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Outline

• Part 1: Patterns
• Part 2: Matrix and Tensor Tools
• Part 3: Proximity
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Part 3: Proximity
• Part 4: Case Studies
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Outline: Part 2

• Matrix Tools
– SVD, PCA
– HITS, PageRank

Example based Projection
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– Example-based Projection
– Co-clustering

• Tensor Tools
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Examples of Matrices
• Example/Intuition: Documents and terms
• Find patterns, groups, concepts
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Singular Value Decomposition (SVD)
X = UΣVT

v1σ1

X U
Σ VT
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u1 u2 ukx(1) x(2) x(M) = . v2

vk

.σ2

σk

right singular vectors 

input data left singular 
vectors

singular values
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SVD as spectral decomposition

Am

n

Σ
m

n

VT

≈ +

σ1u1°v1 σ2u2°v2
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– Best rank-k approximation in L2 and Frobenius 
– SVD only works for static matrices (a single 2nd

order tensor)

Am

U

≈ +

See also PARAFAC
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Vector outer product – intuition:

A

car type

owner
age

VW
Volvo
BMW

20; 30; 40

VW
Volvo
BMW

20; 30; 40
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A

2-d histogram
1-d histograms + 

independence assumption

BMW
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SVD - Example

• A = U Σ VT - example:

data
inf.

retrieval
brain lung

0 18 0
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SVD - Example

• A = U Σ VT - example:

data
inf.

retrieval
brain lung

0 18 0

CS-concept
MD-concept
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SVD - Example

• A = U Σ VT - example:

data
inf.

retrieval
brain lung

0 18 0

CS-concept
MD-concept

doc-to-concept 
similarity matrix
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SVD - Example

• A = U Σ VT - example:

data
inf.

retrieval
brain lung

0 18 0

‘strength’ of CS-concept
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SVD - Example

• A = U Σ VT - example:

data
inf.

retrieval
brain lung

0 18 0

term-to-concept
similarity matrix

CS
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SVD - Example

• A = U Σ VT - example:

data
inf.

retrieval
brain lung

0 18 0

term-to-concept
similarity matrix

CS
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SVD - Interpretation

‘documents’, ‘terms’ and ‘concepts’:
Q: if A is the document-to-term matrix, what 

is AT A?
A t t t ([ ]) i il it t i

Copyright:  Faloutsos, Tong (2008) 2-14

A: term-to-term ([m x m]) similarity matrix
Q: A AT ?
A: document-to-document ([n x n]) similarity 

matrix

CIKM, 2008
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SVD properties

• V are the eigenvectors of the covariance 
matrix ATA

Copyright:  Faloutsos, Tong (2008) 2-15

• U are the eigenvectors of the Gram (inner-
product) matrix AAT

Further reading:
1. Ian T. Jolliffe, Principal Component Analysis (2nd ed), Springer, 2002.
2. Gilbert Strang, Linear Algebra and Its Applications (4th ed), Brooks Cole, 2005.

CMU SCS

Principal Component Analysis (PCA)
• SVD

Am

n

Σm

n
RR

R

U
VT k

k k

Loading
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PCs

– PCA is an important application of SVD
– Note that U and V are dense and may have negative entries

Am m U Loading

CIKM, 2008
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PCA interpretation
• best axis to project on: (‘best’ = min sum of 

squares of projection errors)

Term2 (‘lung’)

2-17Term1 (‘data’)CIKM, 2008
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PCA - interpretation 

PCA projects points first singular vector

Term2 (‘retrieval’)

ΣU
VT

Copyright:  Faloutsos, Tong (2008) 2-18

• minimum RMS error

p j p
Onto the “best” axis

v1

Term1 (‘data’)

CIKM, 2008
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Outline: Part 2

• Matrix Tools
– SVD, PCA
– HITS, PageRank

Example based Projection

CIKM’08 Copyright: Faloutsos, Tong (2008)

