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Abstract

A large body of work has been devoted to defining and identifying communities in social and
information networks, i.e., in graphs in which the nodes represent underlying social entities and the
edges represent some sort of interaction between pairs of nodes. Most such research begins with
the premise that a community should be thought of as a set of nodes that has more and/or better-
connected edges between its members than between members of that set and the remainder of the
network—e.g., a set of nodes that has good properties with respect to the combinatorial quantity
known as conductance. In this paper, we explore from a novel perspective several questions related to
identifying meaningful communities in large social and information networks, and we come to several
striking conclusions that have implications for community detection in such networks.

Rather than define a procedure to extract a set of nodes from a graph and then attempt to
interpret that set as a meaningful community, we will employ approximation algorithms for the graph
partitioning problem in an attempt to characterize as a function of size the statistical and structural
properties of partitions of graphs that could plausibly be interpreted as meaningful communities. In
particular, we define the network community profile plot, which attempts to characterize the “best”
possible community—according to the conductance measure—over a wide range of size scales. We
study over 70 large sparse real-world networks taken from a wide range of application domains
(ranging from traditional and on-line social networks, to technological and information networks and
web graphs, and ranging in size from thousands of nodes up to tens of millions of nodes), and for each
of these networks we compute a wide range of statistics, including “regularized” and “non-regularized”
versions of the network community profile plot.

Taken together, our empirical results suggest a significantly more refined picture of the community
structure in large real-world networks than has been appreciated previously. For example, we find
that the “best” communities tend to be quite small—e.g., no more than about 100 nodes—and barely
connected to the rest of the network. We also observe that beyond this size scale the best possible
communities gradually blend into the expander-like core, and thus that a roughly inverse relationship
exists between community size and optimal community quality. Local fluctuations are common, and
even at the largest size scales we find local graph structure such that these networks are significantly
less expander-like than corresponding random graphs. In nearly every network dataset we examined,
however, we observe tight but almost trivial communities at very small scales, and at larger and
larger size scales, the best possible communities gradually blend in more and more with the rest of
the network and thus become less and less community-like.

This behavior is not explained, even at a qualitative level, by any of the commonly-used network
generation models. Moreover, this behavior is exactly the opposite of what one would expect based
on experience with and intuition from expander graphs, from graphs that are well-embeddable in a
low-dimensional structure, and from small social networks that have served as testbeds of community
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detection algorithms. Certain aspects of it, e.g., the existence of deep cuts or well-defined “commu-
nities” at small size scales and the non-existence of them at very large scales, are a consequence of
the extreme sparsity of the networks, as we demonstrate by analyzing sparse random graph models.
Other aspects of it, e.g., the relatively gradual increase of the network community profile plot as
a function of increasing size scale, depend in a subtle manner on the way in which local clustering
information is propagated from smaller to larger size scales in the network. We have found that a
generative graph model, in which new edges are added via an iterative “forest fire” burning process,
is able to produce graphs exhibiting a network community profile plot similar to what we observe in
our network datasets.
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1 Introduction

A large amount of research has been devoted to the task of defining and identifying communities in social
and information networks, i.e., graphs in which the nodes represent underlying social entities and the
edges represent interactions between pairs of nodes. Most recent papers on the subject of community
detection in large networks begin by noting that it is a matter of common experience that communities
exist in such networks. These papers then note that, although there is no agreed-upon definition for a
community, a community should be thought of as a set of nodes that has more and/or better-connected
edges between its members than between its members and the remainder of the network. These papers
then apply a range of algorithmic techniques and intuitions to extract subsets of nodes and then interpret
these subsets as meaningful communities. In this paper, we explore from a novel perspective several
questions related to identifying meaningful communities in large sparse networks, and we come to several
striking conclusions that have implications for community detection in such networks.

1.1 Overview of our approach

At the risk of oversimplifying the large and often intricate body of work on community detection in
complex networks, the following five-part story describes the general methodology:

(1) Data are modeled by an “interaction graph.” In particular, part of the world gets mapped to a
graph in which nodes represent entities and edges represent some sort of interaction between pairs
of those entities. For example, in a social network, nodes may represent individual people and edges
may represent friendships or interactions or communication between pairs of those people.

(2) The hypothesis is made that the world contains groups of entities that interact more strongly
amongst themselves than with the outside world, and hence the interaction graph should contain
sets of nodes, i.e., communities, that have more and/or better-connected “internal edges” connecting
members of the set than “cut edges” connecting the set to the rest of the world.

(3) A objective function or metric is chosen to formalize this idea of groups with more intra-group than
inter-group connectivity.

(4) An algorithm is then selected to find sets of nodes that exactly or approximately optimize this
or some other related metric. Sets of nodes that the algorithm finds are then called “clusters,”
“communities,” “groups,” “classes,” or “modules”.

(5) The clusters or communities or modules are evaluated in some way. For example, one may map
the sets of nodes back to the real world to see whether they appear to make intuitive sense as a
plausible community. Alternatively, one may attempt to acquire some form of “ground truth,” in
which case the set of nodes output by the algorithm may be compared with it.

With respect to points (1)–(4), we will follows the usual path in this paper. In particular, we will
adopt points (1) and (2), and we will then explore the consequence of making such a choice, i.e., of
making such an hypothesis and modeling assumption. For point (3), we choose a natural and widely-
adopted notion of community goodness called conductance, which is also known as the normalized cut
metric [33, 144, 92]. Informally, the conductance of a set of nodes (defined and discussed in more detail
in Section 2.3) is the ratio of the number of “cut” edges between that set and its complement divided by



4 Leskovec et al.

the number of “internal” edges inside that set. Thus, to be a good community, a set of nodes should have
small conductance, i.e., it should have many edges inside and few edges pointing outside. Conductance is
widely used to capture the intuition of a good community; it is a fundamental combinatorial quantity; and
it has a very natural interpretation in terms of random walkers on the interaction graph. Moreover, since
there exist a rich suite of both theoretical and practical algorithms [86, 146, 106, 107, 17, 94, 95, 159, 53],
we can for point (4) compare and contrast several methods to approximately optimize it.

However, it is in point (5) that we deviate from previous work. Instead of focusing on individual
groups of nodes and trying to interpret them as “real” communities, we investigate statistical properties
of a large number of communities over a wide range of size scales in over 70 large sparse real-world social
and information networks. We take a step back and ask questions such as: How well do real graphs split
into communities? What is a good way to measure and characterize presence or absence of communities
in networks? What are typical community sizes and typical community qualities? To address these
and related questions, we introduce the concept of a network community profile plot. (This is defined
and described in more detail in Section 3.1.) Intuitively, the network community profile plot measures
the “best” community as a function of community size in a network. Formally, we will define it as the
conductance value of the minimum conductance set of cardinality k in the network, as a function of
k. Operationally, we will use several natural heuristics based on approximation algorithms for solving
the Minimum Conductance Cut Problem in order to compute different approximations to the network
community profile plot. By comparing and contrasting these plots for a large number of networks, and by
computing other related structural properties, we obtain results that suggest a significantly more refined
picture of the community structure in large real-world networks than has been appreciated previously.

We have gone to a great deal of effort to be confident that we are computing quantities fundamental
to the networks we are considering, rather than artifacts of the heuristics and approximation algorithms
we employ. First, we use several classes of graph partitioning approximation algorithms to probe the
networks for sets of nodes that could plausibly be interpreted as communities. These algorithms, including
flow-based methods, spectral methods, and hierarchical methods, have complementary strengths and
weaknesses that are well understood in theory and in practice. For example, flow-based methods are
known to have difficulties with expanders [106, 107], and flow-based post-processing of other methods
are known in practice to yield cuts with extremely good conductance values [103, 105]. On the other
hand, spectral methods are known to have difficulties when they confuse long paths with deep cuts [146,
83], a consequence of which is that they may be viewed as computing a “regularized” approximation
to the network community profile plot. (See Section 5 for a more detailed discussion of these and
related issues.) Second, we compute spectral-based lower bounds and also semidefinite-programming-
based lower bounds for the conductance of our network datasets. Third, we compute a wide range
of other structural properties of the networks, e.g., sizes, degree distributions, minimum and average
diameters of the purported communities, internal versus external conductance values of the purported
communities, etc. Fourth, we recompute statistics on versions of the networks that have been modified
in well-understood ways, e.g., by removing small barely-connected sets of nodes or by randomizing the
edges. Fifth, we compare our results across not only over 70 large social and information networks,
but also numerous commonly-studied small social networks, expanders, and low-dimensional mesh-like
objects, and we compare our results on each network with what is known from the field from which the
network is drawn. To our knowledge, this makes ours the most extensive such analysis of the community
structure in large real-world social and information networks. Finally, we also compare results with
analytical and/or simulational results on a wide range of commonly and not-so-commonly used network
generation models [124, 25, 9, 101, 135, 111, 70, 71].

1.2 Summary of our results

Main Empirical Findings: Taken as a whole, the results we will present in this paper suggest a
rather detailed and somewhat counterintuitive picture of the community structure in large social and
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information networks. Although nearly every network we have analyzed has properties that provide an
exception to any simple explanation, several qualitative properties of community structure, as revealed
by the network community profile plot, are nearly universal:

• Up to a size scale, which empirically is roughly 100 nodes, there not only exist cuts with relatively
good conductance, i.e., good communities, but also the slope of the network community profile
plot is generally sloping downward. This latter point suggests that smaller communities can be
combined into meaningful larger communities, a phenomenon that we empirically observe in many
cases.

• At that size scale, we often observe the global minimum of the network community profile plot; these
are the “best” communities, according to the conductance measure, in the entire graph. These are,
however, rather uninterestingly connected to the rest of the network; for example, in most cases,
we observe empirically that they are a small set of nodes barely connected to the remainder of the
network by just a single edge.

• Above the size scale of roughly 100 nodes, the network community profile plot gradually increases,
and thus there is a nearly inverse relationship between community size and community quality. This
upward slope suggests, and empirically we often observe, that as a function of increasing size, the
best possible communities become more and more “blended into” the remainder of the network. In
particular, in many cases, larger communities can be broken into smaller and smaller pieces, often
recursively, each of which is more community-like than the original supposed community.

• Even up to the largest size scales, we observe significantly more structure than would be seen, for
example, in an expander-like random graph on the same degree sequence.

A caricature of a typical network community profile plot is illustrated in Figure 1(a). This illustrates
not only tight communities at very small scales, but also that at larger and larger size scales (the precise
cutoff point for which is difficult to specify precisely) the best possible communities gradually “blend in”
more and more with the rest of the network and thus gradually become less and less community-like.
Eventually, even the existence of large well-defined communities is quite questionable if one models the
world with an interaction graph, as in point (1) above, and if one also defines good communities as
densely linked clusters that are weakly-connected to the outside, as in hypothesis (2) above.

To understand the properties of generative models sufficient to reproduce the phenomena we have
observed, we have examined in detail the structure of our social and information networks. Again,
although nearly every network is an exception to any simple rule, we have observed that an “octopus”
or “jellyfish” model [41, 149, 145] provides a rough first approximation to structure of many of the
networks we have examined. That is, most networks may be viewed as having a “core,” with no obvious
underlying geometry and which contains a constant fraction of the nodes, and then there are a large
number of relatively small “whiskers” that are only tenuously connected to the core. Figure 1(b) presents
a caricature of this network structure. Of course, our network datasets are far from random in numerous
ways—e.g., they have higher edge density in the core; the small barely-connected whisker-like pieces are
generally larger, denser, and more common than in corresponding random graphs; they have higher local
clustering coefficients; and this local clustering information gets propagated globally into larger clusters
or communities in a subtle and location-specific manner.

Main Modeling Results: This behavior is not reproduced, at even a qualitative level, by any of the
commonly-used network generation models we have examined, including but not limited to preferential
attachment models, copying models, and hierarchical models. Moreover, this behavior is qualitatively
different than what is observed in networks with an underlying mesh-like or manifold-like geometry (which
may not be surprising, but is significant insofar as these structures are often used as a scaffolding upon
which to build other models), in networks that are good expanders (which may be surprising, since it is
often observed that large social networks are expander-like in some sense), and in small social networks
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(a) Typical NCP plot (b) Caricature of network structure

Figure 1: (a) Typical network community profile plot for a large social or information network. (b) Caricature
of network structure for a large social or information network, as suggested by our empirical evaluations. See
the text for more information on the “core” and “whiskers,” and note that the core in our real-world networks is
actually extremely sparse.

such as those used as testbeds for community detection algorithms (which may have implications for
the applicability of these methods to detect large community-like structures in these networks). For the
commonly-used network generation models, as well as for expander-like, low-dimensional, and small social
networks, the network community profile plots are generally downward sloping or relatively flat.

Although it is well understood at a qualitative level that nodes that are “far apart” or “less alike”
(in some sense) should be less likely to be connected in a generative model, understanding this point
quantitatively so as to reproduce the empirically-observed relationship between small-scale and large-
scale community structure turns out to be rather subtle. We can make the following observations:

• Very sparse random graph models with no underlying geometry have relatively deep cuts at small
size scales, the best cuts at large size scales are very shallow, and there is a relatively abrupt
transition in between. (This is shown pictorially in Figure 1(a) for a randomly rewired version of
the original network.) This is a consequence of the extreme sparsity of the data: sufficiently dense
random graphs do not have these small deep cuts; and the relatively deep cuts in sparse graphs are
due to small tree-like pieces that are connected by a single edge to a core which is an extremely
good expander.

• A “forest fire” generative model [111, 112], in which edges are added in a manner that imitates a
fire-spreading process, reproduces not only the deep cuts at small size scales and the absence of
deep cuts at large size scales but other properties as well: the small barely connected pieces are
significantly larger and denser than random; and for appropriate parameter settings the network
community profile plot increases relatively gradually as the size of the communities increases.

• The details of the “forest fire” burning mechanism are crucial for reproducing how local clustering
information gets propagated to larger size scales in the network, and those details shed light on the
failures of commonly-used network generation models. In the Forest Fire Model we have used [111,
112], a new node selects a “seed” node to which to add an edge, and then with some probability
it “burns” or adds an edge to the each of the seed’s neighbors, and so on, iteratively. Although
there is a “preferential attachment” and also a “copying” flavor to this mechanism, two factors are
particularly important: first is the local (in a graph sense, as there is no underlying geometry in the
model) manner in which the edges are added; and second is that the number of edges that a new
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node can add can vary widely, depending on the local structure around the seed vertex. Depending
on the neighborhood structure around the initial seed, occasional large fires help to seed relatively
good, relatively large, well-localized communities.

Thus, intuitively, the structure of the whiskers, which are not unlike small social networks that have
been extensively studied, are responsible for the downward part of the network community profile plot,
while the core of the network and the manner in which the whiskers root themselves to the core helps
to determine the upward part of the network community profile plot. Due to local clustering effects,
whiskers in real networks are larger and give deeper cuts than whiskers in corresponding randomized
graphs, fluctuations in the core are larger and deeper than in corresponding randomized graphs, and thus
the network community profile plot increases more gradually and levels off to a conductance value well
below the value for a corresponding rewired network.

Main Methodological Contributions: To obtain these and other conclusions, we have employed
approximation algorithms for graph partitioning to investigate structural properties of our network
datasets. Briefly, we have done the following:

• We have used Metis+MQI, which consists of using the popular graph partitioning package Metis [94]
followed by a flow-based MQI post-processing [105]. With this procedure, we obtain sets of nodes
of that have very good conductance scores. At very small size scales, these sets of nodes could
plausibly be interpreted as good communities, but at larger size scales, we often obtain tenuously-
connected (and in some cases unions of disconnected) pieces, which perhaps do not correspond to
intuitive communities.

• Thus, we have also used the Local Spectral method of Anderson, Chung, and Lang [13] to obtain
sets of nodes with good conductance value that that are “nicer” or more “regularized” than those
pieces returned by Metis+MQI. Since spectral methods confuse long paths with deep cuts [146, 83],
empirically we obtain sets of nodes that have worse conductance scores than sets returned by
Metis+MQI, but which are more “tighter” and more “community-like.” For example, at small
size scales the sets of nodes returned by the Local Spectral Algorithm agrees with the output of
Metis+MQI, but at larger scales this algorithm returns sets of nodes with substantially smaller
diameter and average diameter, which seem plausibly more community-like.

