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Fig. 1. Our method computes locally injective, discretely conformal maps even for near-degenerate triangulations (turquoise meshes) and extremely difficult
configurations of cone singularities (magenta meshes). We also compute globally bijective conformal maps to the sphere (yellow meshes).

This paper describes a numerical method for surface parameterization, yield-

ing maps that are locally injective and discretely conformal in an exact

sense. Unlike previous methods for discrete conformal parameterization,

the method is guaranteed to work for any manifold triangle mesh, with no

restrictions on triangulation quality or cone singularities. In particular we

consider maps from surfaces of any genus (with or without boundary) to

the plane, or globally bijective maps from genus zero surfaces to the sphere.

Recent theoretical developments show that each task can be formulated as a

convex problem where the triangulation is allowed to change—we complete

the picture by introducing the machinery needed to actually construct a

discrete conformal map. In particular, we introduce a new scheme for track-

ing correspondence between triangulations based on normal coordinates,
and a new interpolation procedure based on layout in the light cone. Stress
tests involving difficult cone configurations and near-degenerate triangula-

tions indicate that the method is extremely robust in practice, and provides

high-quality interpolation even on meshes with poor elements.
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1 INTRODUCTION

Angle-preserving or conformal maps play a key role in applied ge-

ometry [Gu et al. 2020], ranging from biological shape analysis

to digital fabrication to machine learning [Koehl and Hass 2015;

Konaković et al. 2016; Maron et al. 2017]. Conformal maps are desir-

able for many reasons: they provide canonical mappings between

shapes [Lipman and Daubechies 2011; Baden et al. 2018]; typically

involve only sparse linear systems or easy convex problems (hence

scale to very large meshes); and provide both low angle and area

distortion when enriched with well-placed cuts or cone singulari-
ties [Kharevych et al. 2006; Ben-Chen et al. 2008; Sharp and Crane

2018; Soliman et al. 2018].

To date, however, conformal mapping algorithms fail to guar-

antee that a valid map is always found: if the input surface is too
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Fig. 3. For meshes with low-quality elements, standard linear interpolation
yields a poor conformal map (left). We describe how to perform projective
interpolation across triangulations, yielding a much nicer map (right).

poorly triangulated, or the target curvatures are too extreme, exist-

ing methods find a map that is not locally injective, or simply fail

to find any map at all. Such failures hinder the reliability of broader

geometry processing algorithms that depend on conformal maps.

In the smooth setting, existence of conformal maps is guaranteed

by the uniformization theorem [Abikoff 1981]. Very recently, Gu

et al. [2018a,b] and Springborn [2019] established an analogous

discrete uniformization theorem for triangle meshes. However, these

theoretical results fall short of providing practical algorithms, since

they do not describe how to construct the mapping between the

input and target domain. We develop the first end-to-end algorithm

for computing and evaluating this map—in particular, we provide:

• a novel combinatorial data structure for tracking correspon-

dence between different triangulations (Section 5),

• a new interpolation scheme for evaluating the discrete con-

formal map based on the light cone (Section 6), and

• critical details needed to implement discrete uniformization

including a careful treatment of numerics, boundary condi-

tions, and subtleties of the spherical case.

Our optimization procedure is a simple modification of the CETM
algorithm (from Springborn et al. [2008], Conformal Equivalence
of Triangle Meshes): we minimize the same energy, but evaluate

it on a triangulation that changes according to the current scale

factors. However, since the triangulation may now change, this

procedure does not yield an explicit parameterization of the input. To

improve the quality of the map, we also flip the input to an intrinsic
Delaunay triangulation. The main difficulty in developing a practical

algorithm is therefore tracking and evaluating the correspondence

between three triangulations—Figure 2 gives an overview of the

whole process.

2 RELATED WORK

2.1 Discrete Conformal Equivalence
In the smooth setting, conformal maps pre-

serve angles—naïvely, one might therefore

require that for triangle meshes, discrete con-

formal maps preserve the angles at all cor-

ners. However, this condition is far too rigid: since each triangle

can only scale and rotate, its neighbors—and in turn, the entire

surface—may only scale by a constant amount. As a result, many

other notions of discrete conformal maps have been explored; Crane

[2020] gives a detailed account.

A particularly successful approach is the notion of discrete con-
formal equivalence. In the smooth setting, two Riemannian metrics

д, д̃ (which determine angles) are conformally equivalent if they are

related by a positive scaling д̃ = e2uд for some real-valued function

u. On a triangle mesh, the Riemannian metric is captured by the

lengths ℓi j of all edges ij, and two sets of lengths ℓ, ˜ℓ are called

discretely conformally equivalent if

˜ℓi j = e(ui+uj )/2ℓi j (1)

scale

for some assignment of scale factors ui ∈ R
to vertices i [Roček and Williams 1984; Luo 2004]. This innocent-

looking definition leads to a rich discrete theory which is just as

flexible as the smooth one [Bobenko et al. 2015]. Bücking [2016,

2018] and Gu et al. [2019] consider convergence under refinement.

map to cone metric

cut &
unfold

into plane

Fig. 4. Conformal parameteri-
zation with cone singularities.

2.1.1 Discrete Uniformization.
Conformal equivalence offers an ap-

pealing strategy for parameterization:

rather than solve directly for a map to

the plane, first find scale factors that

describe a discretely conformally equiv-

alent flat surface—perhaps with target

angle defectsΩ∗i prescribed at just a few
isolated cone points (Figure 4, top right).
This new surface is then cut open and

unfolded into the plane (Figure 4, bot-
tom). In the smooth setting, existence of

such scale factors is guaranteed by the

uniformization theorem [Abikoff 1981]

Input
Triangulation

Delaunay
Triangulation

Uniformized
Triangulation

Common
Refinement

Textured
Surface

Planar
Layout

make Delaunay
(Euclidean flips)

§3.4

minimize energy
(Ptolemy flips)

§4

map to plane
§6.1

trace edges of
TA, TC over TB

§6.2

extract connectivity
§6.3.1

interpolate positions
& texture coordinates
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not
embedded

Fig. 2. Steps of our algorithm. Throughout we color the input mesh TA red, its intrinsic Delaunay triangulation TB yellow, the uniformized triangulation TC

blue, and the common refinement S of all three green. (Note: triangulations in dashed boxes are purely intrinsic and never actually embedded in Rn .)
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Fig. 5. Performing Euclidean edge flips at arbitrary moments in the flow
can badly distort the conformal structure. Here, we flip edge i j , scale edges
incident on k by a factor euk /2, and undo the flip. The cross ratio c̃ki of
edge ki (Equation 4) is not preserved, and in fact can take almost any value.

and its generalization to cone metrics [Troyanov 1991]. In the dis-

crete setting, however, there is a critical problem: for a fixed tri-

angulation, there may be no scale factors that achieve the target

angle defects. One must therefore adopt an expanded notion of dis-

crete conformal equivalence that allows the triangulation to change

(Section 2.1.2).

To actually compute the scale factors, Luo [2004] proposed the

discrete Yamabe flow

d
dt ui (t) = Ω∗i − Ω̃i (t). (2)

Here Ω̃i (t) are the angle defects induced by the scale factors u(t).
However, since there may be no scale factors that achieve the target

angle defects, this flow can fail to reach a critical point
d
dt ui = 0,

where Ω̃i = Ω∗i . In this case, the scaled edge lengths
˜ℓwill eventually

violate the triangle inequality—at which point the flow becomes ill-

defined and cannot continue. Springborn et al. [2008] and Bobenko

et al. [2015] describe this flow as gradient descent on an explicit

convex energy ℰ , leading to the more efficient, 2nd-order CETM
algorithm. CETM extends ℰ to be well-defined even for invalid edge

lengths—but if the minimizer is found in this extended region, it

fails to describe a valid parameterization (Figure 25).

Flipping Edges. Luo [2004] conjectured that degenerate triangles

might be avoided by applying Euclidean edge flips at the exact mo-

ment when triangles degenerate, as implemented by Campen and

Zorin [2017b, Section 7.3.1], but this idea has two fatal flaws. First,

mixing flips with vertex scaling can yield lengths that are not confor-

mally equivalent to the original ones (Figure 5). Second, it can cause

discontinuities in the value of ℰ , voiding any guarantee that the

flow will converge (Figure 7). This lack of guarantees is a problem

even for methods that care only about injectivity, and not confor-

mal maps [Chien et al. 2016; Campen and Zorin 2017b,a; Campen

et al. 2019]. Likewise, the generalized method of Chen et al. [2016,

Algorithm 1] takes a step of arbitrary size before performing power

Delaunay flips, and [Yu et al. 2017, Algorithm 1] takes an arbitrary

step before performing Euclidean flips. Both algorithms can hence

distort conformal structure, or worse, produce edge lengths that

violate the triangle inequality—at which point the flow is undefined

and cannot continue. Our use of Ptolemy flips ensures the flow is

always well-defined and exactly preserves the conformal structure

(see Section 3.3.4, and the use of Algorithm 11 within Algorithm 4).

=

input (polyhedral)

Fig. 6. We adopt a notion of conformal equivalence that yields the same
discrete conformal map, no matter how the input polyhedral surface is
triangulated. Here a mesh with planar faces is triangulated two different
ways, yielding identical results.

flip when triangles degenerate (Euclidean)
flip to Delaunay triangulation (Ptolemy)

Fig. 7. Flipping edges when triangles degenerate causes the energy ℰ to
jump discontinuously—voiding any guarantee of convergence (top). In con-
trast, flipping to Delaunay via Ptolemy flips before evaluating the energy
ensures that we always reach the correct solution (bottom). Here we consider
a coarse double torus with target angle defects +3π /4 at all but one vertex,
which has large negative curvature. We take small steps to clearly plot the
energy; vertical lines indicate flip times.

2.1.2 Variable Triangulations. A recent theoretical breakthrough

is a notion of discrete conformal equivalence that does not depend

on how a polyhedral surface is triangulated (Figure 6), along with

associated discrete uniformization theorems for the Euclidean [Gu

et al. 2018a], hyperbolic [Gu et al. 2018b], and spherical [Springborn

2019] cases. This work is intimately linked to realization results

for ideal hyperbolic polyhedra [Rivin 1994; Fillastre 2008; Prosanov

2020]. The theorems guarantee one can always find a conformally

equivalent triangulation with prescribed angle defects Ω∗, so long

as they satisfy Gauss-Bonnet. This solution is unique up to scale

(Euclidean case) or Möbius transformations (spherical case).

Fig. 9. Either triangula-
tion of a circular quad
satisfies the local Delau-
nay property α +β ≤ π .

There are two equivalent definitions of

discrete conformal equivalence—a key idea

introduced by Gu et al. [2018a] is to con-

sider an intrinsic Delaunay triangulation of

the input (Section 3.4).

One definition is that twoDelaunay trian-

gulations are conformally equivalent if they

are related by an alternating sequence of

vertex scalings (Equation 1) and concyclic

Euclidean edge flips (Figure 9), which main-

tain the Delaunay property [Gu et al. 2018a,
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Fig. 8. Top: Triangle meshes with different connectivity (but the same vertices) are considered discretely conformally equivalent if they are the same up to a
conformal rescaling of edge lengths, followed by Ptolemy edge flips to a Delaunay triangulation. Bottom: This definition, and the use of Ptolemy (rather than
Euclidean) edge flips, arises from a hyperbolic perspective, where we simply retriangulate a hyperbolic polyhedron without changing its geometry.

Definition 1.1]. Algorithms that adopt this definition must stop and

flip whenever two triangles become concylic. Wu [2014] shows

that only finitely many flips are needed, ensuring that computation

terminates. Sun et al. [2015] present an implementation of such a

scheme, but do not evaluate the pointwise map between the domain

and target (as needed for, e.g., texture mapping or remeshing).

We adopt an alternative definitionwhich is theoretically equivalent—

though this is far from obvious: the two triangulations are discretely

conformally equivalent if they describe the same ideal hyperbolic
polyhedron [Bobenko et al. 2015, Definition 5.1.4]. As observed by

Springborn [2019], a discretely conformally equivalent triangulation

can be obtained by applying an arbitrary vertex scaling, then flipping

to a Delanuay triangulation via Ptolemy flips (Section 3.3.4), rather

than ordinary Euclidean flips—see Figure 8, top. Since Ptolemy flips

are well-defined even when edge lengths fail to satisfy the triangle

inequality, one need not worry about maintaining a valid Euclidean

metric, nor about triangles being concyclic: at any moment, one

can simply scale to an invalid metric, then flip to a valid one. This

procedure always works, because it corresponds to retriangulat-

ing the associated ideal hyperbolic polyhedron (Figure 8, bottom).

Concurrent work by Campen et al. [2021] also takes this approach.

By adopting this definition, we cast discrete conformal parameter-

ization as an unconstrained convex optimization problem where the

only variables are the scale factorsui . The optimizer need not worry

about edge flips, which appear only within a black-box callback rou-

tine that evaluates the energy and its derivatives. Moreover, we can

use a 2nd-order Newton method to achieve fast convergence, since

the energy we minimize is twice continuously differentiable (C2
)

even across different triangulations, and the Hessian is easy to com-

pute (just the cotan-Laplacian). Overall this approach is generally

faster than stopping to perform flips (see Figure 10 and Section 8.3),

and also accommodates the more difficult spherical case, which

involves additional bounds constraints (Section 7).

2.2 Discrete Conformal Mapping
The triangulation produced by uniformization cannot be used in

most applications unless we know how tomap data back to the input

mesh. Two basic strategies have been developed for this purpose.

Fisher et al. [2007] maintain an explicit mesh of the common refine-

ment of two triangulations, guaranteeing correct connectivity (Sun

et al. [2015] adopt a similar approach). Sharp et al. [2019b] observe

that explicit encodings incur significant cost, and instead implicitly

encode correspondence via signposts at vertices. This floating-point
encoding can however fail to describe correct connectivity in ex-

treme situations (such as Figure 27). We provide the best of both

worlds: an implicit, integer-based encoding that can be updated

without resolving intersections, yet guarantees the right connectiv-

ity (Section 5). This encoding is based on normal coordinates, a tool

concyclic flips
[Sun et al 2015]

Ptolemy flips
[our method]

Fig. 10. A slice of the energy landscape for a tetrahedron. Each conformal
scaling u induces a Delaunay triangulation—white curves delineate regions
with a common triangulation. Previous algorithms must stop and flip at
each region boundary (where triangles become concyclic), whereas we can
flip at any moment—since Ptolemy flips commute with scaling.
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from 3-manifold geometry [Kneser 1929; Haken 1961] and computa-

tional topology [Schaefer et al. 2002; Agol et al. 2006; Erickson and

Nayyeri 2013]. We enrich this construction with a combinatorial

analogue of signposts, which we call roundabouts (Section 5).