– Example-based Projection
– Co-clustering

• Tensor Tools

2-19
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Kleinberg’s algorithm HITS
• Problem dfn: given the web and a query
• find the most ‘authoritative’ web pages for 

this query

CIKM, 2008 Copyright:  Faloutsos, Tong (2008) 2-20

Step 0: find all pages containing the query terms
Step 1: expand by one move forward and backward

Further reading:
1. J. Kleinberg. Authoritative sources in a hyperlinked environment. SODA 1998

CMU SCS

Kleinberg’s algorithm HITS
• Step 1: expand by one move forward and 

backward

Copyright:  Faloutsos, Tong (2008) 2-21CIKM, 2008
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Kleinberg’s algorithm HITS
• on the resulting graph, give high score (= 

‘authorities’) to nodes that many important 
nodes point to

• give high importance score (‘hubs’) to

Copyright:  Faloutsos, Tong (2008) 2-22

give high importance score ( hubs ) to 
nodes that point to good ‘authorities’

hubs authorities

CIKM, 2008
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Kleinberg’s algorithm HITS
observations
• recursive definition!
• each node (say, ‘i’-th node) has both an 

authoritativeness score a and a hubness

Copyright:  Faloutsos, Tong (2008) 2-23

authoritativeness score ai and a hubness 
score hi

CIKM, 2008
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Kleinberg’s algorithm: HITS
Let A be the adjacency matrix: 

the (i,j) entry is 1 if the edge from i to j exists
Let h and a be  [n x 1] vectors with the 

‘hubness’ and ‘authoritativiness’ scores

Copyright:  Faloutsos, Tong (2008) 2-24

hubness  and authoritativiness  scores.
Then:

CIKM, 2008



Faloutsos, Tong CIKM, 2008

5

CMU SCS

Kleinberg’s algorithm: HITS
Then:

ai = hk + hl + hm

that is
S (h ) ll j th t

k
l i

Copyright:  Faloutsos, Tong (2008) 2-25

ai = Sum (hj)     over all j that 
(j,i) edge exists

or
a = AT h

l
m

CIKM, 2008
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Kleinberg’s algorithm: HITS
symmetrically, for the ‘hubness’:

hi = an + ap + aq

that is
h S ( ) ll j th t

p

ni

Copyright:  Faloutsos, Tong (2008) 2-26

hi = Sum (qj)     over all j that 
(i,j) edge exists

or
h = A a

q

CIKM, 2008
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Kleinberg’s algorithm: HITS
In conclusion, we want vectors h and a such 

that:
h = A a
a = AT h

Copyright:  Faloutsos, Tong (2008) 2-27

a = A h
That is:

a = ATA a

CIKM, 2008
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Kleinberg’s algorithm: HITS
a is a right singular vector of the adjacency 

matrix A (by dfn!), a.k.a the eigenvector of 
ATA

Copyright:  Faloutsos, Tong (2008) 2-28

Starting from random a’ and iterating, we’ll 
eventually converge

Q: to which of all the eigenvectors? why?
A: to the one of the strongest eigenvalue, 

(AT A ) k  a = λ1
ka

CIKM, 2008
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Kleinberg’s algorithm - discussion
• ‘authority’ score can be used to find ‘similar 

pages’ (how?)
• closely related to ‘citation analysis’, social 

networks / ‘small world’ phenomena

Copyright:  Faloutsos, Tong (2008) 2-29

networks / small world  phenomena

See also TOPHITS

CMU SCS

Motivating problem: PageRank

Given a directed graph, find its most 
interesting/central node

Copyright:  Faloutsos, Tong (2008) 2-30

A node is important,
if it is connected 
with important nodes
(recursive, but OK!)

CIKM, 2008
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Motivating problem – PageRank 
solution

Given a directed graph, find its most 
interesting/central node

Proposed solution: Random walk; spot most 
‘popular’ node ( > steady state prob (ssp))

Copyright:  Faloutsos, Tong (2008) 2-31

popular  node (-> steady state prob. (ssp))

A node has high ssp,
if it is connected 
with high ssp nodes
(recursive, but OK!)

