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A conformal �attening maps a curved surface to the plane without distorting
angles—such maps have become a fundamental building block for problems
in geometry processing, numerical simulation, and computational design.
Yet existing methods provide little direct control over the shape of the �at-
tened domain, or else demand expensive nonlinear optimization. Boundary
�rst �attening (BFF) is a linear method for conformal parameterization which
is faster than traditional linear methods, yet provides control and quality
comparable to sophisticated nonlinear schemes. The key insight is that the
boundary data for many conformal mapping problems can be e�ciently
constructed via the Cherrier formula together with a pair of Poincaré-Steklov
operators; once the boundary is known, the map can be easily extended over
the rest of the domain. Since computation demands only a single factoriza-
tion of the real Laplace matrix, the amortized cost is about 50x less than any
previously published technique for boundary-controlled conformal �atten-
ing. As a result, BFF opens the door to real-time editing or fast optimization
of high-resolution maps, with direct control over boundary length or angle.
We show how this method can be used to construct maps with sharp corners,
cone singularities, minimal area distortion, and uniformization over the unit
disk; we also demonstrate for the �rst time how a surface can be conformally
�attened directly onto any given target shape.
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1 INTRODUCTION
In recent years conformal �attening has evolved far beyond its
humble origins as a tool for texture mapping [Desbrun et al. 2002;
Lévy et al. 2002], providing new perspectives on a broad range of
applications including surface remeshing [Alliez et al. 2003; Zhong
et al. 2014], comparative data analysis [Hurdal and Stephenson
2009; Lipman and Daubechies 2011], computational biology [Koehl
and Hass 2015], physical simulation [Segall et al. 2016], sensor net-
works [Sarkar et al. 2009], and computational design [Konakovic
et al. 2016]. Why such great interest in maps that preserve angles?
One answer is computational: conformal mapping typically amounts
to solving easy linear equations, providing fast, scalable algorithms—
or cheap initialization for more di�cult nonlinear tasks [Chao et al.
2010; Liu et al. 2008]. Another is that angle preservation is directly
linked to real mechanical or constitutive properties of physical
systems [Kim et al. 2012]. Continued advancement of basic tools
for conformal mapping therefore has high utility across a variety
of domains. At present, however, linear algorithms for conformal
�attening do not exploit the full space of possibilities.
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Fig. 1. Boundary first fla�ening (BFF) provides sophisticated control over
the shape of an angle-preserving or conformal map to the plane. Even on
very large meshes, this shape can be edited in real time.

In the smooth setting, conformal maps are quite �exible: a map
from a disk-like surface to the �at plane can achieve any target
shape as long as it is free to “slide” along the boundary. In stark
contrast, existing linear conformal �attening algorithms provide
no explicit control over the target shape: the user obtains a single,
automatic solution and must “take it or leave it.” Nonlinear methods
provide additional control over shape, but at signi�cantly greater
cost. Boundary �rst �attening (BFF) is the �rst conformal �attening
method to provide full control over the target shape via a single
sparse matrix factorization, including:

• automatic �attening with optimal area distortion,
• direct manipulation of boundary length or angle,
• exact preservation of sharp corners,
• seamless cone parameterization,
• uniformization over the unit disk, and
• mapping to a given target shape.

(See examples in Figure 1.) The target shape can be e�ciently up-
dated via backsubstitution, providing a new paradigm for conformal
parameterization: rather than waiting for a single, predetermined
�attening, one can interactively edit or optimize the map—even on
meshes with hundreds of thousands of elements. More broadly, BFF
is a drop-in replacement for widely-used schemes like least-squares
conformal maps (LSCM) while providing sophisticated control over
features like shape and area distortion.
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1.1 Algorithm Outline
Given a target length (or curvature) function along the boundary,
the BFF algorithm involves three basic steps:
I. Solve for a compatible curvature (or length) function.
II. Integrate this data to get a boundary curve.
III. Extend this curve over the interior of the domain.
Computation amounts to solving three sparse linear problems (in
steps I and III) connected by a simple nonlinear change of variables
(step II); all linear problems use the same �xed Laplace matrix. From
here, the essential question is how to devise boundary data (cur-
vatures or lengths) suitable for a variety of mapping problems, as
explored in Sec. 6. An important limitation of BFF is that it applies
only to domains with disk topology, though of course a surface of
any topology can be cut into one or more disks; see Sec. 7.5 for
further discussion. Detailed pseudocode is provided in App. B.

2 RELATED WORK
The literature on surface �attening and computational conformal ge-
ometry is vast [Gu and Yau 2008; She�er et al. 2006]—here we focus
on conformal �attening methods that provide control over bound-
ary shape, or that can be modi�ed to provide such control. Early
methods for conformal �attening compute a piecewise linear least-
squares solution of the Cauchy-Riemann equations (LSCM [Lévy
et al. 2002]), or equivalently, minimize the di�erence betweenDirich-
let energy and the �attened area (DCP [Desbrun et al. 2002]); quality
was later improved via a sparse eigenvalue problem (SCP [Mullen
et al. 2008]). A di�erent line of methods directly optimizes angles in
the �attened mesh to approximate angles in the input [She�er and
de Sturler 2001; She�er et al. 2005], a process that can be linearized
without compromising quality (LinABF [Zayer et al. 2007]).

Free Boundary Conditions. The
methods mentioned so far forgo
the question of boundary control,
instead opting for so-called “free”
boundary conditions where a dis-
crete energy is minimized without
explicit constraints on boundary de-
grees of freedom. Although this ap-
proach provides a unique solution in the discrete setting, it has no
meaningful interpretation in the smooth setting: in the absence of
explicit boundary conditions there is an enormous space of perfect
conformal �attenings, obtained by �attening and then applying an
in-plane conformal map (see inset). The only possibility is that the
unique solution chosen by free boundary methods must depend on
discretization, meaning that results will change depending on the
particular choice of mesh or numerical treatment (see Figure 2, and
Mullen et al. [2008, Figure 1]). This phenomenon further motivates
the need for more careful treatment of boundary conditions.

Prescribed Boundary Length/Angle. Later methods explicitly in-
corporate boundary constraints. For instance, the method of circle
patterns (CP [Kharevych et al. 2006]) provides control over the direc-
tion of the boundary (but not its length); methods based on discrete
Ricci �ow [Jin et al. 2008; Luo 2004] can provide control over both
length and direction (CETM [Springborn et al. 2008]). All of these

Fig. 2. A surface is cut and conformally fla�ened (u is the scale factor). In
the absence of proper boundary conditions, traditional methods (LSCM
and SCP) produce di�erent solutions since the underlying smooth energy
does not have a unique minimizer. By adding explicit boundary conditions
our method (BFF) provides a canonical map with minimal area distortion,
nearly identical to more expensive nonlinear methods (CETM).

methods demand nonlinear optimization involving, e.g., repeated
matrix factorization for each Newton iteration. In Sec. 7.1 we explore
how linearization of both angle-based (LinABF) and length-based
strategies (CPMS [Ben-Chen et al. 2008]) can be adapted to provide
complete boundary control; even then, these methods remain at
least 30x slower than BFF and can exhibit signi�cant artifacts. A
very di�erent approach is to discretize a time-independent Dirac
equation that governs conformal surface deformations in 3D [Crane
2013, Section 6.1]; this approach provides control over boundary
direction (but not length) and must solve an eigenvalue problem
that cannot be prefactored for varying boundary data.