The other question is how to interpolate data across triangula-

tions, such as vertex or texture coordinates. The natural choice for

discrete conformal maps is to use piecewise projective interpola-

tion [Bobenko et al. 2015], which can be implemented via standard

homogeneous coordinates [Springborn et al. 2008, Section 3.4]. We

extend this idea to variable triangulations by laying out triangles in

the light cone rather than the Euclidean plane (see Section 6.0.1).

Importantly, our approach to discrete conformal mapping de-

pends critically on the hyperbolic picture. Without this picture, one

could not use the implicit connectivity encoding (which depends on

hyperbolic straightening), and would be forced to explicitly main-

tain the full connectivity of the common refinement, as done by

Sun et al. [2015]. Likewise, our high-quality interpolation scheme

(shown in Figure 3) relies on calculations in the light cone model of

the hyperbolic plane.

2.3 Other Methods
Conformal Mapping. Other methods for conformal parameteriza-

tion do not provide a general solution. For instance, early methods

based on linear finite elements [Lévy et al. 2002; Desbrun et al. 2002;

Mullen et al. 2008] do not guarantee injectivity, nor do they handle

cone singularities. More recent linear methods support cones [Ben-

Chen et al. 2008; Vintescu et al. 2017; Sawhney and Crane 2017], but

injectivity is still missing. Orbifold methods (e.g., [Aigerman and

Lipman 2016]) provide injectivity, but support only a restricted set of

cone configurations where cone angles cannot be prescribed. Angle-

based methods [Sheffer et al. 2005] rely on nonconvex optimization,

with no general convergence guarantees. Finally, Bobenko et al.

[2015] and later Zhang et al. [2014] provide connections between

discrete conformal equivalence and circle patterns.

Injective Mapping. Discrete uniformization has a special relation-

ship to methods for locally injective mapping, since CETM is often

used for initialization [Chien et al. 2016; Campen and Zorin 2017b;

Campen et al. 2019]; we provide even stronger guarantees. Unlike

[Mandad and Campen 2019; Shen et al. 2019] we do not claim to

guarantee injectivity in floating point—yet still achieve injectivity in

extremely challenging scenarios (Section 8.3.2). Overall we observe

that the freedom to modify the triangulation during optimization

leads to significantly improved robustness—see Section 8.3.

3 PRELIMINARIES
This section provides essential definitions needed to motivate and

derive our algorithms; some readers may wish to skip ahead to Sec-

tion 4, and return here for reference. The most important concept is

illustrated in Figure 14: any triangle mesh can be interpreted as both

a Euclidean polyhedron (Section 3.2) and a decorated ideal polyhedron
(Section 3.3), leading to a definition of conformal equivalence across

different triangulations (Section 3.5). For further background, see

Bobenko et al. [2015] and Springborn [2019].

Fig. 11. An edge or triangle
in a ∆-complex might not be
uniquely determined by its
vertices. Here, performing in-
trinsic edge flips on an octahe-
dron yields two distinct edges
between the same pair of ver-
tices i and j , and two triangles
with the same vertices i , j , and
k . The sphere depicts the ab-
stract connectivity.

i

j

k i

k j

3.1 Combinatorial Polyhedra
Throughout we use T = (V, E, F) to denote the connectivity of a

manifold triangulation with vertices V, edges E, and faces F; we
assume T is orientable purely to simplify exposition. Even when

the input is an ordinary (simplicial) triangulation, we may need

to construct triangulations where, e.g., multiple edges connect the

same two vertices, or two triangles share the same three vertices

(Figure 11). Formally, we use triangulation to mean a ∆-complex

in the sense of Hatcher [2002, Section 2.1], which we encode via

a halfedge data structure [Botsch et al. 2010, Section 2.3]. Though

edges and faces are not uniquely determined by their vertices, for

brevity we will still denote them by vertex pairs ij ∈ E and triples

ijk ∈ F, resp., where i , j, and k need not be distinct. The notation

ϕ
jk
i indicates a quantity ϕ at corner i of a triangle ijk .

�ip
i

i

k

k

l

l

j

j

3.1.1 Combinatorial Edge Flip. For two tri-
angles sharing a common edge, an edge
flip replaces this edge with the opposite

diagonal—we will need this operation in

order to construct intrinsic Delaunay trian-

gulations (Section 3.4). If we locally index

the vertices of these two triangles as de-

picted in the inset figure, then the edge flip

replaces the original triangles ijk and jil
with jkl and lki . Any other data stored on

the triangulation must also be updated, as depicted in Figure 12 and

discussed in Sections 3.2.1, 3.3.4, 5.1.1 and 5.2.1.

3.2 Euclidean Polyhedra
A Euclidean polyhedron is a surface that

looks like the flat Euclidean plane every-

where except at a finite collection of cone
points. The canonical example is an ordinary

triangle mesh in R3, where the neighbor-

hood around each vertex is isometric to a

piece of a circular cone (see inset). For uni-

formization, however, we do not need to

keep track of how the surface is embedded

in space. Instead, we can store a purely in-
trinsic description of the geometry, given by

the edge lengths ℓ : E→ R>0 of a triangula-
tion T = (V, E, F). If these lengths satisfy the

triangle inequalities in each triangle ijk ∈ F,
then we call ℓ a discrete metric. Other quantities such as corner
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angles θ
jk
i can be recovered from edge lengths via standard trigono-

metric formulas. In particular, each vertex i ∈ V has an angle defect
Ωi := 2π −

∑
i jk ∈F θ

jk
i , which characterizes the flatness of the ver-

tex, and is equal to the integral of Gaussian curvature over a small

neighborhood around the cone point.

3.2.1 Euclidean Edge Flip. This description also enables us to change
the triangulation of a Euclidean polyhedron without changing its

intrinsic geometry. In particular, given only the edge lengths, the

new edge length ℓkl resulting from an edge flip can be determined

by laying out the known triangles ijk and jil in the Euclidean plane,

and measuring the distance between vertices k and l . More robust

numerical strategies are discussed by Fisher et al. [2007] and Sharp

et al. [2019b].

3.2.2 Conformally Equivalent Edge Lengths. We say that two dis-

crete metrics ℓ, ˜ℓ : E→ R>0 on the same triangulation T = (V, E, F)
are discretely conformally equivalent if at all edges ij ∈ E

˜ℓi j = e(ui+uj )/2 ℓi j (3)

for some assignment of vertex scale factors u : V → R. These
metrics are conformally equivalent if and only if they induce the

same length cross ratios [Springborn et al. 2008, Section 2]

ci j =
ℓil ℓjk

ℓl jℓki
. (4)

We will give a definition of conformal equivalence for Euclidean

polyhedra with different connectivity in Section 3.5.

3.3 Hyperbolic Polyhedra
3.3.1 Models of Hyperbolic Geometry. Just as the sphere S2 is a

surface of constant curvature K = +1, the hyperbolic plane H2
is a

surface of constant negative curvature K = −1. Unlike S2, there is
no way to smoothly embed H2

in Euclidean R3 isometrically, i.e.,
without distorting its geometry [Hilbert 1901]. Instead, we must

visualize it through one of several models, each of which faithfully

represents only some of its geometric features. A good analogy is

the Mercator projection of the globe, which preserves angles but

normal coordinates
i

j

k

l

Euclidean lengths

i

j

k
l

5 0
1

l

k

j
i

2
3

4

roundabouts

Penner coordinates

i

j

lk

Fig. 12. For each edge flip, we need to update any data stored on edges.
Here we indicate quantities involved in updating Euclidean edge lengths
(top left), Penner coordinates (top right), normal coordinates (bottom left)
and roundabouts (bottom right).

geodesic

Poincaré diskideal
point ideal

point

H2 H2

H 2
ideal point

horocycle horocycle

ideal
triangle

ideal
triangle

Klein disk

hyperboloid

geodesic

horocycle

geodesic
idealtriangle

Fig. 13. Since the hyperbolic plane H 2 cannot be isometrically embedded
in R3, it must be understood through the use of several “models”—here we
illustrate how several key quantities are realized in each model.

distorts the size of land masses. Figure 13 depicts three models that

are useful for our purposes. For further background on hyperbolic

geometry, see Cannon et al. [1997]; Alekseevskij et al. [1993].

In the Poincaré disk model, points in H2
are identified with points

in the open unit disk D2
:= {p ∈ R2 : |p | < 1}. Although this

disk looks like a finite piece of the Euclidean plane, lengths at a

point p ∈ D2
get scaled by 2/(1 − |p |2) so that short distances near

the boundary ∂D2
represent large distances in H2

. One can hence

travel any distance along a straightest curve or geodesic without ever
reaching the boundary—limit points on ∂D2

are called ideal points.
Though geodesics are straight in H2

, in the Poincaré model they

appear as circular arcs orthogonal to ∂D2
. The Poincaré model is

conformal: angles between circular arcs give the true angle between

geodesics in H2
. Finally, just as a straight line in R2 can be viewed

as a circle of “infinite radius,” a horocycle is the limit of a family of

increasingly large circles tangent at a common point—drawn in the

Poincaré model as a circle tangent to the boundary.

The Beltrami-Klein model is much like the Poincaré model, but

with a different metric. Geodesics appear as straight lines, but Eu-

clidean angles no longer give the true angles inH2
, i.e., the Beltrami-

Klein model is not conformal. Horocycles in the Beltrami-Klein

model appear as ellipses. This model helps explain the relationship

between Euclidean and hyperbolic polyhedra (Section 3.3.3).

lig
ht c

on
e

hyper boloid
The hyperboloid model represents H2

as the

upper sheet of the two-sheeted hyperboloid.

Just as the sphere is the set of all points p ∈
R3 such that ⟨p,p⟩ = 1, this hyperboloid is

the set of all points satisfying ⟨p,p⟩2,1 = −1,
where ⟨p,q⟩2,1 := pxqx + pyqy − pzqz is the

Lorentz inner product; this inner product is also
used to measure the angles and lengths of vectors tangent to the

hyperboloid. Geodesics in H2
correspond to intersections of the

hyperboloid with planes through the origin, and ideal points are

identified with lines in the light cone ℒ := {p ∈ R3 : ⟨p,p⟩2,1 = 0}.

Horocycles are obtained by taking a plane tangent to ℒ, shifting it
in the positive z-direction, and intersecting with the hyperboloid.

Thus, we can identify horocycles with points in the positive light
cone ℒ+ := {p ∈ ℒ : pz > 0}; each point p ∈ ℒ+ also corresponds

to the plane {q ∈ R3 : ⟨p,q⟩2,1 = −1}. The hyperboloid model is

essential for developing our interpolation scheme—see Section 6.4.
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Fig. 14. An ordinary triangle mesh (left) can always be viewed as an ideal
hyperbolic polyhedron (right), i.e., surface made from triangles of constant
negative curvature and all three vertices at infinity.

3.3.2 Ideal Polyhedra. An ideal hyperbolic polyhedron is a surface

of constant negative curvature, and a finite collection of cusps anal-
ogous to Euclidean cone points (Figure 14, right). We can construct

ideal polyhedra by gluing together ideal triangles: regions of H2

bounded by three geodesics approaching three ideal points at in-

finity (Figure 13). A strange fact about ideal triangles is that they

are all congruent, i.e., they are iden-

tical up to isometries of H2
. Hence,

the geometry of an ideal polyhedron is

determined entirely by how neighbor-

ing triangles ijk, jil are glued together—
namely, how far we slide them along

the shared geodesic ij. One way to

quantify gluings is to use shear coor-
dinates, which for each edge ij give the
distance Zi j ∈ R between the altitudes

dropped from opposite vertices k and l (see inset). Alternatively, we
can pick an arbitrary horocycle at each vertex, yielding a decorated
ideal polyhedron. Though edges of an ideal triangle do not have

finite length, there is now a finite distance λi j ∈ R between the

horocycles at i and j—these values are called the Penner coordinates.
Shear and Penner coordinates are related by

Zi j =
1

2
(λil − λl j + λjk − λki ) (5)

(see [Penner 2012, Corollary 4.16, p. 40]). Note that if the horo-

cycles at i and j overlap, λi j will be negative. Yet unlike negative
Euclidean lengths, negative Penner coordinates will cause no trou-

ble for discrete uniformization. Likewise, whereas Euclidean lengths

must satisfy the triangle inequality, any three Penner coordinates

λi j , λjk , λki ∈ R (whether positive or negative) can be realized by

some choice of horocycles.

3.3.3 Euclidean-Ideal Correspondence. Every Euclidean polyhedron
gives rise to an ideal polyhedron, in the following way. Any triangle

ijk ∈ F drawn in its Euclidean circumdisk can be interpreted as

an ideal triangle in the Beltrami-Klein model. To glue two ideal

triangles ijk, jil together along an edge ij, we simply identify the

same points as in the Euclidean polyhedron. An ideal polyhedron

constructed this way will have shear coordinates Zi j = log ci j , and

if we assign Penner coordinates

λi j = 2 log ℓi j (6)

we get a decorated version of the same polyhedron. In general, we

can move from Euclidean to hyperbolic polyhedra by “taking a

logarithm”—for example, Equation 5 now just becomes the loga-

rithm of Equation 4. More importantly, for a fixed triangulation, a

conformal scaling of edge lengths à la Equation 3 corresponds to a

shift in horocycles of the form

˜λi j = λi j + ui + uj . (7)

In other words, conformally equivalent edge lengths ℓ, ˜ℓ describe

the same ideal polyhedron, just decorated with different horocycles.

3.3.4 Ptolemy Flip. Penner coordinates are easily updated during

edge flips via Ptolemy’s relation [Penner 2012, Corollary 4.16, p. 40].

