
6000
7000
8000

0 8 16 24 32 40 48

Se
co

nd
s

Compute vs Network
LDA 32 machines (256 cores)

Network waiting time

Compute time

Why need some new thinking?

8

Systems View:
� Focus on

� high iteration throughput (more iter per sec)
� strong fault-tolerant atomic operations,

� but assume ML algo is a black box
� ML algos “still work” under different

execution models
� “easy to rewrite” in chosen abstraction

Non-uniform
convergence

Dynamic
structures

Error
tolerance

Agonistic of ML properties and objectives
in system design 1

1

1

1

2

2

2

2

3

3

3

3

1
1
1
1

2
2
2

3
3
3

4
4
4

5
5
5 6

6
6or

Synchronization model

Programming model

Shotgun with 2 machines
Single machine (shooting algorithm)

Shotgun with 4 machines flies away!

Why need some new thinking?

9

• Nonparametric
Bayesian Models

• Graphical
Models

• Sparse Structured
I/O Regression • Deep Learning

• Spectral/Matrix
Methods

• Regularized
Bayesian Methods • Others• Large-Margin

Machine Learning Models/Algorithms

• Network switches
• Infiniband

• Network attached storage
• Flash storage

• Server machines
• Desktops/Laptops
• NUMA machines

• GPUs • Cloud compute
(e.g. Amazon EC2)

• Virtual Machines

Hardware and infrastructure

Existing Solution:

10

• Nonparametric
Bayesian Models

• Graphical
Models

• Regularized
Bayesian Methods• Large-Margin

Machine Learning Models/Algorithms

• Network switches
• Infiniband

• Network attached storage
• Flash storage

• Server machines
• Desktops/Laptops
• NUMA machines

• GPUs • Cloud compute
(e.g. Amazon EC2)

• Virtual Machines

Hardware and infrastructure

AI/ML lib of workhourses

AI/ML DCOS

• Deep Learning
• Sparse Coding

• Spectral/Matrix
Methods • Sparse Structured

I/O Regression

How about this … [Xing et al., 2015]

11

for (t = 1 to T) {
doThings()

doOtherThings()
}

An ML Program

~✓t+1 = ~✓t +�f
~✓(D)

argmax
~✓

⌘ L({xi,yi}Ni=1 ; ~✓) + ⌦(~✓)

Model ParameterData

This computation needs to be parallelized!

~✓t+1 = g(~✓t, �f
~✓(D))

Solved by an iterative convergent algorithm

12

Challenge #1
– Massive Data Scale

Familiar problem: data from 50B devices, data
centers won’t fit into memory of single machine

Source: Cisco Global Cloud
Index

Source: The Connectivist

Df q(D)

13

Challenge #2
– Gigantic Model Size

Big Data needs Big Models to extract understanding
But ML models with >1 trillion params also won’t fit!

Source: University of
Bonn

Dfq(D)

14

Typical ML Programs (about the “f”)

� Optimization programs:

�

A huge number of parameters
(e.g.) M = 1B

XyN

M

M=

�
NX

i=1

h d

d✓1
, . . . ,

d

d✓M

i
f(xi,yi; ~✓)

A huge volume of data
(e.g.) N = 1B 15

Typical ML Programs (about the “f”)

� Probabilistic programs

topicdoc
(~ 1B)

topic

word (~ 1M)

topic
(~ 1M)

zdi ~

16

� Optimization Algorithms
� Stochastic gradient descent
� Coordinate descent
� Proximal gradient methods --- when L is not differentiable

� ISTA, FASTA, Smoothing proximal gradient
� Proximal average --- complex compound regularizers
� ADMM --- overlapping constraints
� …

� Markov Chain Monte Carlo Algorithms
� Aliases samplers (constant time high-dimensional sampler)
� Auxiliary variable methods (inverse Rao-Blackwellization)
� Embarrassingly Parallel MCMC (sub-posteriors)
� Parallel Gibbs Sampling

� Data parallel
� Model parallel

Algorithmic Accelerations:

17

Parallelization Strategies

�1

�2

�1 �2

�1 �2

Sync

A sequential program A parallel program

⌘

� but assuming an ideal system, e.g.,
� zero-cost sync,
� zero-cost fault recovery
� uniform local progress
� …

Low bandwidth,
High delay

Unequal
performance

18

for (t = 1 to T) {
doThings()
parallelUpdate(x,θ)
doOtherThings()

}

?