Uniformization. A natural idea for achieving a given target shape
is to compose maps to a canonical domain like the circular disk
(Sec. 6.5). In the discrete setting, however, piecewise linear conformal
maps do not compose; more importantly, methods for computing
such maps [Bobenko et al. 2010; Zeng et al. 2008] are already more
expensive than just directly editing the boundary via BFF.

2D Shape Editing. Methods for planar shape deformation are gen-
erally not suitable for conformal �attening since they depend on
boundary element methods or closed-form expressions that are
available only on planar domains [Chen et al. 2013; Lipman et al.
2012; Weber and Gotsman 2010]. One idea is to apply 2D deforma-
tion to an initial �attening, but the resulting nonlinear map may
be incompatible with the standard geometry processing pipeline,
especially when one requires precise control over individual lengths
and angles (Sec. 6). Moreover, a composition of methods o�ers no
clear advantage in terms of speed or simplicity over the uni�ed
scheme we propose here.

Outside of strictly conformal methods a variety of algorithms
provide boundary control, albeit with very di�erent performance
characteristics—see for example Weber & Zorin [2014] and refer-
ences therein. At a high level, all previous boundary-controlled
conformal methods (namely, CP and CETM plus our modi�cations
of CPMS and LinABF) indirectly encode a �attening via metric data
(lengths or angles). In order for this data to describe a valid planar
triangulation it must satisfy nonlinear integrability conditions over
the entire domain. In contrast, BFF requires only that data describes
a closed boundary curve—a condition that is far easier to satisfy,
once the associated integrability conditions are clearly understood.
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Fig. 3. Basic quantities used in our algorithm, which computes a conformal
map f from a surface M to the plane C.

3 BACKGROUND
We �rst provide some key de�nitions from (discrete) di�erential
geometry; a more pedagogical introduction can be found in Crane
et al. [2013] (esp. Chapter 7). Throughout the document, clicking on
most symbols will provide a hyperlink back to their de�nition.

3.1 Notation
Single brackets denote the norm | · | and real inner product h·, ·i of
�nite-dimensional vectors. For any complex number z 2 C, Re(z)
and Im(z) denote the real and imaginary parts, and the imaginary
unit ı denotes a quarter-turn in the counter-clockwise direction
(hence ı2 = �1). The argument arg(z) of a complex number is the
smallest (inmagnitude) signed angle from the real axis to z; the angle
from z1 to z2 can therefore be expressed as arg(z�11 z2). Italic glyphs
(A,b, . . .) typically indicate a continuous quantity whereas sans-serif
characters (A, b) denote discrete quantities and/or matrices.

3.2 Smooth Se�ing
Our main object of study is a map f : M ! C from a disk-like
surface M (with Riemannian metric) to the �at complex plane C
(Figure 3). At each point the map � rotates any tangent vector X
by a quarter-turn in the counter-clockwise direction so that (like
the imaginary unit) �2X = �X . The boundary @M is a single closed
loop parameterized by a curve � with arc-length parameter s . We
likewise use �̃ (s̃ ) to parameterize the image of the boundary f (@M );
it is the shape of this curve that we seek to control. By convention,
if T is the unit tangent in the direction d

ds � , then n := ��T is the
outward unit normal. We use K to denote the Gaussian curvature
ofM , and �, �̃ for the (geodesic) curvatures of � and �̃ , respectively.

3.2.1 Conformal Maps. Intuitively, a map f : M ! C is confor-
mal if at each point it preserves the angle between any two vectors,
permitting only a uniform change in length. More precisely, let df
denote the di�erential of f , which determines how a given tangent
vector X on the surface gets mapped to a tangent vector df (X ) in
the complex plane (in coordinates, df is represented by the familiar
Jacobian matrix). A map f is holomorphic if

df (�X ) = ıdf (X ) (1)

for all tangent vectorsX , i.e., if a quarter-turn � on the surface yields
the same result as a quarter-turn ı in the plane; this relationship is
known as the Cauchy-Riemann equation. If in addition df is nonde-
generate (i.e., it maps nonzero vectors to nonzero vectors) then f is

conformal. The conformal (scale) factor eu := |df (X ) |/|X | quanti�es
the change in length at each point (which is independent of direction
X ); the function u : M ! R is called the log conformal factor.

Conformal maps can also be expressed as pairs of conjugate har-
monic functions. A real function a : M ! R is harmonic if it solves
the Laplace equation �a = 0 (Sec. 4.1), where � is the Laplace-
Beltrami operator (or just Laplacian) associated with the domain M .
Suppose we express a holomorphic map as f = a + bı for a pair of
coordinate functions a,b : M ! R. Then (by Cauchy-Riemann)

�ra = rb, (2)

i.e., the gradients r of the two coordinates are orthogonal and have
equal magnitude. Since a quarter-rotation of a gradient �eld is
divergence-free, we have

�a = r · ra = �r · (�rb) = 0,

and similarly, �b = 0. In other words, the two real components of a
holomorphic function are both harmonic—we say that a and b form
a conjugate harmonic pair.
To what degree can one control the target shape of a conformal

�attening? Equation 2 suggests there must be some limitation, since
two arbitrary functions on the boundary may not extend to a conju-
gate harmonic pair on the interior. And yet the Riemann mapping
theorem states that any disk-like region U ⇢ C can be conformally
mapped to the unit circular disk (Sec. 6.5); hence any shape can be
obtained via composition with an (inverse) Riemann map. These
two facts do not contradict each-other: although one can surjec-
tively map onto any given region (f (M ) = U ), one cannot arbitrarily
“pin” each boundary point to a speci�c location (f |@M = �̃ ) and
hope to remain conformal. We therefore express our basic algorithm
in terms of geometric quantities that can always be realized: one
can specify either length or curvature density along the boundary,
but not both simultaneously (see Figure 4, Sec. 4.2 and [Springborn
et al. 2008, Section 4]). This data can then be further manipulated
to provide a variety of intuitive control schemes (Sec. 6).

Fig. 4. A conformal fla�ening is uniquely determined (up to global similar-
ity) by either length (bo�om) or curvature (top) data along the boundary.
Here we prescribe simple oscillatory functions, achieving results virtually
indistinguishable from a reference solution (CETM) despite the fact that BFF
is over 100x faster. (Hexagonal pa�ern emphasizes preservation of angles.)
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3.2.2 Curvature Density. In developing boundary conditions it
helps to distinguish between the usual pointwise curvatures �, K ,
and the corresponding curvature densities, because of the way these
quantities transform under a conformal map. Loosely speaking, a
density assigns a positive volume to each little piece of a curve or
surface, e.g., the length density ds on a curve or the area density dA
on a surface. Under a conformal map, new and old densities scale
according to the conformal factor: ds̃ = euds and dÃ = e2udA. A
curvature density multiples a density by a curvature function—in
particular, �ds is the (geodesic) curvature density of a curve, and
KdA is the Gauss curvature density of a surface. The change of
curvature density under a conformal map is studied in Sec. 4.2.

