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SUMS OF DIVISORS, PERFECT NUMBERS AND FACTORING*

ERIC GARY MILLER5 AND JEFFREY

Abstract. Let N be a positive integer, and let denote the sum of the divisors of N

= 1+2+3+6 = 12). We show computing is equivalent to factoring N in the following sense: 

there is a random polynomial time algorithm that, given N),produces the prime factorization of N, and

N) can be computed in polynomial time given the factorization of N.

We show that the same result holds for the sum of the kth powers of divisors of 

We give three new examples of problems that are in Gill’s complexity class BPP perfect numbers, 

multiply perfect numbers, and amicable pairs. These are the first “natural” sets in BPP that are not obviously 

in RP.

Key words. factoring, sum of divisors, perfect numbers, random reduction, multiply perfect numbers, 

subject classifications.

amicable pairs

1. Introduction. Integer factoring is a well-known difficult problem whose precise

computational complexity is still unknown. Several investigators have found algorithms

that are much better than the classical method of trial division (see [Guy [Pol],
[Dix], [Len]).

We are interested in the relationship of factoring to other functions in number

theory. It is trivial to show that classical functions like (the number of positive

integers less than N and relatively prime to N) can be computed in polynomial time 

if one can factor N; hence computing is “easier” than factoring. One would 

also like to find functions “harder” than factoring. The first result in this area was

given in Gary Miller’s thesis [Mill]. Miller showed that if the Extended Riemann 

Hypothesis (ERH)is true, then given N) one can produce the factorization of N

in polynomial time. Thus computing is “equivalent” to factoring. He also

demonstrated a similar equivalence between factoring and two other number-theoretic

functions, and (defined below). Long pointed out that if one is willing
to use randomization, the ERH assumption in the above results can be eliminated,

and further showed that the calculation of orders in the multiplicative group of integers

(mod N) is randomly equivalent to factoring [Long]. (Section 2 below gives a slightly

more general version of these results.) Using the results of Miller and Long, a method 
for composite-modulus discrete logarithm problems implies a method for factoring

[

In this paper, we demonstrate an equivalence between factoring and computing

the function N), the sum of the divisors of N. More formally, we prove the following
THEOREM 1. Given the factorization of N, can be computed in polynomial

time.

THEOREM 2. Given N ) , we can produce the factorization of N in random poly-

nomial time.
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1144 E. BACH, G. MILLER A N D J.

Theorem 1 is easy to prove; for if

.
then

[HW, Thm. Thus can be computed in polynomial time. 
In 3 and 4 below, we will prove Theorem 2.

Section 5 discusses extensions to N), the sum of the kth powers of the divisors

of N. Section 6 discusses some interesting corollaries, including three examples of 
natural problems in Gill's complexity class BPP that are not obviously in RP.

(We assume the reader is familiar with probabilistic complexity classes, as dis-
cussed in [Gill]. Recall that BPP is the class of languages recognized in polynomial
time by a probabilistic Turing machine, with two-sided error probability bounded by
a constant away from RP is class of languages recognized in polynomial time 

by a probabilistic Turing machine with one-sided error.) 
A few words about notation: we use N to denote a number to be factored, and

p and represent prime divisors of The factorization of N is given by 

We use N to mean N but N, is the highest power of dividing

By we mean the exponent of the highest power of p dividing N; in the
example of the previous sentence, N)=e.

If R is a ring, we use to denote the group of invertible elements. For example,
is the ring of integers (mod N), and is the group of elements relatively prime

to By we mean the Galois field with elements. is the relative
norm of the element

By an integer N, we mean producing the complete factorization. By
splitting we mean finding a nontrivial divisor. 

(N) denotes Carmichael's lambda function. (N) is the exponent of the group 
the least positive e for which 1 (mod N) for all It is easy to show

that

(N)= { -1)).

'(N) is defined similarly: 

N) = lcm, -1).

2. Splitting N given a multipleofp-1. Most of the equivalences between functions 
discussed in 1 are proved as follows: let N be composite with prime divisors and
q. By doing computations in and using the Chinese remainder theorem, we get
the effect of doing computations in and Given a randomly chosen a we
construct a number such that (modp), but (mod q ) with high
probability. Thus gcd N) gives a nontrivial divisor of N. (This is one of the few
general ideas for factoring integers.)