We have also used what we call the Bags of Whiskers Heuristic to identify small barely connected sets of
nodes that exert a surprisingly large influence on the network community profile plot.

Both Metis+MQI and the Local Spectral Algorithm scale well and thus either may be used to obtain
sets of nodes from very large graphs. For many of the small to medium-sized networks, we have checked
our results by applying one or more other spectral, flow-based, or heuristic algorithm, although these do
not scale as well to very large graphs. Finally, for some of our smaller network datasets, we have computed
spectral-based and semidefinite-programming-based lower bounds, and the results are consistent with the
conclusions we have drawn.

1.3 Outline of the paper

After this introductory section, we will in Section 2 describe some useful background, including a brief
description of the network datasets we have analyzed. Then, in Section 3 we will present our main results
on the properties of the network community profile plot for our network datasets. We will place an
emphasis on how the phenomena we observe in large social and information networks are qualitatively
different than what one would expect based on intuition from and experience with expander-like graphs,
low-dimensional networks, and commonly-studied small social networks. Then, in Sections 4 and 5, we
will summarize the results of additional empirical evaluations. In particular, in Section 4, we will describe
some of the observations we have made in an effort to understand what structural properties of these
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large networks are responsible for the phenomena we observe; and in Section 5, we will describe some of
the results of probing the networks with different approximation algorithms in an effort to be confident
that the phenomena we observed really are properties of the networks we study, rather than artifactual
properties of the algorithms we chose to use to study those networks. We will follow this in Section 6
with a discussion of complex network generation models. We will see that the commonly-used network
generation models fail to reproduce the counterintuitive phenomena we observe. We will also see that
very sparse random networks reproduce certain aspects of the phenomena, and that a generative model
based on an iterative “forest fire” burning mechanism reproduces very well the qualitative properties
of the phenomena we observe. Finally, in Section 7 we provide a discussion of our results in a broader
context, and in Section 8 we present a brief conclusion.

2 Background on communities and overview of our methods

In this section, we will provide background on our data and methods. We will start in Section 2.1
with a description of the network datasets we will analyze. Then, in Section 2.2, we will review related
community detection and graph clustering ideas. Finally, in Section 2.3, we will provide a brief description
of approximation algorithms that we will use. There exist a large number of reviews on topics related to
those discussed in this paper. For example, see the reviews on community identification [125, 52], data
clustering [90], graph and spectral clustering [75, 151, 143], graph and heavy-tailed data analysis [126,
29, 49], surveys on various aspects of complex networks [10, 55, 124, 25, 51, 114, 23], the monographs on
spectral graph theory and complex networks [33, 41], and the book on social network analysis [152]. See
Section 7 for a more detailed discussion of the relationship of our work with some of this prior work.

2.1 Social and information network datasets we analyze

We have examined a large number of real-world complex networks. See Tables 1, 2, and 3 for a summary.
For convenience, we have organized the networks into the following categories: Social networks; Infor-
mation/citation networks; Collaboration networks; Web graphs; Internet networks; Bipartite affiliation
networks; Biological networks; Low-dimensional networks; IMDB networks; and Amazon networks. We
have also examined numerous small social networks that have been used as a testbed for community de-
tection algorithms (e.g., Zachary’s karate club [157, 5], interactions between dolphins [116, 5], interactions
between monks [142, 5], Newman’s network science network [127, 5], etc.), numerous simple network mod-
els in which by design there is an underlying geometry (e.g., power grid and road networks [153], simple
meshes, low-dimensional manifolds including graphs corresponding to the well-studied “swiss roll” data
set [150], a geometric preferential attachment model [70, 71], etc.), several networks that are very good
expanders, and many simulated networks generated by commonly-used network generation models(e.g.,
preferential attachment models [124], copying models [101], hierarchical models [135], etc.).

The class of Social networks in Table 1 is particularly diverse and interesting. It includes several
large on-line social networks: a network of professional contacts from LinkedIn (LinkedIn); a friend-
ship network of a LiveJournal blogging community (LiveJournal); and a who-trusts-whom network of
Epinions (Epinions). It also includes an email network from Enron (Email-Enron) and from a large
European research organization. For the latter we generated three networks: Email-Inside uses only
the communication inside organization; Email-InOut also adds external email addresses where email
has been sent both way; and Email-All adds all communication inside the organization and to the
outside world. Also included in the class of social networks are networks that are not the central focus
of the websites from which they come, but which instead serve as a tool for people to share information
more easily. For example, we have: the networks of a social bookmarking site Delicious (Delicious); a
Flickr photo sharing website (Flickr); and a network from Yahoo! Answers question answering website
(Answers). In all these networks, a node refers to an individual and an edge is used to indicate that
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means that one person has some sort of interaction with another person, e.g., one person subscribes to
their neighbor’s bookmarks or photos, or answers their questions.

The class of Information/citation networks contains several different citation networks. It contains
two citation networks of physics papers on arxiv.org, (Cit-hep-th and Cit-hep-ph), and a network of
citations of US patents (Cit-Patents). (These paper-to-paper citation networks are to be distinguished
from scientific collaboration networks and author-to-paper bipartite networks, as described below.) It
also contains two types of blog citation networks. In the so-called post networks, nodes are posts and
edges represent hyperlinks between blog posts (Post-Nat05-6m and Post-Nat06all). On the other
hand, the so-called blog network is the blog-level-aggregation of the same data, i.e., there is a link
between two blogs if there is a post in first that links the post in a second blog (Blog-Nat05-6m and
Blog-Nat06all).

The class of collaboration networks contain academic collaboration (i.e., co-authorship) networks
between physicists from various categories in arxiv.org (CA-astro-ph, etc.) and between authors in
computer science (CA-DBLP). It also contains a network of collaborations between pairs of actors in
IMDB (AtA-Imdb), i.e., there is an edge connecting a pair of actors if they appeared in the same movie.
(Again, this should be distinguished from actor-to-movie bipartite networks, as described below.) The
class of Web graph networks includes four different web-graphs in which nodes represent web-pages and
edges represent hyperlinks between those pages. Networks were obtained from Google (Web-Google),
the University of Notre Dame (Web-Notredame), TREC (Web-wt10g), and Stanford University
(Web-BerkStan). The class of Internet networks consists of various autonomous systems networks
obtained at different sources, as well as a Gnutella and eDonkey peer-to-peer file sharing networks.

The class of Bipartite networks is particularly diverse and includes: authors-to-papers graphs from
both computer science (AtP-DBLP) and physics (AtP-Astrop-ph, etc.); a network representing users
and the URLs they visited (Clickstream); a network representing users and the movies they rated
(Netflix); and a users-to-queries network representing query terms that users typed into a search engine
(QueryTerms). (We also have analyzed several bipartite actors-to-movies networks extracted from the
IMDB database, which we have listed separately below.)

The class of Biological networks include protein-protein interaction networks of yeast obtained from
various sources. The class of Low-dimensional networks consists of graphs constructed from road (Road-

CA, etc.) or power grid (PowerGrid) connections and as such might be expected to “live” on a two-
dimensional surface in a way that all of the other networks do not. We also added a “swiss roll” network,
a 2-dimensional manifold embedded in 3-dimensions, and a “Faces” dataset where each point is an 64 by
64 gray-scale image of a face (embedded in 4, 096 dimensional space) and where we connected the faces
that were most similar (using the Euclidean distance). Finally, we networks from IMDB, Amazon, and
Yahoo! Answers, and for each of these we have separately analyzed subnetworks. The IMDB networks
consist of actor-to-movie links, and we include the full network as well as subnetworks associated with
individual countries based on the country of production. For the Amazon networks, recall that Amazon
sells a variety of products, and for each item A one may compile the list the up to ten other items most
frequently purchased by buyers of A. This information can be presented as a directed network in which
vertices represent items and there is a edge from item A to another item B if B was frequently purchased
by buyers of A. We consider the network as undirected. We use five networks from a study of Clauset
et al. [48], and two networks from the viral marketing study from Leskovec et al. [108]. Finally, for the
Yahoo! Answers networks, we observe several deep cuts at large size scales, and so in addition the the
full network, we analyze the top six most well-connected subnetworks.

In addition to providing a brief description of the network, Tables 1, 2 and 3 show the number of nodes
and edges in each network, as well as other statistics which will be described in Section 4.1. (In all cases,
we consider the network as undirected, and we extract and analyze the largest connected component.)
The sizes of these networks range from about 5, 000 nodes up to nearly 14 million nodes, and from about
6, 000 edges up to more than 100 million edges. All of the networks are quite sparse—their densities range
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from an average degree of about 2.5 for the blog post network, up to an average degree of about 400 in
the network of movie ratings from Netflix, and most of the other networks, including the purely social
networks, have average degree around 10 (median average degree of 6). In many cases, we examined
several versions of a given network. For example, we considered the entire IMDB actor-to-movie network,
as well as sub-pieces of it corresponding to different language and country groups. Detailed statistics
for all these networks are presented in Tables 1, 2 and 3 and are described in Section 4. (We will make
available all of the publicly-available networks via a link from the first author’s web page.) In total,
we have examined over 100 different networks, including over 70 large real-world social and information
networks, making this, to our knowledge, the largest and most comprehensive study of such networks.

2.2 Clusters and communities in networks

Hierarchical clustering is a common approach to community identification in the social sciences [152], but
it has also found application more generally [79, 89]. In this procedure, one first defines a distance metric
between pairs of nodes and then produces a tree (in either a bottom-up or a top-down manner) describing
how nodes group into communities and how these group further into super-communities. A quite different
approach that has received a great deal of attention (and that will be central to our analysis) is based on
ideas from graph partitioning [143, 26]. In this case, the network is a modeled as simple undirected graph,
where nodes and edges have no attributes, and a partition of the graph is determined by optimizing a
merit function. The graph partitioning problem is find some number k groups of nodes, generally with
roughly equal size, such that the number of edges between the groups, perhaps normalized in some way,
is minimized.

If G = (V, E) denotes a graph, then the conductance φ of a set of nodes S ⊂ V , (where S is assumed
to contain no more than half of all the nodes), is defined as follows. Let v be the sum of degrees of nodes
in S, and let s be the number of edges with one endpoint in S and one endpoint in S, where S denotes
the complement of S. Then, the conductance of S is φ = s/v, or equivalently φ = s/(s + 2e), where e is
the number of edges with both endpoints is S. More formally, if A is the adjacency matrix of the graph
G, then:

φ(S) =

∑
i∈S,j /∈S Aij

min{A(S), A(S)} (6)

where A(S) =
∑

i∈S

∑
j∈V Aij , in which case the conductance of the graph G is

φG = min
S⊂V

φ(S). (7)

Thus, the conductance of a set provides a measure for the quality of the cut (S, S), or relatedly the
goodness of a community S.1 Indeed, it is often noted that communities should be thought of as sets of
nodes with more and/or better intra-connections than inter-connections; see Figure 2 for an illustration.
When interested in detecting communities and evaluating their quality, we prefer sets with small conduc-
tances, i.e., sets that are densely linked inside and sparsely linked to the outside. Although numerous
measures have been proposed for how community-like is a set of nodes, it is commonly noted—e.g., see
Shi and Malik [144] and Kannan, Vempala, and Vetta [92]—that conductance captures the “gestalt”
notion of clustering [158], and as such it has been widely-used for graph clustering and community
detection [75, 151, 143].

There are many other density-based measures that have been used to partition a graph into a set
of communities [75, 151, 143]. One that deserves particular mention is modularity [129, 128]. For a

1Throughout this paper we consistently use shorthand phrases like “this piece has good conductance” to mean “this
piece is separated from the rest of the graph by a low-conductance cut.” We note that in other contexts such a phrase could
have a very different meaning, namely “all cuts inside this piece have high conductance scores,” which actually seems like
a more direct translation of the phrase’s actual words, but that is almost never what we mean in this paper.
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(a) Three communities (b) Conductance bottleneck

Figure 2: (a) Caricature of the traditional view of communities as being sets of nodes with more and/or better
intra-connections than inter-connections. (b) A graph with its minimum conductance bottleneck illustrated.

given partition of a network into a set of communities, modularity measures the number of within-
community edges, relative to a null model that is usually taken to be a random graph with the same
degree distribution. Thus, modularity was originally introduced and it typically used to measure the
strength or quality of a particular partition of a network. We, however, are interested in a quite different
question than those that motivated the introduction of modularity. Rather than seeking to partition
a graph into the “best” possible partition of communities, we would like to know good is a particular
element of that partition, i.e., how community-like are the best possible communities that modularity or
any other merit function can hope to find.

2.3 Approximation algorithms for finding low-conductance cuts

In addition to capturing very well our intuitive notion of what it means for a set of nodes to be a
good community, the use of conductance as an objective function has an added benefit: there exists
an extensive theoretical and practical literature on methods for approximately optimizing it. (Finding
cuts with exactly minimal conductance is NP-hard.) In particular, the theory literature contains several
algorithms with provable approximation performance guarantees. First, there is the spectral method,
which uses an eigenvector of the graph’s Laplacian matrix to find a cut whose conductance is no bigger
than φ if the graph actually contains a cut with conductance O(φ2) [31, 54, 65, 120, 33]. The spectral
method also produces lower bounds which can show that the solution for a given graph is closer to
optimal than promised by the worst-case guarantee. Second, there is an algorithm that uses multi-
commodity flow to find a cut whose conductance is within an O(log n) factor of optimal [106, 107].
Spectral and multi-commodity flow based methods are complementary in that the worst-case O(log n)
approximation factor is obtained for flow-based methods on expander graphs [106, 107], a class of graphs
which does not cause problems for spectral methods, whereas spectral methods can confuse long path
with deep cuts [83, 146], a difference that does not cause problems for flow-based methods. Third, and
very recently, there exists an algorithm that uses semidefinite programming to find a solution that is
within O(

√
log n) of optimal [17]. This paper sparked a flurry of theoretical research on a family of

closely related algorithms including [15, 98, 16], all of which can be informally described as combinations
of spectral and flow-based techniques which exploit their complementary strengths. However, none of
those algorithms are currently practical enough to use in our study.
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Of the above three theoretical algorithms, the spectral method is by far the most practical. Also very
common are recursive bisection heuristics: recursively divide the graph into two groups, and then further
subdivide the new groups until the desired number of clusters groups is achieved. This may be combined
with local improvement methods like the Kernighan-Lin and Fiduccia-Mattheyses procedures [96, 64],
which are fast and can climb out of some local minima. The latter was combined with a multi-resolution
framework to create Metis [94, 95], a very fast program intended to split mesh-like graphs into equal sized
pieces. The authors of Metis later created Cluto [159], which is better tuned for clustering-type tasks.
Finally we mention Graclus [53], which uses multi-resolution techniques and kernel k-means to optimize
a metric that is closely related to conductance.

While the preceding were all approximate algorithms for finding the lowest conductance cut in a whole
graph, we now mention MQI [76, 105], an exact algorithm for the slightly different problem of finding
the lowest conductance cut in half of a graph. This algorithm can be combined with a good method for
initially splitting the graph into two pieces (such as Metis or the Spectral method) to obtain a surprisingly
strong heuristic method for finding low conductance cuts in the whole graph [105]. The exactness of the
second optimization step frequently results in cuts with extremely low conductance scores, as will be
visible in many of our plots. MQI can be implemented by solving single parametric max flow problems,
or sequences of ordinary max flow problems. Parametric max flow (with MQI described as one of the
applications) was introduced by [76], and recent empirical work is described in [18], but currently there
is no publically available code that scales to the sizes we need. Ordinary max flow is a very thoroughly
studied problem. Currently, the best theoretical time bounds are [81], the most practical algorithm is [82],
while the best implementation is hi pr by [32]. Since Metis+MQI using the hi pr code is very fast and
scalable, while the method empirically seems to usually find the lowest or nearly lowest conductance cuts
in a wide variety of graphs, we have used it extensively in this study.