3.3 Discrete Se�ing
We discretize our surface M as
a manifold triangle mesh M =
(V, E, F) with disk topology, us-
ing B ✓ V to denote the set
of vertices on the boundary @M,
and I := V\B for interior vertices.
Tuples of vertex indices are used
to specify simplices, e.g., ij 2 E

is an edge from vertex i to vertex j. An expression of the form
ai =

P
ij 2E bij means that a quantity b is summed over all edges con-

taining vertex i to get the value of a at i . Likewise, ai =
P
ijk 2F bijk

denotes a sum over faces containing vertex i . A quantity at corner
i of triangle ijk is denoted by a subscript i and superscript jk ; for
instance, we use �

jk
i 2 R to denote the interior angle at the cor-

ner of a triangle. Throughout we use Ci to denote the dual cell
associated with vertex i 2 V, and e j to denote the barycentric dual
edge associated with a boundary vertex j 2 B; Tpq denotes the unit
tangent along boundary edge pq (see inset). We use `ij to denote
the length of edge ij in the input mesh, and `j := 1

2 (`ij + `jk ) to
denote the length of the dual boundary edge e j , where i , j, and k
are consecutive vertices along the boundary.

3.3.1 Discrete Curvature.

Gaussian curvature. For
each interior vertex i of a
triangulation the angle de-
fect �i := 2� �Pi jk 2F � jki
quanti�es the “�atness” of
a vertex as a deviation from
the planar angle sum of 2� . This quantity encodes not the pointwise
Gaussian curvature, but rather the curvature integrated over a small
region around the vertex: �i =

R
C i

K dA (since for a discrete surface
K is a distribution concentrated at vertices). We therefore refer to
� as a discrete curvature density.

Geodesic curvature. At boundary vertices, the Gaussian curvature
(density) �i is zero, since a small neighborhood around any bound-
ary vertex i 2 B can be �attened into the plane without stretching.
Here we consider a di�erent quantity ki := � �Pi jk 2F � jki , which
encodes the integral of the geodesic curvature � (again a distribu-
tion at vertices). In the plane, ki are also the exterior angles, i.e., the
change in tangent direction from one edge to the next.

The discrete setting helps illustrate the
challenge of prescribing pointwise curva-
ture rather than curvature density. Sup-
pose we want to achieve a boundary cur-
vature �. If we provide only exterior an-
gles k, then there are in general many
polygons that agree with this data (see inset). To uniquely prescribe
a target shape, we must be able to control the change in angle per
unit length. Likewise, to prescribe Gaussian curvature, we must be
able to control the angle defect per unit area. Algorithmically this
goal is di�cult to achieve since the �nal lengths and areas are are
determined by a scale factor u that is not known a priori—any algo-
rithm that prescribes angle defects (such as CPMS or CETM) actually
controls the (discrete) curvature density rather than the curvature
itself. One approach to this problem is described in Sec. 6.6.

4 TOOLBOX
We �rst describe a collection of basic building blocks, which are
assembled into the �nal algorithm in Sec. 5.

4.1 Poisson Problems
The development of BFF hinges on careful treatment of boundary
conditions for the Dirichlet-Poisson problem

�a = � on M ; a = � on @M (3)

and the Neumann-Poisson problem

�a = � on M ; @a
@n = h on @M, (4)

where a and � are real-valued functions onM , and �,h : @M ! R
determine the values or normal derivatives along the boundary,
resp. The solution to Eqn. 4 is unique only up to a constant, which
in BFF just determines the global scale and translation. On a triangle
mesh, integrating �a = � over dual cells yields a matrix equation

Aa = P�,

where A 2 R |V |⇥ |V | is the so-called cotan-Laplace matrix since its
nonzero entries can be expressed as

Aij = � 1
2 (cot �

ij
p + cot �

ij
q )

for each edge ij 2 Ewith opposite verticesp,q, andAii = �
P
ij 2E Aij

for each vertex i 2 V (see Crane et al. [2013, Section 6.3] for a deriva-
tion); omitting the unknown cotans at boundary edges corresponds
to zero-Neumann boundary conditions (MacNeal [1949, Eqn. 3.3]).
The matrix P is the mass matrix, but is not needed for BFF since all
values appearing on the right-hand side will be integrated quantities
(e.g., the discrete Gaussian curvature �).

If we partition into interior vertices I and boundary vertices B, a
Neumann-Poisson problem can be expressed in block form as"

AII AIB
ATIB ABB

# "
aI
aB

#
=

"
�I
�B � h

#
, (5)

where h 2 R |B | is the discrete Neumann boundary data, correspond-
ing to the integral of @a/@n over each dual boundary edge ei . A
Dirichlet problem with boundary values aB = g 2 R |B | is then
obtained by solving the �rst row of Eqn. 5 for the interior values aI :

AIIaI = �I � AIBg. (6)
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E�cient Solution. Solving a sequence of Dirichlet- and Neumann-
Poisson problems requires only a single sparse Cholesky factoriza-
tion A = LLT of the matrix A from the Neumann problem. To see
why, consider the blockwise expansion266664 AII AIB

ATIB ABB

377775 =
266664 LII 0
LBI LBB

377775
266664 LTII LTBI
0 LTBB

377775 , (7)

which means the Cholesky factorization for the Dirichlet problem
is already given by the upper-left block: AII = LIILTII. All subsequent
problems can then be solved (via backsubstitution) at a small fraction
of the factorization cost—since BFF solves only Poisson problems, the
computational bottleneck is the single factorization of A. (In practice
one needs to be careful about reordering; see Sec. 7.4 for details.)
Note that no corresponding treatment is known for LSCM/SCP
despite repeated A blocks—the closest proposal entails either dense
factorization, or else iterative solvers with no amortized gains from
prefactorization [Alexa and Wardetzky 2011, Section 5.2].

4.2 Cherrier Formula
The change in curvature under a conformal mapping has a close
relationship with the scale factor u. For domains without boundary
this relationship is captured by the Yamabe problem [Aubin 1998,
Chapter 5], but our method depends critically on additional bound-
ary conditions studied by Pascal Cherrier [1984]. In particular, for a
conformal map f : M ! HM between any two surfaces,

�u = K � e2u HK on M
@u
@n = � � eu �̃ on @M

(8)

where � is the Laplacian onM , and HK , �̃ are the new curvatures onHM . Although the equation �u = K � e2u HK is standard, its bound-
ary conditions have been largely neglected by conformal �attening
algorithms, which instead optimize discrete variables without refer-
ence to an underlying continuous equation [Kharevych et al. 2006;
Springborn et al. 2008], or consider only the special case where �̃ is
a delta distribution [Bunin 2008; Myles and Zorin 2013]. We address
the general case by multiplying Eqn. 8 through by dA and ds (resp.)
to obtain a linear relationship between densities:

�u dA = KdA � HKdÃ, (9)
@u
@nds = �ds � �̃ds̃ . (10)

Integrating Eqn. 9 over dual cells hence yields a linear relationship

Au = � � H�, (11)

where �, H� : V ! R are the source and target angle defects (see
Sections 3.3.1 and 4.1); for �attening, H� = 0. Likewise, integrating
Eqn. 10 over dual boundary edges ei yields the linear equation

h = k � k̃, (12)

where h is the discrete Neumann data, and k, k̃ are discrete boundary
curvatures on the domain and target. Note that (as discussed in Ben-
Chen et al. [2008, Section 2.3]) one does not obtain exact target
curvatures if u values are used to rescale edge lengths (à la CETM);
in BFF we take an alternate route where angles are obtained directly
from the discrete Cherrier formula, and exactly satisfy necessary
conditions for closure of the target boundary loop (Proposition 1)
and realization of target cone angles (Proposition 2).

