
Edgeworth: Efficient and Scalable Authoring of Visual Thinking
Activities

Wode Ni
nimo@cmu.edu

Carnegie Mellon University
Pittsburgh, Pennsylvania, USA

Sam Estep
estep@cmu.edu

Carnegie Mellon University
Pittsburgh, Pennsylvania, USA

Hwei-Shin Harriman
hweishih@andrew.cmu.edu
Carnegie Mellon University

Pittsburgh, Pennsylvania, USA

Kenneth R. Koedinger
koedinger@cmu.edu

Carnegie Mellon University
Pittsburgh, Pennsylvania, USA

Joshua Sunshine
sunshine@cs.cmu.edu

Carnegie Mellon University
Pittsburgh, Pennsylvania, USA

32
Diagram Mutation

41

Figure 1: Edgeworth is a diagrammatic problem authoring tool that automatically generates diagram variations from a single

diagram: the author creates an example diagram (1), then Edgeworth generates a myriad of diagram variations (2), from which the
author selects diagrams (3) to form a diagrammatic multiple choice problem (4).

ABSTRACT

Visual thinking with diagrams is a crucial skill for learning and
problem-solving in STEM subjects. To improve in this area, students
need a variety of visual problems for deliberate practice. However,
in our interviews, educators shared that they struggle to create
these practice exercises because of limitations of existing tools.
We introduce Edgeworth, a tool designed to help educators eas-
ily create visual problems. Edgeworth works in two main ways:
firstly, it takes a single diagram from the user and systematically
alters it to produce many variations, which the educator can then
choose from to create multiple problems. Secondly, it automates the
layout of diagrams, ensuring consistent high quality without the
need for manual adjustments. To assess Edgeworth, we carried
out case studies, a technical evaluation, and expert walkthrough
demonstrations. We show that Edgeworth can create problems
in three domains: geometry, chemistry, and discrete math. These

This work is licensed under a Creative Commons Attribution
International 4.0 License.

L@S ’24, July 18–20, 2024, Atlanta, GA, USA
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0633-2/24/07.
https://doi.org/10.1145/3657604.3662034

problems were authored in just 15 lines of Edgeworth code on
average. Edgeworth generated usable answer options within the
first 10 diagram variations in 87% of authored problems. Finally,
educators gave positive feedback on Edgeworth’s utility and the
real-world applicability of its outputs.

CCS CONCEPTS

• Applied computing→ E-learning; • Human-centered com-

puting→ Interactive systems and tools.

KEYWORDS

Diagram Authoring, Diagrammatic Problems, Educational Content
Authoring

ACM Reference Format:

WodeNi, SamEstep, Hwei-ShinHarriman, Kenneth R. Koedinger, and Joshua
Sunshine. 2024. Edgeworth: Efficient and Scalable Authoring of Visual
Thinking Activities. In Proceedings of the Eleventh ACM Conference on Learn-
ing @ Scale (L@S ’24), July 18–20, 2024, Atlanta, GA, USA. ACM, New York,
NY, USA, 12 pages. https://doi.org/10.1145/3657604.3662034

98

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3657604.3662034
https://doi.org/10.1145/3657604.3662034
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3657604.3662034&domain=pdf&date_stamp=2024-07-15

L@S ’24, July 18–20, 2024, Atlanta, GA, USA Wode Ni, Sam Estep, Hwei-Shin Harriman, Kenneth R. Koedinger, & Joshua Sunshine

1 INTRODUCTION

Mastery of visual thinking using diagrams enables more robust
learning [39] and flexible problem solving [2, 7, 32, 33, 35, 45].
Deliberate practice with visual representations leads students to
mastery [16, 41]. Traditionally, educators author visual practice by
drawing diagrams by hand. In formative interviews (Section 3), ed-
ucators reported the vital role of visual practice in their instruction,
but noted the tedium of authoring due to tool limitations, leading
to fewer diagrams used than desired. Manual authoring can hardly
keep up with the growth of STEM learners and demand for more
visual practice.

As a first step towards scaling up visual practice authoring, we
built Edgeworth, a diagrammatic problem generator. Edgeworth
generates translation problems, an effective type of visual prac-
tice [31] that ask students to determine diagrammatic examples
and counterexamples of a textual/symbolic description (Figure 2).
To help authors get the most out of one diagram, Edgeworth
contributes a “build once, generate many” authoring paradigm: In-
stead of manually editing diagrams to get variations, the author
creates a single diagram and Edgeworth automatically gener-
ates diagram variations (Figure 1 1 2). The interaction design of
Edgeworth allows the author to visually select diagram variations
to rapidly form translation problems (Figure 1 3 4). Given the
diversity of instructional contexts in STEM, we designed Edge-
worth to be domain-agnostic: it uses a generic program mutation
technique (Section 4.3) to change the author-provided diagram to
produce variations.

To effectively scale up visual practice authoring, Edgeworth
must support a diverse set of instructional domains, generate high-
quality diagrams consistently, and allow educators to author real-
world problems. In Sections 5 to 7, we evaluate Edgeworth by
answering the following research questions on these qualities:

RQ1 Expressiveness: Can Edgeworth generate meaningful di-
agram mutants in multiple domains of instruction?

RQ2 Reliability: Can Edgeworth reliably generate translation
problems with relatively few variations required?

RQ3 Ecological validity: Do real-world instructors consider
Edgeworth-generated translation problems to be useful?

First, to show the expressiveness of Edgeworth, we performed
case studies by recasting 31 problems from Euclidean geometry, dis-
crete math, and general chemistry textbooks and courses (Section 5).
Second, we evaluated the reliability of Edgeworth by labeling 310
diagram variations from the recasted problems by hand. With high
inter-rater reliability, the result shows that Edgeworth can reli-
ably generate diagrams that constitute valid four-choice translation
problems, when constrained to 10 variations per problem.

Finally, we conducted walkthrough demonstrations with 9 educa-
tors that have experience creating problems. The goal of the demon-
strations was to obtain feedback on the ecological validity of Edge-
worth-generated problems and the usefulness of Edgeworth in
general. Overall, these experts found Edgeworth-generated prob-
lems to contain pedagogically useful variations and high visual
quality. They provided detailed feedback on individual diagram
variations and suggested how Edgeworth might fit into their in-
structional contexts.

2 BACKGROUND AND RELATEDWORK

In this section, we provide background on why students need to
practice for better fluency in visual representations, how diagram
variations help students practice, and how Edgeworth relates to
existing problem generation tools.

2.1 Usefulness of Diagram Variations for

Representational Fluency

Representational fluency refers to the ability to quickly under-
stand a visual representation and to use it to solve domain-specific
tasks [16, 41, 45]. To become representationally fluent, an important
first step is to identify meaningful aspects of a particular representa-
tion. Mapping between symbolic and visual representations, which
can be practiced with symbol-diagram translation problems, leads
to intuitions about the way equivalent structures relate to each
other [31, 40]. The learning that results from constructing con-
nections between symbols and diagrams can be more flexible [22].
Students are better at transferring their learning from the problems
they have explicitly practiced to novel problems [48], and their
conceptual understanding is improved [26].

There is a lot of evidence in the learning science literature that us-
ingmultiple examples and repeated practice are effective at teaching
STEM skills. There are substantial STEM learning benefits for using
multiple worked examples per topic [43]. Research also indicates
the importance of active learning [12, 15] and repeated practice
[18, 51] that occurs within varied contexts [42, 49]. In the context
of acquiring representational fluency, diagram variations help stu-
dents discern crucial parts of a particular representation [38]. The
level of variation depends on where students are in the learning
process: early on, students benefit from discerning examples and
counterexamples that differ in only one dimension of variation. As
students become more fluent, students may benefit from a fusion
of multiple varying dimensions [13].

Rau [46] reports that, unfortunately, providing support for rep-
resentational fluency is time-consuming with current tools. Our
formative data (Section 3) confirmed this claim and revealed barriers
resulting from the limitations of diagram authoring tools. To ad-
dress these limitations, Edgeworth aims to simplify the workflow
for creating diagram variations for repeated practice.

2.2 Tools for Problem Generation

Kurdi et al. [34] conduct a systematic review of automatic problem
generation tools and show that the majority of tools address lan-
guage learning. In this section, we focus on problem generation
tools in STEM learning and discuss how they relate to diagrammatic
problem generation and Edgeworth.

Intelligent Tutoring Systems (ITS) are automated curricula that
include practice problems with personalized feedback (inner loop)
and customize problem selection to students’ performance (outer
loop) [53]. Problem banks are an important component of ITS tools,
so many systems have built-in authoring support to generate a large
number of problems via templating. For instance, Cognitive Tutor
Authoring Tools (CTAT) is an ITS authoring platform [3]. CTAT
has a “Mass Production” feature that lets the user create a problem
template and insert problem-specific values via a spreadsheet [4].

99

Edgeworth: Efficient and Scalable Authoring of Visual Thinking Activities L@S ’24, July 18–20, 2024, Atlanta, GA, USA

In which of the following diagrams are
∆CED and ∆AED congruent?