Letting ℓi j = eλi j /2 for each edge in Figure 12 (top right), we compute

ℓkl = (ℓki ℓl j + ℓjk ℓl i )/ℓi j . (8)

The new Penner coordinate is then λkl = 2 log(ℓkl ) (Figure 12, top
right). Since Equation 8 is a rational expression in ℓ, it is often

simplest to just store and manipulate the edge lengths ℓ rather than

the Penner coordinates λ. See Section 8.1 for further discussion of

numerics.

Importantly, this so-called Ptolemy flip is the same as a Euclidean

edge flip if and only if the two Euclidean triangles are concyclic

(Figure 9). In general, Euclidean flips may distort the discrete con-

formal structure even though they preserve the Euclidean geometry

(Figure 15), whereas Ptolemy flips always preserve the hyperbolic

metric, hence the conformal structure. Moreover, Euclidean flips

are well-defined only when the triangle inequalities are satisfied,

whereas Ptolemy flips are always well-defined.

3.4 Delaunay Triangulations
For polyhedral surfaces, discrete conformal equivalence is defined

in terms of Delaunay triangulations—not because they are “nice”

in a numerical sense, but because they are key to establishing the

discrete uniformization theorem mentioned in Section 1. Delaunay

triangulations have similar but distinct definitions in the Euclidean

and ideal hyperbolic settings.

3.4.1 Intrinsic Delaunay Triangulations. A planar triangulation is

Delaunay if there are no vertices on the interior of any triangle

circumcircle. Equivalently, we can ask that every interior edge ij
contained in triangles ijk, jil satisfy the local Delaunay condition

θ
i j
k + θ

ji
l ≤ π . (9)

This characterization generalizes to Euclidean

polyhedra, since the edge lengths ℓ are suffi-

cient to determine the angles θ . Such intrinsic
Delaunay triangulations can be found using a simple greedy algo-

rithm: while any edge fails to satisfy Equation 9, perform a Euclidean

flip (à la Section 3.2.1). This algorithm terminates after finitely many

flips [Indermitte et al. 2001; Bobenko and Springborn 2007], and

in practice takes about |E| flips on real-world meshes [Sharp et al.

2019b, Figure 10]. Note if two triangles are inscribed in a common

circle, then either diagonal satisfies Equation 9 (Figure 9).

3.4.2 Ideal Delaunay Triangulations. A hyperbolic analogue is an

ideal Delaunay triangulation [Springborn 2019, Section 4]: if ℓ = eλ/2
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optimize optimizeinput Delaunay

Delaunaynon-Delaunay

Fig. 15. Top: uniformization should leave a flat region unchanged, but unless
one first flips to an intrinsic Delaunay triangulation, Ptolemy flips performed
during optimization will distort the given shape. Bottom: in general, flipping
to intrinsic Delaunay first tends to yield a better map.

are edge lengths associated with given Penner coordinates λ, then
every edge must satisfy the local ideal Delaunay condition

ℓ2i j (ℓjk ℓki + ℓil ℓl j ) < (ℓil ℓki + ℓjk ℓl j )(ℓil ℓjk + ℓki ℓl j ), (10)

which we obtain by combining Equations 3 and 10 from Springborn

[2019]. We can again find such a triangulation by greedily flipping

edges, but this time using Ptolemy flips. Remarkably, if Equation 10

is satisfied globally, then the lengths ℓ always describe a valid Eu-
clidean intrinsic Delaunay triangulation [Springborn 2019, 4.14].

Yet working in the ideal setting enables us to start with lengths

that do not describe a valid Euclidean metric and flip to a valid one

(Figure 8).

3.5 Discrete Conformal Equivalence
We can now state what it means for polyhedra with different tri-

angulations to be discretely conformally equivalent. Consider in

particular two Euclidean polyhedra with the same vertex set V,
encoded as intrinsic Delaunay triangulations (T, ℓ) and (T̃, ˜ℓ). Two
mathematically equivalent definitions provide not only different

geometric perspectives, but also lead to different algorithms.

Euclidean perspective. One definition of discrete conformal equiv-

alence is that there must exist a sequence of Euclidean intrinsic

Delaunay triangulations

(T, ℓ) = (T1, ℓ1), . . . , (Tn, ℓn ) = (T̃, ˜ℓ)

where each consecutive pair (Ti , ℓi ), (Ti+1, ℓi+1) is related by ei-

ther (i) a conformal scaling of edge lengths, à la Equation 3, or (ii)

Euclidean edge flips of concyclic triangle pairs, à la Section 3.2.1.

Hyperbolic perspective. The other definition says that (T, ℓ) and
(T̃, ˜ℓ) are discretely conformally equivalent if the associated ideal

hyperbolic polyhedra (as defined in Section 3.3.3) are isometric,

i.e., if they simply describe different triangulations of the same

negatively-curved surface. Concretely, anymodification of the initial

Penner coordinates via Equation 7 followed by Ptolemy flips to an

ideal Delaunay triangulation will yield a discretely conformally

equivalent surface. This perspective is illustrated in Figure 8.

An important difference between these two perspectives is that

in the Euclidean case one must stop to perform edge flips whenever

the triangulation becomes non-Delaunay, whereas in the hyperbolic

case scaling and flipping are decoupled: one can adjust Penner

coordinates freely, and need not stop to perform flips.

4 UNIFORMIZATION
Here we describe our procedure for planar parameterization—see

Section 7 for the spherical case. This procedure is outlined in Fig-

ure 2; detailed pseudocode can be found in the supplement.

Given an input mesh TA, we first flip to an intrinsic Delaunay

triangulation TB (à la Section 3.4.1), which preserves the Euclidean

geometry and defines the discrete conformal structure. We then

solve an optimization problem for scale factors u that transform

TB into a triangulation TC with the prescribed angle defects (Sec-

tion 4.3). After optimization, we lay TC out in the plane (Section 4.5).

However, this layout does not yet provide a mapping of the input

mesh to the plane—Sections 5 and 6 describe how to construct such

a map. Note that if we skip the first step (i.e., do not flip to intrinsic

Delaunay) then we could work with just two triangulations, and

get a map that is still locally injective, but may exhibit conformal

distortion (see Figures 15 and 24).

4.1 Variational Formulation
The input to our discrete uniformization procedure is the intrinsic

Delaunay triangulation TB , and target angle defects Ω∗ : V → R
which must satisfy a discrete Gauss-Bonnet condition:

1

2π

∑
i ∈V

Ω∗i = |V| − |E
B | + |FB | (11)

(see Section 4.4 for a generalization to surfaces with boundary).

Note that target defects Ω∗i must be smaller than 2π , since the sum
of angles around a vertex is always positive. Minimizing a convex

energy ℰ then yields scale factors u relative to TB .
Note that unlike CETM we flip to Delaunay whenever we need to

evaluate the energy or its derivatives (as detailed in Section 4.2). This

process is completely hidden inside a callback routine—from the per-

spective of the optimizer, one simply has to solve an unconstrained

problem that is convex and twice continuously differentiable (C2
).

4.2 Energy Evaluation
To evaluate our energy for any given u, we first compute the edge

lengths
˜ℓi j = e(ui+uj )/2ℓBi j , and flip to the corresponding ideal De-

launay triangulation T̃ = (V, Ẽ, F̃) using Ptolemy flips. These flips

change the Euclidean geometry but preserve the discrete confor-

mal structure. We will use
˜λ, ˜θ , and Ω̃ to denote the corresponding

Penner coordinates, interior angles, and angle defects, resp.

ACM Trans. Graph., Vol. 40, No. 4, Article 103. Publication date: August 2021.



Discrete Conformal Equivalence of Polyhedral Surfaces • 103:9

4.2.1 Energy. The discrete conformal energy is then given by

ℰ(u) =
∑
i ∈V
(2π − Ω∗i ) ui −

∑
i j ∈Ẽ

π ˜λi j +
∑
i jk ∈F̃

2f ( ˜λi j , ˜λjk , ˜λki ),

where f ( ˜λi j , ˜λjk , ˜λki ) is given by

1

2

(
˜θ
jk
i

˜λjk + ˜θkij
˜λki + ˜θ

i j
k
˜λi j

)
+ Л( ˜θ

jk
i ) + Л(

˜θkij ) + Л(
˜θ
i j
k ).

Here Л denotes Milnor’s Lobachevsky function

Л(θ ) := −

∫ θ

0

log |2 sinu | du,

which is related to Clausen’s integral via Л(θ ) = 1

2
Cl2(2θ ); the lat-

ter is implemented in standard numerical packages [Galassi et al.

1994]. Unlike CETM, which extends the energy linearly to han-

dle lengths that violate the triangle inequality, we always evaluate

this energy on the intrinsic Delaunay triangulation implied by the

current scale factors. Constant shifts relative to [Springborn et al.

2008, Equation 7] ensure that, when evaluated this way, the energy,

its gradient, and its Hessian vary continuously with the log scale

factors u—even though different scale factors can induce different

triangulations [Springborn 2019, Proposition 7.12]. Note also that a

Euclidean edge flip preserves this energy ℰ if and only if the two

participating triangles are concyclic—again motivating the use of

Delaunay triangulations.

4.2.2 Gradient. At each vertex i ∈ V, the gradient of the energy is

∂ui ℰ = Ω̃i − Ω∗i

Note, then, that any stationary point ∂uℰ = 0 achieves the desired

angle defects Ω̃ = Ω∗.

4.2.3 Hessian. The Hessian is given by the

positive-semidefinite cotan Laplacian L ∈

R |V |× |V | [MacNeal 1949, Section 3.2]; [Crane

et al. 2013a, Chapter 6]. Since a ∆ complex

may contain more than one edge with the

same endpoints (see for example Figure 11),

the off-diagonal entries Li j and Lji are obtained by summing the

values
1

2
(cotθ

i j
k + cotθ

ji
l ) over all edges ij ∈ Ẽ with endpoints i and

j , where k, l are the vertices opposite the edge. For each vertex i ∈ V,
we then have a diagonal entry Lii = −

∑
i j ∈Ẽ Li j , where the sum is

taken over all edges incident on i . Note that self-edges (where i = j)
make no contribution.

4.3 Optimization
Since the energy ℰ is convex and globallyC2

, it can be minimized us-

ing any standard method for convex optimization. We use Newton’s

method with backtracking line search, as described in Algorithms

9.5 and 9.2 of Boyd and Vandenberghe [2004], resp. In particular, we

use the descent direction v ∈ R |V | obtained by solving the linear

system

Lv = ∂uℰ, (12)

where ∂uℰ ∈ R |V | encodes the gradient defined in Section 4.2.2.

Note that the matrix L has a one-dimensional kernel of constant vec-

tors. We simply use the solution v that has no constant component

(which corresponds to a global scaling). Although L is rank deficient,

circular disk

convex

orthogonal

scale control

minimal area
distortion

polygonal

Fig. 16. Our algorithm guarantees existence of a locally injective discrete
conformal map for any prescribed boundary lengths or angles, which can
be used to achieve a rich variety of behavior. Spherical uniformization also
provides a globally injective conformal map to the unit disk.

the system is solvable: Gauss-Bonnet ensures that the right-hand

side sums to zero. We initialize Newton’s method with u = 0, but

since the energy is convex this choice will not affect the result (apart

from a global scale).

4.4 Surfaces with Boundary
For a smooth surfaceM with boundary ∂M , the space of conformal

maps to the plane is parameterized by a real-valued function along

the boundary—geometrically, this function can be determined by

prescribing either the scale factors u or the curvature density κ ds
along ∂M (see [Sawhney and Crane 2017, Section 4.2] for further

discussion). We can specify such conditions by either a scale factor

ui or target exterior angle κ∗i at each boundary vertex i ∈ ∂V.
To enforce these conditions, we glue together two copies of the

input mesh along the boundary (as in Jin et al. [2004]), reducing

the problem to the no-boundary case. Unlike CETM, we can hence

always find a solution with the prescribed boundary data. Note

that this construction extends Springborn [2019], which does not

consider surfaces with boundary; Sun et al. [2015] describe a similar

scheme in the case of prescribed boundary curvature. Maps to the

circular disk are handled in a similar fashion, but using the spherical

uniformization from Section 7.

double4.4.1 Fixed Boundary Curvature.
Suppose we want our flattened do-

main to have an exterior angle κ∗i at
a boundary vertex i . The angle sum
at i must then be equal to π − κ∗i ,
hence on the doubled domain we

prescribe an angle defect Ω∗i = 2π−
2(π − κ∗) = 2κ∗i . Since the solu-

tion is unique, it must be symmetric

across the two copies of the original
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mesh. Hence, if we cut the uniformized surface along the original

boundary curve, each half will exhibit the desired angles κ∗. The
only requirement is that the angle defects and exterior angles satisfy

a Gauss-Bonnet condition

∑
i ∈V Ω∗i +

∑
i ∈∂V κ

∗
i = |V| − |E| + |F|.

In Figure 16 we assign target angles that yield convex (κ∗i > 0),

orthogonal (κ∗i ∈
π
2
Z), or polygonal boundaries (κ∗i = 0 almost

everywhere).

4.4.2 Fixed Boundary Scale Factors. To prescribe boundary scale

factors, we fix the values ui at vertices i of the doubled domain

corresponding to the original boundary. For instance, setting ui = 0

at all boundary vertices yields minimal area distortion [Chebyshev

1899, p. 242] in the sense that it minimizes the variation in scale

factors [Springborn et al. 2008, Appendix E]—see Figure 16. Fixing

these values restricts the convex energy ℰ to a linear subspace;

hence we are still solving a convex problem. To compute the descent

direction, we now solve the same system (Equation 12), except that

we set zero Dirichlet boundary conditions at the boundary vertices,

since we do not want these values to change. The minimizer will

exhibit the target angle defects at interior vertices, since the gradient

still only vanishes when Ω̃ = Ω∗.

4.5 Planar Layout
The final scale factors u provide an intrinsic description of the flat-

tened surface, which we then lay out in the plane. Just as we do

during optimization, we first scale the edge lengths (à la Equation 3)

and flip to Delaunay using Ptolemy edge flips to get a final triangula-

tion (TC , ℓC ). Since the final edge lengths ℓC describe a triangulation

that is flat away from cone singularities (Figure 4), we can simply lay

the triangles out in the plane one at a time to get a parameterization

with no flipped triangles. (Section 8.2 discusses a numerically robust

alternative.) Since coordinates are discontinuous across cuts, we

store values z
jk
i ∈ R

2
at corners.