Fig. 5. Accurate evaluation of boundary data is essential for achieving the
correct boundary shape. Here we a�empt to prescribe an angle � at vertex
i of a cut hemisphere using either a simple finite di�erence formula (le�) or
a Poincaré-Steklov operator (right) to obtain Neumann data; only the la�er
scheme yields the correct angle, producing a seamless map.

4.3 Poincaré-Steklov Operators
A given solution to an elliptic boundary value problem (like Pois-
son) can often be explained by several di�erent types of boundary
conditions—for instance, a harmonic function is uniquely deter-
mined by either its values (Dirichlet) or normal derivatives (Neu-
mann) along the boundary. In general, a Poincaré-Steklov operator
maps boundary data from one solution to alternative boundary data
that yields an identical solution. We require two such operators: the
Dirichlet-to-Neumann map for a Poisson equation, and the Hilbert
transform for the Cauchy-Riemann equation.

4.3.1 Dirichlet to Neumann. Given Dirichlet boundary values g
for a discrete Poisson equation, we seek Neumann values h that yield
the same solution. One idea is to simply solve the Dirichlet problem,
then evaluate the normal derivative directly—e.g., dot unit normals
with the solution gradient, then integrate over dual boundary edges
ei . In practice, however, this approach yields poor behavior (see Fig-
ure 5, center). A more principled approach is to solve for Neumann
data h that exactly reproduces the discrete Dirichlet solution. For a
Laplace problem (i.e., � = 0) solving Equations 5 and 6 for h entails
evaluating the so-called Schur complement of A:

h = (ATIBA
�1
II AIB � ABB)g. (13)

For a Poisson equation with nonzero source term �, the Dirichlet-to-
Neumann map becomes an a�ne operator given by the expression

��g := �B � ATIBA�1II (�I � AIBg) � ABBg. (14)

In practice this map can be evaluted via a single linear solve in-
volving the (prefactored) matrix AII together with a sequence of
basic matrix operations, as detailed in Alg. 3. In e�ect, �� solves a
Dirichlet-Poisson equation, then takes the di�erence between the
source term � and the Laplacian of the Poisson solution at each
boundary node. Beyond improved numerical behavior (Figure 5,
right), this discretization provides a useful invariant in the con-
text of conformal �attening: discrete curvatures k computed via
Eqn. 12 always sum to exactly 2� (App. A), automatically satisfying
a necessary condition for integrability (Sec. 4.5).
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4.3.2 Neumann to Dirichlet. The reverse direction ismore straight-
forward: one can simply solve theNeumann-Poisson equation (Eqn. 5)
for a and read o� the boundary values g := aB (Alg. 4). Since the
solution is determined only up to a constant (Sec. 4.1), we denote
the Neumann-to-Dirichlet map by the pseudoinverse �†� .

4.3.3 Hilbert Transform. On a disk-like domain, theHilbert trans-
form H maps the tangential derivative of a harmonic function a
to the normal derivative of its harmonic conjugate b, providing
boundary data for a holomorphic function f = a + bı (Sec. 3.2.1).
Notions of conjugacy have been studied for a wide variety of dis-
cretizations [Bobenko and Günther 2015; Mercat 2001; Polthier 2000;
Weber and Gotsman 2010]; in our context, we seek a pair of standard
piecewise linear functions with degrees of freedom at vertices. The
basic idea is to �x a and solve for the function b that minimizes the
least-squares conformal energy EC , which measures the failure of
f to satisfy Cauchy-Riemann [Lévy et al. 2002]. This energy can
also be expressed as the Dirichlet energy of f minus the area of its
image [Hutchinson 1991], which in matrix form becomes

EC (a, b) =
f
aT bT

g " A U
UT A

# "
a
b

#
, (15)

where U encodes the signed area of the boundary polygon:

aTUb := 1
2

X

ij 2@M
ajbi � aibj (16)

(see [Mullen et al. 2008, Section 2.2]). Minimizing EC with �xed a
therefore amounts to solving the Neumann-Laplace equation Ab =
�UTa. The Neumann boundary data h = UTa can be obtained
by di�erentiating Eqn. 16 with respect to b, yielding the simple
expression

hj := 1
2 (ak � ai ), (17)

for any three consecutive vertices i, j,k along the boundary. Notably,
this expression looks like a naïve �nite di�erence—the variational
interpretation above veri�es that it nonetheless yields a solution
that is “as conjugate as possible” in the least-squares sense.

4.4 Interpolation
Suppose we want to extend a given function �̃ : @M ! C over
the interior of the domain, i.e., �nd a map f : M ! C such that
f |@M = �̃ . A simple strategy is to independently interpolate each
coordinate of �̃ by a harmonic function, i.e., solve a pair of Laplace
problems

�a = 0 s.t. a |@M = Re(�̃ ),
�b = 0 s.t. b |@M = Im(�̃ ).

If �̃ is already compatible with some holomorphic map f , the Hilbert
transformH from the previous section provides a di�erent strategy:

(1) (Harmonic extension.) Solve �a = 0 s.t. a |@M = Re(�̃ ).
(2) (Harmonic conjugation.) Solve �b = 0 s.t. @b

@n = Ha,
where the discrete Neumann data for the latter problem is computed
via Eqn. 17. These two strategies provide di�erent algorithmic invari-
ants: with the former, f exactly interpolates �̃ but is not guaranteed
to be exactly holomorphic; with the latter f is holomorphic but may
not exactly interpolate both components of �̃ . When �̃ comes from a
holomorphic map they will coincide; in practice, each is best-suited
to di�erent applications, as discussed in Sec. 6.

Fig. 6. Simply ensuring that curvature integrates to 2� is insu�icient to
guarantee that a boundary loop closes (le�). Weminimally adjust the desired
edge lengths `⇤ to obtain a nearby closed loop with identical angles k̃ (right).

4.5 Curve Integration
A key step in BFF is recovering a closed boundary curve �̃ from
given curvature and length data. In the smooth setting this data can
be integrated directly, but in the discrete case a small amount of
discretization error prevents closure—we therefore seek a closed
curve that approximates the given data. Directly optimizing vertex
positions leads to a di�cult nonlinear problem; we instead solve
an easy convex problem that closes the curve by minimally adjust-
ing length. In the smooth setting, we formulate this problem by
considering the cumulative curvature

� (t ) :=
Z t

0
� (s ) ds .

We then construct unit tangents T (s ) := eı� (s ) along the boundary
and solve the problem

min
r :@M!R

1
2

Z 2�

0
(r (s ) � 1)2 ds s.t.

Z 2�

0
r (s )T (s ) ds = 0 (18)

If � already describes a closed loop then we recover the solution
r ⌘ 1; otherwise, r minimally adjusts the speed of the curve such
that it closes. In either case, we obtain the �nal curve by integrating
the scaled tangents: �̃ (t ) :=

R t
0 r (s )T (s ) ds .