The first half (x, 0 (mod p)) is usually proved by exploiting some algebraic 
structure; the second half 0 (mod q ) ) by showing that the set of a for which

0 (mod is a subgroup of the group .
As an example, we now show how to split N given a multiple of This

theorem and its proof can essentially be found in [Mill] and [Long]. However, we

include it here for two reasons: for completeness and to motivate the main ideas. 
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THEOREM 3. There is an algorithm N, M, a ) with the following properties: Let

N be odd and divisible by at least two distinct primes. Let N. Then given M such that

p - 1 )M, the algorithm N, M, a ) splits N for at least of the choices for a

and terminates in time bounded by a polynomial in log M and log N.

Proof. The body of Algorithm S is given below. 

ALGORITHM M, a) :

[Checkfor nontrivial If gcd (a ,N) = and 1,then return and stop.

S2. [Set exponent]. Set MN.
S3. [Computepower using modular exponentiation algorithm].Let b (mod N ) .

S4. [Test].If b then return gcd ( b- 1, N ) and stop. Else if Q is even and
1, set Q and return to step S3.

S5. [ odd or b Failure. Return nothing. Stop.

LEMMA A. For at least of all choices of a, 1 a N, Algorithm N, M, a )

Proof of Lemma A. If then step of the algorithm will always

Let p By assumption p - 1 M, so p - 1 MN. We examine two cases:

Case I. There exists at least one other prime N such that -1 MN. Then
- a

terminates after having produced a nontrivial divisor of N.

discover a nontrivial factor of N. Hence we may assume a .

1 (mod p ) but

{ a 1 (mod q ) }

is a proper subgroup of and so 1 (mod at for at least 50% of all choices

of a. For these choices of a, step S4 produces a nontrivial divisor of N.
Case 11. -1 for all primes N. Then A ( N ) MN, so

(mod

Now consider the following chain of subgroups:

G,={a a 1 (mod N ) } ,

(mod N ) } ,

1 (mod N)}= { a

where = M N ) , the largest exponent of 2 dividing MN. Clearly since

A ( N )is even, but is odd. Hence there exists a subscript j for which =

but .We claim that also, where is a subgroup of given by 

(mod N ) } .={ a a

We will produce an not in Let N such that

--1 (mod

for some b; such a must exist, for otherwise would equal Let x be given by

b (mod

1 (mod

then

-1 (mod

1 (mod

and so x Thus is a proper subgroup of .
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Now we claim that for each step S4 of the algorithm will produce a
1(mod N )but (mod N )

r some N and --1 (mod for some

50% of all will lead to a splitting of N in

nontrivial divisor of This isbecause

q The conclusion is that a 
step S4.

implies that 1 (mod

This completes the proof of Lemma A.
(We remark parenthetically that algorithm S works even if step S2 is replaced by

Set M.

en return nothing and stop. 

if d is a factor of N produced by the new algorithm, there is some prime N such
that q d.

Just check the proof of Theorem 3.

3. Splitting using the case. In this section we assume that

is the product of one or more distinct primes. This case is
case where N is divisible by a square, so we give our

produce a nontrivial divisor of N.

what easier than the 

The following procedure will state that N is prime, or with high probability

(By iteration, if necessary, we eventually produce the complete factorization of

ALGORITHM A. [ N ) with N to split N.]
AO. If N)=N +1, say “prime” and stop.

Al. If N is even, output the factor 2 and stop.
Repeat until N splits:

Run a single iteration of Algorithm S described in 6 2 above, using an a

= If a nontrivial divisor of N is produced, 

quadratic polynomial from say, =

A4. a random linear polynomial from say, = +u such
that t and are not both 0.
AS. [Ensure that 0 (mod for all primes N ] . If ( N ) splits
output that divisor and stop.

is of Algorithm A, we will
useful:
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LEMMA B. Let G be cyclic group, = n. Let be the homomorphism 

by = Then G ) is also cyclic group. We = (n, r ) and

G ) then =gcd (n, r ) . Hence G ) is the trivial group n r.

See, for example, [Alb, Thm. 23, p.

Here are the ideas behind Algorithm A:

Steps and are self-explanatory.

In step A2, if for any dividing N we have -1 then Algorithm S will

Hence let us assume that for all we have - 1 N). Pick a and call it p.

Suppose is a quadratic polynomial chosen at random from 

split N in polynomial time.