CIKM, 2008
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(Simplified) PageRank algorithm

• Let A be the transition matrix (= adjacency 
matrix); let B be the transpose, column-normalized - then

From B

Copyright:  Faloutsos, Tong (2008) 2-32

1 2 3

4
5

p1

p2

p3

p4

p5

p1

p2

p3

p4

p5

=

To B
1

1 1

1/2 1/2

1/2

1/2
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(Simplified) PageRank algorithm
• B p = p

B                     p    =      p

Copyright:  Faloutsos, Tong (2008) 2-33

1 2 3

4
5
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p3
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=

1

1 1

1/2 1/2
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1/2
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(Simplified) PageRank algorithm
• B p = 1 * p
• thus, p is the eigenvector that corresponds 

to the highest eigenvalue (=1, since the matrix is 
column-normalized)

Copyright:  Faloutsos, Tong (2008) 2-34

column normalized)
• Why does such a p exist? 

– p exists if B is nxn, nonnegative, irreducible 
[Perron–Frobenius theorem]

CIKM, 2008
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(Simplified) PageRank algorithm
• In short: imagine a particle randomly 

moving along the edges
• compute its steady-state probabilities (ssp)

Copyright:  Faloutsos, Tong (2008) 2-35

Full version of algo:  with occasional random 
jumps

Why? To make the matrix irreducible

CIKM, 2008
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Full Algorithm
• With probability 1-c, fly-out to a random 

node
• Then, we have

p = c B p + (1-c)/n 1 =>

Copyright:  Faloutsos, Tong (2008) 2-36

p  c B p + (1 c)/n 1 >
p = (1-c)/n [I - c B] -1 1

CIKM, 2008
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Outline: Part 2

• Matrix Tools
– SVD, PCA
– HITS, PageRank

Example based Projection
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– Example-based Projection
– Co-clustering

• Tensor Tools
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Motivation
(Example-Based Low-Rank Approximation (LRA))

• SVD, PCA all transform data into some 
abstract space (specified by a set basis)
– Interpretability problem

Copyright:  Faloutsos, Tong (2008) 2-38

Interpretability problem
– Loss of sparsity (space cost)
– Efficiency (time cost)

CIKM, 2008

CMU SCS

PCA - interpretation 

PCA projects points first singular vector

Term2 (‘retrieval’)

Copyright:  Faloutsos, Tong (2008) 2-39

• minimum RMS error

p j p
Onto the “best” axis

v1

Term1 (‘data’)

CIKM, 2008
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CUR

• Example-based projection: use actual rows and columns 
to specify the subspace

• Given a matrix A∈Rm×n, find three matrices C∈ Rm×c, 
U∈ Rc×r, R∈ Rr× n , such that ||A-CUR|| is small

nn

Copyright:  Faloutsos, Tong (2008) 2-40

C

    RX
m

r

c

 

Am

U is the pseudo-inverse of X
Orthogonal 
projection

CIKM, 2008
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CUR

• Example-based projection: use actual rows and columns 
to specify the subspace

• Given a matrix A∈Rm×n, find three matrices C∈ Rm×c, 
U∈ Rc×r, R∈ Rr× n , such that ||A-CUR|| is small

nn

Copyright:  Faloutsos, Tong (2008) 2-41

C

    RX
m

r

c

 

Am

U is the pseudo-inverse of X:
U = X† = (UT U )-1 UT

Example-based

CIKM, 2008
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CUR (cont.)

• Key question:
– How to select/sample the columns and rows?