4.5.1 Discretization. To discretize Eqn. 18, let k̃, `⇤ specify the
desired exterior angles and edge lengths (Figure 6, right). We seek a
polygon with vertices �̃ i 2 C that exactly achieves these angles and
closely matches the lengths. We �rst compute cumulative angles

�p :=
p�1X

i=1
�̃i

and target tangentsHTij := (cos�i , sin�i ). Eqn. 18 then becomes

min
˜̀:B!R

1
2

X

ij 2@M
`ij
�1 | ˜̀ij � `⇤ij |2 s.t.

X

ij 2@M
˜̀ijHTij = 0. (19)

If N 2 R |B |⇥ |B | is a diagonal mass matrix with entries Nii = 1/`ij
and we pack the two coordinates of each unit tangent into a matrixHT 2 R2⇥ |B | , then the optimal lengths are given by

˜̀ = `⇤ � N�1HTT (HTN�1HTT)�1HT`⇤. (20)

Note thatHTN�1HTT is just a 2⇥2matrix which costs virtually nothing
to build and invert. Final vertex positions are recovered via the
cumulative sums �̃p :=

Pp�1
i=1

˜̀ijHTij . In principle the new lengths
˜̀ij could become negative, but in practice we do not observe this
behavior: typical values for ˜̀i/`⇤i are in the range 1 ± .001.
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Fig. 7. Overview of the basic BFF algorithm. 1 Given a surface M and either target scale factors u or target curvature density �̃ds̃ along the boundary,
the complementary quantity is obtained via the Dirichlet-to-Neumann map �. 2 Curvature density is integrated to obtain unit tangents HT . 3 Integrating
rescaled tangents euHT yields the target boundary curve �̃ . 4 The real component of �̃ is extended harmonically. 5 The Hilbert transformH provides the
imaginary coordinate, and hence the final fla�ening f : M ! C.

5 ALGORITHM
We now describe the basic boundary �rst �attening algorithm using
tools from Sec. 4, as summarized in Figure 7.

Input. A triangle mesh with disk topology and either (i) desired
scale factors u or (ii) target exterior angles k̃ at boundary vertices.
In the latter case, angles must sum to 2� .
Output. A piecewise linear map f : V! C which approximates a
smooth conformal map with the given boundary data (u or k̃).
Algorithm.
I. Compute complementary boundary data (Sec. 4.2):
• If scale factors u were given, compute compatible angles:

k̃ k � ��u (Sec. 4.3.1).
• If angles k̃ were given, compute compatible scale factors:

u �†� (k � k̃) (Sec. 4.3.2).
II. Construct a closed loop �̃ that exhibits exterior angles k̃ and

approximates edge lengths `⇤ij := e (ui+uj )/2`ij (Sec. 4.5).
III. Compute the holomorphic extension f of �̃ (Sec. 4.4).

Step I uses the Cherrier formula to “explain” the provided bound-
ary data: if scale factors were given, what must the curvature look
like under a conformal �attening (and vice versa)? The map ��
(or �†�) is used to evaluate this formula; using a source term �
corresponds to setting the target Gaussian curvature to H� = 0, i.e.,
�attening. Since the resulting boundary data is compatible with
some conformal �attening, the exterior angles k̃ and scaled bound-
ary lengths `⇤ already describe a valid closed loop—modulo a small
amount of discretization error which is accounted for by the integra-
tion procedure in Step II. (Here we scale ` by the mean conformal
factor à la CETM, though any consistent approximation will work.)
Since length adjustments during integration are very small, the re-
sulting curve �̃ remains extremely close to the boundary of some
conformal map. Therefore, in Step III a holomorphic extension of
either coordinate function Re(�̃ ) or Im(�̃ ) will yield an accurate
approximation of a conformal map that closely matches the input
data—as veri�ed by numerical experiments in Sections 6 and 7.
The overall cost is one factorization of a real |V| ⇥ |V| cotan-

Laplace matrix, followed by three backsolves: one to evaluate the
map � or �† in Step I; two to compute the holomorphic extension
in Step III. All other operations require onlyO ( |B|) work, involving
simple closed-form expressions evaluated at boundary vertices. (See
Sec. 7 for detailed performance analysis.)

6 APPLICATIONS
We now use the core BFF algorithm to solve several problems in
surface parameterization. The basic question is how to construct
appropriate boundary data (scale factors or curvatures) for each
task.

6.1 Automatic Parameterization
In the absence of user-speci�ed criteria, a natural choice of confor-
mal �attening is the one with minimal area distortion. Springborn
et al. [2008, App. E] show that such a map is obtained by prescrib-
ing zero scale factors along the boundary (u |@M = 0). Figures 1,
2, and 14 show results computed via BFF, which are virtually in-
distinguishable from those produced by CETM (albeit at far lower
cost) and respect features like symmetry even better than SCP (Fig-
ure 2). These boundary conditions provide the baseline for later
comparisons with existing automatic methods (Sec. 7).

6.2 Direct Editing
A natural way to edit conformal �attenings with BFF is to directly
manipulate the angles �ij (relative to the real axis) or length `⇤ of
target edges ij 2 @M. These values can then be easily converted
to curvatures k̃ and scale factors u per boundary vertex (resp.). In
particular the (integrated) curvatures are simply

k̃i = �i,i+1 � �i�1,i .
Converting target lengths `⇤ij (per boundary edge) to target scale
factors ui (per boundary vertex) is more subtle. One idea is to solve
the linear system ui + uj = 2 log `⇤ij � 2 log `ij for scale factors u
that satisfy discrete conformal equivalence [Springborn et al. 2008].
However, this system does not always have a solution; hence, even
metric-based methods like CETM and CMPS cannot (in general) ex-
actly prescribe boundary lengths. We instead use a straightforward
numerical approximation: compute scale factors uij := log(`⇤ij/`ij )
per boundary edge, then integrate over dual boundary edges to get

uj = (`⇤ijuij + `
⇤
jkujk )/(`

⇤
ij + `

⇤
jk ),

where i , j, and k are consecutive vertices along the boundary.
As an experiment, we use a spline-based curve editor to nonrigidly

pack surface charts into a texture atlas (Figure 8). At each vertex,
boundary values are sampled from a real-valued Catmull-Rom spline
(and normalized to 2� in the case of curvatures). The Dirichlet-to-
Neumann map � is applied to the current boundary data to switch
between angle- and length-based editing.
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Fig. 8. Unlike conventional tools, our method can be used to interactively
and nonrigidly tweak a texture layout while remaining conformal (here
aiming for greater use of texture area).

6.3 Sharp Corners
For target shapes with sharp corners (like a rectan-
gle) the standard BFF procedure can exhibit undesir-
able rounding (see inset, top). Here we can replace
the holomorphic extension in Step III with a simple
harmonic extension (Sec. 4.4), thereby interpolating
the polygon �̃ reconstructed in Step II, and exactly
reproducing the requested angles. Since �̃ approx-
imates the boundary of a conformal map, both pro-
cedures still converge to a holomorphic function un-
der re�nement (see inset and Figure 9, bottom). Sim-
pler algorithms for mapping to polygons can only
handle special cases like rectangles [Zeng et al. 2008,
Section 4.1] or are limited to straight edges [Driscoll
and Trefethen 2002]; compare with the piecewise

curved boundary in Figure 9, top right. Note that with piecewise lin-
ear maps it is impossible for any algorithm to completely eliminate
angle distortion near corners, since the initial and target angle sums
will di�er even under re�nement.