Usually, we worry …

0
1000
2000
3000
4000
5000
6000
7000
8000

0 8 16 24 32 40 48

S
e

c
o

n
d

s

Compute vs Network
LDA 32 machines (256 cores)

Network waiting time

Compute time

ML Computation vs. Classical
Computing Programs

ML Program:
optimization-centric and
iterative convergent

Traditional Program:
operation-centric and
deterministic 19

Traditional Data Processing
needs operational correctness
Example: Merge sort

Sorting
error: 2
after 5

Error persists and is
not corrected 20

ML Algorithms can Self-heal

21

Intrinsic Properties of ML Programs
[Xing et al., 2015]

� ML is optimization-centric, and admits an iterative convergent
algorithmic solution rather than a one-step closed form solution

� Error tolerance: often robust against limited
errors in intermediate calculations

� Dynamic structural dependency:
changing correlations between model parameters
critical to efficient parallelization

� Non-uniform convergence: parameters
can converge in very different number of steps

� Whereas traditional programs are transaction-centric, thus only
guaranteed by atomic correctness at every step

� How do existing Big Data platforms fit the above? 22

Two Parallel Strategies for ML

23

A Dichotomy of Data and Model in
ML Programs

Dq(D)D q(D)

~✓t+1 = ~✓t +�f
~✓(D)

24

~✓t+1 = ~✓t +�f
~✓(D)

Data Parallel

�~✓(D1)

�~✓(D2) �~✓(D3)

�~✓(Dn)

D ⌘ {D1,D2, . . . ,Dn}

Di?Dj | ✓, 8i 6= j

Model Parallel

�~✓1(D)

�~✓2(D) �~✓3(D)

�~✓k(D)

~✓i 6? ~✓j | D, 9(i, j)

A Dichotomy of Data and Model in
ML Programs

~✓ ⌘ [~✓ T
1 , ~✓ T

2 , . . . , ~✓ T
k]T

Dq(D)D q(D)

25

Optimization Example:
Lasso Regression

� Data, Model
� D = {feature matrix X, response vector y}
� θ = {parameter vector β)

� Objective L(θ,D)
� Least-squares difference between y and Xβ:

� Regularization W(θ)
� L1 penalty on β to encourage sparsity:
� λ is a tuning parameter

� Algorithms
� Coordinate Descent
� Stochastic Proximal Gradient Descent

26

Data-Parallel Lasso

SGD algo SGD algo SGD algo SGD algo

Global shared model

Partition rows of Feature+Response Matrices
across workers

Proximal SGD:

27

Model-Parallel Lasso
Coordinate Descent:

28

Probabilistic Example:
Topic Models

� Objective L(θ,D)
� Log-likelihood of D = {document words xij} given unknown θ =

{document word topic indicators zij, doc-topic distributions δi, topic-
word distributions Bk}:

� Prior r(θ)
� Dirichlet prior on θ = {doc-topic, word-topic distributions}

� α, β are “hyperparameters” that control the Dirichet prior’s strength

� Algorithm
� Collapsed Gibbs Sampling

29

Model (Topics) = Bk

Data Parallel Gibbs

Gibbs Sampler Gibbs Sampler Gibbs Sampler Gibbs Sampler Gibbs Sampler

Global shared model

30

D+M Parallel Gibbs
Pair up vocabulary words
with documents, divide
across workers

Gibbs
Sample
r

Gibbs
Sample
r

Gibbs
Sample
r

Gibbs
Sample
r

Gibbs
Sample
r

Gibbs
Sample
r

Gibbs
Sample
r

Gibbs
Sample
r

Gibbs
Sample
r

Parameter Synchronization Channel

31

What’s Next?

Many considerations
� What data batch size?
� How to partition model?
� When to sync up model?
� How to tune step size?
� What order to Update()?
1000s of lines of extra code

First-timer’s “Ideal View” of ML
Reality of High-performance

implementations

global model = (a,b,c,...)
global data = load(file)

Update(var a):
a = doSomething(data,model)

Main:
do Update() on all var in

model until converged

Need a System Interface for Parallel ML
– Does ML really Stop at the Ideal View?

