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Abstract

We present a formulation of Willmore flow for triangulated sur-
faces that permits extraordinarily large time steps and naturally
preserves the quality of the input mesh. The main insight is
that Willmore flow becomes remarkably stable when expressed
in curvature space — we develop the precise conditions under
which curvature is allowed to evolve. The practical outcome is
a highly efficient algorithm that naturally preserves texture and
does not require remeshing during the flow. We apply this algo-
rithm to surface fairing, geometric modeling, and construction
of constant mean curvature (CMC) surfaces. We also present a
new algorithm for length-preserving flow on planar curves, which
provides a valuable analogy for the surface case.
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1 Introduction

At the most basic level, a curvature flow produces successively
smoother approximations of a given piece of geometry (e.g., a
curve or surface), by reducing a fairing energy. Such flows have
far-ranging applications in fair surface design, inpainting, de-
noising, and biological modeling [Helfrich 1973; Canham 1970];
they are also the central object in mathematical problems such
as the Willmore conjecture [Pinkall and Sterling 1987].

Numerical methods for curvature flow suffer from two principal
difficulties: (I) a severe time step restriction, which often yields
unacceptably slow evolution and (II) degeneration of mesh ele-
ments, which necessitates frequent remeshing or other corrective
devices. We circumvent these issues by (I) using a curvature-
based representation of geometry, and (II) working with confor-
mal transformations, which naturally preserve the aspect ratio of
triangles. The resulting algorithm stably integrates time steps or-
ders of magnitude larger than existing methods (Figure 1), result-
ing in substantially faster real-world performance (Section 6.4.2).
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Figure 1: A detailed frog flows to a round sphere in only three large,
explicit time steps (top). Meanwhile, the quality of the triangula-
tion (bottom) is almost perfectly preserved.

The success of our method results from a judiciously-chosen
change of variables: instead of positions, we work with a quantity
called mean curvature half-density. Not surprisingly, curvature-
based energies become easier to minimize when working directly
with curvature itself! However, we must now understand the
precise integrability conditions under which curvature variables
remain valid, i.e., when can curvature be integrated to recover
position? Kamberov et al. [1998] and later Crane et al. [2011]
investigate this question for topological spheres; we complete
the picture by establishing previously unknown integrability con-
ditions for surfaces of arbitrary topological type. In this paper
we focus on curvature flow, providing a drop-in replacement
for applications involving surface fairing and variational surface
modeling — in particular, we show how to express Willmore flow
via gradient descent on a quadratic energy subject to simple lin-
ear constraints. These insights are not specific to curvature flow,
however, and can be applied to any geometry processing applica-
tion where preservation of the texture or mesh is desirable.

2 Preliminaries

We adopt two essential conventions from Crane et al. [2011].
First, we interpret any surface in R® (e.g., a triangle mesh) as
the image of a conformal immersion (Section 2.2.1). Second,
we interpret three-dimensional vectors as imaginary quaternions
(Section 2.3). Proofs in the appendix make use of quaternion-
valued differential forms; interested readers may benefit from
the material in [Kamberov et al. 2002; Crane 2013].

Figure 2: Our flow gracefully preserves the appearance of texture
throughout all stages of the flow.
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Figure 3: The basic principles applied in the curve (top) and surface
(bottom) cases are the same.

2.1 Notation

Single angle brackets (-,-) and bars | - | denote the Euclidean
inner product and norm (respectively) on vectors in R"; double
brackets ((-,-)) and bars || - || denote the .¢2 inner product and
norm on functions. If ¢(t) is a time-varying quantity, then ¢
denotes the time derivative of ¢ at time zero, i.e., ¢ 1= £Qp| ¢=0-
For any quantity ¢(s) defined along a 1D curve, ¢’ denotes the
spatial derivative - ¢. The symbol 1 denotes a function equal to
one at every point, or a vector containing a one in each entry.

2.2 Curves and Surfaces

A unified description of curves and surfaces helps illuminate the
relationship between algorithms in 2D and 3D. In particular, a
planar curve can be viewed as the image of some map f from an
interval [0, L] C R into R? (Figure 3, top). Likewise, any surface
can be viewed as the image of some map f from a domain M into
R® (Figure 3, bottom). Note that M need not be a piece of the
plane — in our case it can be any compact, orientable topological
surface. The differential df maps a tangent vector X in the do-
main to the corresponding embedded tangent vector df (X). If df
maps nonzero vectors to nonzero vectors then f is an immersion.
(Note that immersions may still have self-intersections.)

Throughout we use A to denote the Laplace-Beltrami operator
induced by f. The quantity Af /2 is called the curvature normal,
equal to kN for curves and HN for surfaces, where x and H are
the curvature and mean curvature, respectively, and N is the unit
normal.