We will also extensively use Local Spectral Algorithm of Andersen, Chung, and Lang [13] to find node
sets of low conductance, i.e., good communities, around a seed node. This algorithm is also very fast,
and it can be successfully applied to very large graphs to obtain more “well rounded” or ‘regularized”
communities than those returned by Meits+MQI. The latter observation (described in more detail in
Section 5) is since local spectral methods also confuse long paths (which tend to occur in our very sparse
network datasets) with deep cuts. This algorithm takes as input two parameters—the seed node and
a parameter ε that intuitively controls the locality of the computation—and it outputs a set of nodes.
Local spectral methods were introduced by Spielman and Teng [147, 13], and they have roughly the same
kind of quadratic approximation guarantees as the global spectral method, but they have computational
cost is proportional to the size of the obtained piece [34, 36, 35].

3 The Network Community Profile Plot

In this section, we discuss the network community profile plot (NCP plot), which measures the quality
of network communities at different size scales. We start in Section 3.1 by introducing it. Then, in
Section 3.2, we present the NCP plot for several examples of networks which inform peoples’ intuition
and for which the NCP plot behaves in a characteristic manner. Then, in Sections 3.3 and 3.4 we present
the NCP plot for a wide range of large real world social and information networks. We will see that in
such networks the NCP plot behaves in a qualitatively different manner.

3.1 Definitions for the network community profile plot

In order to resolve more finely community structure in large networks, we introduce the network com-
munity profile plot (NCP plot). Intuitively, the NCP plot measures the quality of the best possible
community in a large network, as a function of the size of the purported community. Formally, we may
define it as the conductance value of the best conductance set of cardinality k in the entire network, as
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a function of k. That is,
Φ(k) = min

S⊂V,|S|=k
φ(S). (8)

where |S| denotes the cardinality of the set S and where the conductance φ(S) of S is given by (6). Since
this quantity is intractable to compute, we will employ well-studied approximation algorithms for the
Minimum Conductance Cut Problem to approximate it. Thus, operationally we will use several natural
heuristics based on approximation algorithms to do graph partitioning in order to compute different
approximations to the NCP plot. Although other procedures will be described in Section 5, we will
primarily employ two procedures: first, Metis+MQI, i.e., the graph partitioning package Metis [94]
followed by the flow-based MQI post-processing procedure MQI [105], which taken together returns sets
that have very good conductance values; and second, the Local Spectral Algorithm of Andersen, Chung,
and Lang [13], which returns sets that are somewhat “regularized” but that often have worse conductance
values.

Just as the conductance of a set of nodes provides a quality measure of that set as a community,
the shape of the NCP plot provides insight into the community structure of a graph. For example, the
magnitude of the conductance tells us how well clusters of different sizes are separated from the rest
of the network. One might hope to obtain some sort of “smoothed” measure of the notion of the best
community of size k, e.g., by considering a 95-th percentile, rather than a minimum. We have not defined
such a measure since there is no obvious way to average over all subsets of size k and obtain a meaningful
approximation to the minimum. On the other hand, our approximation algorithm methodology implicitly
incorporates such an effect: although Metis+MQI finds sets of nodes with extremely good conductance
value, empirically we observe that they often have little or no internal structure—they can even be
disconnected; on the other hand, since spectral methods in general tend to confuse long paths with deep
cuts [146, 83], the Local Spectral Algorithm finds sets that are “tighter” and more “well-rounded” and
thus in many ways more community-like. (See Sections 2.3 and 5 for details on these algorithmic issues
and interpretations.)

3.2 Community profile plots for expander, low-dimensional, and small social
networks

The NCP plot behaves in a characteristic manner for graphs that are “well-embeddable” into an un-
derlying low-dimensional geometric structure. To illustrate this, consider Figure 3. In Figure 3(a), we
show the results for a 1-dimensional chain, a 2-dimensional grid, and a 3-dimensional cube. In each case,
the NCP plot is steadily downward sloping as a function of the number of nodes in the smaller cluster.
Moreover, the curves are straight lines with a slope equal to −1/d, where d is the dimensionality of the
underlying grids. In particular, as the underlying dimension increases then the slope of the NCP plot
gets less steep. Thus, if the network under consideration corresponds to a d-dimensional grid, then the
NCP plot shows that

−1
d

=
log(φ(k))

log(k)
. (9)

Of course, this is simply a manifestation of the isoperimetric (i.e., surface area to volume) phenomenon:
for a grid, the “best” cut is obtained by cutting out a set of adjacent nodes, in which case the surface
area (number of edges cut) increases as O(md−1), while the volume (number of vertices (edges) inside
the cluster) increases as O(md).

This qualitative phenomenon of a steadily downward sloping NCP plot is quite robust for networks
that “live” in a low-dimensional structure, e.g., on a manifold or the surface of the earth. For example,
Figure 3(b) shows the NCP plot for a power grid network of Western States Power Grid [153], and
Figure 3(c) shows the NCP plot for a road network of California. These two networks have very different
sizes—the power grid network has 4, 941 nodes and 6, 594 edges, and the road network has 1, 957, 027 nodes
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Figure 3: Network community profile plots for expander-like graphs and several networks that “live” in low-
dimensional spaces. (3(a)) A large clique graph, a cube (3d mesh), a grid (2d mesh) and a chain (line). Note that
the slope of community profile plot directly corresponds to dimensionality of the graph. (3(b)) and (3(c)) Two
networks on the Earth’s surface and thus that are reasonably well-embeddable in two dimensions. (3(d)) A 2d
“swiss roll” manifold embedded in 3 dimensions, where every we connected every point to 10 nearest neighbors.
(3(e)) and (3(f)) Two networks that are very good expanders.
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and 2, 760, 388 edges—and they arise in very different application domains. In both cases, however, we
see predominantly downward sloping NCP plot, very much similar to the profile of a simple 2 dimensional
grid. Indeed, the “best-fit” line for power grid gives the slope of ≈ −0.45, which by (9) suggests that
d ≈ 2.2, which is not far from the “true” dimensionality of 2. Moreover, empirically we observe that
minima in the NCP plot correspond to community-like sets, which are occasionally nested. For example,
the nodes giving the dip at k = 19 are included in the nodes giving the dip at k = 883, while dips at
k = 94 and k = 105 are both included in the dip at k = 262. Similarly, Figure 3(d) shows the profile
plot for a graph generated from a “swiss roll” dataset which is commonly examined in the manifold and
machine learning literature [150]. In this case, we still observe a downward sloping NCP plot. Finally,
Figures 3(e) and 3(f) show NCP plots for two graphs that are very good expanders. The first is a Gnm

graph with 100, 000 nodes and a number of edges such that the average degree is 4, 6, and 8. The second
is a constant degree expander: to make one with degree d, we take the union of d disjoint but otherwise
random complete matchings, and we have plotted the results for d = 4, 6, 8. In both of these cases, the
NCP plot is roughly flat, which we also observed in Figure 3(a) for a clique, which is to be expected since
the minimum conductance cut in the entire graph cannot be too small for a good expander [87].

Interestingly, a steadily decreasing downward NCP plot is also seen for small social networks that have
been extensively studied in validating community detection algorithms. Several examples are shown in
Figures 4. For these networks, the interpretation is similar to that for the low-dimensional networks: the
downward slope indicates that as potential communities get larger and larger, there are relatively more
intra-edges than inter-edges; and empirically we observe that local minima in the NCP plot correspond to
sets of nodes that are plausible communities. Consider, e.g., Zachary’s karate club [157], an extensively-
analyzed social network [125, 128, 93]. The network has 34 nodes, each of which represents a member of
a karate club, and 78 edges, each of which represent a friendship tie between two members. Figure 4(a)
depicts the karate club network, and Figure 4(b) shows its NCP plot. There are two local minima in
the plot: the first dip at k = 5 corresponds to the Cut A, and the second dip at k = 17 corresponds to
Cut B. Note that Cut B, which separates the graph roughly in half, has better conductance value than
Cut A. This corresponds with the intuition about the NCP plot derived from studying low-dimensional
graphs. Note also that the karate network corresponds well with the intuitive notion of a community,
where nodes of the community are densely linked among themselves and there are few edges between
nodes of different communities.

In a similar manner: Figure 4(c) shows a social network (with 62 nodes and 159 edges) of interac-
tions within a group of dolphins [5] (as originally studied by Lusseau [116]); Figure 4(e) shows a social
network of monks (with 18 nodes representing individual monks and 41 edges representing social ties
between pairs of monks) in a cloister [5] (as originally studied by Sampson [142]); and Figure 4(g) depicts
Newman’s network (with 914 collaborations between 379 researchers) of scientists who conduct research
on networks [129, 127]. For each network, the NCP plot exhibits a downward trend and local minima
at cluster sizes that correspond to plausible communities in the networks: the minimum for the dolphins
network (Figure 4(d)) corresponds to the separation of the network into two communities denoted with
different shape and color of the nodes (gray circles versus red squares); the minima of the monk net-
work (Figure 4(f)) corresponds to the split of 7 Turks (red squares) and the so-called loyal opposition
(gray circles) [142]; and empirically both local minima and the global minimum in the network science
network (Figure 4(h)) correspond to plausible communities. Note that in the last case, the figure also
displays hierarchical structure in which case the community defined by Cut C is included in a larger
community that has better conductance value.

At this point, we can observe that the following two general observations hold for networks that are
well-embeddable in a low-dimensional space and also for small social networks that have been extensively
studied and used to validate community detection algorithms. First, minima in the NCP plots, i.e., the
best low-conductance cuts of a given size, correspond to sets of nodes that we might meaningfully want to
interpret as communities. Second, the NCP plots are generally relatively gradually sloping downwards,
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Figure 4: Depiction of several small social networks that are common test sets for community detection algorithms
and their network community profile plots. (4(a)–4(b)) Zachary’s karate club network. (4(c)–4(d)) A network of
dolphins. (4(e)–4(f)) A network of monks. (4(g)–4(h)) A network of researchers researching networks.
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meaning that smaller communities can be combined into larger sets of nodes that can also be meaningfully
interpreted as communities.

3.3 Community profile plots for large social and information networks

We have examined NCP plots for each of the networks listed in Tables 1, 2 and 3. In Figure 5, we present
NCP plots for six of these networks. (These particular networks were chosen to be representative of the
wide range of networks we have examined, and for ease of comparison we will compute other properties
for them in future sections. See Figures 6, 7, and 8 in Section 3.4 for the NCP plots of other networks
listed in Tables 1, 2 and 3, and for a discussion of them.) The most striking feature of these plots is that
the NCP plot is steadily increasing for nearly its entire range.

Consider, first, the NCP plot for the LiveJournal1 social network, as shown in Figure 5(a), and
focus first on the red curve, which presents the results of applying the Local Spectral Algorithm.2 Up
to a size scale, which empirically is roughly 100 nodes, the slope of the NCP plot is generally sloping
downward. At that size scale, we observe the global minimum of the NCP plot. This set of nodes as well
as others achieving local minima of the NCP plot in the same size range are the “best” communities,
according to the conductance measure, in the entire graph. Moreover, they are barely connected to the
rest of the graph, e.g., they are typically connected to the rest of the nodes by 1 (or 2, or perhaps 3—we
will return to this issue in Section 4) edge. Above the size scale of roughly 100 nodes, the NCP plot
gradually increases over several orders of magnitude. The “best” communities in the entire graph are
quite good (in that they have size roughly 102 nodes and conductance scores less than 10−3) whereas the
“best” communities of size 105 or 106 have conductance scores of about 10−1. In between these two size
extremes, the conductance scores get gradually worse, although there are numerous local dips and even
one relatively large dip between 105 and 106 nodes. (The green curve plots the results of Metis+MQI,
and the blue curve plots the results of applying the Bag of Whiskers Heuristic, as described in Section 4.3.
These procedures will be discussed in detail in Sections 4 and 5.) Note that both axes in Figure 5 are
logarithmic, and thus the upward trend of the NCP plot is over a wide range of size scales.

The black curve in Figure 5(a) plots the results of the Local Spectral Algorithm applied to a rewired
version of the LiveJournal1 network, i.e., to a random graph conditioned on the same degree distri-
bution as the original network. (We obtain such random graph by starting with the original network and
then randomly selecting pairs of edges and rewiring the endpoints. By doing the rewiring long enough, we
obtain a random graph that has the same degree sequence as the original network [119]. Empirically, we
observe reasonably rapid convergence.) Interestingly, the rewired network also has an initially decreasing
and then increasing NCP plot (an issue which we will revisit in Section 6). Several things should be
noted. First, the original LiveJournal1 network has considerably more structure, i.e., deeper/better
cuts, than its rewired version, even up to the largest size scales. That is, we observe significantly more
structure than would be seen, for example, in an expander-like random graph on the same degree se-
quence. Second, relative to the original network, the “best” community in the rewired graph, i.e., the
global minimum of the conductance curve, shifts upward and towards the left. This means that in rewired
networks the best conductance clusters get smaller and have worse conductance scores. Third, the sets
at and near the minimum are small trees that are connected to the core of the random graph by a single

2The algorithm takes as input two parameters—the seed node and the parameter ε that intuitively controls the locality
of the computation—and it outputs a set of nodes. For a given seed node and resolution parameter ε we obtain a local
community profile plot, which tells us about conductance of cuts in vicinity of the seed node. By taking the lower-envelope
over community profiles of different seed nodes and ε values we obtain the global network community profile plot. For our
experiments, we typically considered, e.g., 50 different values of ε. Since very local random walks discover small clusters, in
this case we considered every node as a seed node. As we examine larger clusters, the random walk computation spreads
farther away from the seed node, in which case the exact choice of seed node becomes less important. Thus, in this case,
we sampled fewer seed nodes. Additionally, in our experiments, for each value of ε we randomly sampled nodes until each
node in the network was visited by random walks starting from, e.g., 10 different seed nodes on average.
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Figure 5: [Best viewed in color.] Network community profile plots for a representative sample of large networks
listed in Tables 1, 2 and 3. The red curves plot the results of the Local Spectral Algorithm on the specified network;
green curves plot the results of Metis+MQI; blue curves plot the results of the Bag of Whiskers Heuristic; and
black curves plot the results of the Local Spectral Algorithm applied to a randomly rewired version of the same
network. Notice that in all cases the “best” communities are quite small (typically between 10 and 100 nodes)
and that the network community profile plot steadily increases for nearly its entire range. See Figures 6, 7, and
8 for the NCP plots of other networks.
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edge. Fourth, after the small dip at a very small size scale (≈ 10 nodes), the NCP plot increases to a high
level rather quickly. This is due to the absence of structure in the core. Finally, note that the variance
in the rewired version of the NCP plot (data not shown) is not much larger than the width of the curve
in the figure.

We have observed qualitatively similar results in nearly every large social and information network we
have examined. For example, several additional examples are presented in Figure 5: another network from
the class of social networks (Epinions, in Figure 5(b)); an information/citation network (Cit-hep-th,
in Figure 5(c)); a Web graph (Web-Google, in Figure 5(d)); a Bipartite affiliation network (Atp-

DBLP, in Figure 5(e)); and an Internet network (Gnutella, in Figure 5(f)). Qualitative observations
are consistent across the range of network sizes, densities and different domains from which the networks
are drawn. Of course, these six networks are very different than each other—some of these differences
are hidden due to the definition of the NCP plot, whereas others are evident. Perhaps the most obvious
example of the latter is that even the best cuts in Gnutella are not significantly smaller or deeper
than in the corresponding rewired network, whereas for Web-Google we observe cuts that are orders
of magnitude deeper.

Intuitively, the upward trend in the NCP plot means that separating large clusters from the rest of
the network is especially expensive. It suggests that that larger and larger clusters are “blended in”
more and more with the rest of the network. The interpretation we draw, based on these data and data
presented in subsequent sections is that, if a density-based concept such as conductance captures our
intuitive notion of community goodness and if we model large networks with interaction graphs, then the
best possible communities get less and less community-like as they grow in size.

3.4 More community profile plots for large social and information networks

Figures 6, 7 and 8 show additional examples of NCP plots for networks from Tables 1, 2 and 3. In the
first two rows of Figure 6, we have several examples of purely Social networks and two email networks,
in the third row we have patent and blog Information/citation networks, and in the final row we have
three examples of actor and author Collaboration networks. In Figure 7, we see three examples each of
Web graphs, Internet networks, Bipartite affiliation networks, and Biological networks. Finally, in the
first row of Figure 8, we see Low-dimensional networks, including two road and a manifold network; in
the second row, we have an IMDB Actor-to-Movie graphs and two subgraphs induced by restricting to
individual countries; in the third row, we see three Amazon product co-purchasing networks; and in the
final row we see a Yahoo! Answers networks and two subgraphs that are large good conductance cuts
from the full network.