5 CORRESPONDENCE
We now describe a data structure for tracking correspondence be-

tween different triangulations of the same polyhedron. In particular,

we introduce an implicit, integer-based encoding that is easily up-

dated via local formulas during each edge flip. An explicit geometric

correspondence is later extracted from this information once all flips

have been performed (e.g., after uniformization)—see Section 6. Since

this encoding uses only integer data, it avoids robustness issues that

can arise with floating-point representations (e.g., Figure 27).
Explicitly, to encode the correspondence between any two trian-

gulations T1, T2 with the same vertex set V, we store

• normal coordinates, which count the number of times T1
crosses each edge of T2 (Section 5.1), and

• roundabouts, which give the circular ordering of edges from

both T1 and T2 around each vertex (Section 5.2).

Normal coordinates enable us to later trace geodesic segments from

each vertex i to all neighboring vertices j in T1, yielding curves

along T2 (Section 6.1). Roundabouts provide the correspondence

between these traced segments and logical edges of T1. This latter
data is needed because the two endpoints i, j of a traced segment

may not uniquely determine an edge (Figure 11).

i

j

k

edges leaving corner k

edges crossing corner k

normal coordinates nij

edge of T1

edge of T2

1

0

0

0
01

1 3

0

i

j

k

Fig. 17. Left: normal coordinates ni j count the number of times each edge
i j in a triangulation T2 crosses any edge of another triangulation T1 trans-
versely. Right: these coordinates can be used to determine other quantities,
such as how many edges of T1 cross or leave a corner of a triangle from T2.

For our flattening procedure we use this scheme to track the

correspondence both between TA and TB , and between TB and TC

(see Figure 2). Note that in the remaining sections we use H to

denote the halfedges associated with edges E, i.e., the two possible

orientations
⇀
ij ,

⇀
ji of each edge ij in E.

5.1 Normal Coordinates
Normal coordinates count the number of times a collection of curves

cross each edge of a fixed triangulation (Figure 17). Our use of

normal coordinates deviates from the standard treatment in two

ways. First, rather than closed topological curves, we consider open

geodesic segments that terminate at vertices. Second, we always

assume that our normal coordinates encode the edges of another

triangulation of the same vertex set. These assumptions enable us to

develop a novel edge flip formula, given in Section 5.1.1. In particular,

for each edge ij of T2, we store the number of times ni j ∈ Z≥0 that
any edge of T1 crosses ij transversely (Figure 17, left). Hence, for
edges ij shared by both T1 and T2 we have ni j = 0. From these

numbers we can determine how many edges in T1 emanate from

corner k of a triangle ijk in T2 (excluding those along edges of T2):

e
i j
k = max

(
0,ni j − njk − nki

)
. (13)

Likewise, the number of edges in T1 that cross corner k of ijk is

c
i j
k =

1

2

(
max

(
0,njk + nki − ni j

)
− e

jk
i − e

ki
j

)
. (14)

See Figure 17, right for examples. i

j

l

k

5.1.1 Normal Coordinate Edge Flip. Consider
two triangles ijk, jil from T2. In the simple case

where no edge from T1 terminates in a corner of

either triangle (see inset), there is an edge flip up-

date that resembles the Ptolemy relation [Mosher
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1988]; [Thurston and Yuan 2012, Equation 1]:

nkl = max(nki + nl j ,njk + nl i ) − ni j .

In the general case, we must derive a more complicated formula

(see supplement):

nkl = max

(
0, c

ji
l +c

i j
k +

1

2

���cilj − ckij ���+ 1

2

���cl ji − c jki ���− 1

2
e
ji
l −

1

2
e
i j
k

+ e
l j
i + e

jk
i + e

il
j + e

ki
j + δni j

)
. (15)

Here δx is the Kronecker delta, equal to 1 for x = 0 and 0 otherwise.

5.2 Roundabouts

i

0
03

1

4 4

0

0

12

3

4

halfedge of T1

halfedge of T2

both T1 and T2

roundabout

Fig. 18. For each halfedge
of T2, the roundabout gives
the next halfedge of T1.

Although normal coordinates completely

describe a triangulation sitting on top

of T2, they do not tell us how the edges

of this triangulation correspond to the

edges of T1 since, as noted above, two

endpoints may not uniquely identify

an edge (Figure 11). We therefore aug-

ment our normal coordinates with what

we call roundabouts, in analogy with

roundabouts or traffic circles found on

roadways. At each vertex i ∈ V, these
roundabouts describe how the outgoing

halfedges of the two triangulations are

interleaved.

More explicitly, for each halfedge
⇀
ij ∈ H2, the roundabout

gives the first halfedge from T1 following
⇀
ij , encoded as an index

r⇀
i j ∈ Z≥0 (Figure 18). These indices start at zero, and enumerate the

halfedges from T1 in counter-clockwise order, starting at some arbi-

trary but fixed halfedge. Note that if a halfedge from T2 coincides
with a halfedge from T1, the roundabout points to this halfedge, as

indicated by self-arrows.

5.2.1 Roundabout Edge Flip. Using per-vertex indices (instead of a

map from H2 to H1) reduces the edge flip update to integer arith-

metic. In particular, to update roundabouts after flipping an edge ij
with opposite vertices k, l , we first update the normal coordinates

as described in Section 5.1.1. We then have

r⇀
kl = mod(r⇀

ki + e
il
k + δnki , deg1(k)),

r⇀
lk = mod(r⇀

l j + e
jk
l + δnl j , deg1(l)),

l

j

i

k

where deg
1
(i) is the degree of ver-

tex i in the triangulation T1. In other
words, to find the first outgoing

halfedge of T1 following
⇀
kl ∈ H2,

we start at
⇀
ki and add the number

of edges eilk of T1 that emanate from

corner k of triangle kil . Also, if
⇀
ki

is coincident with a halfedge from

T1, we add 1 to advance past this halfedge. The mod operation

accounts for wraparound. See inset for an example. This update re-

sembles a combinatorial version of the signpost update from Sharp

et al. [2019b, 3.2.1]: integer indices r⇀
i j play the role of real-valued

directions; the integer counts e
jk
i play the role of real-valued angles.

lig
ht

 co
ne

hyperboloid

Fig. 19. By drawing triangles in the light cone (left), the map between
surfaces can be found by drawing a straight line through the origin (center),
which also works for two different triangulations (right).

6 MAPPING
Following uniformization (Section 4), we have three triangulations:

the input TA with vertex positions f , its intrinsic Delaunay trian-

gulation TB , and the flattened mesh TC with texture coordinates

z (Figure 2). For most tasks (e.g., texture mapping or remeshing),

we will need an explicit map between TA and TC , which we now

construct. Using the correspondence data from Section 5 we first

trace out geodesics to identify the points where edges of TA and

TC intersect edges of TB (Section 6.1). We then use these points to

construct a common refinement S, i.e., the smallest polygonal tes-

sellation that contains all three triangulations (Section 6.3). Finally,

we interpolate the functions f and z across S (Section 6.4). The

result is an ordinary polygon mesh with vertex coordinates fi ∈ R
3

and texture coordinates z
jk
i at each triangle corner; these texture

coordinates can be used for either piecewise projective or standard

piecewise linear interpolation.

6.0.1 Layout in the Light Cone. As discussed in [Springborn et al.

2008, Section 3.4], conformally equivalent edge lengths naturally

induce a piecewise projective map. However, when the triangulation

is allowed to change, constructing this map becomes more diffi-

cult. A useful perspective, different from previous work [Bobenko

et al. 2015; Sun et al. 2015; Springborn 2019], is to consider chordal
triangles in the light cone—leading to simple interpolation formu-

las in homogeneous coordinates (e.g., Equation 16). We here give

a brief sketch, which is made more precise in the supplement. In

particular, take any Euclidean triangle and place it in R3 so that its

vertices sit at points qi ,qj ,qk on the light cone (Figure 19, left). As
discussed in Section 3.3, these points also define the vertices of a

decorated ideal triangle. Hence, central projection from any point

x on the Euclidean triangle to the hyperboloid provides an explicit

mapping between the Euclidean and ideal triangle. Moreover, if we

edge of T2

edge of T1

traced edge of T1

roundabout

2
3

4

5

p=1

p=3

p=4

p=5p=6

Fig. 20. Left: we index crossings along each halfedge i j by an integer p .
Right: for each halfedge we trace out curves leaving the opposite corner.
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apply a scaling q̃i = euiqi to each vertex, we get another chordal

triangle; central projection between points x and x̃ then gives the

circumcircle-preserving projective map used for interpolation in

Springborn et al. [2008] (Figure 19, center). The real power of this
construction is that it enables us to map between different trian-

gulations of the same vertices. Consider for instance two chordal

triangles ijk, jil—if we apply a flip and then scale the vertices q as

before, we get two chordal triangles lki,kl j sitting “above” the other
ones (Figure 19, right). The map between these triangle pairs is still

given by central projection, and can be expressed as a piecewise pro-

jective map on the four triangles of their common subdivision. This

idea is extended in the supplement to general pairs of triangulations.

6.1 Tracing Edges
For the moment, consider just two triangulations T1, T2. We use the

normal coordinates n : E2 → Z≥0 to trace out the sequence of edges
in T2 crossed by each edge of T1 (Section 6.1.1). The roundabouts

r : H2 → Z≥0 uniquely identify each traced sequence with the

appropriate element of E1. To get the curve geometry, we lay out

a triangle strip in the Euclidean or hyperbolic plane, and draw a

straight line between endpoints (Section 6.2). The final curve is en-

coded by 1D barycentric coordinates s, t ∈ [0, 1] on each intersected

edge. We enumerate points where edges of T1 cross a halfedge
⇀
ij

of T2 by a crossing index p ∈ {1, . . . ,ni j } (see Figure 20, left).

6.1.1 Topological Tracing. To trace out all the edges of T1 over T2,
we iterate over the halfedges

⇀
ij ∈ H2 and trace edges emanating

from the opposite corner k (Figure 20, right), namely, the edges with

indices p = 1 + nki , . . . , 1 + nki + e
⇀
i j . This procedure is detailed

in Algorithm 1. We identify the edge of T1 corresponding to each
traced curve p by incrementing the roundabout r⇀

ki by p − nki − 1.
(By marking traced edges in T1, we avoid tracing edges twice.) Note
that roundabouts must be used even for curves shared by both

triangulations, since after a sequence of edge flips they may no

longer correspond to the same logical edge.

The procedure NextEdge (Algorithm 2) uses the normal coordi-

nates n to determine the next halfedge
⇀
ij and crossing index p along

the curve. The image below depicts the four possible cases—this

pattern of edge crossings can be determined solely using the normal

coordinates for the triangle jil , via the formulas given in Section 5.1.

See Appendix A.2 for further details.

i

j l

k i

j l

k i

j l

k i

j l

kcase 1 case 2 case 3 case 4

Note that the tracing procedure gives us each edge from T1 as a
sequence of edge crossings on T2. To express the edges from T2 as
sequences of T1 edge crossings, we allocate an array of size ni j for
each edge ij ∈ E2. Each time a traced edge ab ∈ T1 crosses ij, we
store a reference to ab in entry p of the array (using roundabouts to

get the edge index).

6.2 Recovering Geodesics
To get the geometry of each traced edge ab ∈
E2, we use the crossing sequences computed in

Section 6.1 and the edge lengths ℓ to incremen-

tally lay out a triangle strip in the (Euclidean

or hyperbolic) plane. We then intersect each

interior edge ij of this strip with the line from

a to b—by construction, this line will be con-

tained entirely inside the strip. In particular, if

xi ∈ R
2
are the vertices of a Euclidean triangle

strip, we can solve the equation

(1 − s)xa + sxb = (1 − t)xi + tx j

for the barycentric coordinates s, t ∈ [0, 1] of the intersection point.

The hyperbolic case is conceptually the same except that we work

in the hyperboloid model, and and also compute a scale factor u at

each intersection point—see Appendix A.3 for details.

6.3 Common Refinement

vertex

edge fragment
face
 point

edge
point 

segment

edge of TA

edge of TB

edge of TC

faceWe now construct the common refine-

ment S of TA, TB , and TC . Here and in

Appendix B we will refer to points along

edges of TB (resulting from tracing) as

edge points, and any new vertices inserted

into polygons as face points, reserving
vertex for elements of V. Likewise, an
edge is the complete edge of some trian-

gulation, a segment is the restriction of an edge to a triangle, and a

fragment is a piece of a segment (see inset).

i

j

k
6.3.1 Connectivity. First, for each edge ij ∈ EB ,
we use the procedures from Sections 6.1 and

6.2 to trace out (i) a Euclidean geodesic over

TA to obtain edge sequences and barycentric

coordinates (s, t), and (ii) a hyperbolic geodesic

over TC to obtain edge sequences, barycentric

coordinates, and scale factors u. To determine

the connectivity of S we slice up each triangle

ijk ∈ FB independently, via a strategy similar

to Sharp et al. [2019b, Section 3.4]. To avoid computing segment-

segment intersections directly (which is not numerically robust),

we devise a strategy that takes advantage of combinatorial informa-

tion. Floating-point values serve only to determine the ordering of

intersection points along edges—and since neighboring triangles

have identical barycentric coordinates along their shared edge, we

always obtain a consistent tessellation. See Appendix B for details.

6.4 Interpolation
The vertex coordinates fi and texture co-

ordinates z
jk
i define piecewise functions

over the faces of TA and TC , resp.; we now
sample these functions onto S. To do so,

we will also need the scale factors u ob-

tained while tracing hyperbolic geodesics.