• Uniform sampling
• Biased sampling

Copyright:  Faloutsos, Tong (2008) 2-42

• Biased sampling
– CUR w/ absolute error bound
– CUR w/ relative error bound

Reference:
1. Tutorial: Randomized Algorithms for Matrices and Massive Datasets, SDM’06
2. Drineas et al. Subspace Sampling and Relative-error Matrix Approximation: Column-

Row-Based Methods, ESA2006
3. Drineas et al., Fast Monte Carlo Algorithms for Matrices III: Computing a 

Compressed Approximate Matrix Decomposition, SIAM Journal on Computing, 2006.
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The sparsity property – pictorially:

=
SVD/PCA:
Destroys sparsity

2-43

U   Σ VT

=

C   U   R

CUR: maintains sparsity

CIKM, 2008
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The sparsity property

SVD: A = U Σ VT

Big but sparse Big and dense

sparse and small

Copyright:  Faloutsos, Tong (2008) 2-44

g p Big and dense

CUR: A = C U R
Big but sparse Big but sparse

dense but small

CMU SCS

The sparsity property (cont.)

10
1

10
2

sp
ac

e 
ra

tio

SVD
CUR
CMD

10
1

10
2

sp
ac

e 
ra

tio

SVD
CUR
CMD

CIKM, 2008 Copyright:  Faloutsos, Tong (2008) 2-45

• CMD uses much smaller space to achieve the same 
accuracy

• CUR limitation: duplicate columns and rows
• SVD limitation: orthogonal projection densifies the 

data

0 0.2 0.4 0.6 0.8 1

10

accuracy
0 0.2 0.4 0.6 0.8 1

accuracy

Network DBLP

Reference:
Sun et al. Less is More: Compact Matrix Decomposition for Large Sparse Graphs, SDM’07

CMU SCS

Limitations w/ CUR/CMD

• Linear Redundancy in C & R
– Wastes both Time & Space

• What if graph is evolving over time?
– Hard to track LRA in CUR/CMD

Copyright:  Faloutsos, Tong (2008) 2-46CIKM, 2008
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Solutions: Colibri
• Colibri-S: for static graph

– Basic idea: remove linear redundancy
– Same accuracy as CUR/CMD
– Significant savings in both time & spaceSignificant savings in both time & space

• Colibri-D: for dynamic graph
– Basic idea: leverage smoothness between time 

Same accuracy as CUR/CMD
– Up to 112x speed-up

Copyright:  Faloutsos, Tong (2008) 2-47CIKM, 2008
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Performance of Colibri-S
CUR CUR • Accuracy

• Same 91%+
• Time

• 12x of CMD

2-48

Time Space

Ours

CMD

OursCMD

• 28x of CUR
• Space

• ~1/3 of CMD
• ~10% of CUR

Copyright:  Faloutsos, Tong (2008)CIKM, 2008
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Performance 
of Colibri-D

Time
CMD

Colibri-S

# of changed cols

Colibri S

Colibri-D achieves up to 112x speedups

Colibri-D

2-49
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Outline: Part 2

• Matrix Tools
– SVD, PCA
– HITS, PageRank

Example based Projection

CIKM’08 Copyright: Faloutsos, Tong (2008)

– Example-based Projection
– Co-clustering

• Tensor Tools

2-50
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Co-clustering

• Given data matrix and the number of row 
and column groups k and l

• Simultaneously
– Cluster rows of p(X Y) into k disjoint groups

Copyright:  Faloutsos, Tong (2008) 2-51

Cluster rows of p(X, Y)  into k disjoint groups 
– Cluster columns of p(X, Y)  into l disjoint groups

CIKM, 2008
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Co-clustering
• Let X and Y be discrete random variables 

– X  and Y  take values in {1, 2, …, m} and {1, 2, …, n}
– p(X, Y)  denotes the joint probability distribution—if 

not known, it is often estimated based on co-occurrence
data

Copyright:  Faloutsos, Tong (2008) 2-52

data
– Application areas: text mining, market-basket analysis, 

analysis of browsing behavior, etc. 