Figure 4: We work with angle-preserving or conformal maps, which
simplify analytical expressions and result in numerical robustness
at the computational level.

2.2.1 Isometric and Conformal Immersions

Expressions involving curves are simplified by using an arc-length
or isometric parameterization, meaning that the length of any tan-
gent vector X is preserved: |df (X)| =|X]|. Similarly, expressions
involving surfaces are simplified by assuming that f is conformal,
meaning that angles are preserved (Figure 4), or equivalently,
that tangent spaces are scaled uniformly (i.e., |df (X)| = e*| X| for
some real function u). We can then use |df| and |df|* to denote
the length element and area element induced by f, respectively.
The quantity u := H|df| is called mean curvature half-density, a
scale-invariant version of mean curvature. Note that any surface
can be viewed as the image of a conformal immersion, even if
one does not explicitly construct the map f. Hence, any fact
we obtain about conformal immersions can also be applied to
triangle meshes in R%, which is the perspective adopted here.

2.3 Geometry in the Quaternions

The quaternions H are a number system well-suited to three-
dimensional geometry, and provide a natural algebraic language
for conformally immersed surfaces [Kamberov et al. 2002]. As
usual, we use {1, 1, j, k} to denote a basis for H; vectors (a, b,c) €
R® can then be identified with elements v = ai + bj + ck of the
imaginary quaternions ImH := span{i, j,k}. Letting § denote
conjugation, the expression gvq represents rotation of a vector
v for any unit quaternion ¢, or rotation and scaling if |q| # 1.
Explicitly, g = a(cos(0/2) — sin(0/2)w) yields scaling by a? and
rotation by an angle 6 around the unit axis w € ImH.

3 Related Work

There are a wide variety of surface fairing procedures for triangle
meshes, which at first glance appear to be quite disparate. Yet
most fairing algorithms can be viewed as numerical minimization
of either the membrane energy E,, or the Willmore energy E,,. To
simplify discussion, we will assume that the surface M has no
boundary - in this case, membrane energy is just the surface area

E\(f):= J dA,
M
and Willmore energy is the squared %2 norm of mean curvature

Ey(f) :=J H?dA,

where dA denotes the area element. Minimizing E, via gradient
descent leads to mean curvature flow f = —HN, where the sur-
face moves in the normal direction with speed proportional to
curvature. Noting that Af = 2HN, we can also write this flow as

f=-1af.

Similarly, we can write Willmore energy as E,(f) =
%((Af, Af) = %((AQf,f)). If we ignore the dependence of A on
f when taking the gradient of E,,, we get the bi-Laplacian flow

f = _%Azf >
which approximates the fully nonlinear Willmore flow
f==VEy(f).

A bi-Laplacian term also appears in surface diffusion flow [Schnei-
der and Kobbelt 2001]. Importantly, all these flows are nonlinear
PDEs since the operator A is itself a function of the immersion f.



Figure 5: Left: a bump representative of small surface detail. Cen-
ter: standard fairing distorts texture, even with tangential smooth-
ing (method of Yoshizawa & Belyaev [2002] applied to the method
of Desbrun et al. [1999]). Right: conformal fairing preserves tex-
ture while producing a pleasing geometric shape.

From this perspective, many algorithms for surface fairing arise
from different choices of spatial and temporal discretization:
Brakke’s Surface Evolver [1992] minimizes membrane energy via
explicit gradient descent, corresponding to mean curvature flow
via the forward Euler method; Taubin’s A|u algorithm [1995]
amounts to bi-Laplacian flow via forward Euler when A = —yu;
and the implicit fairing method of Desbrun et al. [1999] corre-
sponds to mean curvature flow via backward Euler. More recently,
Bobenko and Schréder [2005] and Wardetzky et al. [2007] inves-
tigate discrete Willmore flow, using a semi-implicit quasi-Newton
scheme to cope with nonlinearity. Common to all these meth-
ods are time step restrictions based on the smallest edge length
h — at a practical level performance degrades rapidly as resolu-
tion increases or elements degenerate. Explicit methods typically
exhibit restrictions of O(h?) and O(h*) for mean curvature and
Willmore flow, respectively (see [Olischlédger and Rumpf 2009]
for a proposal to ameliorate this restriction). Implicit integrators
such as backward Euler improve the situation, but do not guar-
antee unconditional stability since flows are inherently nonlinear,
due to the dependence of A on f (¢f [Desbrun et al. 1999]). In
light of this situation, it is rather remarkable to find a change of
variables that evades this restriction.