Fig. 9. Top le�: Given a collection of points and angles on the boundary, we
can map to a region with sharp corners and either straight (top center) or
curved (top right) edges.Bo�om: Thismap converges to a perfectly conformal
map under refinement.

Fig. 10. Uneven area distortion (le�) can be mitigated by first mapping to a
surface that is flat except at a collection of cone points (in red), then cu�ing
and unfolding this surface into the plane. BFF avoids the intermediate metric
by directly computing boundary data for the final mapping.

6.4 Cone Parameterization
A powerful technique for mitigating area distortion (Figure 10) is
to �rst map to a cone surface, which is �at (K = 0) away from
a collection of isolated cone points [Kharevych et al. 2006]. After
cutting through these points, it can be �attened into the plane
without further distortion (Figure 10, right). A variety of strategies
are available for picking cones [Ben-Chen et al. 2008; Kharevych et al.
2006; Springborn et al. 2008]; we assume they have been speci�ed
by the user as target curvatures �i per interior vertex (mostly zero).
For a closed surface of genus �, �must sum to 2� (2� 2�), by Gauss-
Bonnet. To compute a cone �attening of an initial surfaceM0, we:

(1) Solve the Cherrier problem for u, with source term � � �.
(2) CutM0 into a diskM via a cut passing through all cones.
(3) Apply Alg. 1, prescribing u values from Step 1 along @M .

Springborn et al. [2008, Section 3.3] describe one possible cutting
procedure. To obtain a seamless map, we associate only a single
length degree of freedom ˜̀with each pair of corresponding cut edges
in Eqn. 18; angles are automatically complementary, by Proposition
2, and a harmonic extension (à laSec. 6.3) ensures this data is exactly
preserved in the �nal layout. The resulting maps are nearly identical
to those produced by CETM (Figure 11), though we do not exactly
preserve length cross ratios. Unlike CPMS/CETMwe never compute
(nor need to enforce integrability of) rescaled edge lengths, and
can edit cone angles without performing additional factorization;
unlike CPMS we guarantee by construction that the map is seamless.
Moreover, since the Laplace matrix is modi�ed only along the cut,
fast updates of cone locations might also be achieved via low rank
updates—see for example Essid & Solomon [2017].

6.5 Uniformization
A popular use of conformal maps is to provide a common reference
domain for comparative data analysis [Koehl and Hass 2015; Lip-
man and Daubechies 2011]. For surfaces with disk topology, the
uniformization theorem guarantees the existence of conformal maps
to the unit circular disk—any such map has constant boundary cur-
vature � = 1. However, prescribing a constant curvature density
yields a shape that is merely convex rather than circular. Instead, we
use a simple �xed-point scheme: if the target curvature �̃ were equal
to 1, then the target curvature density would be �̃ds̃ = ds̃ = euds , i.e.,
just the new length density. Hence, at the nth iteration we prescribe
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Fig. 11. Le�: cone parameterizations produced via BFF are virtually identical
in quality to those produced by more expensive nonlinear methods like
CETM: in addition to similar angle distortion Q and scale distortion u , the
map f itself di�ers by less than 1% relative to the diameter of the image.
Right: example with many cone points.

target angles proportional to the most recent dual edge lengths:

k̃
n
i  2� ˜̀n�1

i /
P
i 2B ˜̀n�1

i .

We then compute a conformal �attening and repeat. To stabilize this
processwe averagewith the previous guess (i.e., k̃n  1

2 (k̃
n
+ k̃

n�1
)),

using the discrete geodesic curvatures of the input surface as our
initial guess. We also �nd that a harmonic rather than holomor-
phic extension (Sec. 6.3) yields better results, especially for domains
with jagged boundaries. In practice we always converge in about
10 iterations—since each iteration involves only backsubstitution
the total cost is similar to a single LSCM solve, but produces results
nearly identical to nonlinear methods (as depicted in Figure 12). A
canonical map can be found by picking the Möbius transformation
that best balances area distortion, à la [Springborn 2005].

6.6 Arbitrary Curves
We can map a surface to an arbitrary target shape using a simi-
lar strategy: since a plane curve is determined by its curvature �̃
(up to rigid motion), we iteratively prescribe the curvature density
�̃eu

n�1
ds , where un�1 is our most recent guess for the scale fac-

tor. In the discrete case, let � ⇤ (s ) : [0,L] ! C be a desired closed,
arc-length parameterized curve; let si :=

Pi
k=1

˜̀n
k,k+1 be the cumu-

lative sum of boundary edge lengths at the current iteration, and let
S :=
P
i si be the total length. We �rst sample � ⇤ to obtain a poly-

gon with vertices zi := � ⇤ ((L/S )si ), i.e., at intervals proportional
to our most recent edge lengths. We then compute the exterior an-
gles of the sampled curve k̃i = arg((zi+1 � zi )/(zi � zi�1)). Since
the sample points si are determined using the most recent length
density, these angles provide an estimate for the desired curvature
density. Empirically, this procedure rapidly converges to the target
shape (see Figure 13). Basic as this functionality may seem, it is not
provided by any previous conformal �attening algorithm (linear or
nonlinear)—the closest comparison is the recent method of Segall
and Ben-Chen [2016] for in-plane conformal deformations.

Fig. 12. Mapping to the unit disk. Even on a fairly coarsemesh of 3k triangles
(le�) we achieve results virtually indistinguishable from nonlinear methods.

7 EVALUATION AND COMPARISONS
Here we consider the numerical quality and runtime performance of
both linear and nonlinear methods for boundary-controlled confor-
mal �attening, includingmodi�cations of existing linear schemes. To
help avoid erroneous comparisons, LSCM, SCP, LinABF, CP, CPMS,
and CETM were independently implemented by both authors, and
compared with reference implementations wherever possible. Fig-
ure 14 con�rms that all implementations of boundary-controlled
methods produce similar results (albeit at very di�erent costs).

7.1 Modified Linear Methods
Though previous linear conformal �attening methods do not explic-
itly address boundary control, it is natural to ask whether we simply
need to modify their boundary conditions. Below we explore such
modi�cations for two linear methods (CPMS and LinABF).

7.2 Boundary-Controlled CPMS
Like BFF, CPMS [Ben-Chen et al. 2008] employs a Yamabe-type
equation (Sec. 4.2) to obtain scale information. There are however
several key di�erences. First, CPMS does not provide direct control
over boundary shape: boundary vertices “absorb” curvature via a
process that entails a Poisson solve per boundary vertex—even with
prefactorization these solves become quite expensive (Ben-Chen
et al. [2008, Section 4.2]). Second, it uses a di�erent layout strategy:
whereas BFF need only ensure that boundary data describes a closed
loop (Sec. 4.5), CPMS seeks edge lengths that describe a closed, �at
surface. Rather than satisfy this condition exactly (à la CETM), best-
�t vertex positions are found via a least-squares problem [She�er

Fig. 13. BFF can be used to fla�en a surface (le�) directly onto a target
shape (bo�om right) via a simple iterative procedure. The combined cost of
all iterations is not much more than the cost of the initial map.
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Fig. 14. For ideal meshes and smooth boundary data, all five boundary-
controlled methods produce near-identical results—albeit with dramatically
di�erent update costs. Here we fla�en an optimal Delaunay triangulation
using either isometric lengths (top), or uniform angles k̃i := `i (bo�om).
�asi-conformal error Qavg was identical (within 0.001) across all methods.

et al. 2005] which cannot be prefactored since the matrix itself
depends on the augmented lengths. We can of course add boundary
control by incorporating Eqn. 8: to control angles we apply the
Dirichlet-to-Neumann map (as in Step I of BFF); to control length
we simply set Dirichlet boundary values for u. For nice meshes and
smooth boundary data this strategy works well (Figure 14) but in
general may exhibit artifacts since the least-squares layout does
not respect boundary constraints (Figure 15). The amortized cost of
editing a map via BFF remains about 30x faster than CPMS with our
boundary modi�cation, or about 50x faster than the original method
(due to numerous solves at boundary vertices)—see Figure 17.