32

4 Principles of ML System Design
How to execute distributed-parallel ML programs?
ML program equations tell us “What to Compute”. But…

1. How to Distribute?

2. How to Bridge Computation and Communication?

3. How to Communicate?

4. What to Communicate?

33

Principles of
ML system Design [Xing et al., to appear 2016]

1. How to Distribute:
Scheduling and Balancing workloads

34

Example: Model Distribution

min
�

ky �X�k22 + �
X

j

|�j |

�

A huge number of parameters
(e.g.) M > 100 million

XyN

M

M

Model

=

b0 b1b2 b3

b4 b5

b6 b8b7 b9

b10 b11

G0

G1

• How to correctly divide
computational workload
across workers?

• What is the best order to
update parameters?

Lasso via coordinate descent:

35

� Concurrent updates of may induce errors�

�1

�2

�1 �2

�1 �2

Sync

Sequential updates Concurrent updates

�(t)
1 S(xT

1 y � xT
1 x2�

(t�1)
2 ,�)

Decreases iteration progress

Need to check x1
Tx2

before updating
parameters

Model Dependencies

36

Avoid Dependency Errors via
Structure-Aware Parallelization (SAP)
[Lee et al., 2014] [Kim et al, 2016]

schedulerkey-value
store

data
partition

model
partition

worker

data
partition

model
partition

worker

data
partition

model
partition

worker

schedulerkey-value
store

data
partition

model
partition

worker

data
partition

model
partition

worker

data
partition

model
partition

worker

q Smart model-parallel execution:
q Structure-aware scheduling
q Variable prioritization
q Load-balancing

schedulerkey-value
store

data
partition

model
partition

worker

data
partition

model
partition

worker

data
partition

model
partition

worker

q Simple programming:
q Schedule()
q Push()
q Pull() 37

A Structure-aware Dynamic Scheduler
(Strads) [Lee et al., 2014] [Kim et al, 2016]

Worker 1

Worker 2

Worker 3

Worker 4

Round 1 Round 2 Round 3 Round 4

Load-balanced Tasks

Sync.
barrier

Strads System
• Priority Scheduling

• Block scheduling

{�j} ⇠
⇣
��(t�1)

j

⌘2
+ ⌘

[Kumar, Beutel, Ho and Xing, Fugue:
Slow-worker agnostic distributed
learning, AISTATS 2014]

(1) Partition Data + Model into Tasks

(2) Schedule & Prioritize Tasks onto Workers

(3) Balance Task Load on each Worker

SAP

38

SAP Scheduling: Faster, Better
Convergence across algorithms
� SAP on Strads achieves better speed and objective

0 500 1000
0.05

0.1

0.15

0.2

0.25

100M features
9 machines

Seconds

O
bj

ec
tiv

e

STRADS
Lasso−RR

0 50 100 150
0.5

1

1.5

2

2.5

80 ranks
9 machines

Seconds

R
M

SE

STRADS
GraphLab

0 1 2 3 4 5
x 104

−3.5

−3

−2.5 x 109
2.5M vocab, 5K topics

32 machines

Seconds

Lo
g−

Li
ke

lih
oo

d

STRADS
YahooLDA

Lasso MF LDA

39

SAP gives Near-Ideal
Convergence Speed [Xing et al., 2015]

� Goal: solve sparse regression problem
� Via coordinate descent over “SAP blocks” X(1),	X(2),	…,	X(B)

� X(b) are data columns (features) in block (b)
� P parallel workers, M-dimensional data
� ρ = Spectral	Radius[BlockDiag[(X(1))TX(1),	…,	(X(t))TX(t)]]; this block-diagonal

matrix quantifies max level of correlation within all SAP blocks X(1),	X(2),	…,	X(t)

� SAP converges according to

where t is # of iterations

� Take-away: SAP minimizes ρ by searching for feature subsets X(1),	X(2),	
…,	X(B) w/o cross-correlation => as close to P-fold speedup as possible