One can also compare geometric qualities of these methods. For
example, mean curvature flow can develop sharp singularities
which undermine the fairing process, even in the continuous
setting [Colding and Minicozzi 2012]. Kazhdan et al. propose a
modification that helps avoid degeneracy but can still produce
sharp features; in contrast, Willmore or bi-Laplacian flow tend
to produce rounder, more @sthetic shapes (Figure 6). These
flows also permit tangent constraints at the boundary, valuable
for geometric modeling [Celniker and Gossard 1991; Welch and
Witkin 1994; Clarenz et al. 2004].
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Figure 6: Top: the modified mean curvature flow of Kazhdan et
al. yields a conformal map to the sphere, but exhibits conformal
distortion at intermediate steps; it also produces sharp features,
e.g., at the tips of the ears. Bottom: our flow produces smooth
geometric features and low conformal distortion throughout.

Figure 7: Fairing a triangle mesh (left) via standard methods
such as implicit mean curvature flow (center) produces significant
conformal distortion (Q) and sharp geometric discontinuities. Pro-
jecting onto an angle-preserving deformation does not help, since
in the discrete case such deformations are rigid and one simply
recovers the initial surface (right).

Existing flows also produce unwanted metric distortion which
degrades texture and mesh elements, and further exacerbates
stability issues. Simple corrective devices do not quite work
as desired. For instance, Laplacian-based tangential smoothing
helps avoid degenerate elements at the cost of distorting texture
(Figure 5), and suffers from the same stability issues as curvature
flow itself [Yoshizawa and Belyaev 2002]. Similarly, adaptive
remeshing helps maintain element quality [deGoes et al. 2008],
but neither prevents texture distortion nor improves asymptotic
stability. Another tempting idea is to project onto the nearest
angle-preserving deformation, yet this approach is far too rigid
since neighboring triangles are forced to have identical scale.
Figure 7 demonstrates that projections via ShapeUp [Bouaziz
et al. 2012] very nearly restore the original surface, reverting any
fairing that may have occurred.

Finally, conformal flows of the metric (e.g., Yamabe) have proven
invaluable for applications like parameterization [Gu et al. 2011].
However, these methods work with intrinsic (Gaussian) curvature
which is insufficient to determine the three-dimensional geometry
of a surface, and hence cannot be used for fairing. We present
the first method for extrinsic conformal flow, which is naturally
suited to surfaces in R®.

4 Curvature Flow in Curvature Space

Our main point of departure from existing algorithms is that we
manipulate curvature directly — for now, let u denote a generic
curvature variable equal to either k for curves or u for surfaces.
Fairness is measured via the quadratic energy E(u) := ||u||*, lead-
ing to the simple gradient flow

i=—2u. (@)

However, we must ensure that curvature remains integrable as it
evolves, i.e., at any point in time there must be positions f that
exhibit the given curvature u. This seemingly difficult condition
can be expressed as a set of linear constraints {(i1,c;)) = O for
some collection of easily computed constraint functions ¢;. In
practice, we integrate Eq. (1) using the forward Euler scheme

Ut =y — 270 2)
for some fixed time step T > 0; constraints are enforced by
building an orthonormal basis {¢} via the Gram-Schmidt pro-
cess and augmenting the initial flow direction v := —2u via
Vey— Zi((v, &) ¢. To recover the final geometry we integrate
curvature to get tangents, then integrate tangents to get posi-
tions, as discussed in Sections 5 and 6. The overall procedure is
outlined in Table 1.



STEP | DESCRIPTION CURVE Section | SURFACE Section
I. | Evaluate curvature. K — % (N,Af) 52 | He % (N,Af) 6.1

II. | Pick a desired flow direction. | & < —VE.(x) 5| p < —VEy(p) 6.1
III. | Build a constraint basis. Gram-ScumipT {1, f*, f7} 5 | Gram-ScumIDT {1,N*%V* 7%} 6.2
IV. | Project flow onto constraints. | & — & — >, (K, &)¢; 4| pe—p-2.Up.eNG 4

V. | Take an explicit Euler step. K« K+ TK 4 | p—p+1p 4
VI. | Recover tangents. T « INTEGRATE K 5.1,5.2 | SoLvE (D —p)A=7yA, T < ATA 6
VIL. | Recover positions. Sove Af =V T 52 | Sorve Af =v- T 6

Table 1: Our algorithms for curve (left) and surface (right) flows are nearly identical in structure.

This formulation has a number of valuable consequences. First,
since only curvatures are prescribed, we are free to reconstruct
positions that preserve lengths (Figure 9) or angles (Figure 1).
Unlike constraint- or penalty-based methods, these quantities are
preserved by construction. Second, we obtain greatly improved
stability, chiefly because the flow we want to integrate (Eq. (1))
involves no spatial derivatives. Therefore, our one and only sta-
bility criterion is that |1 — 27| < 1, or equivalently, T < 1. (The
addition of constraints only improves stability, since projection
onto the constraint set reduces the norm of the speed function.)
Experiments agree perfectly with this analysis: setting 7 just
above 1 yields an unstable flow; setting it just below 1 produces
a stable flow, independent of mesh quality or resolution (see Fig-
ure 18).