Correct!

Which of the following equations
correspond to the plot?

0

2

4

6

8

10

0.25 0.50 0.75
Amount (dollars)

D
is

ta
nc

e
(m

il
es

)

Figure 2: Left: A translation problem that helps students discern the structure of linear equations (adapted from Kellman et al. [31]). Right:
An Edgeworth generated problem that trains student on triangle congruence theorems using diagram variations.

Similarly, the ASSISTment builder allows authors to “variabilize” nu-
merical values in problem templates for automatic generation [47].

In the context of testing, researchers proposed systems that
generate test problems (items) automatically for adaptive testing
and cost-effectiveness [20]. Due to the need for numerous test
items, automatic item generation systems also rely on templating
(item models) to generate items [21, 27, 44]. For instance, IGOR [20,
Chapter 13] has a similar approach to templating as CTAT and
ASSISTment. While the templating approach is suitable for sym-
bolic problems, they do not automate diagram generation. Authors
still need to provide individual diagrams in templates in CTAT,
ASSISTment, or IGOR.

Edgeworth complements these tools by enabling authors to
automate diagram variation production. Diagrammatic problems
generated by Edgeworth can be integrated into problem banks
and managed by the outer loop of ITS for an adaptive learning expe-
rience. Edgeworth does not currently support template variables
in the textual prompt or diagram labels. However, it is possible to
parameterize the example diagram as a problem template and use
existing template-based systems to generate problem variations.

Other problem generation systems employ different methods
from templating. A number of systems use program synthesis to
synthesize a program that produces many problem instances [23].
Singh et al. [52] generate algebraic equality proof problems from
example problems. Weitekamp et al. [55] speed up ITS authoring
in CTAT by synthesizing ITS problems from user demonstration of
problem solutions. Andersen et al. [6] model procedures to solve
algebra problems as imperative programs and use execution traces
of these programs to generate a series of problems. Notably, Gul-
wani et al. [24] generate solutions to geometry drawing problems
by synthesizing programs of ruler-and-compass geometry construc-
tions from a program specification. Though not strictly a problem
generation tool, the generated solutions can be illustrated diagram-
matically. However, the approach in [24] is specific to the domain
of geometry, whereas Edgeworth’s approach is domain-agnostic.

Synthesis-based systems often have an advantage of a simpler user
experience, since the author can provide examples and the tool
automates problem generation itself. The approach of Edgeworth
takes inspiration from these tools in that Edgeworth only requires
the author to provide one example diagram. However, Edgeworth
does not need to generate programs from a specification. It merely
performs mutations on an example diagram.

Commonly used in human intelligence tests and as computer vi-
sion benchmarks, Figural Analogy Problems (FAPs) give a series of
diagrams and ask the respondent to infer or select the next diagram
given some patterns in the given diagrams [56]. Early automatic
FAP generators were based on human-crafted shape composition
rules [28] and cognitive models [17]. Newer systems [8, 54] encode
variation rules [11] as first-order logic constraints. While FAPs are
by definition highly diagrammatic, FAPs focus on pure visual rea-
soning, while in STEM problems often focus on mapping symbolic
notations to visuals. Moreover, diagrams in STEM are much more
diverse due to the multitude of disciplines, and are not limited by a
few variation rules. That said, Edgeworth takes inspiration from
FAP generators’ rule-based approach. However, Edgeworth’s mu-
tations are domain-agnostic and operate on logical objects, not
fragments of the diagram itself.

3 FORMATIVE INTERVIEW

We conducted semi-structured interviewswith 6 educators to under-
stand how they author, use, and maintain diagrammatic problems.
We recruited participants based on their background in education
and usage of diagrams in their work. Selected participants work
as secondary school teachers, university professors, teaching as-
sistants, and competitive math coaches. All participants (P1–6)
indicated that they have experience creating instructional material,
authoring problems, and/or developing online courses that include
visual content. Example interview questions include what roles
diagrams play in the participant’s educational materials, how stu-
dents interact with diagrams, and how diagrams are authored and

100

L@S ’24, July 18–20, 2024, Atlanta, GA, USA Wode Ni, Sam Estep, Hwei-Shin Harriman, Kenneth R. Koedinger, & Joshua Sunshine

Original diagram Mutated diagram #1 Mutated diagram #2

Mutated diagram #3 Mutated diagram #4 Mutated diagram #5

Mutated diagram #6 Mutated diagram #7 Mutated diagram #8

Pick a Domain

Preset

Prompt:
In which of the following diagrams are triangles an

 congruent?

Mutator seed:

Number of variations to generate:

Delete
20%

Edit
80%

Geometry

GENERATE NEW PROBLEM SELECT FROM PRESETS

c04p01: Congruent triangles

Input Scenario

Point A, B, C, D, E
Let AE := Segment(A, E)
Let EC := Segment(E, C)
Let AB := Segment(A, B)
Let BC := Segment(B, C)
Let CD := Segment(C, D)
Let DA := Segment(D, A)
Let ED := Segment(E, D)
Let EB := Segment(E, B)
Collinear(A,E,C)
Collinear(B,E,D)
Angle r := InteriorAngle(B,E,C)
EqualLength(ED, EB)
EqualLength(AE, EC)
EqualLengthMarker(AE, EC)
RightMarked(r)
AutoLabel A, B, C, D, E

test2

1 10 20 30 40 50

GENERATE VARIATIONS

Advanced options

EDGEWORTH 2 diagrams selected EXPORT SHOW PROBLEM

DEA
DEC

Advanced options

Domain Program

Style Program

Types

Constructors

Functions

Predicates

Add Statements

Triangle Point Angle

Segment

MkSegment MkMidpoint

InteriorAngle MkTriangle

Bisector MidSegment

All

Edit Statements

Delete Statements

�

�

�

�

�

�

�
�

�

�

Figure 3: The user interface of Edgeworth. The author first provides a textual prompt (a) as an input scenario in Substance
notation (b). Then, clicking “Generate Variations” (e) generates the specified number of diagram variations (d) at random based
on a string seed and weights on Add, Delete or Edit mutations (c). In the diagram panel, the top-left diagram (f) corresponds to the
input scenario and the rest are diagram variations generated by Edgeworth. The author can visually select diagrams (g) to assemble a
diagrammatic multiple-choice problem (h). If needed, the author can fine-tune the mutator using “Advanced options” (i j).

maintained. The full interview protocol is included in supporting
files.

Participants reported the usage of diagrams to build conceptual
understanding and emphasized the need for deliberate practice to
acquire representational fluency. Traditional educational materi-
als, especially in higher education, tend to emphasize “procedures,
memorization, and symbolic manipulation” (P6). Similarly, teachers
such as P1 suffer from “the curse of knowledge” of teaching visual
fluency: teachers tend to “under-train” students and they struggle to
use visuals for problem-solving. As a result, students often become
“symbolically good” and do not develop “good conceptual under-
standing” (P3). Visuals like diagrams and graphs provide alternative
representations that help students “develop intuition” (P3) and “be-
come better problem-solvers” (P4). To improve their instruction, all
of our participants (P1–6) attempt to incorporate more diagrams
in their instructional materials. Some also ask students to draw,
annotate, and explain diagrams (P1, P2, P6). P2 encourages students
to learn “multiple representations” and makes diagrams central
to their math and programming curricula. When students prac-
tice with diagrams, teachers also gain richer feedback on students’
level of understanding, and “learned more from this [student-drawn
diagram] than 10 similar problems without the pictures” (P6).

While the benefits of and need for diagrammatic practice are
clear, participants reported that tool limitations led to manual and
repetitive authoring experience. Because participants typically cre-
ate many problems and iterate on their content often, they face a
trade-off when authoring visual content: more visuals are beneficial

for learning but are time-consuming to create and modify. When au-
thoring practice problems, P1 struggled to “create simple shapes by
myself” and always ended up “copy-pasting and searching online”
repeatedly. Similarly, P6 reported that they “get online images for
pre-made resources, but whenever I want something a little custom,
it’ll take a lot of time.” To streamline the visual authoring process,
P2 and P5 developed custom pipelines for authoring problem sets
and quizzes using existing programming tools. Like the problems
described by prior research on diagramming tool usability [37],
these tools often lack support for “high-level tweaking of my di-
agrams” (P2) and “are a pain to use because the language is not
semantic and hard to use for non-programmers” (P5). Participants
showed us many examples of tedious changes necessary to create
diagram variations.

From the results, we derived the following design requirements
for tool design to address participants’ needs:

D1 Address the need for practicing representational fluency
D2 Simplify the workflow for generating diagram variations
D3 Obviate the need to attend to low-level diagramming details

4 SYSTEM DESIGN OF EDGEWORTH

Edgeworth realizes the design goals from Section 3 by: 1) pro-
viding a domain-agnostic workflow for rapidly authoring diagram-
matic practice problems (D1), 2) automatically suggesting numer-
ous diagram variations of a single example diagram and allowing
the author to visually select from the variations (D2), and 3) fully

101

Edgeworth: Efficient and Scalable Authoring of Visual Thinking Activities L@S ’24, July 18–20, 2024, Atlanta, GA, USA

automating the layout for all diagram variations (D3). Figure 3
walks through the user interface of Edgeworth, a simple and
clean design that encapsulates the ideas above.