For most of these networks, the same four versions of the NCP plot are plotted that were presented
in Figure 5. Note that, as before, the scale of the vertical axis in these graphs is not all the same; the
minima range from 10−2 to 10−5. These network datasets are drawn from a wide range of areas, and
these graphs contain a wealth of information, a full analysis of which is well beyond the scope of the
paper. Note, however, that the general trends we discussed in Section 3.3 still manifest themselves in
nearly every network.

The Imdb-raw07 network is interesting in that its NCP plot does not increase much (at least not
the version computed by the Local Spectral Algorithm) and we clearly observe large sets with good
conductance values. Upon examination, many of the large good conductance cuts seem to be associated
with different language groups. Two things should be noted. First, and not surprisingly, in this network
and others, we have observed that there is some sensitivity to how the data are prepared. For example,
we obtain somewhat stronger communities if ambiguous nodes (and there are a lot of ambiguous nodes
in network datasets with millions of nodes) are removed than if, e.g., they are assigned to a country
based on a voting mechanism of some other heuristic. A full analysis of these data preparation issues is
beyond the scope of this paper, but our overall conclusions seem to hold independent of the preparation
details. Second, if we examine individual countries—two representative examples are shown—then we
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Figure 6: [Best viewed in color.] Community profile plots of networks from Table 1. Color-coding is as in Figure 5;
in particular, red curve plots the results of the Local Spectral Algorithm.
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Figure 7: [Best viewed in color.] Community profile plots of networks from Table 2. Color-coding is as in Figure 5;
in particular, red curve plots the results of the Local Spectral Algorithm.
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Figure 8: [Best viewed in color.] Community profile plots of networks from Table 3, as well as Answers and
two sub-pieces of Answers. Color-coding is as in Figure 5; in particular, red curve plots the results of the Local
Spectral Algorithm.
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see substantially less structure at large size scales.
The Yahoo! Answers social network (see Answers) also has several large cuts with good conductance

value—actually, the best cut in the network has more 105 nodes. (It is likely that exogenous factors
are responsible for these large deep cuts.) Using standard graph partitioning procedures, we obtained
four large disjoint clusters consisting of ca. 5, 300, 25, 400, 27, 000, and 290, 000 nodes, respectively,
corresponding to the four dips (two of which visually overlap) in the NCP plot. We then examined the
community profile plots for each of these pieces. The two representative examples of which we show
clearly indicate a NCP plot that is much more like other network datasets we have examined.

4 More structural observations of our network datasets

We have examined in greater detail our network datasets in order to understand which structural prop-
erties are responsible for the observed properties of the NCP plot. We first present statistics for our
network datasets in Section 4.1. Then, in Section 4.2 we describe a heuristic to identify small sets of
nodes that have strong connections amongst themselves but that are connected to the remainder of the
network by only a single edge. In Section 4.3, we show that these “whiskers” (or disjoint unions of them)
are often the “best” conductance communities in the network, and then in Section 4.4 we examine NCP
plots for networks in which these whiskers have been removed.

4.1 General statistics on our network datasets

In Tables 1, 2, and 3, we also present the following statistics for our network datasets: the number of
nodes N ; the number of edges E; the fraction of nodes in the largest biconnected component Nb/N ; the
fraction of edges in the largest biconnected component Eb/E; the average degree d̄ = 2E/N ; the empirical
second-order average degree [41] d̃; average clustering coefficient [153] C̄; the estimated diameter D; and
the estimated average path length D̄. (The diameter was estimated using the following algorithm: pick
a random node, find the farthest node X (via shortest path); move to X and find the farthest node from
X ; iterate this procedure until the distance to the farthest node does not increase anymore. The average
path length was estimated based on 10, 000 randomly sampled nodes.)

In nearly every network we have examined, there is a substantial fraction of nodes that are barely
connected to the main part of the network, i.e., that are part of a small cluster of ca. 10 to 100 nodes
that are attached to the remainder of the network via one or a small number of edges. In particular, a
large fraction of the network is made out of nodes that are not in the biconnected core.3 For example,
the Epinions network has 75, 877 nodes and 405, 739 edges, and the core of the network has only 36, 111
(47%) nodes and 365, 253 (90%) edges. For Delicious, the core is even smaller: it contains only 40% of
the nodes, and 65% of the edges. Averaging over our network datasets, we see that the largest biconnected
component contains around only 60% of the nodes and 80% of the edges of the original network. This
is somewhat akin to the so-called “Jellyfish” model [149, 145] (which was proposed as a model for the
graph of internet topology) and also to the “Octopus” model (for random power-law graphs [41], which is
described in more detail in Section 6.2). Moreover, the global minimum of the NCP plot is nearly always
one of these pieces that is connected by only a single edge. Since these small barely-connected pieces
seem to have a disproportionately large influence on the community structure of our network datasets,
we examine them in greater detail in the next section.

3In this paper, we are slightly abusing standard terminology by using the term bi-connectivity to mean 2-edge-
connectivity. We are running the classic DFS-based bi-connectivity algorithm, which identifies both bridge edges and
articulation nodes, but then we are only knocking out the bridge edges, not the articulation nodes, so we end up with
2-edge-connected pieces.
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4.2 “Whiskers” and the “core” in our network datasets

We define whiskers, or more precisely 1-whiskers, to be maximal subgraphs that can be detached from
the network by removing a single edge. (Occasionally, we use the term whiskers informally to refer to
barely connected sets of nodes more generally.) To find 1-whiskers, we employ the following very simple
algorithm. Using a depth-first search algorithm, we find the largest biconnected component B of the
graph G. (A graph is biconnected if the removal of any single edge disconnects the graph.) We then
delete all the edges that have one of their end points in B. We call the connected components of this
new graph G′ 1-whiskers, since they correspond to largest subgraphs that can be disconnected from G
by removing just a single edge. Recall that Figure 1(b) contains a schematic picture a network, including
several of its whiskers.

Not surprisingly, there is a wide range of whisker sizes and shapes. Figure 9 shows the distribution of
1-whisker sizes for a representative selection of our network datasets. Empirically, 1-whisker distribution
is heavy-tailed, with the largest whisker size ranging from around less than 10 to well above 100. The
largest whiskers in co-authorship and citation networks have around 10 nodes, whiskers in bipartite
graphs also tend to be small, and very large whiskers are found in a web graph. Figure 9 also compares
the size of the whiskers with the sizes of whiskers in a rewired version of the same network. (The first
thing to note is that due to the sparsity of the networks, the rewired versions all have whiskers.) In
rewired networks the whiskers tend to be much smaller than in the original network. A particularly
noteworthy exception is found in the Autonomous systems networks and the Gnutella network. (See
Figure 9(f) for an example of the latter.) In these cases, the whiskers are so small that even the rewired
version of the network has more and larger whiskers. This makes sense, given how those networks were
designed: clearly, many large whiskers would have negative effects on the Internet connectivity in case of
link failures.

Figure 10 shows the ten largest whiskers of the Epinions social network, the full distribution of
which was plotted in Figure 9(b), and Figure 11 shows the ten largest whiskers of the CA-cond-mat

co-authorship network. In these networks, the whiskers have on the order of 10 nodes, and they are
seen to have a rich internal structure. Similar but substantially more complex figures could be generated
for networks with larger whiskers. In general, the results we observe are consistent with a knowledge of
the fields from which the particular datasets have been drawn. For example, in Web-Google we see
very large whiskers. This probably represents a well-connected network between the main categories of a
website (e.g., different projects), while the individual project websites have a main index page that then
points to the rest of the documents.

The discrepancy between the sizes of the whiskers in the original and the rewired networks gives hints
that real networks have much richer structure than that imposed by their heavy-tailed degree distribution.
One might ask whether the conclusion from this is that real-world graphs should be thought of as being
somewhat like sparse random graphs, since, e.g., both have whiskers, or should be thought of as very
different than sparse random graphs, since, e.g., the whiskers have much more internal structure. We
will return to this issue in Section 6.

4.3 Bags of whiskers and communities of whiskers

Empirically, if one looks at the sets of nodes achieving the minimum in the NCP plot (usually the green
Metis+MQI curve), then before the global NCP minimum communities are whiskers and above that size
scale they are often unions of disjoint whiskers. To understand the extent to which these whiskers and
unions of them are responsible for the “best” conductance sets of different sizes, we have developed the
Bag-of-Whiskers Heuristic. Suppose we have a set W = {w1, w2, . . .} of whiskers. In order to construct
the optimal conductance cluster of size k, we need to solve the following problem: find a set C of whiskers
such that

∑
i∈C N(wi) = k and

∑
i∈C

d(wi)
|C| is maximized, where N(wi) is the number of nodes in wi and

d(wi) is its total internal degree. We then use a dynamic programming heuristic to get an approximate
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Figure 9: Distribution of whisker sizes in the true network and the rewired network (random graph with same
degree distribution) for the six networks presented in Figure 5. The ten largest whiskers for the Epinions social
network (the full distribution of which is presented here in panel (b)) are presented in Figure 10.
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Figure 10: Ten largest whiskers of the Epinions social network. The green square node is the node from the
bi-connected core of the network to which the whisker is connected. For visual clarity, the whisker node that
connects to the core of the network is displayed in red, and thus it is the edge between the red circle and the green
square node that if cut disconnects the whisker from the core. The distribution of whisker sizes and comparison
to rewired network is plotted in Figure 9(b).

Figure 11: Ten largest whiskers of the CA-cond-mat co-authorship network.
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solution to this problem. This way we find a cluster of a particular size that is composed solely from
whiskers. Figure 5 as well as Figures 6, 7 and 8 show the results of this heuristic applied to many of our
network datasets.

There are several observations we can make. First, notice that the largest whisker (denoted with a
red square) is the lowest point in nearly all plots. This means that the best conductance community
is in a sense trivial as it cuts just a single edge, and in addition that a very simple heuristic can find
this set. Second, note that above the size scale at which the minimum conductance sets occur, this
heuristic can find sets with extremely good conductance values. The shape of this blue curve in that
size region depends on the distribution of sizes of whiskers, but in nearly every case it is seen to yield
better conductance sets than the Local Spectral Algorithm. Third, this heuristic often agrees, exactly
or approximately, with the results from Metis+MQI. In particular, the best conductance sets of a given
size are often disconnected, and when they are connected they are often only tenuously connected. Thus,
if one only cares about finding good cuts then the best cuts in these large sparse graphs are obtained
by composing unrelated disconnected pieces. Intuitively, a coherent cluster is internally well and evenly
connected. Possible measures for cluster coherence include: cluster connectedness, diameter, conductance
of the cut inside the cluster, ratio of conductance of the cut outside versus the cut inside. This is discussed
in more detail in Section 5, but a full discussion of it is beyond the scope of the present paper.

4.4 Community profile of networks with no 1-whiskers

Given the surprisingly significant effect on the community structure of real-world networks that whiskers
and unions of disjoint whiskers have, one might wonder whether we see something qualitatively different
if we consider a real-world network in which these barely-connected pieces have been removed. To study
this, we found all 1-whiskers and removed them from our networks, using the procedure we described
in Section 4.2, i.e., we selected the largest biconnected component for each of our network datasets.
Again, we computed the NCP plots, and Figure 12 shows the results with and without whiskers for all
six networks we studied in detail before.

Notice that whisker removal does not change the NCP plot too much: the plot shifts slightly upward,
but the general trends remain the same. Upon examination, the global minimum occurs with a “whisker”
that is connected by two edges to the remainder of the graph. Intuitively, the largest biconnected core
has a large number of barely connected pieces—connected now by two edges rather than by one edge.
Since the “volume” for these pieces is similar to that for the original whiskers, whereas the “surface area”
is a factor of two larger, the conductance value is roughly a factor of two worse. Thus, although we
have been discussing 1-whiskers in this section, one should really view them as the simplest example of
weakly-connected pieces that exert a significant effect on the community structure in large real-world
networks.

5 Results from other algorithms

So far, we have been primarily relying on two graph partitioning algorithms: a Local Spectral Algorithm
and Metis+MQI. We want to demonstrate that we are observing structural properties of our network
datasets, rather than properties of our algorithms; and we want to use the differences between different
approximation algorithms to highlight structural properties of our network datasets. In this section
we discuss several meta-issues related to this, including whether or not our algorithms are sufficiently
powerful to recover the true shape of the minimal conductance curves, and whether we should actually
be trying to optimize a slightly different measure that combines cut conductance with piece compactness.

Recall that we defined the NCP plot to be a curve showing the minimum conductance φ for each piece
size k. Finding the points on this curve is NP-hard. Any cut that we find will only provide an upper
bound on the true minimum at the resulting piece’s size. Given that fact, how confident can we be that
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Figure 12: [Best viewed in color.] Network community profile plots with (in red) and without (in green) 1-whiskers,
for each of the six networks shown Figure 5. Whiskers were removed as described in the text. In the former case,
we plot results for the full network, and in the latter case, we plot results for the largest bi-connected component.
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the curve of upper bounds that we have computed has the same rising or falling shape as the true curve?
One method for finding out whether any given algorithm is doing a good job of pushing down the

upper bounding curve in a non-size-biased way is to compare its curves for numerous graphs with those
produced by other algorithms. In such experiments, it is good if the algorithms are very powerful and
also independent of each other. We have done extensive experiments along these lines, and our choice of
Local Spectral and Metis+MQI as the two algorithms for the main body of this paper was based on the
results. A full discussion of these experiments is beyond the scope of this paper, but in Section 5.1 we
mention a few interesting points.

A different method for reducing our uncertainty about the shape of the true curve would be to also
compute lower bounds on the curve. Ideally, one would compute a complete curve of tight lower bounds,
leaving a thin band between the upper- and lower-bounding curves, which would make the rising or
falling shape of the true curve obvious. In Section 5.2 we discuss some experiments with lower bounds.
Although we only obtained a few lower bounds rather than a full curve, the results are consistent with
our main results obtained from upper-bounding curves.

Finally, in Section 5.3 we will discuss our decision to use the Local Spectral algorithm in addition
to Metis+MQI in the main body of the paper, despite the fact that Metis+MQI clearly dominates
Local Spectral at the nominal task of finding the lowest possible upper bounding curve for the minimal
conductance curve. The reason for this decision is that Local Spectral often returns “nicer” pieces because
rather than minimizing conductance alone, it optimizes a slightly different measure that produces a
compromise between the conductance of the bounding cut and the “compactness” of the resulting piece.

5.1 Cross-checking between algorithms

As just mentioned, one way to gain some confidence in the upper bounding curves produced by a given
algorithm is to compare them with the curves produced by other algorithms that are as strong as possible,
and as independent as possible. We have extensively experimented with several variants of the global
spectral method, both the usual eigenvector-based embedding on a line, and an SDP-based embedding
on a hypersphere, both with the usual hyperplane-sweep rounding method and a fancier flow-based
rounding method which includes MQI as the last step. In addition, special post-processing can be done
to obtain either connected or disconnected sets. After examining the output of those 8 comparatively
expensive algorithms on more than 100 graphs, we found that our two cheaper main algorithms did miss
an occasional cut on an occasional graph, but nothing serious enough to change our conclusions at all.
All of those detailed results are suppressed in this paper.

We have also done experiments with a practical version of the Leighton-Rao algorithm [106, 107],
similar to the implementation described in [104] and [105]. These results are especially interesting because
the Leighton-Rao algorithm, which is based on multi-commodity flow, provides a completely independent
check on Metis, and on Spectral Methods generally, and therefore on our two main algorithms, namely
Metis+MQI and Local Spectral. The Leighton-Rao algorithm has two phases. In the first phase, edge
congestions are produced by routing a large number of commodities through the network. We adapted
our program to optimize conductance (rather than ordinary ratio cut score) by letting the expected
demand between a pair of nodes be proportional to the product of their degrees. In the second phase,
a rounding algorithm is used to convert edge congestions into actual cuts. Our method was to sweep
over node orderings produced by running Prim’s MST algorithm on the congestion graph, starting from
a large number of different initial nodes, using a range of different scales to avoid quadratic run time.
We used two variations of this method, one that only produces connected sets, and another one that can
also produce disconnected sets.