We again process each triangle ijk ∈ TB

independently. First, we interpolate data
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onto each edge ij of the triangle. For each edge point p along an

edge ab ∈ EA, let sp , tp be the barycentric coordinates along ab and

ij, resp.. Then fp = (1 − sp )fa + sp fb . Similarly, for an edge point q

along cd ∈ EC we have homogeneous texture coordinates

ẑq = e−uq
(
(1 − sq )(zc , 1) + sq (zd , 1)

)
, (16)

where (z, 1) indicates that a 1 has been appended to z. The scale
factors eu arise from projective rather than linear interpolation—

see supplement for details. To get values of f at edge points q,
and values of ẑ at edge points p, we linearly interpolate between

adjacent known values along ij . Finally, to get the values at each face
point, we write the endpoints of the two incident fragments in 2D

barycentric coordinates relative to ijk , and compute the intersection

point via Equation 19. The resulting s, t values are then used to

linearly interpolate f and ẑ from the segment endpoints. Note that

since texture coordinates are discontinuous across cuts, we store ẑ
at corners rather than vertices. The final surface can be visualized

by tessellating polygons into triangles; just as in [Springborn et al.

2008, Section 3.4] we perform a homogeneous divide on texture

coordinates ẑ at each sample point (e.g., each pixel).

7 SPHERICAL UNIFORMIZATION
We now consider conformal maps to the sphere S2. Given a genus-0

Delaunay triangulation T = (V, E, F) with edge lengths ℓ : EB →
R>0, we give an algorithm that computes vertex positions f : V→
S2 ⊂ R3 that describe a discretely conformally equivalent convex

sphere-inscribed polyhedron. The solution is guaranteed to exist,

and is unique up to a Möbius transformation of the sphere.

The strategy used by CETM is essentially to delete the neighbor-

hood of a special vertex i∗, conformally map this modified surface to

a flat disk, and apply stereographic projection to the sphere, where

the removed vertex i∗ is re-inserted. For a fixed triangulation, there

are several problems. First, as discussed previously, a discretely con-

formally equivalent flat disk may not exist. Even if we allow the

triangulation to vary, it is not immediately clear what to do about

boundary edges (which cannot be flipped). Second, the final polyhe-

dron may not be convex. In fact, many combinatorial triangulations

do not admit any convex embedding in the sphere—conformal or

otherwise [Rivin 1996]. Third, the map may become non-injective

when vertex i∗ is re-inserted.
Imagine that we instead start with the object we want: a convex

sphere-inscribed polyhedron 𝒫 conformally equivalent to the input

surface. If we stereographically project this polyhedron to the plane

through any vertex i∗, we get a planar disk where all boundary ver-

tices j are connected to the same vertex i∗ at infinity (Figure 21, left).
Stereographic projection preserves discrete conformal equivalence

with the input, and since the polyhedron is convex, its stereographic

projection will be a planar Delaunay triangulation [Brown 1979]—

and has hence a convex boundary. Hence, if we can construct such

a triangulation, we can obtain the desired spherical conformal map

(via stereographic projection).

To solve this problem, Springborn [2019] reformulates it in the hy-

perbolic setting where one can freely flip edges without invalidating

the hyperbolic metric. Here, the Penner coordinates λi∗j = 2 log ℓi∗j
incident on the special vertex i∗ are now infinite—effectively push-

ing the horocycle at i∗ off to infinity (Figure 21, right). This decorated

Fig. 21. Left: a convex polyhedron inscribed in the sphere can also be viewed,
via stereographic projection, as a planar Delaunay triangulation with all
boundary vertices connected to a vertex i∗ at infinity. Right: in the Poincaré
model, the horocycle at i∗ shrinks to a point, and the incident Penner
coordinates λi∗j go to infinity.

polyhedron can be found via the same uniformization procedure

as in Section 4, but with a few important modifications. For one,

it uses a modified Delaunay flipping procedure which accounts

for edges of infinite length (Section 7.1), and a modified energy

which accounts for the boundary vertices j adjacent to i∗ (Sec-
tion 7.2). Linear inequality constraints on u ensure that the edges

i∗j are convex and have the right cross ratios (Section 7.3). Solving a

bounds-constrained optimization problem (Section 4.3) yields scale

factors u that describe the desired planar disk, which we can then

stereographically project back onto the sphere.

7.1 Modified Delaunay Flips

i

j

k
Since some Penner coordinates are now infinite

(Figure 21, right), we can no longer check the

Delaunay condition using Equation 10. How-

ever, just as the Euclidean Delaunay condition

is expressed in terms of angles (Equation 9), we

can still express the ideal Delaunay condition

in terms of the arc length α
jk
i of the horocycle at vertex i within

triangle ijk (see inset). Initially, all edge lengths ℓ are well-defined

and we have

α
jk
i =

ℓjk

ℓki ℓi j
. (17)

Scaling lengths à la Equation 1 then gives new arc lengths

α̃
jk
i = e−uiα

jk
i .

At the special vertex i∗, where ui∗ = ∞, we hence get α̃
jk
i = 0 as

expected. An edge ij then satisfies the ideal Delaunay condition if

α̃
ji
k + α̃

i j
l < α̃

jk
i + α̃

l j
i + α̃

ik
j + α̃

l i
j . (18)

i

j

l

k

If this condition is not satisfied, we perform

a Ptolemy flip (Equation 8). However, rather

than compute
˜ℓkl directly (which may be in-

finite), we first compute ℓkl via the Ptolemy

relation and then scale to get
˜ℓkl . Importantly,

if Equation 18 is satisfied with equality for

an edge kl opposite the special vertex i∗, we
must pick the flip that connects kl to i∗—since for any sequence
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…

�ip (more �ips)

Fig. 23. To find a triangulation connecting the special vertex i∗ to all other
vertices j , we put a finite horocycle at i∗ and send all other horocycles to
infinity. Modified Delaunay flips then yield the desired triangulation.

of finite horocycles around i∗ approaching infinity, this is the edge

that would belong to an ideal Delaunay triangulation.

7.2 Spherical Variational Principle
As in the Euclidean case, the energy and its derivatives are always

evaluated on the triangulation T̃ obtained by updating the Penner

coordinates of TB (à la Equation 7) and flipping to an ideal Delaunay

triangulation (à la Section 7.1). In particular, let T◦ := (V◦, E◦, F◦)
be the mesh obtained by removing the special vertex i∗ together

with its incident edges and faces from T̃. The energy for spherical

uniformization is then

ℰS2 (u) = 2π
∑
i ∈V◦

ui − π
∑
i j ∈E◦

˜λi j +
∑

i jk ∈F◦
2f ( ˜λi j , ˜λjk , ˜λki )

(see Springborn [2019, Equation 56 and Theorem 7.18], which differs

by a constant that does not affect minimizers). For each vertex i ∈ V◦,
its gradient is

∂uj ℰS2 = Ω̃j + π (degF◦ (j) − degE◦ (j)),

where degE◦ (j) and degF◦ (j) are the number of edges and faces of

T◦ containing j, resp.; this degree difference will be −1 for vertices
adjacent to V◦ (and zero otherwise). Ω∗ does not appear because we
do not consider cone singularities in the spherical case. The Hessian

is again cotan-Laplace, where cotangents from any removed face

are set to zero.

7.3 Constraints

Fig. 22. Peacock triangulation.

In the fixed triangulation case,

Bobenko et al. [2015, Proposition

3.2.1] observe that setting uj = −λi∗j
ensures that the boundary edges i∗j
exhibit the right length cross ratio.

However, in the variable triangula-

tion case we do not know a priori
which vertices j will ultimately be ad-

jacent to the removed vertex i∗ (since
this set may change due to edge flips).

Instead, as proposed by Springborn

[2019], we impose the inequality con-

straint uj ≥ −λi∗j for all vertices j ∈ V◦, where λi∗j is the geodesic
distance between horocycles in the input triangulation. At a mini-

mizer, these inequalities will be satisfied with equality for vertices j
adjacent to i∗.

To compute the geodesic distances, we first construct a trian-

gulation that connects i∗ to all other vertices j ∈ V◦ by minimal

geodesics. To do so, we send all the horocycles except the one at i∗

to infinity—in the Poincaré model, the representative circles shrink

down to points (Figure 23, left). In general, an edge connecting

two vertices j1, j2 , i∗ cannot be Delaunay, since the horocyclic
arc length α at both vertices will be zero—hence smaller than the

arc length of the complementary vertices (see Figure 23 and Equa-

tion 18). By flipping to a Delaunay triangulation, we ensure that

any edge leaving a vertex j , i∗ connects only to i∗ (Figure 23,

right). Moreover one can show that, due to the global Delaunay

property, every such edge is a minimal geodesic [Springborn 2019,

Proposition 5.16]. All other edges go from i∗ back to i∗, resulting in

what we call a peacock triangulation (Figure 22). To get the values

λi∗j , we then read off the distances between the original horocycles

(rather than those that have been scaled down to points).

7.4 Optimization
Once we know λi∗j , we can solve the convex optimization problem

min

u :V◦→R
ℰS2 (u)

s.t. uj ≥ −λi∗j , ∀j ∈ V◦.

This problem can be solved via a bounds-constrainedNewtonmethod;

see Section 8.1 for further discussion.

7.5 Spherical Layout
After optimization, we have scale factors u at vertices that describe

a flat metric on the topological disk T◦. We lay this disk out in the

plane using the same procedure as described in Section 4.5, then

stereographically project to get coordinates z on the unit sphere

S2 ⊂ R3 (re-inserting the special vertex i∗ at the center of stere-
ographic projection). This final map is unique only up to Möbius

transformations of the sphere; we compute a canonical Möbius

transformation via Baden et al. [2018, Algorithm 1], using vertex

rather than face areas to express the center of mass.

7.6 Spherical Interpolation
Interpolation is done as in Section 6, except we now lift coordinates

z ∈ R3 to homogeneous coordinates ẑ ∈ R4, and scale factors must

now account for both uniformization and stereographic projection.

Let
˜ℓi j be the edge lengths of𝒫 , and ℓi j be the lengths from TB after

applying the same sequence of Ptolemy flips used for uniformization.

Then solving Equation 3 within each triangle ijk yields

ui = log

(
˜ℓi j

ℓi j

ℓjk

˜ℓjk

˜ℓki
ℓki

)
(and similarly for uj ,uk ). Since stereographic projection preserves

discrete conformal equivalence, these values agree across triangles.

Also, since 𝒫 is convex, normalizing interpolated coordinates gives

an injective map to the unit sphere (for, e.g., texture mapping).

8 EVALUATION
This section evaluates the empirical behavior of our method, here re-

ferred to as conformal equivalence of polyhedral surfaces (CEPS). Our
main points of comparison are the CETM algorithm of Springborn
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CETM CEPS

Fig. 24. Even when CETM succeeds, the quality of the map may be lower
since it effectively considers a different notion of conformal equivalence
(based on the input rather than Delaunay triangulation).
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Fig. 25. Timings for our method (CEPS) on two datasets. Note that CETM
fails on a large percentage of models where we succeed (highlighted in red).

et al. [2008], which does not use flips, and what we call uniformiza-
tion with Euclidean edge flips (UEF) [Sun et al. 2015], which stops to

flip concylic triangle pairs, as described in Section 2.1.2. All methods

use identical code for tracking correspondence, à la Section 5. We

also briefly consider other methods for spherical conformal mapping

(Section 8.3.3) and non-conformal injective mapping (Section 8.3.1).

The overall observation is that CEPS succeeds on far more models

than CETM, and exhibits better scaling than UEF. Even when CETM

does succeed, it may not provide as good of an approximation of a

smooth conformal map (Figure 24). Moreover, our UEF implemen-

tation is more efficient than the one suggested by Sun et al. [2015]

since it uses the implicit tracking scheme from Section 5 (which

depends critically on the hyperbolic perspective), rather than an

explicit overlay à la Fisher et al. [2007].

8.1 Implementation
Algorithms were implemented in double precision in C++ using the

halfedge implementation in GeometryCentral [Sharp et al. 2019a].

For cone flattening, we used Newton’s method with backtracking

line search [Boyd and Vandenberghe 2004, Algorithms 9.2 and 9.5],

Thingi10kMPZ
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Fig. 26. Speedup of our method over UEF (total wall-clock time for comput-
ing scale factors). Beyond about 1k vertices, CEPS is typically faster.

signposts normal
coordinates

Fig. 27. Left: The signpost data structure fails to be numerically robust in
extreme situations, such as when tracing the “peacock triangulation.” Right:
our integer-based encoding ensures we get the right connectivity.

using CHOLMOD to solve linear systems [Chen et al. 2008]. For

spherical uniformization, we used bounds-constrained Newton’s

method with backtracking line search [Balay et al. 2019, 1997; Mun-

son et al. 2014]. In practice, we use the implementation found in the

PETsc/TAO library—specifically, we use the TAOBNLS solver [Ben-

son et al. 2003, Section 4.2.1]. Timings were measured on an Intel

i9-9980XE with 32 GB of RAM, using a single thread.

8.2 Numerics
Our algorithms are guaranteed to work in exact arithmetic for any

valid input—in a real implementation we must also be careful about

floating point error. Here we describe several useful techniques,

though of course other improvements may be possible. Note that we

mollify input edge lengths as described by Sharp and Crane [2020]

(using δ = 10
−12

) which helps with near-degenerate models and

otherwise leaves the input untouched.

8.2.1 Euclidean Uniformization. One way to evaluate the intrinsic

Delaunay condition (Equation 9) is to use the angle cotangents;

Fisher et al. [2007] provide details. We instead check the hyperbolic

condition (Equation 10)—even when constructing the Euclidean

Delaunay triangulation—since it yields the same triangulation, but

only involves rational arithmetic on edge lengths. When triangles

are nearly concyclic, this condition may be violated (or satisfied)

both before and after the edge flip, due to floating point error. Hence,

we check Equation 10 for all edges, and perform a flip only if it

increases the difference between right- and left-hand side.