In Section 4.1, we demonstrate the workflow of Edgeworth
by showing how to author an example diagrammatic problem in
Euclidean geometry. We then describe Edgeworth’s approach
to diagram layout in Section 4.2 and how it generates diagram
variation in Section 4.3.

4.1 Author Workflow

In this section, we use an example from high school geometry to
demonstrate the process of creating a problem in Edgeworth.

4.1.1 Create an example diagram. The authorwants towrite a prob-
lem about triangle congruence to assess students’ understanding
of the Side-Angle-Side (SAS) rule. They want to create a translation
problem including one diagram where the SAS rule is satisfied and
three others where it is not. The author first describes an example
diagram (Figure 3 b) where this rule is satisfied. They construct a
scenario involving two triangles: △𝐷𝐸𝐶 and △𝐷𝐸𝐴 share one side
𝐷𝐸 and have two equal sides 𝐸𝐶 and 𝐸𝐴. ∠𝐶𝐸𝐵 indicates that 𝐴𝐶
and 𝐵𝐷 are perpendicular and therefore ∠𝐷𝐸𝐶 = ∠𝐷𝐸𝐴. Therefore,
△𝐷𝐸𝐶 and △𝐷𝐸𝐴 are congruent by the SAS rule. Given this descrip-
tion, Edgeworth lays out the diagram automatically (Figure 3 f).

4.1.2 Select from Edgeworth-generated diagrams. Now the author
can use Edgeworth to mutate the example diagram by clicking
“Generate Variations” (Figure 3 e). Edgeworth performs muta-
tions on the example scenario and generates a grid of diagram
variations. The grid is designed to give the author an overview of
the mutation results, and diagrams are prominent in each cell to
facilitate faster visual selection. The top-left cell in the grid will
always display the original example diagram (Figure 3 b f), and
the rest correspond to mutation results.

By inspecting each diagram in the grid, the author can determine
if it is a good fit for their translation problem. If so, they click the top-
right checkbox (Figure 3 g) to include the diagram in the problem.

4.1.3 Preview and export the problem. After the author picks a
sufficient number of diagrams (4 in this case), they can preview
the translation problem by clicking “Show Problem” (Figure 3 h),
which displays an interactive multiple-choice widget. If the author
is satisfied, they can click “Export” to download the diagrams and
metadata to use the problem in their context. Edgeworth exports
to Scalable Vector Graphics (SVG) images for static media, source
programs for interactive use, and detailed mutation trace metadata
for comprehensive analysis and reference purposes.

4.2 Diagram Notation and Layout

Edgeworth is built on Penrose, an open-source diagram format
and layout engine [57]. Compared with alternatives, Penrose of-
fers two advantages: (1) a high-level diagram notation that’s easy
for authoring and (2) an automatic layout engine. A diagram in
Penrose consists of a textual description of the diagram content
(Substance) and a reusable layout stylesheet.

Substance is a simple declarative notation for describing ob-
jects and relations in a diagram. As shown in Figure 4, Substance

has three kinds of statements: type statements (e.g., Carbon c) de-
clare new objects; constructors (Bond b1 := MakeSingleBond(c,
cl1)) create new objects from existing objects; and predicates
(ZeroValenceElectrons(c)) indicate relations among objects. A
stylesheet translates the Substance notation to shapes and layout
constraints, and then Penrose solves for diagram layouts automati-
cally. Since Edgeworth authors only interact with Substance, we
omit the description of the stylesheet language in this paper; more
details about stylesheets can be found in the official documentation1
and Ye et al. [57].

Carbon c

Oxygen o

Chlorine cl1, cl2

Bond b1 := MakeSingleBond(c, cl1)

Bond b2 := MakeSingleBond(c, cl2)

Bond b3 := MakeDoubleBond(c, o)

ZeroValenceElectrons(c)

FourValenceElectrons(o)

SixValenceElectrons(cl1)

SixValenceElectrons(cl2)

C

Cl

Cl

O

Figure 4: Diagram and Substance notation for the Lewis structure
of phosgene (COCl2).

The Penrose ecosystem offers a wide range of stylesheets for
STEMdiagrams, and the current Edgeworth implementation builds
on Penrose’s geometry, chemistry, and graph stylesheets for dia-
gram layout. Since the existing Penrose stylesheets are primarily
used to generate a few human-written examples, they lack coverage
for variations of Substance descriptions required by Edgeworth.
To this end, we have contributed our improved stylesheets, diagram
examples, and new standard library functions to Penrose.

Edgeworth is the first application of Penrose that concurrently
optimizes and renders a grid of multiple diagrams. Therefore, we
have made significant upstream contributions to Penrose to sup-
port Edgeworth’s use case. To make Edgeworth a performant
client-side web application for interactive use, we have contributed
to the migration from Haskell to TypeScript and various perfor-
mance improvements to efficiently run tens of layout optimization
jobs in a single session. Compared to the state of Penrose at the
publication of Ye et al. [57], our contributions have helped improve
the performance of the system by 100×.

4.3 Program Mutation

Edgeworth generates diagram variations by mutating the example
diagram written in Substance. We purposely designed the system
to include a small set of simple and type-safe mutation operations.
Similar to generic tree-editing algorithms [19], Edgeworth sup-
ports 3 kinds of mutation operators: Add, Delete, and Edit. Add
appends a statement. Delete removes a statement and all other
references to that statement.

Since compilation errors in Substance will not produce dia-
grams, Edit involves one of the type-safe patterns listed below.
Each Edit pattern contains a guard and an action. The guard checks
if the operator is applicable to the given Substance statement, and
1https://penrose.cs.cmu.edu/docs

102

https://penrose.cs.cmu.edu/docs

L@S ’24, July 18–20, 2024, Atlanta, GA, USA Wode Ni, Sam Estep, Hwei-Shin Harriman, Kenneth R. Koedinger, & Joshua Sunshine

Which diagram has an Euler circuit?

1 2

3 4

Check Answer

Choose the correct Lewis structure for HCN.

1

H

C

N

2

H

C

N

3

H C N

4

H
C

N

Check Answer

In which of the following diagrams are triangles and congruent?

1 2

3 4

Check Answer

Figure 5: We used Edgeworth to recast real-world problems as diagrammatic translation problems. Left: Determine if triangles
are congruent. Middle: Identify the correct Lewis structure for hydrogen cyanide. Right: Identify graphs with Euler circuits.

the action performs the mutation. For instance, Replace Argu-

ments is only applicable when the current context has existing
variables of the desired type.
• Swap Arguments reorders the arguments passed into a state-
ment; e.g., if A and B are Triangles:
Similar(A, B)→ Similar(B, A)
• Replace Arguments replaces the arguments passed into a state-
ment with other arguments defined in scope; e.g., if A, B, C, D
are Points:
s := MkSegment(A, B)→ s := MkSegment(C, D)
• Replace Function replaces a statement with a different state-
ment that takes the same arguments; e.g., if T is a Triangle and
E is an Angle:
Equilateral(T)→ Scalene(T)
Segment s := Bisector(E)→ RightAngleMarked(E)

Algorithm 1 The Edgeworth mutation algorithm.

1: function Generate(𝑝, ℓ, ℎ, 𝑎, 𝑑, 𝑒, 𝐴, 𝐷, 𝐸)
2: 𝑝′ ← 𝑝

3: 𝑛 ← uniform random integer between ℓ and ℎ
4: for 𝑖 from 1 to 𝑛 do

5: 𝑥 ← uniform random real between 0 and 𝑎 + 𝑑 + 𝑒
6: if 𝑥 < 𝑎 then

7: 𝑚 ← RandomAdd(𝐴, 𝑝′)
8: else if 𝑥 < 𝑎 + 𝑑 then

9: 𝑚 ← RandomDelete(𝐷, 𝑝′)
10: else

11: 𝑠 ← uniform random element of Statements(𝑝′)
12: 𝑚 ← RandomEdit(𝐸, 𝑠)
13: end if

14: 𝑝′ ← Mutate(𝑝′,𝑚)
15: end for

16: return 𝑝′

17: end function

Algorithm 1 shows how the Edgeworth mutator works, at
a high level. In addition to the input Substance description 𝑝 ,
Edgeworth also takes a number of user-defined configuration
parameters: (1) a number of variations to generate (the number
of times Generate is called); (2) a range of mutation counts per
variation (the input variables ℓ and ℎ); (3) weights for Add, Delete,
and Edit operations (the input variables 𝑎, 𝑑 , and 𝑒 respectively);
and (4) filter sets 𝐴, 𝐷 , and 𝐸 which limit the set of mutations that
the Add, Delete, and Edit operations can produce.