• Key Obstacles in Clustering Contingency Tables 
– High Dimensionality, Sparsity, Noise
– Need for robust and scalable algorithms

Reference:
1. Dhillon et al. Information-Theoretic Co-clustering, KDD’03

CMU SCS
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Co-clustering

Observations
• uses KL divergence, instead of L2
• the middle matrix is not diagonal

we’ll see that again in the Tucker tensor

Copyright:  Faloutsos, Tong (2008) 2-55

– we’ll see that again in the Tucker tensor 
decomposition

CIKM, 2008

CMU SCS

Outline: Part 2

• Matrix Tools
• Tensor Tools

– Tensor Basics

CIKM’08 Copyright: Faloutsos, Tong (2008)

– Tucker
• Tucker 1 
• Tucker 2 
• Tucker 3

– PARAFAC
– Incrementalization

2-56

CMU SCS

Tensor Basics

CMU SCS

Reminder: SVD

Am

n

Σ
m

n

VT

≈

– Best rank-k approximation in L2

Am

U

≈

See also PARAFAC
2-58Copyright: Faloutsos, Tong (2008)
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Reminder: SVD

Am

n

≈ +

σ1u1°v1 σ2u2°v2

– Best rank-k approximation in L2

Am ≈ +

See also PARAFAC
2-59Copyright: Faloutsos, Tong (2008)
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Goal: extension to >=3 modes

¼

I x R

A
B

J x R

R x R x R

I x J x K

+…+=

R x R x R

CIKM, 2008 2-60Copyright: Faloutsos, Tong (2008)
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Main points:

• 2 major types of tensor decompositions: 
PARAFAC and Tucker

• both can be solved with ``alternating least 
squares’’ (ALS)squares  (ALS)

• Details follow – we start with terminology:

CIKM, 2008 2-61Copyright: Faloutsos, Tong (2008)

CMU SCS

A tensor is a multidimensional array

xijkI

An I x J x K tensor Column (Mode-1) 
Fibers

Row (Mode-2)
Fibers

Tube (Mode-3)
Fibers

[T. Kolda,’07]

ijk

J
Horizontal Slices Lateral Slices Frontal Slices

3rd order tensor
mode 1 has dimension I
mode 2 has dimension J
mode 3 has dimension K

Note: Tutorial focus is 
on 3rd order, but 
everything can be 

extended to higher 
orders.

CMU SCS

Matricization: Converting a Tensor to 
a Matrix

(i,j,k) (i′,j′)

(i′,j′) (i,j,k)

Matricize
(unfolding)

Reverse 
Matricize

X(n): The mode-n fibers are 
rearranged to be the columns 
of a matrix 

[T. Kolda,’07]

5   7
6   81   3

2   4

CMU SCS

Tensor Mode-n Multiplication

• Tensor Times Matrix • Tensor Times Vector

Multiply each 
row (mode-2) 

fiber by B

Compute the dot 
product of a and 

each column 
(mode-1) fiber

CIKM, 2008 2-64Copyright: Faloutsos, Tong (2008)[T. Kolda,’07]

CMU SCS

Pictorial View of Mode-n Matrix 
Multiplication

Mode-1 multiplication
(frontal slices)

Mode-2 multiplication
(lateral slices)

Mode-3 multiplication
(horizontal slices)

CIKM, 2008 2-65Copyright: Faloutsos, Tong (2008)[T. Kolda,’07]
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Mode-n product Example

• Tensor times a matrix

Time n

Time

Lo
ca

ti
on ×Time

Lo
ca

ti
o

ClustersCl
us

te
rs

CIKM, 2008 2-66Copyright: Faloutsos, Tong (2008)[T. Kolda,’07]



Faloutsos, Tong CIKM, 2008

12

CMU SCS

Mode-n product Example

• Tensor times a vector

ne

details

Time

Lo
ca

ti
on ×Time

Lo
ca

ti
o

Ti
m

e
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Outer, Kronecker, & 
Khatri-Rao Products

3-Way Outer Product Review: Matrix Kronecker Product

M x N P x Q

details

=

MP x NQ

Matrix Khatri-Rao Product

M x R N x R MN x R

Observe: For two vectors a and b, a ± b and a  b have the same 
elements, but one is shaped into a matrix and the other into a vector.