Then a simple argument shows that with probability

1

is irreducible (modp); so assume it is. (In practice, of course, we choose many

different and perform the algorithm on all of them. With high probability, the

algorithm succeeds somewhere.)

Similarly, for a prime q, with probability

1 q- 1

splits as the product of distinct linear factors (mod q ) , = ( X -
(mod q), so assume it does for some (call it q ) .

LEMMA C. With probability at least gcd ( d ,N ) splits N.

We show that we always have 0 (modp) but d (mod q ) with

probability From this we conclude that N) splits N with probability

To see that d 0 (mod p) it is enough to see that 

is irreducible (mod p); hence Now the pth power

automorphism gives the conjugate of the element in so
lies the base field (see [Mar]). Thus d (mod

Now let us show that d 0 with probability By the Chinese Remainder 
Theorem, we have the isomorphism

-

Indeed, we can make this isomorphism explicit. There exist fixed + and

+ such that every linear can be written uniquely as

(mod

Here the and are in and depend on If and are both congruent to
0 (mod q), then step A5 of the algorithm above splits N, so we may assume that

and are not both 0 (mod q) .

Now

( + + + (mod q )

so that

+ (mod

It is easy to see that 0 (mod q ) , so if d 0 we must have 

1
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We count the number of pairs for which this can happen and show that for 

each (mod at most the values satisfy (4). If 0, then for (4) to hold we

must have 0. If 0 (mod then we may apply Lemma B to see that for any
fixed value of the number of satisfying (4) is -1, But since

- 1 a(N), this is - Hence the total number of nonzero pairs for which
(4) can hold is - Dividing this by 1 (total pairs with not
both 0) ,we get 0 (mod with probability - +1). Hencewith probability

we have 0 (mod

This completes the proof of Lemma C.
THEOREM 4. Suppose N is odd, and not prime. If a(N ) is given , then

with probability at least 1/15, a single of steps A2 through A7 splits N.
Proof: We multiply the probabilities given in (1) and (2) (using the worst case

p =5 , =3) by the likelihood that step A7 splits N to get the worst case probability

1/15.
A brief remark is in order. Algorithm A will work even if we have a nonzero

multiple of N ) instead of N) itself. The only difference is that in step we must

use a random polynomial-time test on N; for example, the probabilistic test given in

4. Factoring N using the general case. This section serves two purposes:
we generalize the algorithm in 3 to the case when N is not necessarily squarefree,
and we show how to obtain the complete factorization of N, using only the single
quantity N). Roughly speaking, this has the following complexity-theoretic import: 
the function "prime factorization" is many-one polynomial-time reducible to the 

function a,not just Turing-reducible as one would first suppose.
For now, assumethat we merely want to split N The algorithm below

does this, using a guess a for one of the Since log, N, we can try all possible 

a's without spoiling the polynomial time bound.

ALGORITHM B. to split N given N ) and a] :

BO. If N is a prime power, output N and stop. 
If N is even, output a relatively prime factorization N = M and stop.

Repeat until N splits:
B2. Try to split N using the Algorithm S from 2, using =a(N). If a 
nontrivial factor is obtained, output that factor and stop. 
B3. Choose a random polynomial of degree a+1.

B4. Choose a random polynomial of a.

B5. Compute
B6. For each 1 a,let = N).

B7. If for some i, 1 output and stop. 

We hope is irreducible (mod p ) ,but has at least two distinct irreducible
factors (mod If this is the case, we call suitable, and write

with each irreducible, deg = and There is then a surjective ring 
homomorphism
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(by the Chinese Remainder Theorem). We let K denote the kernel of and let

denote the ith projection map. The interesting fact about these projections is

LEMMA E. Let have degree some i

then one of h's nonconstant is relatively prime to 
Proof: Assume that all of h's positive-degree coefficients vanish mod Then h is

an element of which is unchanged by every The result follows by

We now need two probability estimates: 

LEMMA F. A polynomial ( X ) of degree a +1 is suitable with

probability at least 

Proof: First, is irreducible (mod p ) with probability at least (1 - +
1). Second, f is irreducible (mod with probability at most + and has a 

repeated factor (mod with probability exactly l /q (see [Berl, p. and [Carl]).

LEMMA G. If is suitable, then K with probability at least 1-
Proof: By the rank-nullity theorem, K =a+1. Since there are at

least two positive the result follows.

The main result on our algorithm is 

THEOREM 5. IfN is not prime, thenfor some log, N, a single iteration of steps
BO through B7 splits N with probability at least +1).