Given an example diagram, Edgeworth performs several rounds
of mutation generation. Each round results in a series of mutations
that alter the input to produce a variation. The number of mutations
(line 3) is bounded by the configuration parameters.

To generate a single mutation, Edgeworth makes a weighted
choice (line 5) of the mutation kinds and enumerates all possi-
ble mutations for the chosen kind: Add enumerates all possible
statements to add (line 7);Delete randomly deletes an existing state-
ment (line 9); Edit enumerates all possible edits for all statements
(line 11) and picks one of them randomly (line 12). The randomness
of Edgeworth is controlled by a single random generator seed.

Users can specify filter sets under the “Advanced options” section
of the UI, shown in Figure 3 i j . The filters default to “All,” which
indicates that themutatormay change any statement in the example
diagram. While this precise configuration may be useful, we ended
up not using them in our evaluation (Sections 5, 6, and 7) and
instead achieving our results using only Edgeworth’s simpler core
set of configuration options, i.e., weights on mutation operators.

5 EXPRESSIVENESS EVALUATION IN THREE

DOMAINS (RQ1)

Edgeworth’s mutation-based approach is domain-agnostic: it sim-
ply applies generic program mutations on any Substance program.
Through case studies of Euclidean geometry, general chemistry,
and discrete mathematics, we evaluate if this approach is expres-
sive enough for different instructional contexts in STEM. The 3

103

Edgeworth: Efficient and Scalable Authoring of Visual Thinking Activities L@S ’24, July 18–20, 2024, Atlanta, GA, USA

domains are selected based on their ubiquity in STEM education
and visual representations. All three domains have a wide audi-
ence in K-12 and higher education, making them rich sources for
existing instructional materials. Each domain has canonical visual
representations that are explicitly taught to students. Therefore,
students can benefit from visual practice in these domains.

We choose problems from existing textbooks or online courses
and follow the procedure outlined in Section 4.1 to recast each
problem. All problems are included in supporting files.

5.1 Summary Statistics

In the case studies, we reproduced 31 problems in total. Since creat-
ing the example diagram (Section 4.1.1) took the most time in this
process, we report statistics on the example diagrams here.

On average, Edgeworth’s diagram notation is compact and
simple. The description for example diagrams are 14.7 lines of code
(𝜎 = 4.57) and 109.9 tokens (𝜎 = 48.6). In contrast, the average SVG
source of these same diagrams have 454.7 lines of code (𝜎 = 184.3)
and 1290.4 tokens (𝜎 = 650.4). This indicates that Edgeworth
provides a concise and compact textual representation of diagrams
across all three domains.

5.2 Euclidean Geometry

We sample 17 Euclidean geometry problems from Holt Geometry
[10], a high school geometry textbook. Figure 5 (left) shows an
example problem. The textbook uses a consistent visual style of
predominantly black line segments and dots with text labels. Most
diagrammatic problems are presented as one diagram followed by
one or more multiple-choice problems. We’ve recast the problems
as diagrammatic translation problems.

For this domain, we build on the existing geometry stylesheet
from Penrose [57, Section 5.3] for diagram layout. In this domain,
Edgeworth weights deletions 20% and edits 80%. There are many
different types of entities in geometry, so additions tend to intro-
duce elements to the diagram that obviously do not pertain to the
question prompt. Thus in this domain, the Edgeworthmutator ap-
plies no additions. The reason we weight edits higher than deletions
is that many of our geometry problems ask about specific named
points, and deletions can make the diagram invalid by removing
points that are mentioned in the prompt.

We use the problem in Figure 5 (left) to demonstrate how Edge-
worth generates variations that are meaningful as problem options.
In the diagram shown, △𝐷𝐸𝐶 and △𝐷𝐸𝐴 are congruent by the Side-
Angle-Side rule. In particular, they share a side (𝐷𝐸), the sides 𝐴𝐸
and 𝐸𝐶 appear to have equal length and are marked as such with
a tick, and ∠𝐷𝐸𝐴 and ∠𝐷𝐸𝐶 are both right angles and therefore
equal. Option 4 in Figure 5 involves mutating the scenario by re-
moving the right angle marker which makes it impossible to prove
that ∠𝐷𝐸𝐴 and ∠𝐷𝐸𝐶 are equal. This is an example of the Delete
mutation described in Section 4.3. The angle appears to be a right
angle in Option 3, so this option might serve as a good distractor
for students still learning the distinction between the appearance
of angles and their markings.

Option 3 involves mutating Option 2 by editing which sides have
equal length. In Option 3, sides 𝐶𝐷 and 𝐴𝐸 are equal instead of 𝐴𝐸
and 𝐶𝐸. This is an example of the Replace Arguments mutation

Figure 6:The first ten diagram variations generated by Edgeworth
for the problem shown in Figure 5 (left).

described in Section 4.3. A student might incorrectly select Option
3 if they believed in a Side-Angle congruence rule, where a single
angle and single side being equal could prove congruence. Finally,
in Option 1 ∠𝐶𝐸𝐵 neither is marked as a right angle nor appears as
a right angle. A student might incorrectly select Option 1 if they
believed in a Side-Side congruence rule, where two sides being
equal could prove congruence.

Figure 6 shows the first 10 variations Edgeworth generated
from the example diagram. To create our problem, shown in Figure 5
(left), we selected the original diagram and two incorrect variations
(numbers 1 and 8), plus another variation in an extended pool
(number 16). As shown in Figure 6, there are many other viable
answer choices in the first 10 variations. Many of the diagrams
involve extra details that are irrelevant to the problem, like the circle
in number 6 or the vector above point B in number 2. These extra
details can be pedagogically useful for teaching students to filter
irrelevant information in the domain. Some of the other diagrams
are very obviously incorrect, like number 10 which doesn’t show a
blue triangle, or number 7 where the blue triangle is much larger
than the orange triangle; these can be useful for building confidence
when students are first learning.

5.3 General Chemistry: Lewis Structures

We chose 7 chemistry problems on Lewis structure from an online
General Chemistry 1 course [1]. These problems test students’ un-
derstanding of how atoms bond together based on formal charges.
The module introduces students to the octet rule: the tendency of
main group atoms to form enough bonds to obtain eight valence
electrons. Lewis structure diagrams show bonds among atoms and
valence electrons on atoms typically following the octet rule.

We extend the existing Penrose chemistry stylesheet to include
notation and layout rules for Lewis structures. To permit incorrect
diagrams, the chemistry stylesheet must not enforce the octet rule.
It does specify that an atom can have any number of bonds and that
it can have 0, 2, 4, or 6 valence electrons. These specifications cover

104

L@S ’24, July 18–20, 2024, Atlanta, GA, USA Wode Ni, Sam Estep, Hwei-Shin Harriman, Kenneth R. Koedinger, & Joshua Sunshine

all problem scenarios in this Lewis structure module.2 In accordance
with stylistic conventions in the field, Edgeworth automatically
lays out atoms, bonds, and electrons to maximize bond angles and
repel electrons from bonds . For molecules involved in all 7 prob-
lems, the layout algorithm produces high-quality diagrams without
any manual manipulation needed from the author.

To configure Edgeworth for this domain, we weight edits 100%.
We exclusively weight on edits because we observed that variations
of molecules never add or delete atoms and bonds. Although valence
electrons may be added or deleted, they are modeled as predicates
that can be edited to change the number of electrons for an atom
(e.g., ZeroValenceElectrons(H) → TwoValenceElectrons(H))
via a Replace Function mutation operation.

Figure 5 (middle) shows an Edgeworth Lewis structure problem
for hydrogen cyanide, with the correct diagram in the top-left.
Incorrect choices for this problem can be generated via mutation.
For instance, if a student forgets that nitrogen must have eight
surrounding electrons, they might choose the bottom-left option,
which was generated by removing the valence electrons around
nitrogen. Or, if a student does not know that hydrogen should only
have two electrons instead of eight, they might select the top-right
choice, which was generated by mutating the number of electrons
around hydrogen from zero to six. Finally, if a student does not
know that free electrons should be minimized, they might pick the
bottom-right diagram, which was generated by mutating up the
number of electrons around carbon and nitrogen and changing the
triple bond to a double bond.

5.4 Discrete Math: Graphs

We draw 7 graph theory problems from the “Graphs” chapter of Dis-
crete Mathematics and Its Applications [50, Chapter 10]. We model
our visual representation after the style used in the textbook, allow-
ing students to recognize Edgeworth-generated diagrams as they
are already accustomed to recognizing graph diagrams. We created
a new Penrose stylesheet for four subdomains of graphs (directed
vs not, and multigraph vs not). For each of these subdomains, Edge-
worth automatically lays out graph nodes, edges, loops, arrows,
and labels in configurations that minimize confusing overlap of
diagram elements. As with the other domains, no manual tweaking
is necessary to obtain high-quality diagrams for problem variations.