Gap between current
parameter estimate and optimum

SAP explicitly minimizes ρ, ensuring
as close to 1/P convergence as possible

40

How to SAP-LDA
[Zheng et al., to appear 2016]

� At iteration (t):
� Worker 1 samples docs+words in Z1(t)

� Worker 2 ← Z2(t), Worker 3 ← Z3(t) and so on…
� Use different-sized Zp(t) to load balance power-law tokens

Data+Model Parallel LDA

Data

topic

doc
(~ 1B)

Model

topic

word (~ 1M)

(t)

Worker 1

Worker 2

Worker 3

41

� Ideal rate: progress per iter preserved from 25 → 100 machines
� Thanks to dependency checking

� Near-ideal throughput: data rate 1x → 3.5x from 25→100 machines
� Thanks to load balancing

� Convergence Speed = rate x throughput
� Therefore near-ideal 3.5x speedup from 25→100 machines

80GB data, 2M words,
1K topics, 100 machines

SAP-LDA data throughput

25 machines 58.3 M/s (1x)

50 machines 114 M/s (1.96x)

100 machines 204 M/s (3.5x)

SAP-LDA progress per iteration

Iterations

Overlapping
curves – perfect

progress per
iteration

42

SAP-LDA, m=25
SAP-LDA, m=50

SAP-LDA, m=100

Correctly Measuring Parallel
Performance [blinded, to appear]

YahooLDA progress per iteration
80GB data, 2M words,
1K topics, 100 machines

YahooLDA data throughput

25 machines 39.7 M/s (1x)

50 machines 78 M/s (1.96x)

100 machines 151 M/s (3.8x)

� YahooLDA attains near-ideal throughput (1→3.8x)…
� … but progress per iteration gets worse with more machines

� YahooLDA only <2x speedup from 25 →100 machines
� 6.7x slower compared to SAP-LDA

Decreasing
progress per

iteration

Iterations

43

SAP-LDA, m=25
SAP-LDA, m=50

SAP-LDA, m=100

Correctly Measuring Parallel
Performance [blinded, to appear]

Principles of
ML system Design [Xing et al., to appear 2016]

2. How to Bridge Computation and Communication:
Bridging Models and Bounded Asynchrony

44

The Bulk Synchronous Parallel
Bridging Model [Valiant & McColl]

� Perform barrier in order to communicate parameters
� Mimics sequential computation – “serializable” property
� Enjoys same theoretical guarantees as sequential execution

1

1

1

1

Thread 1

Thread 2

Thread 3

Thread 4

2

2

2

2

3

3

3

3

Input
Data

Input
Data

Input
Data

split Update local
copy of ALL

params

Update local
copy of ALL

params

aggregate

Update
ALL

params

Input
Data

Input
Data

Input
Data

45

The Bulk Synchronous Parallel
Bridging Model [Valiant & McColl]

1

1

1

1

Thread 1

Thread 2

Thread 3

Thread 4

2

2

2

2

3

3

3

3

� Numerous implementations since 90s (list by Bill McColl):
� Oxford BSP Toolset (‘98), Paderborn University BSP Library (‘01), Bulk Synchronous Parallel

ML (‘03), BSPonMPI (’06), ScientificPython (’07), Apache Hama (’08), Apache Pregel (‘09),
MulticoreBSP (’11), BSPedupack (‘11), Apache Giraph (’11), GoldenOrb (‘11), Stanford GPS
Project (‘11) …

The success of the von Neumann model of sequential computation
is attributable to the fact it is an efficient bridge between software
and hardware… an analogous bridge is required for parallel
computation if that is to become as widely used – Leslie G. Valiant

46

But There Is No Ideal Distributed
System!

� Two distributed challenges:
� Networks are slow
� “Identical” machines rarely perform equally
Result: BSP barriers can be slow

Low bandwidth,
High delay

Unequal
performance

0

1000

2000

3000

4000

5000

6000

7000

8000

0 8 16 24 32 40

Se
co

nd
s

Compute vs Network
LDA 32 machines (256 cores)

Network waiting time

Compute time

47

Is there a better way to interleave
computation and communication?
� Safe/slow (BSP) vs. Fast/risky (Async)?