8.2.2 Spherical Uniformization. For most models the choice of spe-

cial vertex i∗ makes no difference, but on models with long, thin
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Thing ID: 662115Thing ID: 112917

Fig. 28. Our implementation robustly handles extremely poor triangulations
(left) failing only on the most pathological inputs (right). See Figure 1 for
more examples.

features a useful heuristic is to put the vertex i∗ at the intrinsic
median Sharp et al. [2019c, 8.3]; in practice we use the findCenter
method from GeometryCentral [Sharp et al. 2019a]. When construct-

ing the peacock triangulation in Section 7.3, values of ℓ can become

large enough to result in floating point overflow. We therefore work

instead with the values λ = 2 log ℓ, which occupy a much smaller

range. In particular, to compute the values α
jk
i , we evaluate the log

of Equation 17: logα
jk
i = 1

2
(λjk − λki − λi j ), then exponentiate,

and multiply by the scale factor e−ui (which equals zero for all ver-

tices but i∗). As before, Equation 18 gives the Delaunay condition in

terms of α . We also use the log-sum-exp trick [Blanchard et al. 2019,

Equation 1.3] to help with numerical precision when applying the

Ptolemy relation ℓkl = (ℓki ℓl j + ℓjk ℓl i )/ℓi j . This means we write

the log of the numerator as

1

2
λki +

1

2
λl j + log(1 + e

(λjk /2+λl i /2)−(λki /2+λl j /2)),

where, without loss of generality, we label the vertices so that λki +
λl j > λjk + λl i . We then subtract

1

2
λi j to get the final log length

for the new edge kl . (When building the peacock triangulation, we

never explicitly compute the values of ℓ.)

Layout. One could lay out triangles incrementally, as in [Spring-

born et al. 2008, Section 3.3]. We found it more robust to use the

spectral layout of Mullen et al. [2008], which we use in all examples.

This algorithm requires only the cotan-Laplace and mass matrices,

which can be built directly from the final edge lengths ℓC . Since

lengths describe a flat metric, spectral layout incurs no further dis-

tortion.

Mapping. When laying out triangle strips (Section 6.2), we found

that it improves floating point robustness to first incrementally com-

pute the angles for each halfedge, and then use these angles to re-

cover final vertex positions x ∈ R2. In meshes with near-degenerate

triangles, we find that the hyperbolic layout procedure can some-

times fail to place points on the light cone due to floating-point

errors. In particular, the new vertex coordinates ql might be at the

origin, or contain NaNs. In this case, we replace the global strip lay-

out with a local iterative straightening procedure (akin to nonlinear

Gauss-Seidel). In particular, we consider two consecutive triangles

at a time and update the location where the geodesic intersects the

common edge—see supplement for details.

8.3 Experiments

optimization

layout

flipping

refinement

tracing

MPZ

layout

flipping

refinement

tracing

Thingi10k

optimization

Fig. 29. Average break-
down of costs in CEPS;
green tasks are shared by
CETM.

8.3.1 Difficult Cone Configurations. We

ran our method on the standard bench-

mark of Myles et al. [2014], referred to

as MPZ, which contains challenging cone

configurations. CEPS succeeds on all 114

models, including extraction of the com-

mon refinement. Maps were discretely

conformal up to floating point error, with

an average length cross ratio error of

about 10
−9
, and no worse than about

10
−4
. In contrast, CETM succeeded on only

73 models (Figure 25, top) and was less

than 2x faster (Figure 29, top). Moreover,

the tracing and refinement steps of CEPS

could be trivially parallelized over edges

and faces, resp. UEF also succeeds on these

models, but is generally slower than CEPS

(Figure 26, left).
Many injective but non-conformal

methods do not do as well on this difficult

benchmark: as reported by Bright et al.

[2017, Section 8.1], their method and the methods of Chien et al.

[2016], Aigerman et al. [2014], Levi and Zorin [2014], and Lipman

[2012] succeed on 104, 102, 97, 93, and 90 models, resp.Many of these

methods have running times on the order of minutes or (on the most

difficult examples) hours, versus seconds for our method. On the

other hand, we must change/refine the triangulation, whereas these

methods keep the triangulation fixed. Like CEPS, the combinatorial

method of Zhou et al. [2020] succeeds on all MPZ models, but can

yield highly distorted maps that are expensive to optimize; cost is

again on the order of minutes to hours.

8.3.2 Difficult Triangulations. As a stress test of floating-point be-
havior, we parameterized all manifold meshes from Thingi10k, split-

ting disconnected meshes into their connected components (32,744

examples in total), and using a time out of 2000 seconds. Note that

previous work on cone parameterization does not even attempt this

benchmark, which has dramatically worse element quality than

MPZ. For these examples we apply the greedy cone placement strat-

egy from Springborn et al. [2008, Section 5.1], stopping when all log

scale factors ui are in the range [−5, 5] (i.e., a max scale factor of

about 150). Here CEPS successfully computes a parameterized mesh

S for 98.6% of models, yielding an injective map on 97.7%. Examples

where we fail are quite pathological (e.g., Figure 28, right). Overall
about 68% and 15% of failures were due to failure of iterative straight-

ening or optimization (resp.) to converge within the time limit, and

Fig. 30. Since we allow edge
flips, we need not worry how
coarse the mesh is near large
cones. Here we set all but one
angle defect to almost 2π—the
remaining vertex has an angle
defect of −1032.79.
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Fig. 32. In the genus-0 case, our method guarantees a bijective discrete
conformal map to a convex polyhedron with vertices on the sphere.

for about 13% Delaunay flipping failed due to floating point error.

The worst cross ratio error was typically around 10
−5
. CETM fails

on almost half of these examples (Figure 25), and performance of

UEF suffers as models get larger (Figure 26, right).

Fig. 31. Past spherical
methods often exhibit
foldover, and cannot
guarantee convexity.

8.3.3 Spherical Conformal Parameterization.
We ran our spherical algorithm on two other

datasets: the Spherical Demon brain scan

dataset of Yeo et al. [2009], and the anatomi-

cal surface dataset of Boyer et al. [2011] (Fig-

ure 32). On the brain dataset, where each

model has about 230k faces, we obtained in-

jective discrete conformalmaps to the sphere

on all 78 brain hemispheres, taking an av-

erage of 493 seconds per hemisphere. The

anatomical surface models are topological

disks, so we compute conformal maps to a

hemisphere. We succeed in computing these maps on all 187 of the

manifold meshes without handles in the dataset. One of our maps

contains degenerate triangles, but none have flipped triangles. The

models take an average of 14.4 seconds to uniformize.

Past methods for spherical conformal parameterization largely

compute maps to the sphere that are harmonic with respect to piece-

wise linear Dirichlet energy [Gu et al. 2004]. However, unless the

input mesh is already Delaunay, such maps can have flipped trian-

gles (Figure 31, right). More fundamentally, it is impossible for any

method that uses a fixed triangulation to guarantee convexity—no

matter what algorithm is used, or where the vertices are placed—

since not all combinatorial triangulations admit a convex embedding

in the sphere [Rivin 1996]. In practice, flipped triangles and non-

convex edges are quite common in discrete harmonic maps: on the

brain dataset we observed, on average, foldover at about 100 edges

and nonconvexity at about 20k edges when using the method of

Kazhdan et al. [2012] (see inset). Other techniques for spherical

conformal mapping gave very similar results [Crane et al. 2013b;

Dym et al. 2019].

Fig. 33. We can handle multiply-connected domains by simply triangulating
holes prior to flattening, then removing these triangles after flattening.

8.4 Multiply-Connected Surfaces
Many surfaces encountered in practice will have multiple bound-

ary components. Though uniformization can be used to find a flat

metric on such surfaces, this metric cannot always be laid out in

the plane without additional cuts, due to nontrivial monodromy

around boundary cycles (see for instance Hefetz et al. [2019, Fig-

ure 6]). Extension of discrete uniformization to multiply-connected

circle domains and slit domains has been considered by Bobenko

et al. [2016], but there is an even simpler alternative appropriate for

practical texture mapping: just triangulate each of the holes, then

remove these triangles after parameterization. Figure 33 shows one

such example. A natural question is how to more directly control

boundary behavior by setting the intrinsic lengths of inserted edges.

9 LIMITATIONS AND FUTURE WORK
The ability to modify the input triangulation is ultimately what

enables one to establish a discrete uniformization theorem where

existence is guaranteed. From a practical point of view, it comes at a

small cost: the output mesh has different connectivity than the input.

Importantly, however, the common refinement S can be stored as a

standard mesh with ordinary vertex and texture coordinates that

can be used downstream. Our implementation also outputs a sparse

|VS | × |VA | matrix that interpolates values from the input mesh

to the larger set of vertices in S. The refinement is around 1.5–3x

bigger than the input on common models (e.g., those in MPZ), and

around 5x on most of Thingi10k—though on pathological models

even initial Delaunay flipping can increase size by 45x or more. To

reduce the final mesh size, it may be possible to “un-flip” many edges

of the planar layout (à la Kharevych et al. [2006, Section 5]), which

incurs some conformal distortion but preserves injectivity. If one

cares purely about injectivity, the initial Delaunay retriangulation

step can also be skipped. The method is guaranteed to work only in

exact arithmetic—it is natural to consider numerical improvements,

or ways to further reduce dependence on floating-point arithmetic

(e.g., during mesh extraction). We did not consider uniformization

over hyperbolic domains, though this case is well-supported by the

same theory—see Springborn [2019] for further discussion.
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A EXTRACTING GEODESICS
Here we give a detailed description of how to extract geodesics

from normal coordinates. Note that in this appendix, and in the

supplement, we use ⟨u,v⟩ := u1v1 + u2v2 + u3v3 to denote the

Euclidean inner product for vectors u,v ∈ R3, and ⟨u,v⟩2,1 :=

u1v1 + u2v2 − u3v3 for the Lorentz inner product.

A.1 Projective Segment Intersection

a

u
v

b

d

c

a

b
c

d

For several of our calculations,

it will be useful to express the

intersection between two pla-

nar line segments ab and cd in

terms of the homogeneous co-

ordinates of their endpoints. In

particular, if a,b, c,d ∈ R3 are
any homogeneous coordinates

for the endpoints, we seek a so-

lution to

(1 − t)a + tb = eu ((1 − s)c + sd).

Lettingv := a×b andw := c×d , we can write the solution explicitly

as

t =
⟨w,a⟩

⟨w,a − b⟩
, s =

⟨v, c⟩

⟨v, c − d⟩
, u = log

(
⟨v,d − c⟩

⟨w,a − b⟩

)
. (19)

A.2 Tracing
We here detail the algorithms for topological tracing, described in

Section 6.1.1. In particular, Algorithm 2 considers the four cases

depicted in Section 6.1.1. In case 1, several curves end at vertex l .
Here there are three possibilities: the curve either continues through

il , terminates at l , or continues through l j. In case 2, several curves

end at j. This time, the curve must continue through ij. Similarly,

in case 3, several curves end at i , and the curve must continue

through
⇀
l j . In case 4, no curve ends at any vertex of il j, and the

curve continues through either
⇀
il or

⇀
l j .

Algorithm 1 TraceEdge(n,
⇀
ij ,p)

Input: Normal coordinates n : E2 → Z≥0, a triangle corner spec-
ified via the opposite halfedge

⇀
ij , and the index p of the

curve to be traced.

Output: A list of pairs γ = ((
⇀
ij 0,p0), . . . , (

⇀
ij n,pn )) specifying how

the traced curve crosses T2.
1: γ = () ▷initialize list of crossings
2: do
3: Append(γ , (

⇀
ij ,p))

4: (
⇀
ij ,p) ← NextEdge(n,

⇀
ij ,p)

5: while p , 0 ▷not yet at a vertex
6: return γ
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Algorithm 2 NextEdge(n,
⇀
ij ,p)

Input: Normal coordinates n on T2, a halfedge
⇀
ij ∈ H2, and an

index p.

Output: The next halfedge⇀ij ′ and index p′ along the curve.

1:

⇀
ji ← Twin(

⇀
ij )

2: if ni j > njl + nil then ▷Case 1
3: if p ≤ nil then return (

⇀
il ,p)

4: else if nil < p ≤ ni j + −njl then return (l, 0)
5: else return (⇀l j ,p − (ni j − njl ))

6: else if nl j > ni j + nil then return (
⇀
l j ,p + njl − ni j ) ▷Case 2

7: else if nil > ni j + nl j then return (
⇀
il ,p) ▷Case 3

8: else ▷Case 4
9: c

i j
l = (nl j + nil − ni j )/2

10: if p ≤ nil − c
i j
l then return (

⇀
il ,p)

11: else
12: c

l j
i ← (nil + ni j − nl j )/2

13: return (
⇀
l j ,p − c

l j
i + c

i j
l )

A.3 Hyperbolic Geodesics
We here describe how to extract the points where a hyperbolic

geodesic γab intersects the sequence of halfedges computed via

Algorithm 1. For each such halfedge
⇀
ij we extract the barycentric

coordinates s, t along γab and
⇀
ij , resp., plus a log scale factor u asso-

ciated with the intersection. As in Section 6.2 we lay out a triangle

strip, but this time place vertices on the light cone ℒ (Section 3.3.1).

As derived in the supplement, the first triangle aij has vertices

qa = 2√
3

ℓai ℓajℓ
−1
i j (1, 0, 1),

qi = 2√
3

ℓai ℓi jℓ
−1
aj (cos(2π/3), sin(2π/3), 1),

qj = 2√
3

ℓajℓi jℓ
−1
ai (cos(4π/3), sin(4π/3), 1).

For any triangle kjl following a known triangle ijk , we use the

Ptolemy relation to get ℓil , then solve for the unknown position

ql =
ℓil

ℓik ℓi j

(
−
ℓjl ℓkl
ℓil

qi +
ℓik ℓkl
ℓjk

qj +
ℓjl ℓi j
ℓjk

qk

)
.

This process repeats until we have laid out the whole strip, including

the endpoints qa and qb—to account for uniformization, we scale

just these endpoints by e−ua and e−ub , resp. If we then imagine that

points q ∈ R3 in the light cone are homogeneous coordinates for

points x ∈ R2 from the Beltrami-Klein model, then Equation 19

gives us the desired values s , t , and u at each intersection.

B REFINING FACES
We here describe how to build a graph 𝒢 = (𝒱, ℰ) describing the

connectivity of S within a face ijk ∈ TB . Recall the nomenclature

defined in Section 6.3. In Step I below we determine which edge

points connect to form segments; in Step II we determine which

segments intersect; in Step III we extract faces of 𝒢. We first sort all

edge pointsp in counter-clockwise order (starting at any edge point),
assigning them indicesφp ∈ Zwhich provide a sort of combinatorial

analogue to the angle around the boundary.

Step I Step II Step III

segments face points polygons

Fig. 34. The three stages of connectivity extraction.

i

j

kStep I (Segments). We compute the segments

from TA and TC independently, à la Sharp et al.