In the second row of Figure 13, we show Leighton-Rao curves for three example graphs. Our standard
Local Spectral and Metis+MQI curves are drawn in black, while the Leighton-Rao curves for connected
and possibly disconnected sets are drawn in green and magenta respectively. We note that for small to
medium scales, the Leighton Rao curves for connected sets resemble the Local Spectral curves, while the
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Figure 13: Result of other algorithms for three networks: Epinions, Email-Enron, and CA-astro-ph. In the
top row, we show spectral and SDP lower bounds on conductance for these three networks. In the middle row,
we show NCP plot curves for connected and disconnected pieces from our implementation of the Leighton-Rao
algorithm. In the bottom row, we show the conductance of some cuts found by Graclus and by Newman’s
Dendrogram algorithm. See the text for a discussion.

Leighton Rao curves for possibly disconnected sets resemble the Metis+MQI curves. This is big hint
about the structure of the sets produced by Local Spectral and Metis+MQI, that we will discuss further
in Section 5.3.

At large scales, the Leighton-Rao curves for these example graphs shoot up and become much worse
than our standard curves. This is not surprising because expander graphs are known to be the worst
case input for the Leighton-Rao approximation guarantee, and we believe that these graphs contain an
expander-like core that is necessarily encountered at large scales. We remark that Leighton-Rao does not
work poorly at large scales on every kind of graph. In fact, for large low-dimensional mesh-like graphs,
Leighton-Rao is a very cheap and effective method for finding cuts at all scales, while our local spectral
method becomes impractically slow at medium to large scales. We will not discuss this point further,
except to note that in the main body of the paper we have silently substituted Leighton-Rao curves for
local spectral curves for the large road networks and similar graphs.
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We have now covered the main theoretical algorithms that are practical enough to actually run,
which are based on spectral embeddings and on multi-commodity flow. Starting with [17], there has
been a recent burst of theoretical activity showing that spectral and flow-based ideas, which were already
known to have complementary strengths and weaknesses, can in fact be combined to obtain the best ever
approximations. At present none of the resulting algorithms are sufficiently practical at the sizes that we
require, so they were not included in this study.

Finally, we mention that in addition to the above theoretically-based practical methods for finding
low-conductance cuts, there exist a very large number of heuristic graph clustering methods, some of
which might be more familiar to some readers. We have tried a number of them, including Graclus [53]
and Newman’s Dendrogram program [79]. Graclus attempts to find a partitioning of a graph into pieces
bounded by low-conductance cuts using a kernel k-means algorithm. We ran Graclus repeatedly, asking
for 2, 3, , , i, i ∗ √2, ... pieces. Then we measured the size and conductance of all of the resulting pieces.
Newman’s Dendrogram program constructs a recursive partitioning of a graph (that is, a dendrogram)
from the bottom up by repeatedly deleting the surviving edge with the highest betweenness centrality. A
flat partitioning could then be obtained by cutting at the level which gives the highest modularity score,
but instead of doing that, we measured the size of conductance of every piece defined by a subtree in the
dendrogram.

In the bottom row of Figure 13, we present these results as scatterplots. Again our two standard
curves are drawn in black. No Graclus or Dendrogram point lies below the Metis+MQI curve. The
points are roughly similar to those produced by Local Spectral. Our main point with these experiments
is that the lowest points produced by either Graclus or Dendrogram gradually rise as one moves from
small scales to larger scales, so in principle we could have made the same observations about the structure
of social graphs by running one of those easily downloadable programs instead of the algorithms that
we did run, which we like for their speed and power, but which may not be familiar to many readers.
However, that claim is not quite the same thing as the demonstrably false statement that every graph
partitioning algorithm will produce an upper bounding curve with the same slope as the true minimum
conductance curve.

5.2 Lower bounds on cut conductance

As mentioned above, our main arguments are all based on curves which are actually upper bounds on the
true minimum conductance curve. To get a better idea of how good those upper bounds are, it is a good
idea to compute some lower bounds. Here we will discuss the well-known spectral lower bound [33] on the
conductance of cuts of arbitrary balance, and a related SDP-based lower bound [28] on the conductance
of any cut that divides the graph into two pieces of equal volume. First, we need the following notation.
�d is a column vector of the graph’s node degrees. D is a square matrix whose only nonzero entries are
the graph’s node degrees on the diagonal. A is the usual adjacency matrix of G. L = D − A is the
usual (non-normalized) Laplacian matrix of G. 1 is vector of 1’s. A • B = trace(AT B) is the matrix
dot-product operator.

Now, consider the following optimization problem (which is well known to be equivalent to an eigen-
problem):

λG = min
{

xT Lx

xT Dx
: x ⊥ �d, x �= 0

}

Let x̂ be a vector achieving the minimum value λG. Then λG

2 is the spectral lower bound on the
conductance of any cut in the graph, regardless of balance, while x̂ defines a spectral embedding of the
graph on a line, to which rounding algorithms can be applied to obtain actual cuts that can serve as
upper bounds at various sizes.

Next, we discuss an SDP-based lower bound on cuts which partition the graph into two sets of exactly
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equal volume. Consider

CG = min
{

1
4
L • Y : diag(Y ) = 1, Y • (�d �dT ) = 0, Y � 0

}
,

and let Ŷ be a matrix achieving the minimum value CG. Then CG is a lower bound on the weight of any
cut with perfect volume balance, and 2CG/Vol(G) is a lower bound on the conductance of any cut with
perfect volume balance. We briefly mention that since Y � 0, we can view Y as a Gram matrix that
can be factored can be factored as RRT . Then the rows of R are the coordinates of an embedding of the
graph on a hypersphere. Again, rounding algorithms can be applied to the embedding to obtain actual
cuts that can server as upper bounds.

The spectral and SDP embeddings defined here were the basis for the extensive experiments with
global spectral partitioning methods that were alluded to (but not described in detail) in Section 5.1.
However, in this section, it is the lower bounds that concern us. In the top row of Figure 13, we present
the spectral and SDP lower bounds for three example graphs. The spectral lower bound, which applies to
cuts of any balance, is drawn as a horizontal line which appears near the bottom of each plot. The SDP
lower bound, which only applies to cuts separating a specific volume, namely Vol(G)/2, appears as an
upwards-pointing triangle near the right side of the each plot. (Note that plotting this point required us
to use volume rather than number of nodes for the x-axis of these three plots.) Clearly, for these graphs,
the lower bound at Vol(G)/2, is higher than the spectral lower bound which applies at smaller scales.
More importantly, the lower bound at Vol(G)/2, is higher than our upper bounds at many smaller scales,
so the true curve must go up, at least at the very end, as one moves from small to large scales.

Finally, in Table 4 we list for about 40 graphs the spectral and SDP lower bounds on overall conduc-
tance and on volume-bisecting conductance, and also the ratio between the two. Although it is not as
logically compelling as the above comparison of upper and lower bounds, it is interesting to see that for
these graphs this ratio of lower bounds does a fairly good job of discriminating between falling-NCP-plot
graphs, which have a small ratio, and rising-NCP-plot graphs, which have a large ratio.

5.3 Local Spectral vs Metis+MQI

In this section we discuss our rationale for using Local Spectral in addition to Metis+MQI as one of
our two main algorithms for finding sets bounded by low conductance cuts. This choice requires some
justification because the NCP plots are intended to show the tightest possible upper bound on the lowest
conductance cut for each piece size, and Local Spectral is pretty strongly dominated by Metis+MQI
according to that criterion.

Our reason for using Local Spectral in addition to Metis+MQI is that Local Spectral returns pieces
that are arguably “nicer”. For graphs with a basically rising NCP plot, we have found that many of
the low conductance sets returned by Metis+MQI (or Leighton-Rao, or the Bag of Whiskers Heuristic)
are actually disconnected. Since internally disconnected sets are not very satisfying “communities”, it
is natural to wonder about NCP plot-style curves with the additional requirement that pieces must be
internally connected. In Section 5.1, we generated such a curve using Leighton-Rao, and found that the
curve corresponding to connected pieces was higher than a curve allowing disconnected sets.

In the top row of Figure 14, we show scatter plots illustrating a similar comparison between the
conductance of the cuts bounding some connected pieces generated by Local Spectral and by Metis+MQI.
Our method for getting connected pieces from Metis+MQI here is simply to separately measure each of
the pieces in a disconnected set. The blue points in the figures show the conductance of some cuts found
by Local Spectral. The red points show the conductance of some cuts found by Metis+MQI. Apparently,
Local Spectral and Metis+MQI find similar pieces at very small scales, but at slightly larger scales a gap
opens up between the red cloud and the blue cloud. In other words, at those scales Metis+MQI is finding
lower conductance cuts than Local Spectral, even when the pieces must be internally connected.
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Spectral SDP ratio
lowerbnd lowerbnd of

on φ, on φ, at lower
Network any size. Vol(G)/2 bnds

CollegeFootball [5] 0.068402 0.091017 1.330624
MonksNetwork [5] 0.069660 0.117117 1.681269
ZacharyKarate [5] 0.066136 0.127625 1.929736
PowerGrid 0.000136 0.000268 1.978484
PoliticalBooks [5] 0.018902 0.038031 2.011991
PoliticalBlogs [5] 0.040720 0.084052 2.064157
RB-Hierarchical [135] 0.011930 0.030335 2.542792
Email-InOut 0.038669 0.113367 2.931752
NetworkScience [5] 0.001513 0.004502 2.974695
as-oregon-all 0.012543 0.042976 3.426417
Blog-nat05-6m 0.031604 0.108979 3.448250
Imdb-India 0.009104 0.033318 3.659573
Cit-hep-ph 0.007858 0.029243 3.721553
Bio-Proteins 0.033714 0.126137 3.741358
As-RouteViews 0.018681 0.070462 3.771821
Gnutella-31 0.029946 0.118711 3.964127
Imdb-Japan 0.003327 0.013396 4.026721
Gnutella-30 0.030621 0.124929 4.079853
DolphinsNetwork [5] 0.019762 0.103676 5.246171
As-Newman 0.009681 0.058952 6.089191
AtP-gr-qc 0.000846 0.006040 7.141270
Cit-hep-th 0.009193 0.068880 7.492522
AtP-cond-mat 0.001703 0.013452 7.897650

Spectral SDP ratio
lowerbnd lowerbnd of

on φ, on φ, at lower
Network any size. Vol(G)/2 bnds

Gnutella-25 0.014185 0.131032 9.237332
Answers-2 0.009660 0.107422 11.120081
CA-cond-mat 0.003593 0.047064 13.098027
Answers-1 0.011896 0.159251 13.386528
Imdb-France 0.003462 0.048010 13.867591
Answers-5 0.008714 0.124703 14.311255
Imdb-Mexico 0.003893 0.070345 18.067513
CA-gr-qc 0.000934 0.017421 18.659710
AtP-hep-th 0.000514 0.009714 18.899660
AtP-hep-ph 0.000723 0.013770 19.040287
Imdb-WGermany 0.003025 0.065158 21.538867
AtP-astro-ph 0.001183 0.027256 23.036835
CA-hep-th 0.001561 0.041125 26.350412
CA-astro-ph 0.003143 0.086890 27.648094
Imdb-UK 0.001283 0.036572 28.514376
Imdb-Germany 0.000661 0.021017 31.810460
Blog-nat06all 0.002361 0.092908 39.350874
Imdb-Italy 0.000679 0.031954 47.077242
Email-Enron 0.001763 0.089876 50.965424
CA-hep-ph 0.000889 0.052249 58.755927
Epinions 0.002395 0.150242 62.739252
Answers-3 0.002636 0.185340 70.306807
Imdb-Spain 0.000562 0.046327 82.397702

Table 4: Lower bounds on the conductance for our network datasets. Recall that the spectral lower bound applies
to any cut, while the SDP lower bound applies to cuts at a specified volume fraction, taken here to be half. See
the top row of Figure 13 for plots for three of these networks.

However, there is still a measurable sense in which the Local Spectral pieces are “nicer”, as shown
in the second row of scatter plots in Figure 14. For each of the same pieces for which we plotted
a conductance in the top row, we are now plotting the average shortest path length between a large
number of random node pairs in that piece. In these new plots we see that in the same size range where
Metis+MQI is generating clearly lower conductance connected sets, we now see that Local Spectral is
generating pieces with clearly shorter internal paths. In other words, the Local Spectral pieces are more
“compact”.

In Figure 15, we further illustrate this point with drawings of some example subgraphs. The two
subgraphs shown on the left of Figure 15 were found by Local Spectral, while the two subgraphs shown
on the right of Figure 15 were found by Metis+MQI. Clearly, these two pairs of subgraphs have a
qualitatively different appearance, with the Metis+MQI pieces looking longer and stringier than the
Local Spectral pieces. All of these subgraphs contain roughly 500 nodes, which is a bit more than the
natural cluster size for that graph. In these cases it looks like Local Spectral has grown a cluster out a
bit past its natural boundaries, while Metis+MQI has strung together a couple of different clusters. We
remark that the tendency of Local Spectral to trade off cut quality in favor of piece compactness isn’t
just an empirical observation, it is a well understood consequence of the theoretical analysis of spectral
partitioning methods.

Finally, in the bottom row of Figure 14 we briefly introduce the topic of internal vs external cuts,
which is something that none of our algorithms are explicitly trying to optimize. These are again scatter
plots showing the same set of Local Spectral and Metis+MQI pieces as before, but now the y-axis is
external conductance divided by internal conductance. External conductance is the quantity that we
usually plot, namely the conductance of the cut which separates the piece from the graph. Internal
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Figure 14: Result of comparing Local Spectral (blue) and Metis+MQI (red) for three networks: AtP-DBLP,
Email-Enron, and CA-astro-ph. In the top row, we plot the conductance of the bounding cut. In the middle
row, we plot the root-mean-square average path length in the cluster. In the bottom row, we plot the ratio of
the external conductance to the internal conductance. Note that comparing the scatter plots in the top two rows
shows that sometimes Metis+MQI yields better cuts while Local Spectral yields pieces that are more compact;
see the text for a discussion.

conductance is the score of a low conductance cut inside the piece (that is, in the induced subgraph on
the piece’s nodes). Intuitively, good communities should have small ratios, ideally below 1.0. However,
the three bottom-row plots show that for these three sample graphs, there are mostly no ratios below 1.0
except at small sizes. We have found that this is typical for social graphs. Of course, any given graph
could happen to contain a very distinct piece of any size, and the roughly thousand-node piece in the
Email-Enron network is a good example.

6 Models for network community structure

In this section, we address modeling issues. In Section 6.1, we will examine the NCP plot for a wide
range of commonly-used network generation models, and we will see that none of them reproduces the
observed properties, at even a qualitative level. Then, in Section 6.2, we will analytically demonstrate
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Figure 15: Two examples of “communities” found by the LocalSpectral algorithm (on the left) and two from the
Metis+MQI algorithm (on the right). Note that the Local Spectral “communities” are more compact—they are
tighter and have smaller diameter since the algorithm has difficulty pushing probability mass down long extended
paths—while the Metis+MQI “communities” are more sprawling—they have larger diameter and more diverse
internal structure, but better conductance scores. In both cases, we have shown communities with ca. 500 nodes
(many of which overlap at resolution of this figure), i.e., just above the “whisker” size scale.

that certain aspects of the NCP plot, e.g., the existence of deep cuts at small size scales, can be explained
by very sparse random graph models. Then, in Section 6.3, we present a simple toy model to develop
intuition about the effect we must reproduce with a realistic generative model. Finally, in Section 6.4,
we will combine these and other ideas to describe a “forest fire” graph generation model that reproduces
quite well our main observations.

6.1 Community profile plots for commonly-used network generation models

We have studied a wide range of commonly-used network generative models in an effort to reproduce the
upward-sloping NCP plots and to understand the structural properties of the real-world networks that
are responsible for this phenomenon. In each case, we have experimented with a range of parameters,
and in no case have we been able to reproduce our empirical observations, at even a qualitative level. In
Figure 16, we summarize these results.