� Challenge 1: Need “Partial” synchronicity
� Spread network comms evenly (don’t sync unless needed)
� Threads usually shouldn’t wait – but mustn’t drift too far apart!

� Challenge 2: Need straggler tolerance
� Slow threads must somehow catch up

1

1

1

1

Thread 1

Thread 2

Thread 3

Thread 4

2

2

2

2

3

3

3

3

1

1

1

1

Thread 1

Thread 2

Thread 3

Thread 4

2

2

2

3

3

3

4

4

4

5

5

5 6

6

6

???

BSP Async

Is persistent memory really necessary for ML? 48

A Stale Synchronous Parallel
Bridging Model [Ho et al., 2013]

Stale Synchronous Parallel (SSP)
• Fastest/slowest workers not allowed to drift >s iterations apart

Iteration0 1 2 3 4 5 6 7 8 9

Worker 1

Worker 2

Worker 3

Worker 4

Staleness Threshold s = 3

Consequence
• Fast like async, yet correct like BSP
• Why? Workers’ local view of model parameters “not too stale” (≤s iterations old)

1

1

1

1

Thread 1

Thread 2

Thread 3

Thread 4

2

2

2

2

3

3

3

3

1

1

1

1

Thread 1

Thread 2

Thread 3

Thread 4

2

2

2

3

3

3

4

4

4

5

5

5 6

6

6

BSP

Async

Force stop worker 1 until
worker 2 catches up

49

Data-Parallel
Proximal Gradient under SSP

Input
Data

Input
Data

Input
Data

split Update local copy
of ALL params

Update local copy
of ALL params

aggregate

Update
ALL

params

Input
Data

Input
Data

Input
Data

� Model (e.g. SVM, Lasso …):

� Algorithm:
� Update

� sub-update

� Data parallel:
� Data D too large to fit in a single worker, divide among P workers

data D, model a

stale sub-updates Δ() received
by worker p at iteration tproximal step wrt g

sub-update

gradient step wrt f

50

SSP Data-Parallel
Async Speed, BSP Guarantee

� Massive Data Parallelism
� Effective across different algorithms

Lasso Matrix Fact.LDA

51

Theorem: Given L-Lipschitz objective ft and step size ht,

where

SSP Data Parallel Convergence Theorem
[Ho et al., 2013, Dai et al., 2015]

Let observed staleness be
Let staleness mean, variance be ,

Explanation: the distance between true optima and
current estimate decreases exponentially with more
SSP iterations. Lower staleness mean, variance ,
improve the convergence rate.

52

Model-Parallel
Proximal Gradient under SSP
� Model (e.g. SVM, Lasso …):

� Model parallel
� Model dimension d too large to fit in a single worker
� Divide model among P workers

� Algorithm:

� worker p keeps local copy of the full model (can be avoided for linear models)

data D, model a

staleness

workers can skip updateson worker p

gradient step wrt f

proximal step wrt g

53

SSP Model-Parallel
Async Speed, BSP Guarantee

� Massive Model Parallelism
� Effective across different algorithms

2x speedup

Curves overlap – no
compromise to quality

Lasso: 1M samples, 100M features, 100 machines

54

SSP Model Parallel Convergence Theorem
[Zhou et al., 2016]

Theorem: Given that the SSP delay is bounded, with
appropriate step size and under mild technical conditions,
then

In particular, the global and local sequences converge to the
same critical point, with rate O(t-1):

1X

t=0

kx(t+ 1)� x(t)k < 1
1X

t=0

kxi(t+ 1)� xi(t)k < 1

Finite length

Explanation: Finite length guarantees that the algorithm
stops (the updates must eventually go to zero).
Furthermore, the algorithm converges at rate O(t-1) to the
optimal value; same as BSP model parallel. 55

Principles of
ML system Design [Xing et al., to appear 2016]

3. How to Communicate:
Managed Communication and Topologies

56

Managed Communication [Wei et al., 2015]

� SSP only
� Communicates only at iteration boundary
� Ensures bounded staleness consistency

compute compute compute

compute computecompute

� SSP + Managed Communication
� Continuous communication/synchronization
� Update prioritization
� Same consistency guarantees as SSP