To configure Edgeworth for the graph domain, we weight ad-
ditions 50%, deletions 40%, and edits 10%. We disfavor edits in this
domain because most of them are not useful: Replace Function
is inapplicable for any of our graph subdomains, and Swap Argu-

ments only applies to directed graphs. Replace Arguments is
meaningful, but most desirable mutations for graphs are better rep-
resented by the addition or deletion of edges, or sometimes nodes.
For instance, a bipartite graph can become not-so by adding edges,
or a strongly-connected graph can become not-so by deleting edges.

Figure 5 (right) shows an Edgeworth problem asking which
of four directed graphs have an Euler circuit. The bottom-right
diagram does not have an Euler circuit, as can be seen by observing
that the sum of 𝑎’s in-degree and out-degree is odd. In contrast, for
the diagram in the bottom-left generated by deleting edge (𝑎, 𝑑),

2“Odd electron molecules are very rare and cannot achieve full octets of electrons
around atoms because of the odd number of electrons.” [1]

every node has an even sum of in-degree and out-degree, and
indeed there does exist an Euler circuit. This condition on degree
is only sufficient for undirected graphs, though; the diagram in the
top-right is generated by flipping edge (𝑏, 𝑐) from the bottom-left
diagram, but does not have an Euler circuit, thwarting the simple
degree counting heuristic. Finally, the simple diagram in the top-left
is generated by deleting 𝑑 and trivially has an Euler circuit.

6 RELIABILITY EVALUATION (RQ2)

Edgeworth’s approach involves random mutations. The mutation
operations are type-safe, but type-safety does not prevent degener-
ate diagram layouts. For instance, Point A, B; Triangle t :=
MkTriangle(A, A, B) typechecks. However, since the triangle
described in this scenario involves the Point A twice, Edgeworth
will produce a line segment, not a triangle from this scenario. Are
Edgeworth suggestions dominated by these nonsensical scenar-
ios? In this section, we evaluate whether Edgeworth can reliably
suggest diagrams that are valid answer options to multiple-choice
translation problems.

6.1 Methods

The goal of Edgeworth is to generate enough diagram variations to
assemble a four-choice multiple-choice problem for a given prompt.
To this end, we use the following classification scheme for diagram
variations: a variation can be a Correct or Incorrect answer to the
prompt, or Discarded because the diagram is invalid for missing
key components or lacking readability.

For RQ2, we define “relatively few variations” to be 10 diagrams,
and consider Edgeworth to have generated a translation problem
in 𝑛 variations if at that point we have (possibly including the orig-
inal diagram) at least one Correct diagram, at least one Incorrect
diagram, and in total at least four diagrams that are either Correct
or Incorrect.

To evaluate this coding scheme, we randomly sampled 2 prob-
lems from each of our 3 domains, for 60 generated diagrams total.
The first two authors each coded all 60 of those sample diagrams,
after which we calculated the Cohen’s𝜅 [14] statistic. Then with the
assumption that our coding scheme has reasonable inter-rater reli-
ability, at least one author coded all remaining diagrams, allowing
us to determine the number of our prompts for which Edgeworth
was able to successfully generate a multiple-choice problem. The
coding results are included in supporting files.

6.2 Results

6.2.1 Reliability of problem generation. For RQ2, we found that
Edgeworth generated valid multiple-choice problems for 27/31
prompts within 10 variations, and for 30/31 problems within 20
variations. For each of these four failures with 10 variations, Edge-
worth did generate at least four Correct examples, but we had to
Discard all the other diagrams, leaving no Incorrect examples. For
the one remaining failure with 20 variations, Edgeworth never
succeeded even after we increased the number of variations to 50.

6.2.2 Distribution. The original diagram is a Correct answer for
every prompt, except for the two Euler circuit prompts, in which
the original diagram is Incorrect. For Edgeworth-generated vari-
ations, the full distribution of classes is shown in Table 1.

105

Edgeworth: Efficient and Scalable Authoring of Visual Thinking Activities L@S ’24, July 18–20, 2024, Atlanta, GA, USA

Correct Incorrect Discard total

geometry 52 54 64 170
chemistry 3 54 13 70
discrete 28 25 17 70

total 85 133 94 310
Table 1: Distribution of diagram variation classes.

The chemistry domain had a far smaller proportion of Correct
variations than the other two domains because the only way for
a variation to be Correct is for it to coincidentally be identical to
the original diagram. Interestingly, in the other two domains, there
were about the same number of Correct and Incorrect variations.

In the geometry domain, Discarded diagrams were primarily ei-
ther diagrams missing elements referred to in the question prompt,
or diagrams that were visually degenerate (e.g., everything com-
pressed into a single line). In chemistry, we Discarded diagrams
where the molecule was disconnected. Finally, in the graph domain,
we Discarded diagrams in which some nodes were labeled and oth-
ers were unlabeled (i.e., Edgeworth had inserted new unlabeled
nodes when all nodes in the original diagram were labeled).

6.2.3 Inter-rater Agreement. We sampled two problems per domain
from the problems collected in Section 5 to evaluate inter-rater
agreement (six problems total, 19% of the dataset). We found perfect
agreement on that sample, so 𝜅 = 1.

7 EXPERTWALKTHROUGH

DEMONSTRATION AND FEEDBACK

The intended users of Edgeworth are educators who create prob-
lems. These users are very important to the education system since
other teachers make use of their problems. Therefore, we recruited
educators who created visual practice problems in multiple domains
and educational settings to evaluate ecological validity of Edge-
worth-generated problems (Item RQ3). While an expert survey
may suffice for rating problem quality, we opted for walkthrough
demonstration, based on prior research on evaluation methods by
Ledo et al. [36], to gather additional qualitative feedback on the
value of having the toolkit in their day-to-day work.

7.1 Participants and Procedure

We recruited domain expert educators of chemistry, geometry, and
graph theory. Experts were invited based on their extensive teach-
ing experience in the domain and past experience in authoring
diagrammatic content. In contrast to the criteria in the formative
study (Section 3), this study selected participants based on their
domain-specific expertise in authoring problems. Recruited edu-
cators came from a wide range of institutions, including MOOC
platforms, liberal arts colleges, community colleges, research uni-
versities, and secondary schools. The average teaching experience
among the 9 expert educators (E1–E9) was 10.33 years, with a stan-
dard deviation of 8.39 years, highlighting a broad range of teaching
experience. One of the participants is the author of problems in one
of the domains in Section 5.

Each expert participated in a 60- to 90-minute session via video
conferencing, which was recorded with their consent. At the start

of each session, we demonstrated the workflow of Edgeworth
end-to-end, as described in Section 4.1, on one problem outside of
the expert’s domain. For the remainder of the session, we asked the
expert to evaluate two to four problems sampled from Section 5 in
their domain. Per problem, the expert rated 10 diagram variations
based on the categories described in Section 6.1. In addition, we
asked participants to provide more granular feedback on diagram
quality. After rating the diagram variations, they were asked to pick
diagrams to assemble a four-choice diagrammatic translation prob-
lem. After the problem was assembled and shown on the interface,
we asked (1) if they would use the problem in their instruction and
(2) how they would author the diagram using their own workflow.
The full study protocol is included in supporting files.

7.2 Ecological Validity of Generated Problems

(RQ3)

Overall, experts were happy with the problems they assembled with
Edgeworth-generated diagrams. Experts (E1–9) indicated that
they would use all of the problems they created using Edgeworth
in their coursework. Other experts said theywould use Edgeworth-
generated problems “early in the learning process” (E3) and “as a
warm up exercise at the start of the next lecture” (E4). In addition,
the problems can be used to review previously introduced concepts.
For example, E3 found the diagram variations that break the octet
rule to be useful for “after you’ve also introduced expanded octet or
non-octet-rule things.” Experts plan to use Edgeworth-generated
problem to “focus on things that students struggle with” (E3) and
when introducing concepts that are “all about visualization” (E5)
such as planarity of graphs. E7 was excited to use problems we
created in the expressiveness evaluation (Section 5) in their class
because they were “going to be covering everything [on the list].”
In addition to just asking students to select correct diagrams, E3
also pointed out that by prompting students to “tell me what is
wrong rather than just which is the correct one,” the problem can
be used to “dive deeper.” Similarly, E4 proposed to use Edgeworth
problems as “an interactive warm-up for reviewing the last lecture,
where students vote on and explain why a diagram is correct.” E7
even plans to use Edgeworth as “a creative instead of assessment
piece” and “have the students be the teacher . . . playing this role
more, they get better at tests, because they understand what the
test makers are doing.”

7.3 Expert Feedback

Experts reacted positively to Edgeworth. They found Edgeworth
to be a “perfect fit” (E1, E6, E8) for generating multiple-choice prob-
lems, especially “low-stake” (E2, E3, E5, E6, E8, E9) quizzes that
“incentivize [students] to keep up with the class” (E8). Experts said
the automatic layout of Edgeworth “draws things really fast” (E5),
“saves you the time of drawing multiple structures” (E3), and pro-
duces “beautiful” (E4, E7) diagrams. Comparing with their existing
tools, Edgeworth is a “nice time-saver” (E3) and the translation
problems they authored during the session would take an “enor-
mous amount of work” (E4), “infinitely longer than this took” (E6).