7.3 Boundary-Controlled LinABF
In angle-based �attening (ABF) [She�er and
de Sturler 2001] a near-�at metric is found by op-
timizing corner angles � ; a least-squares layout
then provides planar vertex positions approximat-
ing these angles. Zayer et al. [2007] linearize ABF,
solving for angle adjustments � relative to an ini-
tial guess �0—this strategy yields results nearly
identical to the original algorithm. We modify this
approach in two ways. First, to prescribe exterior
angles �̃ we simply add linear constraints

P
�
jk
i = � � �̃i at each

boundary vertex i . Second, to prescribe boundary lengths ˜̀ij (up to
global scale) we incorporate the condition

Y

i jk
sin �ijk / sin �

ki
j =

˜̀i�1,i/ ˜̀i,i+1

for each boundary vertex, i.e., we use the law of sines to prescribe
the ratio of consecutive edge lengths along the boundary (see inset).
Taking the �rst-order approximation of the logarithm and substi-
tuting �0i + �i for �i in the �nal system (à la Zayer) then yields
linear constraints. As with CPMS, this strategy works well for nice
meshes (Figure 14) but can produce artifacts due to both lineariza-
tion and the least-squares layout (Figure 15). Moreover, neither the
least-squares matrix nor the larger 3|F| ⇥ 3|F| ⇡ 6|V| ⇥ 6|V| angle
constraint matrix can be prefactored, yielding lower performance
than other linear methods (Figure 17).

Fig. 15. Hemisphere mapped to an “L” shape. Though existing linear meth-
ods can be modified to incorporate angle control, they may exhibit sig-
nificant artifacts—even on meshes with fairly mild imperfections (le�). In
contrast, exact angle preservation is an algorithmic invariant of BFF.

7.4 �ality and Performance
We measure angle distortion via quasi-conformal error Q, which is
the ratio of singular values of the mapping in each face [Sander et al.
2001]; Q = 1 is ideal, and Qavg denotes the area weighted average
over the surface. Area distortion is measured via the log scale factor
u, which is shifted to have zero mean.

Single-threaded performance was measured on a 3.3GHz Intel
Core i7 with 16GB of memory. All methods were implemented in
C++ using double precision. Linear methods use the supernodal
factorization in CHOLMOD [Chen et al. 2008]. To extract the sub-
factor LII (Sec. 4.1) we compute a block-preserving reordering via
cholmod_l_camd, which has no impact on factorization cost or fac-
tor density; overall we achieve a real-world 2x speedup over com-
puting separate Neumann and Dirichlet factors. For CP we used
MOSEK [ApS 2010]. For CETM we used Newton’s method with
backtracking line search [Boyd and Vandenberghe 2004, Algorithms
9.2 and 9.5], which in our tests performed better than L-BFGS or
Newton trust region; during editing, using a previous solution as
an initial guess did not signi�cantly reduce the number of Newton
iterations (especially for large changes to boundary data).

Fig. 16. For all methods (both linear and nonlinear) average angle distortion
decreases linearly with respect to mean edge length h. BFF and SCP exhibit
the smallest maximum distortion. Right: error distribution for BFF.
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Fig. 17. Wall clock time and mean angle distortion relative to BFF, for a
large collection of standard meshes (each dot is a single mesh). Overall, BFF
achieves comparable error in less time than all other methods; prefactoriza-
tion (orange) improves performance by about another order of magnitude.

Figure 16 suggests that our proposed strategy converges to a
perfectly conformal map under re�nement at the same (linear) rate
as all other �attening methods. Figure 17 veri�es that real-world
timings agree with expected bottlenecks based on the size and num-
ber of matrices that must be factored [Botsch et al. 2005]. (Here
LSCM/SCP/CPMS/CP use free boundary conditions; all other meth-
ods set u |@M = 0.) The takeaway from these experiments is not
that any method provides a big win in terms of accuracy (note the
narrow vertical range in Figure 17) but simply that BFF does not
sacri�ce quality for speed. In particular, by using prefactorization
BFF enables conformal �attenings to be edited about 30x quicker
than the next-fastest boundary-controlled method (Modi�ed CPMS),
and about 50x quicker than the fastest previously-published method
(CETM). This level of improvement provides a qualitative shift in
the type of applications that can a�ord to use sophisticated con-
formal �attening—e.g., interactive applications, or optimization for
computational design [Konakovic et al. 2016].

7.5 Guarantees and Limitations
Boundary Data. Two guarantees provided by BFF are (i) exact

realization of prescribed angles when using harmonic extension
(as discussed in Sec. 6.3) and (ii) exact compatibility of lengths and
angles along cuts (as discussed in Sec. 6.4). Neither LinABF nor
CPMS can provide such guarantees since the least-squares layout
step ignores any prescribed boundary data. Both CP and CETM will
exactly satisfy angle constraints so long as optimization converges
to an accurate solution. Exact length constraints are di�cult for all
methods, as discussed in Sec. 6.2.

Injectivity. A result of Floater [2003, Theorem 4.1] implies that
maps produced by BFF are locally injective as long as (i) prescribed
angles k are positive (describing a convex target), (ii) the discrete
Laplacian A exhibits a maximum principle, and (iii) adjusted edge
lengths ˜̀ are positive. The Delaunay condition is su�cient (but not
necessary) to ensure condition (ii); length adjustments are typically
miniscule and hence far from negative (Sec. 4.5.1).

Fig. 18. Surfaces with nontrivial topology can be parameterized by cu�ing
them into one or more disks. Here we cut an annulus (le�) and a torus (right)
into disks along generators; mapping to rectangles (via prescribed corner
angles of � /2) mostly eliminates seams.

In practice we �nd that
�ips are quite rare: for in-
stance, 6 of 588 meshes in
the SHREC 2011 database
had one or two �ipped tri-
angles, with a total �ipped
area on the order of 10�5
when normalized to unit
radius (see inset); for each mesh we automatically placed eight
cones à la Ben-Chen et al. [2008]. Often such �ips are easy to �x;
one could also perform local Delaunay remeshing, or fall back to
a more expensive injective method (see references in [Smith and
Schaefer 2015]), though such methods may not provide the desired
boundary control.

Topology. For topological spheres one can remove a single ver-
tex star and map to the circular disk, then to the unit sphere via
stereographic projection. For multiply-connected domains like the
annulus, the Cherrier formula (Eqn. 8) is still valid but describes
only an intrinsic �attening that may not admit a planar layout (con-
sider cutting the tip from a circular cone); moreover, the Hilbert
transform (Sec. 4.3.3) is valid only for disk-like domains. In practice,
of course, BFF can be used to �atten any surface by cutting it into
one or more disks (Figs. 18, 8, and 10).