There has been a large body of work subsequent to that of Albert and Barabási [9] on models in which
edges are added via a preferential-attachment or rich-gets-richer mechanism [124, 25]. Much of this work
aims at reproducing properties of real-world graphs such as heavy-tailed degree distributions [11, 27, 61].
In these preferential attachment models, one typically connects each new node to the existing network
by adding exactly m edges to existing nodes with a nonuniform probability that depends on the current
degree of that existing node. Figure 16(a) shows the NCP plot for a 10, 000 node network generated
according to the original preferential attachment model [9], where at each time step a node joins the
graph and connects to m = 2 existing nodes. Note that the NCP plot is very shallow and flat (more even
than the corresponding rewired graph), and thus the network that is generated is very expander-like at
all size scales.

A different type of generative model is one in which edges are added via a copying mechanism [101].
In this copying model, a new node joins the network by attaching exactly m edges to existing nodes as
follows: the new node first selects uniformly at random a “seed” or “ambassador” node u; then, for each
of its m edges, with probability β the new node links to an existing node chosen randomly, and with
probability 1 − β it links to a random neighbor of node u. In Figure 16(b), we show the results for a
network with 50, 000 nodes, generated with m = 2 and β = 0.05. Although intuitively the copying model
aims to produce communities by linking a new node to neighbors of a existing node, this does not seem
to be the right mechanism to reproduce the NCP plot since potential ambassador nodes are all treated
similarly and since new nodes always create the same number of edges.
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(e) Geometric PA [70]
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(f) Nested Communities

Figure 16: [Best viewed in color.] Network community profile for networks generated from commonly-used
procedures to generate graphs with heavy-tailed degree distributions: (16(a)) Preferential attachment; (16(b))
Copying model; (16(c)) Hierarchical model; (16(d)) Community guided attachment; (16(e)) Geometric preferential
attachment; and (16(f)) Nested community model. See the text for details. Red curves plot the results of the Local
Spectral Algorithm on the specified network, and black curves plot the results of the Local Spectral Algorithm
applied to a randomly rewired version of the same network.
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Next, in Figure 16(c), we consider an example of a network that was designed to have a recursively
hierarchical community structure [136, 135]. In this model, we start with a 5-node square-like structure
with a central node, and then recursively expand the square and link it to the middle node of the
network. This network has power-law degree distribution, and clustering coefficient that decays as in a
characteristic manner [135]. In this case, however, the NCP plot is sloping downwards. The local dips
in the plot correspond to multiples of the size of the basic module of the graph. Although the model
generates links such that nodes that are farther apart in the hierarchy link less frequently, the NCP plot
clearly indicates that in aggregate larger communities are better connected than smaller communities.

A different way to generate power-law degree distributions is the Community Guided Attachment
model [111]. Here we decompose the nodes of a graph into a nested groups of nodes, such that the
difficulty of forming links between nodes in different groups increases exponentially with the distance in
the community hierarchy. Graphs generated by this principle have both power-law degree distributions
and they also obey the Densification Power Law [111, 112]. As Figure 16(d) shows, though, the NCP
plot is sloping downward. Qualitatively this plot from CGA is very similar to the plot of the recursive
hierarchical construction in Figure 16(c), which is not surprising given the similarities of the models.

Figure 16(e) shows the NCP plot for a geometric preferential attachment model [70, 71]. This model
aims to achieve a heavy-tailed degree distribution as well as deep cuts, and it does so by making the
connection probabilities depend both on the two-dimensional geometry and on the preferential attachment
scheme. As we see, the effect of the underlying geometry eventually dominates the NCP plot since the
best bi-partitions are fairly well-balanced [70]. Finally, we explored in more detail networks with explicitly
planted community structure. For example, we started with 10 isolated communities generated using the
Gn,p model, and then we generated a random binary tree. For each internal node at height h we link
the nodes in both sides of the tree with probability ph, for a probability parameter p. This and other
related networks gives a graph of nested communities resembling the hierarchical clustering algorithm
of Newman and Girvan [129]. We see, however, from Figure 16(f) that the NCP plot slopes steadily
downward, and furthermore we observe that dips correspond to the cuts that separate the communities.

6.2 Very sparse random graphs have very unbalanced deep cuts

In this section, we will analyze a very simple random graph model. Perhaps somewhat surprisingly, it
reproduces relatively deep cuts at small size scales. Understanding why will be instructive as a baseline
for understanding the community properties we have observed in our real-world networks.

We will work with the random graph model with given expected degrees, as described by Chung
and Lu [41, 39, 43, 38, 40, 44, 45, 42]. Let n, the number of nodes in the graph, and a vector w =
(w1, . . . , wn), which will be the expected degree sequence vector (where we will assume that maxi w2

i <∑
k wk), be given. Then, in this random graph model, an edge eij between nodes i and j is added,

independently, with probability pij = wiwj/
∑

k wk. Thus, P (eij = 1) = pij and P (eij = 0) = 1 − pij .
We use G(w) to denote a random graph generated in this manner. (Note that this model is different
than the so-called “configuration model” in which the degree distribution is exactly specified and which
was studied by Molloy and Reed [121, 122] and also Aiello, Chung, and Lu [7, 8]. This model is also
different than generative models such as preferential attachment models [9, 124, 25] or models based on
optimization [56, 57, 60], although common to all of these generative models is that they attempt to
reproduce empirically-observed power-law behavior [11, 61, 27, 126, 49].) In this random graph model,
the expected average degree is wav = 1

n

∑n
i=1 wi and the expected second-order average degree is w̃ =∑n

i=1 w2
i /

∑
k wk. Let wG =

∑
i wi denote the expected total degree. Given a subset S of nodes, we

define the volume of S to be wS =
∑

v∈S wv and we say that S is c-giant if its volume is at least cwG,
for some constant c > 0. We will denote the actual degrees of the graph G by {d1, d2, . . . , dn}, and will
define d(S) to be the sum of the actual degrees of the vertices in S. Clearly, by linearity of expectation,
for any subset S, E(d(S)) = wS .

The special case of the G(w) model in which w has a power law distribution is of interest to us
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here. (The other interesting special case, in which all the expected degrees wi are equal to np, for some
p ∈ [0, 1], corresponds to the classical Gilbert-Erdös-Renyi Gnp random graph model [24].) Given the
number of nodes n, the power-law exponent β, and the parameters w and wmax, Chung and Lu [41] give
the degree sequence for a power-law graph:

wi = ci−1/(β−1) for i s.t. i0 ≤ i < n + i0, (10)

where, for the sake of consistency with their notation, we index the nodes from i0 to n+ i0−1, and where
c = c(β, w, n) and i0 = i0(β, w, n, wmax) are as follows:

c = αwn1/(β−1) and i0 = n

(
α

w

wmax

)β−1

, (11)

where we have defined α = β−2
β−1 . It is easy to verify that: wmax = maxi wi is the maximum expected

degree; the average expected degree is given by wav = 1
n

∑n
i=1 wi = w(1 + o(1)); the minimum expected

degree is given by wmin = mini wi = wα(1− o(1)); and the number of vertices that have expected degree
in the range (k − 1, k] is proportional to k−β.

The following theorem will characterize the shape of the NCP plot for this G(w) model when the
degree distribution follows Equation (10), with β ∈ (2, 3). The theorem makes two complementary
claims. First, there exists at least one (small but moderately deep) cut in the graph of size Θ(log n) and
conductance Θ( 1

log n ). Second, for some constants c′ and ε, there are no cuts in the graph of size greater
than c′ log n having conductance less than ε. That is, this model has clusters of of logarithmic size with
logarithmically deep cuts, and once we get beyond this size scale there do not exist any such deep cuts.

Theorem 1 Consider the random power-law graph model G(w), where w is given by Equation (10),
where w > 5.88, and the power-law exponent β satisfies 2 < β < 3. Then, then with probability 1 − o(1):

1. There exists a cut of size Θ(log n) whose conductance is Θ
(

1
log n

)
.

2. There exists c′, ε > 0 such that there are no sets of size larger than c′ log n having conductance
smaller than ε.

Proof: Combine the results of Lemma 1 and Lemma 3 below.
The two claims of Theorem 1 are illustrated in Figure 17(a). Note that when w ≥ 4

e and β ∈ (2, 3)
then a typical graph in this model is not fully connected but does have a giant component [41]. (The well-
studied Gn,p random graph model [24] has a similar regime when p ∈ (1/n, logn/n), as will be discussed
in Section 7.4.) In addition, under certain conditions on the average degree and second order average
degree, the average distance between nodes is in O (log log n) and yet the diameter of the graph is Θ (log n).
Thus, in this case, the graph has an “octopus” structure, with a subgraph containing nc/(log log n) nodes
constituting a deep core of the graph. The diameter of this core is O(log log n) and almost all vertices are
at a distance of O(log log n) from this core. However, the pairwise average distance of nodes in the entire
graph is O(log n/ log w̃). A caricature of the G(w) model when β ∈ (2, 3) is presented in Figure 17(b).

Our first lemma claims that for the G(w) model, if the degree distribution w follows the above power-
law, then there exists a moderately large cut with small conductance. In order to prove the existence of
a cut of size Θ(log n) and conductance Θ( 1

log n ), it is sufficient to concentrate on the existence of whiskers
that are large enough. In particular, to prove the following lemma, we compute the probability that there
exists a cut of both volume and size Θ(log n) and cut-size 1. (Note that although we formally state the
lemma in terms of the power-law random graph model, the proof will show that the main claim holds for
a more general representation of the heavy-tailed degree distribution.)

Lemma 1 For the G(w) model, where w follows a power-law degree distribution with 2 < β < 3 then,
with probability 1 − o(1) there exists a set of size Θ(log n) with conductance Θ( 1

log n ).
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(a) NCP plot suggested by our main theorem (b) Structure of G(w) model

Figure 17: The G(w) model in the sparse β ∈ (2, 3) parameter regime. (a) Network community profile plot, as
suggested by our main theorem. (b) Caricature of network structure.

Proof: Let S be a subset with the following description. S = {v0, v1, . . . , vk}, where k = c1 log n. Let
wi denote the degree of vi. We have that w0 ∈ [c2 log n, 2c2 log n] and wi ≤ w for all i > 0. Thus the
expected volume of S is wS ∈ [(2αwc2 + c1) log n, (2αwc2 + c1) log n], and the size of S is c1 log n + 1.
Note that the expected volume of the graph can be computed as wG = wn, and hence ρ = 1

wG
= 1

wn .
Now, let n1 denote the number of vertices of expected degree at most 2αw. By simple calculation,

n1 ≥ n/2. The number of possible choices for the vertex v0 can be computed as follows. Let B be the
set of vertices having degree greater than 2αwc2 log n and A be the set of vertices with degree at most
2αwc2 log n. Then the number of nodes with degree in [c2 log n, 2c2 log n] is given by the size of V \(A∪B)
which is

αw

(
n

c2 log n

)β−1

− αw

(
n

2c2 log n

)β−1

≥ αw

(
n

c2 log n

)β−1

,

since β > 2. Thus the number of possible such subsets S is given by the number of choices for v0 times
the number of possible choices for the nodes v − 1, . . . , vk. Thus, the number N of possible such subsets
S is at least

N =
(

n1

c1 log n

)
× α

(
n

2c2 log n

)β−1

.

We say that S is good if, after instantiating all the edges, S has a star of size c1 log n centered at v0, and
v0 is connected to S̄ by exactly one edge, and none of the other vertices in S have any edge to S̄. The
probability that a particular set S is good is the product of the following terms: the probability p1 that
there is star of size c1 log n with v0 at the center, the probability p2 that none of the nodes v1, . . . , vk link
to any nodes in S̄, and the probability p3 that v0 connects to S̄ using exactly one edge. We now calculate
the three probabilities as follows. First,

p1 =
∏

i∈[1...k]

w0wiρ ≥ (w0αwρ)c1 log n,

since each wi ≥ wmin ≥ αw. Next,

p2 =
∏

i=1,...k

∏
j /∈S

(1 − wjρ) ≥
∏

i=1,...k

∏
j /∈S

e−wiρ/2 = e−(c1ρ2αwwS̄ log n)/2,

obtained by using 1 − x ≥ e−x/2 for 0 < x < 1, and wi ≤ 2αw for i ∈ S, i > 1. Finally, we get p3 as
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follows. First note

p3 =
∑
j∈S̄

w0wjρ
∏

k �=j,k∈S̄

(1 − wkw0ρ)

≥
∑
j∈S̄

w0wjρe−(wS̄ −wj)w0ρ/2

= w0ρe−wS̄w0ρ/2(
∑
j∈S̄

wje
wjw0ρ/2).

Then, since wjw0ρ  1 and since ex ≥ 1 + x, we have that

p3 ≥ w0ρe−wS̄w0ρ/2(
∑
j∈S̄

wj(1 +
wjw0ρ

2
))

≥ w0ρe−wS̄w0ρ/2(wS̄ + w0ρw̃S̄/2),

where w̃S̄ =
∑

j∈S̄ w2
j . So the final probability of goodness of S is

p = p1 × p2 × p3 ≥ (w0αwρ)c1 log n × e−(c1ρ2αwwS̄ log n)/2 × w0ρe−wS̄w0ρ/2(wS̄ + w0ρw̃S̄/2)
= (w0αwρ)c1 log n × e−(c1γ2αw log n) × w0ρe−γw0(wS̄ + w0ρw̃S̄/2),

using γ = ρwS̄/2. So the expected number of such good subsets S is

Np ≥
(

n1

c1 log n

)
× αw

(
n

2c2 log n

)β−1

× (w0αwρ)c1 log n × e−(c1γ2αw log n) × w0ρe−γw0(wS̄ + w0ρw̃S̄/2)

≥
(

n1

c1 log n

)c1 log n

× αwnβ−1

(2c2 log n)β−1
× (w0αwρ)c1 log n × e−(c1γ2αw log n) × w0ρe−γw0 × nw/2,

using Stirling’s formula and the fact that wS̄ ≥ nw/2. Using the value of n1 and since nwρ = 1,

Np ≥
(

n

2c1 log n

)c1 log n

× αwnβ−1

(2c2 log n)β−1
× (w0αwρ)c1 log n × e−(c1γ2αw log n) × e−γw0 × w0/2

≥
(

w0α

2c1 log n

)c1 log n

× αwnβ−1

(2c2 log n)β−1
× (w0αwρ)c1 log n × e−(c1γ2αw log n) × e−γw0 × w0/2.

Using w0 ≥ c2 log n, we have that have that

Np ≥
(

c2α

2c1

)c1 log n

× αwnβ−1

2(2c2 log n)β−2
× e−(c1γ2αw log n) × e−γw0

≥ eΘ log n × αw

2(2c2 log n)β−2
,

where Θ = c1 log( c2α
2c1

)+ (β − 1)− γαwc1 − 2γc2. Note that for 2 < β < 3, we have that 0 < α < 1
2 . Also,

γ = 1
2 − o(1). Thus, choosing c2 = 2ec1/α and c1 = β−2

2γαw+4γe/α−1 , we get Θ = 1. So,

Np ≥ elog n × αw

2(2c2 log n)β−2
= Ω(log n)

Then, the probability is a particular set S is good is p ≥ Ω
(

(log n)
N

)
. Hence the probability of getting

a good set is

1 − (1 − p)N ≥ 1 −
(

1 − Ω
(

(log n)β−2

N

))N

≥ 1 − o(1)
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We next state the well-known Chernoff bound [41], which we will use below.

Lemma 2 Let X =
∑

i Xi where the Xi are independent random variables with Xi ≥ −M . Define
‖X‖2 =

∑
i E(X2

i ). Then,

Pr(X ≥ E(X) − λ) ≤ exp
(
− λ2

2(‖X‖2 + Mλ/3)

)
. (12)

Finally, we show that there are no deep cuts with size greater than Θ(log n). To state this lemma,
define a connected set S to be ε-deficit set if it has actual volume d(S) ≤ 1

2d(G) and if the conductance
of the cut (S, S̄) is at most ε, i.e., if the number of edges leaving S is at most εd(S).