[2019b, Section 3.4]. In each case, the number of

edge points determine three normal coordinates

mi j ; e
jk
i and c

jk
i are then defined as in Section 5.1.

If e
jk
i , 0, we connect the first ckij edge points

along jk to the first ckij edge points along ji , the

next e
jk
i edge points to vertex i , and the remaining

ones to the edge points along ki (see inset).

i

j

k

i

j

k

Step II (Segment-Segment Intersections). To find

face points, we consider all pairs of segments ab
and cd from TA and TC , resp. Two segments cross

if the values of φ are interleaved, i.e., if they come

in a (cyclic) order like φa,φc ,φb ,φd . If so, we add
a new face point, maintaining a list of all face

points along each segment, sorted by ϕ (which

defines the fragments). After computing intersec-

tions, we use the ϕ values at segment endpoints

to sort the fragments around each face point.

Step III (Polygons). To extract the final polygons, we iterate over

fragments. For each fragment we visit the next vertex, then the next

fragment in counter-clockwise order, until we return to the original

fragment. If desired, the final (global) tessellation S can be collected

in an ordinary mesh whose vertices consist of all face points, edge

points, and vertices from the original vertex set V.

Note that the sorting procedure in Step II is the only moment

where floating point errors have any chance of invalidating the

connectivity of the refinement.
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Supplemental Material

This supplement provides additional pseudocode for the main uni-

formization algorithm, details for improving numerical robustness,

and derivations of formulas.

C PSEUDOCODE
Below we give complete pseudocode for the uniformization pro-

cedure described in Section 4; note that this code does not track

correspondence, as described in Section 5, nor handle the spherical

case. The only routines not given here are either elementary numer-

ical/geometric calculations, or operations that depend on the choice

of mesh data structure. In particular:

• Solve(A, x,b) — solves the linear system Ax = b using a

sparse linear solver that can handle a positive-semidefinite

matrix A, such as sparse Cholesky or LDL factorization.

• Clausen(x)— Clausen’s integralCl2(x), provided by standard
numerical libraries [Galassi et al. 1994].

• Angle(ℓi j , ℓjk , ℓki )— given the edge lengths of a triangle ijk ,

computes angle θ
jk
i at corner i (e.g., using the law of cosines).

• OppositeVertices(ij, T) — given an edge ij contained in

faces ijk, jil of a triangulation T, returns the vertices k and l .
• IsDelaunay(T, ℓ, ij) — true if edge ij satisfies the local ideal
Delaunay condition (Equation 10), false otherwise.

• IdealDelaunay(T, ℓ)— same as IntrinsicDelaunay, except

FlipEuclidean is replaced with FlipPtolemy.

• Push(Q, ij), Pop(Q) — push/pop an edge to/form queue Q .
• InsertTriangles(T, i1j1k1, i2j2k2, . . .),
EraseTriangles(T, i1j1k1, i2j2k2, . . .)—add/remove the given

triangles to/from a triangulation T.

Note that we do not detail the routine Layout which cuts the final

mesh and lays it out in the plane—such algorithms arewell-described

in, e.g., Springborn et al. [2008, Section 3.3] and Mullen et al. [2008],

resp. Note also that there may be better numerical implementations

of some methods (e.g., for computing angles or their cotangents);

see [Sharp et al. 2019b, Appendix A] for further discussion.

Algorithm 3 FlattenMesh(TA, f ,Ω∗)

Input: A triangle mesh TA = (V, EA, FA), vertex positions f : V→
R3, and target cone angles Ω∗ : V → R that satisfy Equa-

tion 11.

Output: A triangle mesh TC = (V, EC , FC ) with texture coordinates

z : V→ R2.
1: ℓAij ← | fj − fi |, ∀ij ∈ EA ▷measure edge lengths

2: (TB , ℓB ) ← IntrinsicDelaunay(TA, ℓA) ▷Euclidean flips §3.4.1
3: u ← MinimizeEnergy(TB , ℓB ,Ω∗)
4: (TC , ℓC ) ← ScaleConformal(u, TB , ℓB )
5: z ← Layout(TC , ℓC ) ▷§4.5
6: return (TC , z)

Algorithm 4 MinimizeEnergy(T, ℓ,Ω∗)

Input: A triangle mesh T = (V, E, F), edge lengths ℓ : E→ R, and
target cone angles Ω∗ : V→ R that satisfy Equation 11. A

constant parameter ε > 0 determines the stopping tolerance,

and parameters α ∈ (0, 1/2), β ∈ (0, 1) control line search
(for details, see Boyd and Vandenberghe [2004] Algorithms

9.2 and 9.5).

Output: Scale factors u : V→ R that realize the given angle defects.

1: u ← 0 ∈ R |V | ▷initial scale factors
2: while true do ▷run Newton’s method
3: д← Gradient(u, T, ℓ,Ω∗) ▷§4.2.2
4: L← Hessian(u, T, ℓ) ▷§4.2.3
5: Solve(L, v,−д) ▷compute descent direction v
6: if vTд ≤ 2ε then ▷check for convergence
7: break
8: τ ← 1

9: ℰ0 ← Energy(u, T, ℓ) ▷§4.2
10: while Energy(u + τv, T, ℓ) > ℰ0 + ατдTv do ▷line search
11: τ ← βτ

12: u ← u + τv ▷take Newton step
13: return u

Algorithm 5 ScaleConformal(u, T, ℓ)

Input: A triangulation T = (V, E, F), edge lengths ℓ : E → R, and
conformal scale factors u : V→ R.

Output: A conformally equivalent Delaunay triangulation (̃T, ˜ℓ).
1:

˜ℓi j ← e(ui+uj )/2, ∀ij ∈ E ▷scale edge lengths §3.2.2
2: (̃T, ˜ℓ) ← IdealDelaunay(T, ˜ℓ) ▷Ptolemy flips §3.4.2
3: return (̃T, ˜ℓ)

Algorithm 6 Energy(u, T, ℓ)

Input: A triangulation T = (V, E, F), edge lengths ℓ : E → R,
conformal scale factors u : V→ R, and target angle defects

Ω∗ : V→ R.
Output: The conformal energy at u (Section 4.2.1).

1: (̃T, ˜ℓ) ← ScaleConformal(u, T, ℓ)
2: ℰ ← 0 ▷will accumulate energy into ℰ
3: for each ij ∈ Ẽ do ˜λi j ← 2 log

˜ℓi j ▷Penner coordinates §3.3.3

4: for each jk
i ∈ T̃ do ˜θ

jk
i ← Angle( ˜ℓi j , ˜ℓjk , ˜ℓki ) ▷at all corners

5: for each i ∈ V do ℰ ← ℰ + (2π − Ω∗i )ui

6: for each ij ∈ Ẽ do ℰ ← ℰ − π ˜λi j

7: for each ijk ∈ F̃ do
8: ℰ ← ℰ + ˜θ

jk
i

˜λjk + ˜θkij
˜λki + ˜θ

i j
k
˜λi j

9: ℰ ← ℰ +Clausen(2 ˜θ jki +Clausen(2 ˜θ
ki
j ))+Clausen(2

˜θ
i j
k )

10: return д

Algorithm 7 Gradient(u, T, ℓ,Ω∗)

Input: A triangulation T = (V, E, F), edge lengths ℓ : E → R,
conformal scale factors u : V→ R, and target angle defects

Ω∗ : V→ R.
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Output: A vector д ∈ R |V | giving the gradient of the conformal

energy ℰ at u (Section 4.2.2).

1: (̃T, ˜ℓ) ← ScaleConformal(u, T, ℓ)
2: for each i ∈ V do
3: Ω̃i ← 2π ▷measure current angle defect
4: for each ijk ∈ F̃ containing i do Ω̃i ← Ω̃i−Angle( ˜ℓi j , ˜ℓjk , ˜ℓki )

5: дi ← Ω∗i − Ω̃i

6: return д

Algorithm 8 Hessian(u, T, ℓ)

Input: A triangulation T = (V, E, F), edge lengths ℓ : E → R, and
conformal scale factors u : V→ R.

Output: A matrix L ∈ R |V |× |V | giving the Hessian of the conformal

energy ℰ at u (Section 4.2.3).

1: (̃T, ˜ℓ) ← ScaleConformal(u, T, ℓ)
2: L← 0 ∈ R |V |× |V | ▷initialize empty sparse matrix
3: for each ij ∈ E do
4: k, l ← OppositeVertices(ij, T)
5: θ

i j
k ← Angle( ˜ℓki , ˜ℓi j , ˜ℓjk )

6: θ
ji
l ← Angle( ˜ℓl j , ˜ℓji , ˜ℓil )

7: wi j ←
1

2
(cotθ

i j
k + cotθ

ji
l ) ▷cotangent weight

8: Lii , Lj j+ = wi j
9: Li j , Lji− = wi j

10: return д

Algorithm 9 IntrinsicDelaunay(T, ℓ)

Input: A triangulation T = (V, E, F) with edge lengths ℓ : E→ R.
Output: An intrinsic Delaunay triangulation T̃ with edge lengths

˜ℓ : Ẽ→ R that encode the same Euclidean polyhedron.

1: (̃T, ˜ℓ) ← (T, ℓ) ▷copy input
2: for each ij ∈ Ẽ do Push(Q, ij) ▷initialize queue Q
3: while !Empty(Q) do
4: ij ← Pop(Q)
5: if !IsDelaunay(ij, T̃, ˜ℓ) then
6: (̃T, ˜ℓ) ← FlipEuclidean(ij, T̃, ˜ℓ)
7: k, l ← OppositeVertices(ij, T̃)
8: Push(Q, jk)
9: Push(Q,ki)
10: Push(Q, il)
11: Push(Q, l j)

12: return (̃T, ˜ℓ)

Algorithm 10 FlipEuclidean(T, ℓ, ij)

Input: A triangulation T = (V, E, F), edge lengths ℓ : E → R, and
an edge ij ∈ E.

Output: An updated triangulation (T, ℓ) where ij has been flipped,

and ℓ encodes the same Euclidean polyhedron.

1: k, l ← OppositeVertices(ij, T)
2: θ lki ← Angle(ℓi j , ℓjk , ℓki ) + Angle(ℓil , ℓl j , ℓji )

3: ℓkl ←
√
ℓ2ik + ℓ

2

il − 2ℓik ℓil cosθ
lk
i ▷law of cosines

i
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Fig. 35. Edges come in 6 types

4: EraseTriangles(ijk, jil)
5: InsertTriangles(ilk, jkl)
6: return (T, ℓ)

Algorithm 11 FlipPtolemy(T, ℓ, ij)

Input: A triangulation T = (V, E, F), edge lengths ℓ : E → R, and
an edge ij ∈ E.

Output: An updated triangulation (T, ℓ) where ij has been flipped,

and ℓ encodes the same discrete conformal structure.

1: k, l ← OppositeVertices(ij, T)
2: ℓkl ← (ℓki ℓl j + ℓjk ℓl i )/ℓi j
3: EraseTriangles(ijk, jil)
4: InsertTriangles(ilk, jkl)
5: return (T, ℓ)

D NORMAL COORDINATE UPDATE RULE
To derive Equation 15 of Section 5.1.1, consider first the case that lk
is not an edge of T1. Then the edges of T1 intersect the interior of
the quadrilateral ikjl in segments of the following types (Figure 35):

(1) crossing corner l of ijl or crossing corner k of ijk
(2) crossing corners i of ijl and j of ijk , or crossing corners j of ijl

and i of ijk
(3) emanating in corner i or j of ijl or ijk
(4) the edge ij
(5) crossing both corners i of ijk and ijl or both corners j of ijk

and ijl
(6) emanating in corner l of ijl or emanating in corner k of ijk

Segments of types 1–4 are counted by

(1) c
i j
l + c

i j
k

(2)
1

2

��cilj − ckij �� + 1

2

��cl ji − c jki �� − 1

2
e
ji
l −

1

2
e
i j
k

(3) e
l j
i + e

jk
i + e

il
j + e

ki
j

(4) δni j
and each contributes 1 to njk , while segments of types 5–6 con-

tribute 0. To see the counting formulas for cases 2 and 4, note that

1

2

��cilj − ckij �� + 1

2

��cl ji − c jki ��
counts #{type 2} + 1

2
#{type 6}, and that

ni j = 0 if and only if ij is also an edge of T1.
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Finally, consider the case that lk is an edge of T1. Then term 2

above equals −1 and terms 1, 3, and 4 are zero. So Equation 15 is

satisfied with both sides equal to zero.

E NUMERICALLY-ROBUST HYPERBOLIC GEODESICS
The hyperbolic layout procedure of Appendix A.3 can sometimes

fail on meshes with near-degenerate triangles due to floating point

issues. On many meshes, this can be ameliorated by tracing TC

over TB instead of tracing TB over TC (Appendix E.1). When this

is not sufficient, we fall back to an iterative straightening scheme

(Appendix E.2).

E.1 Tracing Over the Intermediate Triangulation
In many examples, the final triangulation TC has lower-quality

triangles than the intermediate triangulation TB . So although we

need to trace TB over TC to interpolate texture coordinates, the

algorithm performs better numerically if we trace TC over TB and

then transpose to obtain the edges of TB traced out over TC . How-
ever, normal coordinates accumulated during the uniformization

stage (Section 4) do not allow us to trace TC over TB directly. Our

solution is to perform topological tracing (Section 6.1.1) of TB over

TC , “transpose” these data to obtain topological edges of TC traced

over TB , then straighten those curves to geodesics along TB , and
then transpose once more to obtain the edges of TB traced out as

geodesics along TC .

E.2 Iterative Straightening
Consider the curve ab that we want to straighten to a hyperbolic

geodesic passing through two adjacent ideal triangles ijk and kjl .
Let x be the point where it intersects their common edge jk , and let

y and z be the other edge intersection points. We will discuss the

case wherey = ab∩ij and z = ab∩lk shown in Figure 36. The other

cases can be treated similarly. In each iteration of our straightening

procedure, we update the barycentric coordinates of x such that the

curve is geodesic within these two triangles.