Target Geometry. BFF provides �attening only over Euclidean
domains (possibly with cone singularities), unlike methods based on
discrete Ricci �ow [Jin et al. 2008; Springborn et al. 2008] which can
target spherical or hyperbolic geometry. However, since the Cherrier
formula is valid for any target curvature HK it would be interesting
to generalize the boundary-�rst strategy—here one might apply an
iterative strategy akin to Sec. 6.5 to prescribe pointwise Gaussian
curvature (rather than Gaussian curvature density).
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A EXACT ANGLE SUMS
P���������� 1. For any given scale factors u,
the complementary curvatures k̃ computed by
Step I of BFF will always sum to exactly 2� .

P����. Integrating the Cherrier formula over
a boundary dual cellCi yields (Au)i +hi = �i
(since H� = 0 for a �attening). Since �i =
0 at boundary vertices (Sec. 3.3.1), the new
boundary curvatures can be expressed as

k̃i = ki � hi = ki + (Au)i =
R
e i
� ds �

R
@C i \e i

@u
@n ds,

where ei is the dual boundary edge at i . Their sum is then
X

i

R
ei
� ds �Pi

R
@C i \e i

@u
@n ds =

R
@M � ds +

R
@D

@u
@n ds,

where D is the union of all interior dual cells (see inset)—note the
change in orientation, and cancellation due to equal and opposite
normal derivatives in adjacent cells. Applying Gauss-Bonnet to the
�rst term and the divergence theorem to the second, we get

2� � �
R
M K dA �

R
D �u dA,

where for a disk � = 1. But since �u = K (and curvature is nonzero
only on D), we are left with just 2� . ⇤

P���������� 2. Target
angles k̃ computed as in
Sec. 6.4 will sum to exactly
the desired cone angles �.

P����. Suppose our cut
partitions an interior ver-

tex i into several regions, and let �̃pi be the sum of interior angles at
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i in the pth region (see inset). Recall that k̃ = k � h (Eqn. 12), hence
X

p
k̃
p
i =
X

p
kpi �

X

p

R
@Cp

i \e
p
i

@u
@n ds

Since k̃ and �̃ are supplementary angles, we get
X

p
(� � �̃pi ) =

X

p
(� � �pi ) �

R
Ci

�u dA,

where @Ci is the cell boundary on the original (uncut) mesh. Can-
celing � terms and recalling that for our cone parameterization
�u = � � � (Sec. 6.4), we get the desired result:

X

p
�̃
p
i = (2� � �i ) � (�i � �i ) = 2� � �i .

⇤
B PSEUDOCODE
Pseudocode for the basic BFF algorithm (Sec. 5) is included be-
low. Boundary vertices are enumerated by cyclic indices 1, . . . , |B|
throughout. In lieu of vertex positions, the geometry of the input
mesh is speci�ed purely by its edge lengths `, which is useful when
the surface is not embedded. In practice, of course, it may be easier
to compute quantities like angles directly from vertex positions. For
an initial implementation it may be easiest to �rst separately factor
the Dirichlet and Neumann Laplace matrices; extracting a subfactor
(à la Eqn. 7) will subsequently improve performance.

Algorithm 1 B�������F����F���������(M, `, [u |k̃])
Input: A manifold triangle mesh M = (B✓V, E, F) with disk topol-

ogy, edge lengths ` : E ! R>0 satisfying the triangle in-
equality in each face, and either scale factors u : B! R or
exterior angles k̃ : B! R that sum to 2� .

Output: A �attening f : V! C.
1: �  I�������A�����(M, `)
2: �, k D�������C���������(M, � )
3: A B����L������(M, � )
4: L C�������F�����(A)
5: if u was given then
6: k̃ k � D��������T�N������(A, L,��, u)
7: else
8: u N������T�D��������(L,��, k � k̃)
9: for each ij 2 @M do `⇤ij  e (ui+uj )/2`ij

10: �̃  B���F��C����(M, ,̀ `⇤, k̃)
11: return E�����C����(M, L, �̃ )

Algorithm 2 B����L������(M, `)

Input: A mesh M with edge lengths `.
Output: A zero-Neumann Laplace matrix A 2 R |V |⇥ |V | .
1: A 0 2 R |V |⇥ |V | . initialize an empty sparse matrix
2: for each pqr 2 F do
3: for each ijk 2 C (pqr ) do . C: circular shifts
4: Aii ,Ajj += 1

2 cot(�
ij
k )

5: Aij ,Aji �= 1
2 cot(�

ij
k )

6: return A

Algorithm 3 D��������T�N������(A, L,�, g)
Input: Zero-Neumann Laplace matrix A and its factorization L,

source term �, and Dirichlet boundary data g : B! R.
Output: Neumann data h : B! R.
1: B���S����(LII, a,�I � AIBg)
2: return �B � ATIBa � ABBg

Algorithm 4 N������T�D��������(L,�, h)
Input: Cholesky factor L of the zero-Neumann Laplace matrix,

source term � : V! R, and Neumann data h : B! R.
Output: Dirichlet data g : B! R.
1: B���S����(L, a,� � [0; h])
2: return aB

Algorithm 5 B���F��C����(M, `, `⇤, k̃)

Input: A disk (M, `), desired edge lengths `⇤ : B! R>0, and target
exterior angles k̃ : B! R that sum to 2�

Output: Vertex positions �̃ : B! C.
1: HT 0 2 R2⇥ |B | . dense matrix of tangents
2: �0,1  0 . direction of �rst tangent
3: for i = 1, .., |B| � 1 do . walk along boundary
4: �i,i+1  �i�1,i + k̃i . accumulate exterior angles
5: HTi,i+1  eı�i,i+1 . put tangent in column of matrix
6: N 0 2 R |B |⇥ |B | . boundary mass matrix
7: for each i 2 B do Nii  1/`i . `i are dual lengths
8: ˜̀ `⇤ � N�1HTT (HTN�1HTT)�1HT`⇤ . adjust lengths to close
9: �̃ 1  0 2 C . put �rst vertex at origin
10: for i = 2, .., |B| do . for remaining vertices
11: �̃ i  �̃ i�1 + ˜̀i�1,iHTi�1,i . accumulate scaled tangents
12: return �̃

Algorithm 6 E�����C����(M, L, �̃ )
Input: A meshM with disk topology, Cholesky factor L of the zero-

Neumann Laplace matrix, and a closed loop �̃ : B! C.
Output: A �attening f : V! C.
1: B���S����(LII, a,�AIB Re(�̃ )) . harmonic extension
2: for each i 2 B do hi  1

2 (ai+1 � ai�1) . Hilbert transform
3: B���S����(L, b, h) . harmonic conjugation
4: return a + ıb

All remaining procedures involve either evaluating simple for-
mulas, or calling standard library routines:

• I�������A�����(M, `) — computes the angles � at each
triangle corner.

• D�������C��������(M, � )—computes discrete Gauss and
geodesic curvature using formulas from Sec. 3.3.1. (Note
that �i = 0 at all boundary vertices i 2 B.)

• C�������F�����(A) — returns sparse Cholesky factor L.
• B���S����(L, x, b) — solves Ax = b using the Cholesky

factor of A.
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