57

MatrixFact:
Managed Communication Speedup

Stopping Criteria

1.8x

 1
e+

07
 1

e+
08

 1
e+

09

 0 200 400 600 800 1000 1200 1400 1600

tr
ai

ni
ng

 lo
ss

time (seconds)

Bounded Staleness
Managed Communication, 200Mbps

• Matrix Factorization, Netflix data, rank = 400
• 8 machines * 16 cores, 1GbE ethernet

Lower
is better Already enjoying

SSP speedup
Further 1.8x speedup
multiplier over SSP

58

SSP
SSP + Managed Comms

• Latent Dirichlet Allocation, NYTimes, # topics = 1000,
• 16 machines * 16 cores, 1GbE ethernet

LDA:
Managed Communication Speedup

 0

 500

 1000

 1500

 2000

 2500

 3000

NoMgt 320Mbps 640Mbps

tim
e

to
 c

on
ve

rg
en

ce
 (s

ec
on

ds
) BoundedStaleness
Randomized

RelativeMagnitude

execution mode

3x additional speed up from
comms management

25% additional speedup
from comms prioritization

Already enjoying
SSP speedup

59

SSP
SSP + MC (no prio.)

SSP + Managed Comms

Topology: Master-Slave

� Used with centralized storage paradigm
� Topology = bipartite graph: Servers (masters) to Workers (slaves)
� Disadvantage: need to code/manage clients and servers separately
� Advantage: bipartite topology far smaller than full N2 P2P connections

ML App Client lib ML App Client lib

server 1

Model partition

server 2

Model partition

Data partition Data partition

worker 1 worker 2

60

Topology: Peer-to-Peer (P2P)

� Used with decentralized storage paradigm
� Workers update local parameter view by broadcasting/receiving
� Disadvantage: expensive unless updates ΔW are lightweight;

expensive for large # of workers
� Advantage: only need worker code (no central server code); if ΔW is

low rank, comms reduction possible

Model copyML App

worker 1

Model copyML App

worker 2

Model copyML App

worker 3

Model copyML App

worker 4

61

Halton Sequence Topology [Li et al., 2015]

� Used with decentralized storage paradigm
� Like P2P topology, but route messages through many workers

� e.g. to send message from 1 to 6, use 1->2->3->6

� Disadvantage: incur higher SSP staleness due to routing, e.g. 1->2-
>3->6 = staleness 3

� Advantage: support bigger messages; support more machines than
P2P topology 62

Principles of
ML system Design [Xing et al., to appear 2016]

4. What to Communicate:
Exploiting Structure in ML Updates

63

Matrix-Parameterized Models (MPMs)

)();(1min
1

WhbWaf
N

N

i
iiiW
+å

=

Loss function Regularizer

Distance Metric Learning, Sparse Coding, Distance Metric
Learning, Group Lasso, Neural Network, etc.

Matrix parameter W

64

Big MPMs

Multiclass Logistic
Regression on Wikipedia

#classes=325K

Feature dim. = 20K

Distance Metric Learning
on ImageNet

Latent dim. = 50K

Feature dim. = 172K

Sparse Coding on
ImageNet

Dic. Size=50K

Feature dim. = 172K

Neural Network of
Google Brain

#neurons in layer 0 = 40K

#neurons in
layer 1 = 33K

6.5B 8.6B

8.6B 1.3B

Billions of params = 10-100 GBs, costly
network synchronization

What do we actually need to communicate?

65

Full Updates
� Let matrix parameters be W. Need to send parallel worker

updates ΔW to other machines…
� Primal stochastic gradient descent (SGD)

� Stochastic dual coordinate ascent (SDCA)

)();(1min
1

WhbWaf
N

N

i
iiiW
+å

=

* * T

1

1 1min () ()
N

i iZ i
f z h ZA

N N=

- +å

W
bWafW ii

¶
¶

=D
),(

ii azW)(D=D

66

Sufficient Factor (SF) Updates
[Xie et al., 2015]

� Full parameter matrix update ΔW can be computed as
outer product of two vectors uvT (called sufficient factors)
� Primal stochastic gradient descent (SGD)

� Stochastic dual coordinate ascent (SDCA)

� Send the lightweight SF updates (u,v), instead of the expensive
full-matrix ΔW updates!