Proof: If N is a prime power or even, we get a nontrivial factorization. Therefore
we can assume that N is odd, with two distinct prime factors and If -1 N),

then by Theorem 2, step B2 will split N, so we can assume further that -1 N).
Now let N; a log, N as claimed. Assume for now that is suitable and

that we will estimate the probability that for some i, (modp) and

0 (mod

First, since is suitable, 0 (mod p) for all i, since N ) is a multiple of
+ +1, the annihilator of GF(

Now consider the situation (mod q ) , and let = By the hypothesis that
some 0; if some other =0, then by Lemma E we must split N at step B7.

Therefore we may as well assume that all the are nonzero, or, what is the same 
thing, is a unit mod Since we have assumed that -1 N), the map

does not annihilate The image of this

homomorphism is then a direct product of nontrivial cyclic groups, say x x

The probability that a random element ( ,c,) will have all components equal 

is at most by Lemma E, then, the probability that some

0 (mod q ) is at least
Theorem now follows by combining the last two paragraphs, Lemmas F and G, 

and the estimates 3, a 1.

We now turn to the problem of complete factorization. Our first observation is 

that N) can be replaced by any multiple of N) with no change in the statement
of Theorem 5 . Since = for relatively prime and we can

use N) to recursively factor the pieces produced by Algorithm B, provided they are

relatively prime. Therefore we need to transform the output of Algorithm B into a list

of coprime factors. 
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Our solution to this problem hinges on the following concept. We say that a
atesp if = N )for some A factorization

the elements are relatively prime, and

produces such a factorization,provided

factorizationN =

segregates every prime if a

in this case N ) .

that some prime is segre

needing further processing.]

D ) ( D )
If necessary, remove units from the list and combine powers of equal

numbers.

The properties of this procedure are given by
thm R terminates in at most N iterations, with all the

trivial and segregates some N,then

le of a(N ) , we can split N and segregate
of Theorem 5 (recall that so issome prime. This

2, which we restate here:
e completefactorization ofN in random

COROLLARY. Computing thefunction N ) , the number of ways N as the

Suppose

polynomial time.

sum of four integer squares, is (randomly) equivalent to factoring. 

Then a classical theorem of (see W,Thm. says

Since computing N ) is random
Similar results can be proved

5. Generalization to A natural generalization of a(N ) is the sum of the

,the result follows.

powers of divisors of N,

where

o have a corresponding generalization regarding its computational

EOREM 6. For integerk 0, computing N ) is (randomly)equivalent
tofactoring.
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If k is negative, then

so it suffices to consider positive

The essential idea is that the map x takes GF( into GF( when

ALGORITHM C. [Tryto split N given N)]:

Set a 1, and repeat until N splits:

CO. If N is even or a prime power, output a factor and stop.

Try to split N using Algorithm S with =

C2. [Construct GF( Pick a random monic polynomial Y) of
degree k; let R denote Y)).
C3. Pick a random monic of degree a+1.

C4. Pick a random of degree a.

C6. For each i, 1 i a,and each coefficient t of Y), see if t, N) splits
N.
C7. If a+1 B, where B is a bound on the exponents in the prime

factorization of N, set a a+1; else set a 1. (We may take B= log, (N).)

There is only one new observation to make here: we want Y)to be irreducible
modulo two distinct divisors of N, and this happens with probability about Since
k N), we only expect to wait a polynomial-bounded time until this happens. 

In all other respects, Algorithm C behaves just like Algorithm B.The details are left
to the reader.

6. Someclassesof numbersthat can be factored quickly. The reduction of factoring
to computing N) discussed in the previous sections allows us to quickly factor those 
numbers N for which N) is easily computable.

Consider the equation N) =2N. Numbers satisfying this equation are known
as perfect numbers. The attributed special properties to such numbers 

and this led to their intense study in antiquity, culminating in Euclid's proof that
numbers of the form -1) are perfect when the second factor is prime. In the 
18thcentury, Euler proved that all even perfect numbers must be of this form. No one
knows if there are any odd perfect numbers, but if there are, they must satisfy many
stringent conditions (see, We now add one more: they are all easy to factor!

{x (0, x (interpreted in binary) is perfect}, 

is recognizable in (two-sided) random polynomial time, is a member of the
complexity class BPP.