Though we never actually compute homogeneous coordinates

vectors qi ,qj ,qk ,ql in R
3
, suppose for the moment that we write

the homogeneous coordinates vectors of y and z as

qy = σy ((1 − ti j )qi + ti jqj ),

qz = σz ((1 − tlk )ql + tlkqk ).
(20)

(The scale factors σy and σz are necessary because we do not assume

the homogeneous coordinates to be normalized in any way.) Writing

qx = (1 − tjk )qj + tjkqk

we determine tjk using det(qy ,qz ,qx ) = 0 :

tjk =
det(qy ,qz ,qj )

det(qy ,qz ,qj ) − det(qy ,qz ,qk )
. (21)

We substitute the expressions from Equation 20 into Equation 21

to obtain terms involving determinants of various combinations of

qi ,qj ,qk ,ql . Using the equation

| det(qi qj qk )| = 4 ℓi jℓjk ℓik . (22)

(see Section F.1 for a derivation) and taking the orientations of the

triangles into account, we can express these determinants purely in

Fig. 36. In our iterative straightening procedure, we lay out two triangles at
a time, and connect our segment’s endpoints by a straight line.

terms of the known edge lengths ℓi j , ℓjl , ℓlk , ℓki , ℓjk and the length

ℓil obtained via Ptolemy’s formula (Equation 8). This enables us

to calculate the barycentric coordinate tjk of x directly from the

known edge lengths, without ever actually laying out any triangles.

Once this iterative straightening has converged, we compute

some additional data. To get the barycentric coordinate syz of the

intersection point along the segment from y to z, as well as the
factor σjk > 0 relating the two intersection points, we solve the

linear system

(1 − syz )qy + syzqz = σjk ((1 − tjk )qj + tjkqk ).

As before, since we don’t know the coordinates q we take inner

products with the homogeneous coordinate vectors qj and qk to

get an equivalent linear system purely in terms of the edge lengths

(using Equation 24 from the next section). In the event that this

system is singular, we take inner products with qy and qz as well
to get a full-rank system. This equation also provides us with the

intersection’s scale factor σjk . We obtain the log scale factor as

ujk := log(σjk ).
Finally, we still need the barycentric coordinate sab ,x for x rel-

ative to the whole geodesic ab—however, we do not yet know the

exact barycentric coordinates sab ,y and sab ,z for y and z. To get an

estimate, we therefore just take a weighted combination

sab ,x ← (1 − syz ) sab ,y + syzsab ,z .

At the endpoints a and b of ab, we simply use barycentric coordi-

nates 0 and 1, resp..

F JUSTIFICATION OF HYPERBOLIC LAYOUT
FORMULAS

F.1 Euclidean Triangles in the Hyperboloid Model

lig
ht

 co
ne

hyperboloid
In the hyperboloid model of H2

, three

points qi ,qj ,qk on different rays in the

positive light cone ℒ+ determine an

ideal hyperbolic triangle decorated with

horocycles at the vertices (Section 3.3.1,

Figure 13). If we connect qi ,qj ,qk by

straight lines in R3, we obtain a triangle

in the affine plane spanned by the three

points, whose sides are chords of the
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light cone (see inset). The restriction of the Lorentz inner product

⟨·, ·⟩2,1 to this plane is positive definite, whenever the Euclidean

slope is less than 45
◦
. In this case, the affine plane is called space-

like because the Lorentz inner product provides a Euclidean metric,

turning the chord triangle in Lorentz space into a genuine Euclidean

triangle with side lengths

ℓi j =
1

2

√
⟨qi − qj ,qi − qj ⟩2,1. (23)

(See the Remark below for an explanation of the factor
1

2
). Since

qi ,qj are light-like (i.e., ⟨q,q⟩2,1 = 0), we have

⟨qi − qj ,qi − qj ⟩2,1 = −2⟨qi ,qj ⟩2,1,

and therefore

⟨qi ,qj ⟩2,1 = −2ℓ
2

i j . (24)

The affine plane spanned by qi ,qj ,qk is spacelike if and only if

the chord lengths ℓi j , ℓjk , ℓki obtained from Equation 23 satisfy

the triangle inequalities. This gives us a direct mapping between

any Euclidean triangle and its ideal hyperbolic counterpart: take

the Euclidean triangle, and find points qi on the light cone such

that ∥qi − qj ∥2,1 = 2ℓi j , yielding a copy of the Euclidean triangle

sitting in R2,1. Each point x in the Euclidean triangle (except the

vertices, which are light-like) can be normalized to obtain a point

x ′ = x/
√
−⟨x, x⟩2,1 on the unit hyperboloid, which we identify with

the hyperbolic plane (see the inset at the beginning of this section).

Equation 22 expresses the determinant of the three light-like

vectors qi ,qj ,qk in terms of the Euclidean edge lengths, at least up

to the sign. To derive this equation, note that

− 2
©­«

0 ℓ2i j ℓ2ik
ℓ2i j 0 ℓ2jk
ℓ2ik ℓjk 0

ª®¬ = ©­«
⟨qi ,qi ⟩2,1 ⟨qi ,qj ⟩2,1 ⟨qi ,qk ⟩2,1
⟨qj ,qi ⟩2,1 ⟨qj ,qj ⟩2,1 ⟨qj ,qk ⟩2,1
⟨qk ,qi ⟩2,1 ⟨qk ,qj ⟩2,1 ⟨qk ,qk ⟩2,1

ª®¬
= (qi qj qk )

T
(
1 0 0

0 1 0

0 0 −1

)
(qi qj qk )

and take determinants.

Remark. In Equation 23measuring length in Lorentz space, we insert

the global scale factor
1

2
to be consistent with Equation 6 describing

the relation between truncated hyperbolic lengths λ and Euclidean

lengths ℓ. This relation was originally derived by Bobenko et al.

[2015] (and used in this form by Springborn et al. [2008]) via a

different construction involving ideal tetrahedra in hyperbolic 3-

space. Both constructions provide the same correspondence between

Euclidean and decorated ideal triangles, up to scale. The natural

scale for Euclidean lengths in the construction of Bobenko et al.

[2015] happens to differ from the natural scale in the light cone by

a factor of 2.

F.2 Vertex Scaling and Projective Interpolation
Now consider the points q̃i = euiqi ,
q̃j = eujqj , q̃k = eukqk on the same

rays in the light cone, describing the

same ideal triangle but decorated with

different horocycles. By Equation 24,

their chordal distances
˜ℓ are related to

the chordal distances ℓ by Equation 3.

Moreover, if the scaled lengths
˜ℓ sat-

isfy the triangle inequalities, then the second triangle is also Eu-

clidean and the circumcircle preserving projective map between

them [Springborn et al. 2008, Section 3.4] is just central projection

mapping a point x to the point x̃ in the same ray from the origin

(see inset).

More explicitly, suppose we have a linear function on triangle

ĩ jk defined by values
˜fi , ˜fj , ˜fk at the vertices. We want to pull this

function back to the lower triangle ijk by defining f (x) = ˜f (x̃).
Suppose

x = αiqi + α jqj + αkqk .

Since q̃i = euiqi , we can also write

x = αie
−ui q̃i + α je

−uj q̃j + αke
−uk q̃k .

To scale x to lie in the triangle spanned by q̃i , q̃j , q̃k , we just have
to normalize its coefficients to sum to 1:

x̃ =
αie
−ui q̃i + α je

−uj q̃j + αke
−uk q̃k

αie−ui + α je−uj + αke
−uk

.

Finally, we can evaluate our function f . Since ˜f is linear, we find

that

f (x) = ˜f (x̃) =
αie
−ui ˜fi + α je

−uj ˜fj + αke
−uk ˜fk

αie−ui + α je−uj + αke
−uk

.

This is precisely the circumcircle-preserving projectivemap between

our two triangles. We can write it more compactly by introducing

homogeneous coordinates.

h(x) = αie
−ui ( ˜fi , 1) + α je

−uj ( ˜fj , 1) + αke
−uk ( ˜fk , 1), (25)

and we obtain f (x) by dividing the first component of h(x) by
the second component. In the end, our interpolation amounts to

linearly interpolating the values e−ui ( ˜fi , 1) and then performing

this homogeneous divide.

F.3 Edge Flips
The real power in the hyperboloid is that it allows us to interpo-

late between different triangulations of the same vertex set using

exactly the same procedure. Consider for example a pair of trian-

gles which have been flipped (by a Ptolemy flip) and rescaled.

In the hyperboloid model, the Ptolemy

flip really does correspond to an extrin-

sic flip, since the extrinsic Lorentz dis-

tance corresponds to the hyperbolic dis-

tance between horocycles. So if we take

two triangles, perform a Ptolemy flip,

and then rescale the edge lengths, we end up with two pairs of

triangles with one hanging above the other. We can map between

the two triangle pairs by rescaling, exactly as in the 1-triangle case.

The rescaling map is a piecewise-projective map on the common

refinement of the two meshes. Since the map is piecewise-projective,

we can specify the whole map by computing how much it scales by

at each vertex, and at each projective intersection of edges. In this

case, we can find the intersection point and the map’s scale factor

at the intersection by applying Equation 19.
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F.4 Piecewise-Projective Interpolation
Now, suppose the triangulations differ

by more than just an edge flip. As we

observed above, the piecewise projec-

tive map depends only on scale factors

at vertices, and at the intersections be-

tween edges of the two triangulations.

We know the scale factors at vertices,

so in order to compute the piecewise-projective map, we need to

determine where the edges of the two triangulations intersect, and

what the appropriate scale factor is at each intersection. In our algo-

rithm, we need to trace edges of TB over TC . For each edge ab ∈ EB ,
this amounts to laying out the strip of triangles from TC which ab
crosses in the light cone, drawing the edge from qa to qb above it,

and computing barycentric coordinates and scale factors for each

intersection. Since q̃a = euaqa , we simply place qa and qb by rescal-

ing the triangle strip’s endpoints by e−ua and e−ub respectively in

Appendix A.3. Once we have computed these scale factors, we do

projective interpolation using Equation 25 on each triangle of the

common refinement. The final expression appears as Equation 16.

F.5 Discrete Uniformization: Hyperboloid Model POV
To understand mapping between the intrinsic Delaunay triangu-

lation (TB , ℓ) and the discretely conformally equivalent intrinsic

Delauny triangulation (TC , ˜ℓ) that is obtained by vertex scaling with
logarithmic factors u and Ptolemy flips, it is useful to picture this

process in the hyperboloid model as follows.

First, imagine laying out the triangulation TB in the light cone.

We will provide more detail in the following two sections, but the

idea is straightforward: Place the vertices qi , qj , qk of a first triangle

ijk on arbitrary rays in ℒ+ so that the chordal distances are ℓi j , ℓjk ,

ℓki . Then for a neighboring triangle, say jil , the position ql ∈ ℒ+
of the third vertex is determined by the side lengths ℓil , ℓjl . Note

that as you layout the triangles around one vertex, this will never

close up. Instead, if you keep laying out, each triangle of TB will

correspond to infinitely many chordal triangles. The result is a

polyhedral surface P1 with vertices in the light cone, all of which

have infinite degree. Yet, every ray from the origin contained in

the light cone will intersect this polyhedral surface exactly once.

Moreover, the ideal Delaunay condition on (TB , ℓB ) is precisely
the condition that this polyhedral surface is convex [Penner 2012,

Lemma 1.7, p. 128].

The next step, corresponding to the vertex scaling (Equation 3),

is to slide all the laid out vertices along their rays in the light cone

by applying the scale factors eu as in Appendix F.2. The resulting

polyhedral surface P2 will in general not be convex, nor will all its

triangles span spacelike planes.

The process of applying Ptolemy flips to obtain the ideal Delau-

nay triangulation (TC , ˜ℓ) corresponds, in the hyperboloid model, to

applying extrinsic edge flips to the polyhedral surface P2 to obtain

a convex surface P3. All of its triangles will then automatically be

in spacelike planes. Finally, the map from P1 to P3 is just central
projection from the origin.

F.6 Layout in the Light Cone I: Placing the First Triangle
We will now derive some practical equations for laying out a Eu-

clidean triangulation in the light cone. Note that in practice we only

ever lay out triangle strips of one triangulation that are crossed by

an edge of another triangulation.

To lay out the first triangle ijk we place the vertices at the points

qi = wi (1, 0, 1),

qj = w j (cos(2π/3), sin(2π/3), 1),

qk = wk (cos(4π/3), sin(4π/3), 1),

in ℒ+, where the positive scalar factorswi ,wi ,wi are determined

by the edge lengths via Equation 24:

ℓ2i j = −
1

2
⟨qi ,qj ⟩2,1 =

3

4
wiw j

ℓ2jk = −
1

2
⟨qj ,qk ⟩2,1 =

3

4
w jwk

ℓ2ki = −
1

2
⟨qk ,qi ⟩2,1 =

3

4
wkwi

The solution of this system of equations is

wi =
2 ℓi jℓki
√
3 ℓjk

, w j =
2 ℓjk ℓi j
√
3 ℓki

, wk =
2 ℓki ℓjk
√
3 ℓi j

.

F.7 Layout in the Light Cone II: Placing the Next Triangle
Supposewe have already determined the vertex positionsqi ,qj ,qk ∈
ℒ+ of the triangle ijk , and we want to determine the position ql of
third vertex in the adjacent triangle jil . Note that qi ,qj ,qk form a

basis of R3 so and we can write the unknown vertex position ql as
a linear combination. To obtain more symmetric expressions, we

will determine coefficients ci , c j , ck , cl for which

ciqi + c jqj + ckqk + clql = 0. (26)

By taking the inner product of Equation 26 with each of the four

vertex positions q and using Equation 24, we get a system of linear

equations 
0 ℓ2i j ℓ2ik ℓ2il
ℓ2i j 0 ℓ2jk ℓ2jl
ℓ2ik ℓ2jk 0 ℓ2kl
ℓ2il ℓ2jl ℓ2kl 0



ci
c j
ck
cl

 =

0

0

0

0

 ,
where ℓi j , ℓjk , ℓki , ℓil , ℓl j are the sides lengths of the triangles ijk
and jil , and ℓkl is determined by Ptolemy’s formula (Equation 8). A

solution of this system is given by

ci =
ℓjl ℓkl
ℓil
, c j = −

ℓik ℓkl
ℓjk
, ck = −

ℓjl ℓi j
ℓjk
, cl =

ℓik ℓi j
ℓil
.

We can use these coefficients in Equation 26 to get the next vertex

position ql .
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