Lemma 3 For the G(w) model, where w follows a power-law degree distribution with 2 < β < 3, if the
average degree w satisfies w ≥ 5.88, then with probability 1 − o(1) there exists constants c′, ε such that
there is no ε-deficit set of size more than c′ log n.

Proof: Let e(S, S̄) denote the actual number of edges between S and S̄. First we compute the probability
that a given set S is ε-deficit, that is, S satisfies e(S, S̄) < εd(S). Let δ = 2ε

1−ε . For our case, define
the variables X(i,j) = eij for (i, j) ∈ (S, S̄) and X(i,j) = −δeij for (i, j) ∈ (S, S). Then the sum
X =

∑
X(i,j) =

∑
(i,j)∈(S,S̄) eij − δ

∑
(i,j)∈(S,S̄) eij . Note that e(S, S̄) < εd(S) ⇐⇒ X ≤ 0. Using the

fact that E(eij) = wiwjρ, we have ‖X‖2 =
∑

E(X2
ij) = wSwS̄ρ + δ2w2

Sρ. Furthermore, exploiting the
fact that each Xi ≥ −δ, we get that

Pr(X ≤ 0) = Pr(X ≤ E(X) − E(X))

≤ exp
(
− E(X)2

2(‖X‖2 + δE(X)/3)

)

= exp
(
− ρ2w2

S(wS̄ − δwS)2

2(wSρ(wS̄ + δ2wS) + δwSρ(wS̄ − δwS)/3)

)
.

Canceling ρwS from both numerator and denominator,

Pr(X ≤ 0) ≤ exp
(
− ρwS(wS̄ − δwS)2

2(wS̄ + δ2wS + δwS̄/3 − δ2wS/3)

)

≤ exp
(
− ρwS(wS̄ − δwS)2

2(1 + δ/3 + 2δ2/3)wS̄

)
≤ exp

(
−ρwSwS̄(1 − 2δwS/wS̄)

2(1 + δ/3 + 2δ2/3)

)

≤ exp
(
− ρwSwS̄(1 − 2δ)

2(1 + δ/3 + 2δ2/3)

)
≤ exp (−ρwSwS̄Aδ/2) ,

where Aδ = 1−2δ
(1+2δ/3+2δ2/3) . So this bounds the probability that a particular set S of size k is ε-deficit. We

will bound the expected number of such ε-deficit subsets of size k. First, let Nk,ε,γ denote the expected
number of ε-deficit sets of size k that have expected volume wS ≤ γwG. By linearity of expectation,

Nk,ε,γ ≤
∑

S:|S|=k

wS≤γwG

wi1 . . . wik
wk−2

S ρk−1 exp (−ρwSwS̄Aδ/2)

≤
∑

S:|S|=k

wS≤γwG

w2k−2
S

kk
ρk−1 exp((−wS(1 − γ)Aδ)),
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where we used the fact that γ = ρwS̄/2 and also the AM-GM inequality to say that
∏

i∈S wi ≤(∑
i∈S wi

k

)k

. Now, F (x) = x2k−2e−xAδ(1−γ) is maximized at x = 2k−2
Aδ(1−γ) . Thus, the above sum is

maximized when wS = 2k−2
Aδ(1−γ) . Hence,

Nk,ε,γ ≤ nk

k!
ρk−1

kk

2(2k−2) · (k − 1)(2k−2)

(Aδ(1 − γ))(2k−2)
exp(−2k + 2)

≤ (nρ)k

ρ
√

k(k/e)k

1
kk

2(2k−2) · (k − 1)(2k−2)

(Aδ(1 − γ))(2k−2)
exp(−2k + 2).

Using (1 − 1
k )2k ≤ e−2, it follows that

Nk,ε,γ ≤ 1
4e
√

k(k − 1)2

(
4

ewA2
δ(1 − γ)2

)k

.

We would like
∑cn

k=c log n Nk,ε,γ to be o(1), for which we need

4
ewA2

δ(1 − γ)2
< 1,

which gives a bound on average degree:

w ≥ 4
A2

δ(1 − γ)2e
.

For sets of volume wS ≥ γwG, we have the following. From the double-sided Chernoff bound, for any
fixed set S,

|wS − d(S)| ≤ λ with probability 1 − 2 exp
(
− λ2

2(wS + λ/3)

)
.

So if λ =
√

wS log n, we have the above statement with probability 1 − 2 exp(−3 log2 n/8). Similarly,

|e(S, S̄) − E(e(S, S̄))| ≤ λ with probability 1 − 2 exp
(
− λ2

2(ρwSwS̄ + λ/3)

)
.

By having λ = √
ρwSwS̄ log n the above probability becomes 1 − 2 exp(−3 log2 n/8). Now, if both these

events occur, then the conductance of the set S is at least 1/3. So the only way we can get an ε-deficit
set is at by having one of these conditions to be invalid. The total number of sets of expected volume
γwG is bounded by

(
wG

γwG

)
. So, the expected number of ε-deficit sets of volume at least γwG is bounded

by

∑
γ≤θ≤1/2

(
wG

θwG

)
4 exp(−3 log2 n/8) ≤

∫
γ≤θ≤1/2

1√
θwG

(
1
θ

)θwG

4 exp(−3 log2 n/8) ≤ o(1).

Thus, putting the two bounds together, the expected number of ε-deficit sets of size greater that c log n
is at most o(1). Thus with probability 1 − o(1) there does not exist an ε-deficit set of size greater than
c log n.
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(a) A toy network model . . .
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Figure 18: Schematic picture of the properties of a network responsible for the upward-sloping community profile
plot. (a) This toy model is designed so that the optimal conductance cuts are achieved by cutting nodes from the
top of the tree. (b) The minimum of the NCP plot is achieved by cutting the single top node, and then larger
and larger cuts have gradually worse and worse conductance values.

6.3 An intuitive toy model for generating an upward-sloping NCP plot

We have seen that commonly-studied models, including preferential attachment models, copying models,
simple hierarchical models, and models in which there is an underlying mesh-like or manifold-like geometry
are not the right way to think out the community structure of large social and information networks. We
have also seen that the extreme sparsity of the networks might be responsible for the deep cuts at small
scales. To build intuition as to what the gradually increasing NCP plot might mean, consider Figure 18.
This is a toy example of a network construction in which the NCP plot has a deep dip at a small size scale
and then increases. The network shown in Figure 18(a) is an infinite tree that has two parts. The top
part, a subtree (with one node in this example, but more generally consisting of nT nodes) is indicative
of the whiskers, or the “small scale” structure of the graph. The remaining tree has the property that
the number of children increases monotonically with the level of the node. This property is indicative of
the fact that as the size of a cluster grows, the number of neighbors that it has also increases.

The key insight in this construction is that the best conductance cuts first cut at the top of the
growing tree and then gradually work their way “down” the tree, starting with the small subtrees and
moving gradually down the levels, as depicted in Figure 18(a). Thus, intuitively, one can think of small
well-separated communities—those below the nT size scale that consist of subsets of the small trees—
starting to grow, and as they pass the nT size scale and become bigger and bigger, they blend in more
and more with the central part of the network, which (since it exhibits certain expander-like properties)
does not have particularly well-defined communities. Note (more generally) that if there are nT nodes in
the small tree at the top of the graph, then the dip in the NCP plot in Figure 18(b) is of depth 2/(nT +1).
In particular, if nT = Θ(log n) then the depth of this cut is Θ(log n).

6.4 A more realistic model of network community structure

The question arises as to whether we can find a simple generative model that can explain both the
existence of small well-separated whisker-like clusters and also an expander-like core whose best clusters
get gradually worse as the purported communities increase in size. Intuitively, a satisfactory network
generation model must successfully take into account the following two mechanisms:

(a) The model should produce a relatively large number of relatively small—but still large when com-
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pared to random graphs—well connected and distinct whisker-like communities. (This should re-
produce the downward part of the community profile plot and the minimum at small size scales.)

(b) The model should produce a large expander-like core, which may be thought of as consisting of
intermingled communities, perhaps growing out from the whisker-like communities, the boundaries
of which get less and less well-defined as the communities get larger and larger and as they gradually
blend in with rest of the network. (This should reproduce the gradual upward sloping part of the
community profile plot.)

The so-called Forest Fire Model [111, 112] captures exactly these two competing phenomena. The Forest
Fire Model is a model of graph generation (that generates directed graphs—an effect we will ignore) in
which new edges are added via a recursive “burning” mechanism in an epidemic-like fashion. Since the
details of the recursive burning process are critical for the model’s success, we explain it in some detail.

To describe the Forest Fire Model of [111, 112], let us fix two parameters, a forward burning probability
pf and a backward burning probability pr. We start the entire process with a single node, and at each
time step t > 1, we consider a new node v that joins the graph Gt constructed thus far. The node v
forms out-links to nodes in Gt as follows:

(i) Node v first choose a node w, which we will refer to as a “seed” node or an “ambassador” node,
uniformly at random and forms a link to w.

(ii) Node v selects x out-links and y in-links of w that have not yet been visited. (x and y are two geo-
metrically distributed random numbers with means pf/(1−pf) and pr/(1−pr), respectively. If not
enough in-links or out-links are available, then v selects as many as possible.) Let w1, w2, . . . , wx+y

denote the nodes at the other ends of these selected links.

(iii) Node v forms out-links to w1, w2, . . . , wx+y, and then applied step (ii) recursively to each of the
w1, w2, . . . , wx+y, except that nodes cannot be visited a second time during the process.

Thus, burning of links in the Forest Fire Model begins at node w, spreads to w1, w2, . . . , wx+y, and
proceeds recursively until the process dies out. One can view such a process intuitively as corresponding
to a model in which a person comes to the party and first meets an ambassador who then introduces
him or her around. If the person creates a small number of friendships these will likely be from the
ambassadors “community,” but if the person happens to create many friendships then these will likely go
outside the ambassador’s circle of friends. This way, the ambassador’s community might gradually get
intermingled with the rest of the network.

Two properties of this model are particularly significant. First, although many nodes might form one
or a small number of links, certain nodes can produce large conflagrations, burning many edges and thus
forming a large number of out-links before the process ends. Such nodes will help generate a skewed
out-degree distribution, and they will also serve as “bridges” that connect formerly disparate parts of the
network. This will help make the NCP plot gradually increase. Second, there is a locality structure in
that as each new node v arrives over time, it is assigned a “center of gravity” in some part of the network,
i.e., at the ambassador node w, and the manner in which new links are added depends sensitively on the
local graph structure around node w. Not only does the probability of linking to other nodes decrease
rapidly with distance to the current ambassador, but because of the recursive process regions with a
higher density of links tend to attract new links.

Not surprisingly, however, the Forest Fire Model is sensitive to the choice of the parameters pf and
pb. We have experimented with a wide range of network sizes and values for these parameters, and in
Figure 19, we show the community profile plots of several 10, 000 node Forest Fire networks generated
with pb = 0.3 and several different values of pf . The first thing to note is that since we are varying pf the
six plots in Figure 19, we are viewing networks with very different densities. Next, notice that if, e.g.,
pf = 0.33 or pf = 0.35 then we observe a very natural behavior: the conductance nicely decreases, reaches
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Figure 19: [Best viewed in color.] Community profile plots for the Forest Fire Model at various parameter settings.
The backward burning probability is pb = 0.3, and we increase (left to right, top to bottom) the forward burning
probability pf = {0.26, 0.31, 0.33, 0.35, 0.37, 0.40}. Note that the largest and smallest values for pf lead to less
realistic community profile plots, as discussed in the text.
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Figure 20: Examples of whiskers from a simulation of the Forest Fire Model with parameter settings pf = 0.37
and pb = 0.3.

the minimum somewhere between 10 and 100 nodes, and then slowly but not too smoothly increases.
Not surprisingly, it is in this parameter region where the Forest Fire Model has been shown to exhibit
realistic time evolving graph properties such as densification and shrinking diameters [111, 112]. Next,
notice that if pf is too low or too high, then we obtain qualitatively different results. For example, if
pf = 0.26, then the community profile plot gradually decreases for nearly the entire plot. For this choice
of parameters, the forest fire does not spread well since the forward burning probability is too small, the
network is extremely sparse and is tree-like with just a few extra edges, and so we get large well separated
“communities” that get better as they get larger. On the other hand, when burning probability is too
high, e.g., pf = 0.40, then the NCP plot has a minimum and then rises extremely rapidly. For this
choice of parameters, if a node which initially attached to a whisker successfully burns into the core,
then it quickly establishes many successful connections to other nodes in the core. Thus, the network has
relatively large whiskers that failed to establish such a connection and a very expander-like core, with no
intermediate region, and the increase in the community profile plot is quite abrupt.

We have examined numerous other properties of the graphs generated by the Forest Fire Model and
have found them to be broadly consistent with the social and information networks we have examined.
This is certainly a topic for further study, and a detailed discussion of these issues is beyond the scope of
this paper. One property, however, that is of particular interest is what the whiskers look like. Figure 20
shows an example of several whiskers generated by the Forest Fire Model if we choose pb = 0.30 and
pf = 0.37. They are larger and more well-structured than the tree-like whiskers from the random graph
model of Section 6.2. Also notice that they all look plausibly community-like with a core of the nodes
densely linked among themselves and the bridge edge then connects the whisker to the rest of the network.

We conclude by noting that there has also been interest in developing hiererchical graph generation
models, i.e., models in which a hierarchy is given and the linkage probability between pairs of nodes
decreases as a function of their distance in the hierarchy [136, 135, 30, 6, 109, 47, 156, 110]. The motivation
for this comes largely from the intuition that nodes in social networks and are joined in to small relatively
tight groups that are then further join into larger groups, and so on. As Figures 16(c) and 16(d) make
clear, however, such models do not immediately lead to community structure similar to what we have
observed and which has been reproduced by the Forest Fire Model. On the other hand, although there
are significant differences between hierarchical models and the Forest Fire Model, [111, 112] notes that
there are similarities. In particular, in the Forest Fire Model a new node v is assigned an ambassador
w as an entry point to the network. This is analogous to a child having a parent in the hierarchy which
helps to determine how that node links to the remainder of the network. Similarly, many hierarchical
models have a connection probability that decreases exponentially in the hierarchical tree distance. In
the Forest Fire Model, the probability that a node v will burn along a particular path to another node u
is exponentially small in the path length, although the analogy is not perfect since there may exist many
possible paths.
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7 Discussion

In this section, we discuss several aspects of our main results in a broader context. In particular, in
Section 7.1, we compare to several data sets in which there is some notion of “ground truth” community
and we also describe several broader non-technical implications of our results. Then, in Section 7.3, we
describe recent work on community detection and identification. Finally, in Section 7.4, we discuss several
technical and algorithmic issues and questions raised by our work.

7.1 Comparison with “ground truth” and sociological communities

In this subsection, we examine the relationship between network communities of the sort we have been
discussing and more traditional social communities. We do so by examining several network datasets in
which we have access to some notion of “ground truth.” That is, for each of these interaction graphs,
we may associate with each node one or more community labels, which are exogenously specified. Note
that we are overloading the term “community” here, as in this context the term might mean one of two
things: first, it can refer to groups of nodes with good conductance properties; and second, it can refer
to groups of nodes that belong to the same self-defined or exogenously-specified group. We consider the
following five datasets:

• LiveJournal12 [20]: LiveJournal is an on-line blogging site where users can create friendship
links to other bloggers. In addition, users can create groups, which other users can then join. In
LiveJournal, there are 385, 959 such groups, and a node belongs to 3.5 groups on the average. Thus,
in addition to the information in the interaction graph, we have labels specifying those groups with
which a user is associated, and thus we may view each such group as determining a “ground truth”
community.

• CA-DBLP [20]: We considered a co-authorship network in which nodes are authors and there is
an edge if authors co-authored at least one paper. Here, publication venues (e.g., journals and
conferences) can play the role of “ground truth” communities. That is, an author is a member of a
particular group or community if he or she published at a particular conference or in a particular
journal. In our DBLP network, there are 2, 547 such groups, with a node belonging to 2.6 on the
average.

• AmazonAllProd [48]: This is a network of products that are commonly purchased together at
amazon.com. (Intuitively one might expect that, e.g., gardening books are frequently purchased
together, so the network structure might reflect a well-connected cluster of gardening books.) Here,
each item belongs to one or more hierarchically organized categories (book, movie genres, product
types, etc.), and products from the same category define a group which we will view as a “ground
truth” community. Items can belong to 49, 732 different groups, and each item belongs to 14.3
groups on the average.