Notably, experts pointed out that Edgeworth aids creativity by
promoting “recognition over recall” (E6). Specifically, Edgeworth
helps with “the thinking about how to come up with the graphs”

106

L@S ’24, July 18–20, 2024, Atlanta, GA, USA Wode Ni, Sam Estep, Hwei-Shin Harriman, Kenneth R. Koedinger, & Joshua Sunshine

and simplifies the diagram layout such that “you just generate some
mutations that you click refresh until it looks nice” (E6). E2 liked
that “it can come up with different possibilities than the ones that
would be immediately apparent to me.”

In addition, experts commented that Edgeworth can enable
them to give students more practice. For instance, E4 noted that
“there’s a feedback loop where . . . if I had a really good tool for
generating nice multi-choice questions, then I could envision doing
that much more frequently.”

Edgeworth sometimes produces isomorphic diagrams, i.e., dia-
grams with identical content but different layouts. These diagrams
occur when Edgeworth’s mutations have no net impact on the ex-
ample diagram, e.g., the mutator removes an edge from a graph and
adds it back. Surprisingly, experts found value in these isomorphic
diagrams. In their geometry course, E2 said that their textbook’s
diagrams “get drawn the same way over and over again. And some
students get stuck into thinking that the concept is only commu-
nicated when the diagram is drawn [exactly] that way.” When
assembling a problem about the 𝐻𝐶𝑁 molecule, E3 compared two
isomorphic variations, and picked one over another because “it’s
drawn the opposite . . .which is interesting and I think students
are going to get it wrong.” Similarly, E1 finds isomorphic diagrams
to be useful for “molecules with resonance structures.” E5 found
isomorphic planar graphs to be particularly useful because stu-
dents find them “painstaking to visualize when they just started.”
E5 planned to use Edgeworth to “draw a graph that doesn’t look
like it could be planar first, but then untangle it to show that the
graph is actually planar.”

8 CONCLUSION AND FUTUREWORK

To address the need for visual practice materials in diverse STEM
domains (D1), we designed Edgeworth to use a domain-agnostic
approach to generate diagrammatic problems. Using Edgeworth,
the author is only responsible for creating a single diagram. From
this diagram, Edgeworth generates diagram variations and fully
automates diagram layout (D3). The author visually selects vari-
ations to assemble a problem with multiple diagram variations
(D2).

To evaluate if Edgeworth can express multiple STEM domains
(RQ1), we conducted case studies in geometry, general chemistry,
and discrete mathematics (Section 5) to show that Edgeworth can
express real-world problems and create pedagogically meaningful
variations to the example diagrams. The diagrams generated by
Edgeworth also need to have consistently high visual quality and
content diversity (RQ2). To understand if Edgeworth meets this
goal, we analyzed Edgeworth-generated diagrams for all problems
from the case studies (Section 6). The results show that Edgeworth
can reliably generate diagrams suitable for 27/31 four-choice di-
agrammatic problems within 10 variations, and 30/31 problems
within 20 variations. Finally, we conducted walkthrough demonstra-
tions with 9 domain expert educators to understand the ecological
validity of Edgeworth-generated problems (RQ3) and get holistic
feedback on the tool (Section 7). Experts indicated that Edgeworth
generates useful diagrammatic problems for their instructional con-
texts. Moreover, they commented on how Edgeworth can speed
up the problem design process and thereby scale up visual practice
in classrooms.

We now discuss potential future directions for Edgeworth.

8.1 Mixed-Initiative Integration with AI

We believe Edgeworth is both a product of existing AI tech-
niques and a promising platform to assess both domain-specific and
general-purpose AI technologies in visual practice authoring. Like
many classical AI systems, Edgeworth makes use of a symbolic
description language (Section 4.2) and mutates the description of
the example diagram to search for viable variations. The description
language then generates layout constraints that compile to energy
functions, the gradients of which drive an optimizer to arrange the
diagram layout. In the educational setting, Edgeworth provides
a mixed-initiative [5] experience: authors focus on specifying the
content and the general direction of variations, while Edgeworth
fully automates the details of variation generation and layout.

Moreover, the high-level description language of Edgeworth
promotes a potentially more robust integration with LLMs. Current
methods of automatic diagram generation using LLMs mainly gen-
erate low-level SVG elements and often “fail to maintain accurate
geometric relations or only generating outputs of limited complex-
ity such as single icons or font characters” [9]. Jain et al. [29] showed
that GPT-4 does not do a good job of generating low-level visual
code like SVG. In contrast, when prompted systematically, GPT-4
can reliably generate higher-level Penrose programs which yield
correct and legible diagrams.

A promising direction for future work is to augment Edgeworth
with an LLM. When authoring a diagram, like the example diagram
described in Section 4.1.1, the Edgeworth user can specify the
diagram in natural language and this augmented version of Edge-
worth can prompt an LLM to generate the example diagram in
Edgeworth’s notation.

8.2 Towards an abundance of adaptable visual

learning materials

In 1954, Jacques Hadamard studied how mathematicians and physi-
cists work, and many of them reported they worked by reasoning
about hard problems in visual terms [25]. When citing Hadamard
in his 1987 talk, Alan Kay lamented the fact that while experts “do
their thing” visually, students are still learning symbolically [30].
We found that the educators we interviewed echoed Kay’s con-
cerns (Section 3). Notably, educators spend significant effort craft-
ing visual learning materials that suit their needs in the classroom.
We believe this effort means much more than copy-pasting and low-
level tweaking of shapes in a diagram. Instead, educators encode
their teaching context and their expertise in this process. Com-
putational tools should provide enough support to provide better
ergonomics for the authoring and adaptation of visual learning
materials. As our first step, we built Edgeworth to let educators
use one example diagram as the leverage to generate variations of
diagrammatic multiple choice problems. There are ample oppor-
tunities to use Edgeworth to create problem variations, too. By
simply increasing the number of variations and/or using a variation
as a new example diagram, the author can use Edgeworth to gen-
erate diagrams for related problems on the same topic. We plan to
study how to leverage Edgeworth’s scalable diagram production
for instructional contexts of larger scale.

107

Edgeworth: Efficient and Scalable Authoring of Visual Thinking Activities L@S ’24, July 18–20, 2024, Atlanta, GA, USA

REFERENCES

[1] [n. d.]. General Chemistry 1. https://oli.cmu.edu/courses/general-chemistry-1/
[2] Shaaron Ainsworth, Vaughan Prain, and Russell Tytler. 2011. Drawing to learn in

science. Science 333, 6046 (8 2011), 1096–1097. https://doi.org/10.1126/SCIENCE.
1204153/SUPPL{_}FILE/1204153.AINSWORTH.SOM.PDF

[3] Vincent Aleven, Bruce M. McLaren, Jonathan Sewall, and Kenneth R. Koedinger.
2006. The cognitive tutor authoring tools (CTAT): Preliminary evaluation
of efficiency gains. In International Conference on Intelligent Tutoring Systems,
Vol. 4053 LNCS. Springer, Springer, Berlin, Heidelberg, Jhongli, 61–70. https:
//doi.org/10.1007/11774303{_}7

[4] Vincent Aleven, Jonathan Sewall, Bruce M. McLaren, and Kenneth R. Koedinger.
2006. Rapid authoring of Intelligent Tutors for real-world and experimental use.
Proceedings - Sixth International Conference on Advanced Learning Technologies,
ICALT 2006 2006 (2006), 847–851. https://doi.org/10.1109/ICALT.2006.1652575

[5] James F. Allen. 1999. Mixed-initiative interaction. , 14–16 pages. https://doi.org/
10.1109/5254.796083

[6] Erik Andersen, Sumit Gulwani, and Zoran Popović. 2013. A trace-based frame-
work for analyzing and synthesizing educational progressions. Conference on
Human Factors in Computing Systems - Proceedings (2013), 773–782. https:
//doi.org/10.1145/2470654.2470764

[7] Hiroaki Ayabe, Emmanuel Manalo, and Erica de Vries. 2022. Problem-appropriate
diagram instruction for improving mathematical word problem solving. Frontiers
in Psychology 13 (10 2022), 6113. https://doi.org/10.3389/fpsyg.2022.992625

[8] David Barrett, Felix Hill, Adam Santoro, Ari Morcos, and Timothy Lillicrap. 2018.
Measuring abstract reasoning in neural networks. In Proceedings of the 35th
International Conference on Machine Learning (Proceedings of Machine Learning
Research, Vol. 80), Jennifer Dy and Andreas Krause (Eds.). PMLR, 511–520. https:
//proceedings.mlr.press/v80/barrett18a.html

[9] Jonas Belouadi, Anne Lauscher, and Steffen Eger. 2024. AutomaTikZ: Text-Guided
Synthesis of Scientific Vector Graphics with TikZ.

[10] Edward B Burger, David J Chard, Earlene J Hall, Paul A Kennedy, Steven J
Leinwand, Freddie L Renfro, Dale G Seymour, and Bert K Wattis. 2007. Holt
geometry. Holt, Rinehart and Winston.