Rank-1 Tensor

CIKM, 2008 2-68Copyright: Faloutsos, Tong (2008)[T. Kolda,’07]
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Specially Structured Tensors

CMU SCS

Specially Structured Tensors
• Tucker Tensor • Kruskal Tensor

Our 
Notation

Our 
Notation

=
U

I x R

V
J x R

R x R x R

I x J x K

=
U

I x R

V
J x S

R x S x T

I x J x K

otat o

+…+=

u1 uR

v1

w1

vR

wR

“core”
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Specially Structured Tensors
• Tucker Tensor • Kruskal Tensor

details

In matrix form: In matrix form:
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CMU SCS

Outline: Part 2

• Matrix Tools
• Tensor Tools

– Tensor Basics

CIKM’08 Copyright: Faloutsos, Tong (2008)

– Tucker
• Tucker 1 
• Tucker 2 
• Tucker 3

– PARAFAC
– Incrementalization

2-72
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Tensor Decompositions

CMU SCS

Tucker Decomposition - intuition

I x J x K

~
A

I x R

B
J x S

R x S x T

• author x keyword x conference
• A: author x author-group
• B: keyword x keyword-group
• C: conf. x conf-group
• G: how groups relate to each other
CIKM, 2008 2-74Copyright: Faloutsos, Tong (2008)
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⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

04.04.004.04.04.
04.04.04.004.04.
05.05.05.000
05.05.05.000
00005.05.05.
00005.05.05.

⎥
⎤

⎢
⎡ 000042.054.054.

⎥
⎤

⎢
⎡ 005.

⎥
⎤

⎢
⎡

30
03. [ ]      

363628000
00028.36.36. =

term group x
doc. group

med. terms

cs terms
common terms

⎥
⎥
⎥
⎥

⎦⎢
⎢
⎢
⎢

⎣ 036.036.028.028.036.036.
036.036.028.028036.036.
054.054.042.000
054.054.042.000
000042.054.054.

⎥
⎥
⎥
⎥

⎦⎢
⎢
⎢
⎢

⎣ 5.00
5.00
05.0
05.0
005. ⎥⎦⎢⎣ 2.2.

3.0 [ ]
36.36.28.000

term x
term-group

doc x
doc group
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Tucker Decomposition

I x J x K

~
A

I x R

B
J x S

R x S x T

Given A, B, C, the optimal core is:

• Proposed by Tucker (1966)
• AKA: Three-mode factor analysis, three-mode 

PCA, orthogonal array decomposition
• A, B, and C generally assumed to be 

orthonormal (generally assume they have full 
column rank)

• is not diagonal 
• Not unique

Recall the equations for 
converting a tensor to a matrix

CIKM, 2008 2-76
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Tucker Variations
• Tucker2

I x J x K

~
A

I x R

B
J x S

R x S x K

See Kroonenberg & De Leeuw, Psychometrika,1980 for discussion.

Identity Matrix

details

• Tucker1

I x J x K

~
A

I x R

R x J x K Finding principal components in only mode 1
can be solved via rank-R matrix SVD

2-77
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Solving for Tucker

Given A, B, C orthonormal, the optimal core is:

Eliminate the core to get:

Tensor norm is the square 
root of the sum of all the 

elements squared

I x J x K

¼
A

I x R
B

J x S

R x S x T

details

Minimize 
s.t. A,B,C orthonormal fixed maximize this

If B & C are fixed, then we can solve for A as follows:

Optimal A is R left leading singular vectors for 2-78
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Higher Order SVD (HO-SVD)