)();(1min
1

WhbWaf
N

N

i
iiiW
+å

=

T (,)
()

i i
i

i

f Wa bW uv u v a
Wa

¶
D = = =

¶

* * T

1

1 1min () ()
N

i iZ i
f z h ZA

N N=

- +å

T
i iW uv u z v aD = = D =

67

P2P Topology + SF Updates
= Sufficient Factor Broadcasting

68

SFB Convergence Theorem
[Xie et al., 2015]

Explanation: Parameter copies Wp on different workers p
converge to the same optima, i.e. all workers reach the
same (correct) answer.
üDoes not need central parameter server or key-value store
üWorks with SSP bridging model (staleness = s)

69

SF: Convergence Speedup

• Convergence time versus model size, under BSP
• FMS = full matrix updates; SFB = sufficient factor updates 70

• Computation vs network waiting time
• FMS = full matrix updates; SFB = sufficient factor updates

SF: Comm.-Time Reduction

71

Summary
1. How to Distribute?

� Structure-Aware Parallelization
� Work Prioritization

2. How to Bridge Computation and Communication?
� BSP Bridging Model
� SSP Bridging Model for Data and Model Parallel

3. How to Communicate?
� Managed comms – interleave comms/compute, prioritized comms
� Parameter Storage: Centralized vs Decentralized
� Communication Topologies: Master-Slave, P2P, Halton Sequence

4. What to Communicate?
� Full Matrix updates
� Sufficient Factor updates
� Hybrid FM+SF updates (as in a DL model)

72

In Closing: A Distributed
Framework for Machine Learning

73

� ML Algorithm behavior is different from traditional computing

� Existing approaches can’t take advantage of different AI & ML behavior
● Traditional platforms specialize at supporting database-style workload, incurring expensive error-

recovery and network overheads
● Traditional platforms do not perform dynamic resource allocation for fast-completing workloads,

wasting CPU ops
● Traditional platforms do not provide sharable workhorse engines, so each vertical application

must be developed separately

Flexible and does not need
traditional database-style

precision

Opportunity for dynamic
resource reclamation (CPU,

GPU, disk, network)

Intelligently-designed workhorse
engines can be shared across

many ML algorithms

ML computation can be handled more
effectively and economically on a
different system architecture

74

The Petuum Architecture (50,000 feet view)

big data storage & transform engine

D
is

tr
ib

ut
ed

 C
on

ta
in

er

75

� Dec 2013: Petuum 0.1
� Initial release
� Apps: LDA, matrix factorization
� System: Bosen (parameter server)

� March 2014: Petuum 0.2
� Apps: LDA, matrix factorization, Lasso
� System: Strads (model-parallel scheduler)

� July, 2014: Petuum 0.9
� Apps: LDA, matrix factorization, Lasso, Logistic Regression
� System: large performance improvements
� Patch releases 0.91 (July 2014), 0.92 (Sept 2014), 0.93 (Dec 2014)

� Jan 2015: Petuum 1.0
� Many new Apps: MedLDA, NMF, CNN, DML, DNN, DNN speech, Kmeans, MLR,

Random forest, Sparse coding
� System: more performance improvements

� July 2015: Petuum 1.1
� New Apps: Distributed+GPU CNN, SVM
� Big Data Ecosystem Support: Java parameter server (JBosen), HDFS, YARN

Major Releases
(petuum.org)

76

Petuum Speed Advantage

Spark 1x speed

Petuum 100x speed

Topic Detection Speed

Yahoo 12x speed

On 128 machines

77

Petuum Size Advantage
M

ax
im

um
 T

op
ic

 C
ap

ac
ity

Number of CPUs required

100x more
scale-up than
competitors

Topic Detection Size

78

Acknowledgements

Garth Gibson Greg Ganger

Jin Kyu Kim Seunghak Lee Jinliang Wei

Wei Dai Pengtao Xie
Xun Zheng

Abhimanu
Kumar

Phillip Gibbons James Cipar
Qirong Ho Hao Zhang Yaoliang YuAurick Qiao

79