[11] Patricia A. Carpenter, Marcel Adam Just, and Peter Shell. 1990. What one
intelligence test measures: A theoretical account of the processing in the
Raven progressive matrices test. Psychological Review 97, 3 (1990), 404–431.
https://doi.org/10.1037/0033-295X.97.3.404

[12] Michelene T.H. Chi and Ruth Wylie. 2014. The ICAP Framework: Linking Cogni-
tive Engagement to Active Learning Outcomes. Educational Psychologist 49, 4
(10 2014), 219–243. https://doi.org/10.1080/00461520.2014.965823

[13] Pakey P.M. Chik and Mun Ling Lo. 2004. Simultaneity and the enacted object
of learning. In Classroom Discourse and the Space of Learning. Vol. 9781410609.
Routledge, 89–112. https://doi.org/10.4324/9781410609762

[14] Jacob Cohen. 1960. A coefficient of agreement for nominal scales. Educational
and psychological measurement 20, 1 (1960), 37–46.

[15] Louis Deslauriers, Logan S. McCarty, Kelly Miller, Kristina Callaghan, and Greg
Kestin. 2019. Measuring actual learning versus feeling of learning in response to
being actively engaged in the classroom. Proceedings of the National Academy
of Sciences of the United States of America 116, 39 (9 2019), 19251–19257. https:
//doi.org/10.1073/pnas.1821936116

[16] Andrea A. DiSessa. 2004. Metarepresentation: Native competence and targets for
instruction. Cognition and Instruction 22, 3 (2004), 293–331. https://doi.org/10.
1207/s1532690xci2203{_}2

[17] Susan E. Embretson. 1998. A Cognitive Design System Approach to Generating
Valid Tests: Application to Abstract Reasoning. Psychological Methods 3, 3 (1998),
380–396. https://doi.org/10.1037/1082-989X.3.3.380

[18] K Anders Ericsson. 2006. The Influence of Experience and Deliberate Practice on
the Development of Superior Expert Performance. In The Cambridge handbook
of expertise and expert performance. Cambridge University Press, New York, NY,
US, 683–703. https://doi.org/10.1017/CBO9780511816796.038

[19] Jean Rémy Falleri, Floréal Morandat, Xavier Blanc, Matias Martinez, and Martin
Monperrus. 2014. Fine-grained and accurate source code differencing. In ASE
2014 - Proceedings of the 29th ACM/IEEE International Conference on Automated
Software Engineering. Association for Computing Machinery, Inc, 313–323. https:
//doi.org/10.1145/2642937.2642982

[20] Mark J Gierl and Thomas M Haladyna. 2012. Automatic item generation: Theory
and practice. Routledge.

[21] Mark J. Gierl and Hollis Lai. 2012. The Role of Item Models in Automatic Item
Generation. International Journal of Testing 12, 3 (7 2012), 273–298. https:
//doi.org/10.1080/15305058.2011.635830

[22] Robert L. Goldstone, David H. Landy, and Ji Y. Son. 2010. The Education of
Perception. Topics in Cognitive Science 2, 2 (4 2010), 265–284. https://doi.org/10.
1111/J.1756-8765.2009.01055.X

[23] Sumit Gulwani. 2014. Example-based learning in computer-aided STEM educa-
tion. Commun. ACM 57, 8 (2014), 70–80. https://doi.org/10.1145/2634273

[24] Sumit Gulwani, Vijay Anand Korthikanti, and Ashish Tiwari. 2011. Synthesizing
geometry constructions. ACM SIGPLAN Notices 46, 6 (6 2011), 50–61. https:

//doi.org/10.1145/1993316.1993505
[25] Jacques Hadamard. 1997. The Mathematician’s Mind. Princeton University Press.

https://doi.org/10.1515/9780691212906/HTML
[26] D F Halpern, A Graesser, and M Hakel. 2007. Learning principles to guide

pedagogy and the design of learning environments. Association for Psychological
Science (2007).

[27] Heinz Holling, Jonas P. Bertling, and Nina Zeuch. 2009. Automatic item genera-
tion of probability word problems. Studies in Educational Evaluation 35, 2 (2009),
71–76. https://doi.org/10.1016/j.stueduc.2009.10.004 Assessment of Competen-
cies.

[28] Lutz F. Hornke and Michael W. Habon. 1986. Rule-Based Item Bank Construction
and EvaluationWithin the Linear Logistic Framework. Applied Psychological Mea-
surement 10, 4 (12 1986), 369–380. https://doi.org/10.1177/014662168601000405

[29] Rijul Jain, Wode Ni, and Joshua Sunshine. 2023. Generating Domain-Specific
Programs for Diagram Authoring with Large Language Models. In Companion
Proceedings of the 2023 ACM SIGPLAN International Conference on Systems, Pro-
gramming, Languages, and Applications: Software for Humanity (Cascais, Portugal)
(SPLASH’23). Association for Computing Machinery, New York, NY, USA, 70–71.
https://doi.org/10.1145/3618305.3623612

[30] Alan Kay. 1987. Doing with images makes symbols. https://archive.org/details/
AlanKeyD1987

[31] Philip J. Kellman, Christine M. Massey, and Ji Y. Son. 2010. Perceptual learning
modules in mathematics: Enhancing students’ pattern recognition, structure
extraction, and fluency. Topics in Cognitive Science 2, 2 (4 2010), 285–305. https:
//doi.org/10.1111/j.1756-8765.2009.01053.x

[32] K Koedinger. 1990. Abstract planning and perceptual chunks: Elements of
expertise in geometry. Cognitive Science 14, 4 (12 1990), 511–550. https:
//doi.org/10.1016/0364-0213(90)90008-K

[33] Kenneth R. Koedinger and Atsushi Terao. 2019. A Cognitive Task Analysis of
Using Pictures To Support Pre-Algebraic Reasoning. Proceedings of the Twenty-
Fourth Annual Conference of the Cognitive Science Society (4 2019), 542–547. https:
//doi.org/10.4324/9781315782379-129

[34] Ghader Kurdi, Jared Leo, Bijan Parsia, Uli Sattler, and Salam Al-Emari. 2020. A
systematic review of automatic question generation for educational purposes.
International Journal of Artificial Intelligence in Education 30 (2020), 121–204.

[35] Jill H. Larkin and Herbert A. Simon. 1987. Why a Diagram is (Sometimes)
Worth Ten Thousand Words. Cognitive Science 11, 1 (1 1987), 65–100. https:
//doi.org/10.1016/S0364-0213(87)80026-5

[36] David Ledo, StevenHouben, Jo Vermeulen, Nicolai Marquardt, Lora Oehlberg, and
Saul Greenberg. 2018. Evaluation strategies for HCI Toolkit research. Conference
on Human Factors in Computing Systems - Proceedings 2018-April (4 2018). https:
//doi.org/10.1145/3173574.3173610

[37] Dor Ma’ayan, Wode Ni, Katherine Ye, Chinmay Kulkarni, and Joshua Sunshine.
2020. How Domain Experts Create Conceptual Diagrams and Implications for
Tool Design. Conference on Human Factors in Computing Systems - Proceedings
20 (4 2020). https://doi.org/10.1145/3313831.3376253

[38] Ference Marton. 2006. Sameness and Difference in Transfer. Journal of the Learn-
ing Sciences 15, 4 (2006), 499–535. https://doi.org/10.1207/S15327809JLS1504{_}3

[39] Richard Mayer. 2020. Multimedia Learning. Cambridge University Press. https:
//doi.org/10.1017/9781316941355

[40] W. M. McCracken and W. C. Newstetter. 2001. Text to diagram to symbol:
Representational transformations in problem-solving. Proceedings - Frontiers in
Education Conference 2 (2001). https://doi.org/10.1109/FIE.2001.963721

[41] Mitchell J Nathan, Ana C Stephens, D KMasarik, MarthaWAlibali, and Kenneth R
Koedinger. 2002. Representational fluency in middle school: A classroom study.
In Proceedings of the twenty-fourth annual meeting of the North American chapter
of the International Group for the Psychology of Mathematics Education, Vol. 1.
ERIC Clearinghouse for Science, Mathematics and Environmental Education˜. . . ,
462–472.

[42] Fred G.W.C. Paas and Jeroen J.G. Van Merriënboer. 1994. Variability of Worked
Examples and Transfer of Geometrical Problem-Solving Skills: A Cognitive-
Load Approach. Journal of Educational Psychology 86, 1 (1994), 122–133. https:
//doi.org/10.1037/0022-0663.86.1.122

[43] Harold Pashler, Patrice M Bain, Brian A Bottge, Arthur Graesser, Kenneth
Koedinger, Mark McDaniel, and Janet Metcalfe. 2007. Organizing Instruction
and Study to Improve Student Learning. Technical Report. NCER, IES„ U.S. De-
partment of Education, Washington, DC.