• AtM-IMDB: This network is a bipartite actors-to-movies network composed from IMDB data, and
an actor A is connected to movie B if A appeared in B. For each movie we also know the language
and the country where it was produced. Countries and languages may be taken as “ground truth”
communities or groups, where every movie belongs to exactly one group and actors belongs to all
groups to which movies that they appeared in belong. In our dataset, we have 393 language groups
and 181 country groups.

• Email-Inside and Email-InOut [112]: This is an email communication network from a large
European research organization conducting research in natural sciences: physics, chemistry, biology
and computer science. Each of 986 members of the organization belongs to exactly one of 45
departments, and we use the department memberships to define “ground truth” communities
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Although none of these notions of “ground truth” is perfect, many community finding algorithms use
precisely this form of anecdotal evaluation: a network is taken, network communities are found, and then
the correspondence of network communities to “ground truth” communities is evaluated. Note, however,
we are evaluating how “ground truth” communities behave at different size scales with respect to our
methodology, rather than examining how the groups we find relate to “ground truth” communities. An-
dersen and Lang [14] have performed the latter evaluation for a version of the IMDB data. Furthermore,
note that the notions of “ground truth” are not all the same—we might expect that people publish pa-
pers across several different venues in a very different way than actors appear in movies from different
countries. More detailed statistics for each of these networks may be found in Tables 1, 2 and 3.

To examine the quality of “ground truth” communities in the these network datasets, one can take all
groups and measure the conductance of the cut that separates that group from the rest of the network.
Thus, we generated NCP plots in the following way. For every “ground truth” community, we measure its
conductance, from which we obtain a scatter plot of community size versus conductance. Then, we take
the lower-envelope of this plot, i.e., for every integer k we find the conductance value of the community
of size k that has the lowest conductance. Figure 21 shows the results for these network datasets; the
figure also shows the NCP plot obtained from using the Local Spectral Algorithm on both the original
network and on the rewired network.

Several things should be noted. First, the conductance of “ground truth” communities follows that
for the network communities up to until size 10-100 nodes, i.e., larger communities get successively more
community-like. As “ground truth” communities get larger, their conductance values tend to get worse
and worse, in agreement with network communities discovered with graph partitioning approximation
algorithms. Thus, the qualitative trend we observed in nearly every large sparse real-world network (of
the best communities blending in with the rest of the network as they grow in size) is seen to hold
for “ground truth” communities. Second, one might expect that the NCP plot for the “ground truth”
communities (the green curves) will be somewhere between the NCP plot of the original network (red
curves) and that for the rewired network (black curves), and this is seen to be the case in general. The
NCP plot for network communities goes much deeper and rises more gradually than for “ground truth”
communities. This is also very consistent with our general observation that only small communities tend
to be dense and well separated, and to separate large groups one has to cut disproportionately many
edges. Third, for the two social networks we studied (LiveJournal12 and CA-DBLP), larger “ground
truth” communities have conductance scores that get quite “random”, i.e., they are as well separated as
they would be in a randomly rewired network (green and black curves overlap). This is likely associated
with the relatively weak and overlapping notion of “ground truth” we associated with those two network
datasets. On the other hand, for AmazonAllProd and AtM-IMDB networks, the general trend still
remains but large “ground truth” communities have conductance scores that lie well below the rewired
network curve.

Our email networks illustrate a somewhat different point. The NCP plot for Email-Inside should be
compared with that for Email-InOut, which is displayed in Figure 6. The Email-Inside email network
is rather small, and so it has a decreasing community profile plot, in agreement with the results for small
social networks. Since communication is mainly focused between the members of the same department,
both network and “ground truth” communities are well expressed. Next, compare the NCP plot of
Email-Inside with that of Email-InOut (Figure 6). We see that the NCP plot of Email-Inside slopes
downwards (as we consider only the communication inside the organization), but as soon as we consider
the communication inside the organization and to the outside world (Email-InOut, or alternatively,
see Email-Enron) then we see a completely different and more familiar picture—the NCP plot drops
and then slowly increases. This suggests that the organizational structure, (e.g., departments) manifest
themselves in the internal communication network but if we put the organization into the broader context
(i.e., how it communicates to the rest of the world) then the internal structure seems to disappear.
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Figure 21: [Best viewed in color.] Network community profile plots for explicitly “ground truth” communities
(green), compared with that for the original network (red) and a rewired version of the network (black): (a)
LiveJournal12; (b) CA-DBLP; (c) AmazonAllProd; (d) Email-Inside; and (e-f) AtM-IMDB.
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7.2 Broader implications

In contrast to numerous studies of community structure, we find that the “best” communities are relatively
small, with sizes only up to about 100 nodes. We also find that above size of about 100, the “quality” of
communities gets worse and worse and communities more and more “blend into” the graph. Eventually,
even the existence of communities (at least when viewed as sets with stronger internal than external
connectivity) is rather questionable. This seems to agree with Dunbar [58] who predicted that 150 is
the upper limit on the size of a human community. Moreover, Allen [12] gives evidence that on-line
communities have around 60 members, and on-line discussion forums start to break down at about 80
active contributors. Church congregations, military companies, divisions of corporations, all are close to
the magic sum of 150 [12]. We are thus led to ask: Why, above this size, is community quality inversely
proportional to its size? And why are NCP plots of small and large networks so different?

Recently, there have been several works hinting that the network communities subject is more complex
than it seems at the first sight. For example, it has been found that random graphs can have good
modularity scores [84]. Intuitively, random graphs have no community structure but there can still exist
sets of nodes with good community scores, at least as measured by modularity. Moreover, very recently a
study of robustness of community structure showed that the canonical example of presence of community
structure in networks [157] may have no significant community structure [93].

Previous studies mainly focused on small networks (e.g., see [52]), which are simply not large enough
for the clusters to gradually blend into one another as one looks at larger size scales. Our results do not
disagree with literature at small sizes. But it seems that in order to make our observations one needs to
look at large networks. Probably it is only when Dunbar’s limit is passed that we find large communities
blurring and eventually vanishing. A second reason is that previous work did not measure and examine
the network community profile of cluster size vs. cluster quality.

Dunbar’s explanation aligns well with the common bond vs. common identity theory of group attach-
ment [138] from social phycology. Common identity theory makes predictions about people’s attachment
to the group as a whole, while common bond theory predicts people’s attachment to individual group
members. The distinction between the two refers to people’s different reasons for being in a group. Be-
cause they like the group as a whole we get identity-based attachment, or because they like individuals
in the group we get bond-based attachment. Anecdotally, bond-based groups are based on social interac-
tion with others, personal knowledge of them, and interpersonal attraction to them. On the other hand,
identity-based groups are based on common identity of its members, e.g., liking to play a particular on-
line game, contributing to Wikipedia, etc. It has been noted that bond communities tend to be smaller
and more cohesive [19], as they are based on interpersonal ties, while identity communities are focused
around common theme or interest. See [138] for a very good review of the topic.

Translating this to our context, the bond vs. identity communities mean that small, cohesive and
well-isolated communities are probably based on common bonds, while bigger groups may be based on
common identity, and it is hard to expect such big communities to be well-separated or well-expressed
in a network sense. This further means the transition between common bond (i.e., maintaining close
personal ties) and common identity (i.e., sharing a common interest or theme) occurs at around one
hundred nodes. It seems that at this size the cost of maintaining bond ties becomes too large and the
group either dies or transitions into a common identity community. It would be very interesting as a
future research topic to explore differences in community network structure as the community grows and
transitions from common bond to common identity community.

Another explanation could be that in small, carefully collected networks, the semantics of edges is very
precise while in large networks we know much less about each particular edge, e.g., especially when online
people have very different criteria for calling someone a friend. Traditionally social scientists through
questionnaires “normalized” the links by making sure each link has the same semantics/strength.

There has also been some evidence that hints towards the findings we make here. For example,
Clauset et al. [48] analyzed community structure of a graph related to the AmazonProd, and found
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that 50% of the nodes belonged to the largest “miscellaneous” community. This agrees with the typical
size of the network core, and one could conclude that the largest community they found corresponds to
the intermingled core of the network, and most of the rest of the communities are whisker-like.

Our work also raises an important question of what is a natural community size, and whether larger
communities (in a network sense) even exist. It seems that when community size surpasses some threshold
it becomes so diverse, that it stops existing as a traditionally understood “network community”. It blends
with the network, and intuitions based on connectivity and cuts seem to fail to identify it. Approaches
that consider both the network structure and node attribute data might detect communities in these
cases.

Also, conductance seems like a very reasonable measure that satisfies intuition about community
quality, but we have seen that if one only worries about conductance, then bags of whiskers and other
internally disconnected sets have the best scores. This raises interesting questions about cluster coherence,
regularization and smoothness: what is a good definition of coherence, and how should this be connected
to the notion of community separability?

7.3 Relationship with community identification methods

A great deal of work has been devoted to finding communities in large networks, and much of this has
been devoted to formalizing the intuition that a community is a set of nodes that has more and/or better
intra-linkages between its members than inter-linkages with the remainder of the network. Very relevant
to our work is that of Kannan, Vempala, and Vetta [92], who analyze spectral algorithms and describe
a community concept in terms of a bicriterion depending on the conductance of the communities and
the relative weight of inter-community edges. Flake, Tarjan, and Tsioutsiouliklis [68] introduce a similar
bicriterion that is based on network flow ideas, and Flake et al. [66, 67] defined a community as a set of
nodes that has more intra-edges than inter-edges. Similar edge-counting ideas were used by Radicchi et
al. [133] to define and apply the notions of a strong community and a weak community.

Within the “complex networks” community, Girvin and Newman [79] proposed an algorithm that used
“centrality” indices to find community boundaries. Following this, Newman and Girvin [129] introduced
modularity as a posteriori measure of the strength of community structure. Modularity measures inter-
(and not intra-) connectivity, but it does so with reference to a randomized null model. Modularity has
been very influential in the recent community detection literature [125, 52], and one can use spectral
techniques to approximate it [154, 128]. On the other hand, Guimerà, Sales-Pardo, and Amaral [84] and
Fortunato and Barthélemy [72] showed that random graphs have high-modularity subsets and that there
exists a size scale below which communities cannot be identified. In part as a response to this, some
recent work has had a more statistical flavor [85, 137, 141, 93, 130]. In light of our results, this work seems
promising, both due to potential “overfitting” issues arising from the extreme sparsity of the networks,
and also due to the empirically-promising regularization properties exhibited by local spectral methods.

We have made extensive use of the Local Spectral Algorithm of Andersen, Chung, and Lang [13].
Similar results were originally proven by Spielman and Teng [147, 148], who analyzed local random walks
on a graph; see Chung [34, 36, 35] for an exposition of the relationship between these methods. Andersen
and Lang [14] showed that these techniques can find (in a scalable manner) medium-sized communities in
very large social graphs in which there exist reasonably well-defined communities. In light of our results,
such methods seem promising more generally. Other recent work that has focused on developing local
and/or near-linear time heuristics for community detection include [48, 155, 46, 21, 134].

In addition to this work we have cited, there exists work which views communities from a very different
perspective. For example, Kumar et al. [102] view communities as a dense bipartite subgraph of the Web;
Gibson, Kleinberg, and Raghavan [78] view communities as consisting of a core of central authoritative
pages linked together by hub pages; Hopcroft et al. [88, 89] are interested in the temporal evolution
of communities that are robust when the input data to clustering algorithms that identify them are
moderately perturbed; and Palla et al. [131] view communities as a chain of adjacent cliques and focus
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on the extent to which they are nested and overlap. The implications of our results for this body of work
remain to be explored.

7.4 Relationship with other theoretical work

In this subsection, we describe the relationship between our work and recent work with similar flavor
in graph partitioning, algorithms, and graph theory. Consider recent work that has focused on the
expansion properties of power law graphs and the real-world networks they model. For example, Mihail,
Papadimitriou, and Saberi [118], as well as Gkantsidis, Mihail, and Saberi [80], studied Internet routing at
the level of Autonomous Systems (AS), and showed that the preferential attachment model and a random
graph model with power law degree distributions each have good expansion properties if the minimum
degree is greater than 2 or 3, respectively. This is consistent with the empirical results, but as we have
seen the AS graphs are quite unusual, when compared with nearly every other social and information
network we have studied. On the other hand, Estrada has made the observation that although certain
communication, information, and biological networks have good expansion properties, social networks
do not [59]. This is interpreted as evidence that such social networks have good small highly-cohesive
groups, a property which is not attributed to the biological networks that were considered. From the
perspective of our analysis, these results are interesting since it is likely that these small highly-cohesive
groups correspond to sets near the global minimum of the network community profile plot. Reproducing
deep cuts was also a motivation for the development of the geometric preferential attachment models
of Flaxman, Frieze, and Vera [70, 71]. Note, however, that the deep cuts they obtain arise from the
underlying geometry of the model and thus are nearly bisections.

Consider also recent results on the structural and spectral properties of very sparse random graphs.
Recall that the Gnp random graph model [24] consists of those graphs on n nodes, in which there is an
edge between every pair vertices with a probability p, independently. Recall also that if p ∈ (1/n, logn/n),
then a typical graph in Gnp has a giant component, i.e., connected subgraph consisting of a constant
fraction of the nodes, but the graph is not fully connected [24]. (If p < 1/n, the a typical graph is
disconnected and there does not exist a giant component, while if p > log n/n, then a typical graph is
fully connected.) As noted, e.g., by Feige and Ofek [62], this latter regime is particularly difficult to
analyze since with fairly high probability there exist vertices with degrees that are much larger than
their expected degree. As reviewed in Section 6.2, however, this regime is not unlike that in a power law
random graph in which the power law exponent β ∈ (2, 3) [37, 115, 41].

Of particular interest to us are recent results on the mixing time of random walks in this p ∈
(1/n, logn/n) regime of the Gnp (and the related Gnm) random graph model. Benjamini, Kozma, and
Wormald [22] and Fountoulakis and Reed [74, 73] have established rapid mixing results by proving struc-
tural results about these very sparse graphs. In particular, they proved that these graphs may be viewed
as a “core” expander subgraph, whose deletion leaves a large number of “decorations,” i.e., small compo-
nents such that a bounded number are attached to any vertex in the core. The particular constructions
in their proofs is complicated, but they have a similar flavor to the core-and-whiskers structure we have
empirically observed. Similar results were observed by Fernholz and Ramachandran [63], whose analysis
separately considered the 2-core of these graphs and then the residual pieces. They show that a typical
longest shortest path between two vertices u and v consists of a path of length O(log n) from u to the
2-core, then a path of length O(log n) across the 2-core, and finally a path of length O(log n) from the
2-core to v. Again, this is reminiscent of the core-and-whiskers properties we have observed. In all these
cases, the structure is very different than traditional expanders [87], which we also empirically observe.
Eigenvalues of power law graphs have also been studied by Mihail and Papadimitriou [117], Chung, Lu,
Vu [43, 44, 45], and Flaxman, Frieze, and Fenner [69].
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8 Conclusion

We investigated statistical properties of sets of nodes in large real-world social and information networks
that could plausibly be interpreted as good communities, and we discovered that community structure in
these networks is very different than what we expected from the literature and from what commonly-used
models would suggest. The most obvious property is that, in nearly every network dataset we examined,
the conductance score of the best possible set of nodes gets gradually worse and worse as those sets
increase in size. That is, if the world is modeled by a sparse “interaction graph” and if a density-based
notion such as conductance is an appropriate measure of community quality, then the “best” possible
“communities” in nearly every real-world network we examined gradually gets less and less community-
like and instead gradually “blends in” with the rest of the network, as the purported communities steadily
grow in size. None of the commonly-used network generation models, including preferential-attachment,
copying, and hierarchical models, generates networks that even qualitatively reproduce this community
structure property. We found, however, that a model in which edges are added recursively, via an iterative
“forest fire” burning mechanism, produces remarkably good results. Our work opens several new questions
about the structure of large social and information networks in general, and it has implications for the
use of graph partitioning algorithms on real-world networks and for detecting communities in them.
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