More precisely, we show that the set {perfect numbers}, defined to be

THEOREM 7. {perfect numbers} BPP.
Given N, that N) =2N. Run the algorithm of 00 3-4 with the

appropriate polynomial time bound; the result is a (purportedly complete) factorization
of N. Now check to see if N is indeed perfect by using equation (0).

We end up accepting N if N is perfect, or if we accidentallyproduced an incorrect
factorization one where our probabilistic prime test said all the factors were prime,

but some really weren't). But such an accident happens only of the time, and we
can fix ahead of time.
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We end up rejecting N if N is not perfect, or if we accidentally produced an

incorrect factorization as above, or if the algorithm of 3-4 failed to produce any

factorization at all in our (pre-fixed) time bound. Again, this happens only of the

time.

Theorem 7 gives the first “natural” set in BPP which is not known to be in RP.

Of course, it is possible to construct examples like 

x is prime and y is composite}.

L BPP, but it is somewhat “artificial”, since may be written as the product of two
languages, one of which is known to be in RP, and one which is known to be in co-RP.

Nevertheless, Theorem 7 is very likely less interesting than it appears at first
glance; if there are no odd perfect numbers (as is widely believed), then the clever

Lucas-Lehmer test (see combined with the result for even perfect

numbers gives a deterministic polynomial time algorithm to recognize {perfect numbers}. 

However, there are well studied generalizations of perfect numbers for which no

deterministic tests are know ,numbers such that N ) =3N are

sous-doubles; ex 0 and 672. It is easy to see that an argument
like that in Theorem 7 show ubles} BPP.

A larger class is the set of perfect numbers; those numbers N for
which N N). To show that {multiply perfect numbers} BPP, we need the following

lemma:

LEMMA J.

N

Proof: A well-known theorem [HW, Thm. states that

1.

A result of Rosser and Schoenfeld [RS] is

3
lnln

lnln N

N

for N 3. Here is Euler’s constant, approximately 
Combining these two inequalities, we get

for N From this, the result easily follows.
Lemma J shows that we can determine if N is multiply perfect with fewer than

5 N invocations of Algorithm B. This can be done in random polynomial time,
so we have proved 

THEOREM 8. {multiply perfect numbers} BPP.
Carmichael found the multiply perfect numbers less than

1, 6, 28, 120,496,672, 8128, 30240,32760, 523776,

2178540, 23569920, 33550336,45532800, 142990848, 459818240. 

(We have corrected several mistakes in Carmichael’s original list.) It is not known
whether or not there are infinitely many multiply perfect numbers. However, there are
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some density results that give upper bounds; for example, Hornfeck and Wirsing have

shown that if denotes the number of multiply perfect numbers then

x x

( (exp

To give still another example, consider the pairs (M, N) such that

= N )=M +N.

Such numbers are known as amicable pairs; the smallest pair is (220,284). Jacob gave

Esau 220 goats and 220 sheep [God], and some scholars have interpreted this as

showing that the ancient Hebrews knew about N). There is an enormous literature 

concerning amicable pairs (see [LM]). An argument similar to those above gives
THEOREM 9. {amicable pairs} BPP.

It is not known whether or not there are infinitely many amicable pairs (M, N),

but Erdos conjectures that the number of such pairs with M N is at least

Using our methods, it is possible to show that many other types of numbers (for

example, the "betrothed numbers" of Isaacs can be recognized in

two-sided random polynomial time.'
In Theorems 7-9 above, we have given three sets in BPP. The two-sidedness of

these sets is due to the dependence on primality testing; if we had a deterministic
polynomial-time prime test, we would be able to show that {perfect numbers}, (multiply
perfect numbers}, and {amicable numbers} are in RP. No such prime test is currently

known, although there is one due to Adleman, Pomerance, and Rumely [APR] which

7. Epilogue. In 2, we showed how to split N given a multiple of p - 1. The

results on N) can be phrased similarly; if we know a multiple of +1 (or + +
etc.) we can split This leads to the question: for which polynomials p) do there
exist fast algorithms for splitting N?We will address this question in a future paper [BS].

The complexity of several number-theoretic functions is still open. One example 
is computing discrete logarithms (mod p ) .

Not every difficult number-theory function is equivalent to factoring; arc
apparently harder. For example, remarks of Shanks indicate that 
reducible to finding the class number of an imaginary quadratic field

reduction in the other direction is known, nor is it even clear that In
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