[44] Rahul Patel, Shashwat Sanghavi, Dhruv Gupta, and Mehul S Raval. 2015. CheckIt -
A low cost mobile OMR system. In TENCON 2015 - 2015 IEEE Region 10 Conference.
1–5. https://doi.org/10.1109/TENCON.2015.7372983

[45] Martina A Rau. 2013. Conceptual learning with multiple graphical representations:
Intelligent tutoring systems support for sense-making and fluency-building processes.
Ph. D. Dissertation. Carnegie Mellon University.

[46] Martina Angela Rau. 2017. A Framework for Educational Technologies that Sup-
port Representational Competencies. IEEE Transactions on Learning Technologies
10, 3 (7 2017), 290–305. https://doi.org/10.1109/TLT.2016.2623303

[47] Leena Razzaq, Jozsef Patvarczki, Shane F. Almeida, Manasi Vartak, Mingyu Feng,
Neil T. Heffernan, and Kenneth R. Koedinger. 2009. The ASSISTment builder:

108

https://oli.cmu.edu/courses/general-chemistry-1/
https://doi.org/10.1126/SCIENCE.1204153/SUPPL{_}FILE/1204153.AINSWORTH.SOM.PDF
https://doi.org/10.1126/SCIENCE.1204153/SUPPL{_}FILE/1204153.AINSWORTH.SOM.PDF
https://doi.org/10.1007/11774303{_}7
https://doi.org/10.1007/11774303{_}7
https://doi.org/10.1109/ICALT.2006.1652575
https://doi.org/10.1109/5254.796083
https://doi.org/10.1109/5254.796083
https://doi.org/10.1145/2470654.2470764
https://doi.org/10.1145/2470654.2470764
https://doi.org/10.3389/fpsyg.2022.992625
https://proceedings.mlr.press/v80/barrett18a.html
https://proceedings.mlr.press/v80/barrett18a.html
https://doi.org/10.1037/0033-295X.97.3.404
https://doi.org/10.1080/00461520.2014.965823
https://doi.org/10.4324/9781410609762
https://doi.org/10.1073/pnas.1821936116
https://doi.org/10.1073/pnas.1821936116
https://doi.org/10.1207/s1532690xci2203{_}2
https://doi.org/10.1207/s1532690xci2203{_}2
https://doi.org/10.1037/1082-989X.3.3.380
https://doi.org/10.1017/CBO9780511816796.038
https://doi.org/10.1145/2642937.2642982
https://doi.org/10.1145/2642937.2642982
https://doi.org/10.1080/15305058.2011.635830
https://doi.org/10.1080/15305058.2011.635830
https://doi.org/10.1111/J.1756-8765.2009.01055.X
https://doi.org/10.1111/J.1756-8765.2009.01055.X
https://doi.org/10.1145/2634273
https://doi.org/10.1145/1993316.1993505
https://doi.org/10.1145/1993316.1993505
https://doi.org/10.1515/9780691212906/HTML
https://doi.org/10.1016/j.stueduc.2009.10.004
https://doi.org/10.1177/014662168601000405
https://doi.org/10.1145/3618305.3623612
https://archive.org/details/AlanKeyD1987
https://archive.org/details/AlanKeyD1987
https://doi.org/10.1111/j.1756-8765.2009.01053.x
https://doi.org/10.1111/j.1756-8765.2009.01053.x
https://doi.org/10.1016/0364-0213(90)90008-K
https://doi.org/10.1016/0364-0213(90)90008-K
https://doi.org/10.4324/9781315782379-129
https://doi.org/10.4324/9781315782379-129
https://doi.org/10.1016/S0364-0213(87)80026-5
https://doi.org/10.1016/S0364-0213(87)80026-5
https://doi.org/10.1145/3173574.3173610
https://doi.org/10.1145/3173574.3173610
https://doi.org/10.1145/3313831.3376253
https://doi.org/10.1207/S15327809JLS1504{_}3
https://doi.org/10.1017/9781316941355
https://doi.org/10.1017/9781316941355
https://doi.org/10.1109/FIE.2001.963721
https://doi.org/10.1037/0022-0663.86.1.122
https://doi.org/10.1037/0022-0663.86.1.122
https://doi.org/10.1109/TENCON.2015.7372983
https://doi.org/10.1109/TLT.2016.2623303

L@S ’24, July 18–20, 2024, Atlanta, GA, USA Wode Ni, Sam Estep, Hwei-Shin Harriman, Kenneth R. Koedinger, & Joshua Sunshine

Supporting the life cycle of tutoring system content creation. IEEE Transactions on
Learning Technologies 2, 2 (2009), 157–166. https://doi.org/10.1109/TLT.2009.23

[48] Jihyun Rho, Martina A. Rau, and Barry D. Van Veen. 2022. Preparing Future
Learning with Novel Visuals by Supporting Representational Competencies. In
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial
Intelligence and Lecture Notes in Bioinformatics), Vol. 13355 LNCS. Springer Science
and Business Media Deutschland GmbH, 66–77. https://doi.org/10.1007/978-3-
031-11644-5{_}6

[49] Doug Rohrer and Kelli Taylor. 2007. The shuffling of mathematics problems
improves learning. Instructional Science 35, 6 (11 2007), 481–498. https://doi.org/
10.1007/s11251-007-9015-8

[50] Kenneth H Rosen. 1999. Discrete mathematics & applications (7th ed.). McGraw-
Hill.

[51] Heidi L. Schnackenberg, Howard J. Sullivan, Lars F. Leader, and Elizabeth E.K.
Jones. 1998. Learner preferences and achievement under differing amounts of
learner practice. Educational Technology Research and Development 46, 2 (1998),
5–16. https://doi.org/10.1007/bf02299786

[52] Rohit Singh, Sumit Gulwani, and Sriram Rajamani. 2012. Automatically Generat-
ing Algebra Problems. Proceedings of the AAAI Conference on Artificial Intelligence

26, 1 (2012), 1620–1628. https://doi.org/10.1609/AAAI.V26I1.8341
[53] Kurt VanLehn. 2006. The Behavior of Tutoring Systems. International Journal of

Artificial Intelligence in Education 16, 3 (1 2006), 227–265.
[54] Ke Wang and Zhendong Su. 2015. Automatic generation of Raven’s progressive

Matrices. In IJCAI International Joint Conference on Artificial Intelligence, Vol. 2015-
Janua. 903–909.

[55] Daniel Weitekamp, Erik Harpstead, and Ken R. Koedinger. 2020. An Interaction
Design for Machine Teaching to Develop AI Tutors. Conference on Human Factors
in Computing Systems - Proceedings (4 2020). https://doi.org/10.1145/3313831.
3376226

[56] Yuan Yang, Deepayan Sanyal, Joel Michelson, James Ainooson, and Maithilee
Kunda. 2022. Automatic Item Generation of Figural Analogy Problems: A Review
and Outlook. (1 2022). https://arxiv.org/abs/2201.08450v1http://arxiv.org/abs/
2201.08450

[57] Katherine Ye, Wode Ni, Max Krieger, Dor Ma’ayan, Jenna Wise, Jonathan Aldrich,
Joshua Sunshine, and Keenan Crane. 2020. Penrose: From Mathematical Notation
to Beautiful Diagrams. ACM Transactions on Graphics 39, 4 (7 2020), 16. https:
//doi.org/10.1145/3386569.3392375

109

https://doi.org/10.1109/TLT.2009.23
https://doi.org/10.1007/978-3-031-11644-5{_}6
https://doi.org/10.1007/978-3-031-11644-5{_}6
https://doi.org/10.1007/s11251-007-9015-8
https://doi.org/10.1007/s11251-007-9015-8
https://doi.org/10.1007/bf02299786
https://doi.org/10.1609/AAAI.V26I1.8341
https://doi.org/10.1145/3313831.3376226
https://doi.org/10.1145/3313831.3376226
https://arxiv.org/abs/2201.08450v1 http://arxiv.org/abs/2201.08450
https://arxiv.org/abs/2201.08450v1 http://arxiv.org/abs/2201.08450
https://doi.org/10.1145/3386569.3392375
https://doi.org/10.1145/3386569.3392375

	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 Usefulness of Diagram Variations for Representational Fluency
	2.2 Tools for Problem Generation

	3 Formative interview
	4 System Design of Edgeworth
	4.1 Author Workflow
	4.2 Diagram Notation and Layout
	4.3 Program Mutation

	5 Expressiveness Evaluation in Three Domains (RQ1)
	5.1 Summary Statistics
	5.2 Euclidean Geometry
	5.3 General Chemistry: Lewis Structures
	5.4 Discrete Math: Graphs

	6 Reliability Evaluation (RQ2)
	6.1 Methods
	6.2 Results

	7 Expert Walkthrough Demonstration and Feedback
	7.1 Participants and Procedure
	7.2 Ecological Validity of Generated Problems (RQ3)
	7.3 Expert Feedback

	8 Conclusion and Future Work
	8.1 Mixed-Initiative Integration with AI
	8.2 Towards an abundance of adaptable visual learning materials

	References