I x J x K

~
A

I x R

B
J x S

R x S x T

Not optimal, but 
often used to 

initialize Tucker-
ALS algorithm.

details

De Lathauwer, De Moor, & Vandewalle, SIMAX, 1980 

R x S x T

(Observe connection to Tucker1)

2-79
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Tucker-Alternating Least Squares (ALS)

• Initialize 
– Choose R, S, T
– Calculate A, B, C via HO-SVD

• Until converged do…
– A = R leading left singular 

I x J x K

=
A

I x R

B
J x S

Successively solve for each component (A,B,C).

vectors of X(1)(CB)
– B = S leading left singular 

vectors of X(2)(CA)
– C = T leading left singular 

vectors of X(3)(BA)
• Solve for core: 

Kroonenberg & De Leeuw, Psychometrika, 1980 

A
R x S x T

2-80
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Tucker in Not Unique

I x J x K

~
A

I x R

B
J x S

R x S x T

details

Tucker decomposition is not unique. Let Y be 
an RxR orthogonal matrix. Then…

CIKM, 2008 2-81Copyright: Faloutsos, Tong (2008)[T. Kolda,’07]
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Outline: Part 2

• Matrix Tools
• Tensor Tools

– Tensor Basics

CIKM’08 Copyright: Faloutsos, Tong (2008)

– Tucker
• Tucker 1 
• Tucker 2 
• Tucker 3

– PARAFAC
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CANDECOMP/PARAFAC 
Decomposition

~

I x R

A
B

J x R

R x R x R

I x J x K

+…+=

• CANDECOMP = Canonical Decomposition (Carroll & Chang, 1970)
• PARAFAC = Parallel Factors (Harshman, 1970)
• Core is diagonal (specified by the vector λ)
• Columns of A, B, and C are not orthonormal
• If R is minimal, then R is called the rank of the tensor (Kruskal 1977) 
• Can have rank (   ) > min{I,J,K}

R x R x R

2-83
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PARAFAC-Alternating Least Squares (ALS)
Successively solve for each component (A,B,C).

Khatri-Rao Product
I x J x K

+…+=

details

Find all the vectors in 
one mode at a time

(column-wise Kronecker product)

Repeat for B,C, etc.

If C, B, and Λ are fixed, the optimal A is given by:

Hadamard Product

CIKM, 2008 2-84Copyright: Faloutsos, Tong (2008)[T. Kolda,’07]
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PARAFAC is often unique
I x J x K

+…+

a1

b1

c1

aR

bR

cR

=
Assume  

PARAFAC 
decomposition 

is exact.

details

Sufficient condition for uniqueness (Kruskal, 1977):

kA = k-rank of A = max number k such that every set 
of k columns of A is linearly independent
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Tucker vs. PARAFAC Decompositions
• Tucker

– Variable transformation in 
each mode

– Core G may be dense
– A, B, C generally 

orthonormal

• PARAFAC
– Sum of rank-1 components
– No core, i.e., superdiagonal 

core
– A, B, C may have  linearly 

dependent columnsorthonormal
– Not unique

dependent columns
– Generally unique

I x J x K

¼
A

I x R

B
J x S

R x S x T

I x J x K

+…+¼

a1 aR

b1

c1

bR

cR

CMU SCS

Tensor tools - summary

• Two main tools
– PARAFAC
– Tucker

• Both find row- column- tube-groupsBoth find row , column , tube groups
– but in PARAFAC the three groups are identical

• To solve: Alternating Least Squares
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Tensor tools - resources
• Toolbox: from Tamara Kolda:
csmr.ca.sandia.gov/~tgkolda/TensorToolbox/
• T. G. Kolda and B. W. Bader. Tensor 

Decompositions and Applications. SIAM 
Review, to appear (accepted June 2008) 

• csmr.ca.sandia.gov/~tgkolda/pubs/bibtgkfil
es/TensorReview-preprint.pdf
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