Note that the flow & = —2u gives an appearance different from
traditional smoothing, since we take the gradient of E with re-
spect to a nonstandard metric (£2 norm on curvature rather
than position). In particular, large features shrink at the same
rate as small bumps - see Figure 19 and Appendix F. To achieve
more typical behavior, one can simply filter the flow direction v —
we use the spectral filter

ve—v—(id—ocak)ty,

which damps low-frequency motion by subtracting a regularized
version of v from itself. The parameters o > 0 and k € Z control
the degree of regularization and the filter shape, respectively;
evaluating the filter amounts to solving a scalar Poisson equa-
tion (see Taubin [1995] for a more thorough discussion of this
approach to filtering). For k = 2 this flow closely approximates
traditional position-based Willmore flow (Figure 19), since A~2
approximates the norm on curvature induced by the £2 norm
on position. Figure 8 demonstrates k =0, 1, 3.

Figure 8: By augmenting the descent direction we achieve a wide
variety of flows. Here we apply frequency-space filters to smooth
out features at different scales (from left to right, k=0,1,3).

5 Isometric Curve Flows

Let f : [0, L] — R? be an isometrically immersed curve with unit
tangents T = f’ and curvature normal kN = T’. A natural fairing
energy is just the squared £ norm of curvature

L
Ec(k) := [ x2dl = ||x|*.

Note that this energy would be rather difficult to express in terms
of the positions f, involving second derivatives and a high degree
of nonlinearity.

For open curves, the resulting flow can be integrated without
modification. In the case of a closed regular curve, however, &
must satisfy two additional constraints: endpoints must meet
(f(0) = f(L)), and tangents must agree at endpoints (T(0) =
T(L)). How do we express these constraints in terms of k? The
latter condition implies that the tangent turns around a whole
number of times as we walk around the curve, or equivalently,

L
that the total curvature f 0 kd{ equals 21tk for some fixed turning
number k € Z. If k satisfies this condition at time t = 0, it will
remain satisfied as long as the total curvature does not change,

i.e., as long as fOL kd{ = 0. The condition f(0) = f (L) is not quite
as easy to reformulate, but a fairly straightforward derivation
(Appendix A) reveals another simple linear condition, namely

L . . .
f o K fdf = 0. A concise way to write the whole collection of
constraints is then

(R, 1) = (&, ) = (&, f7) =0,

where f*,f¥ : [0,L] — R are the current x- and y-coordinate
functions of the curve, respectively. These constraints are en-
forced as described in Section 4. Figure 10 demonstrates that
curves produced by the resulting flow remain smooth; in contrast,
1D mean curvature flow f = —2kN develops sharp cusps that
can be a source of numerical instability. On a curve of 2k vertices,
each step of our flow takes about 1.4ms; a global minimum can
be found in about six time steps.

Figure 9: The silhouette of a bunny (top left) flows to a perfectly
round circle (top right) while preserving edge lengths (bottom).



Figure 10: Fairing a 1D duck. Our flow prohibits sharp cusps,
ultimately flowing to the smoothest curve of equal turning number.

Our analysis of curves illustrates the general method for estab-
lishing integrability conditions on curvature-based flow: we write
down a constraint in terms of positions or tangents, differentiate
it in time, then convert it to a constraint on curvature using estab-
lished relationships. The only difference in the case of surfaces is
that these relationships become more intricate (Section 6.2).

5.1 Recovering Position

After updating the curvature function x, we can recover new
unit tangents T by integrating curvature. In particular, T(s) =
(cos6(s),sin 6(s)), where

0(s)=0,+ [, de. 3)
We then recover new positions f by integrating tangents:
f&)=fo+ [, T dt. @

Positions are determined only up to a global rotation and trans-
lation, determined by values 6, € R and f, € R?; in practice we
simply remove the mean change in position and angle.

In the smooth setting, length preservation follows from our isom-
etry assumption. Numerically, however, we experience a small
amount of discretization error, which we distribute uniformly by
solving the optimization problem min; |df — T for the vertex
positions f that best agree with our desired tangents T. Equiva-
lently, we can solve the linear Poisson problem Af =V - T. Fig-
ure 11 demonstrates that any remaining length distortion is quite
small even for large time steps, and converges quadratically un-
der temporal refinement.

5.2 Spatial Discretization

We discretize f as a collection of vertex coor- fi~Tii+1
dinates f,..., f, € R?, tangents T, = f, — f; ./\
associated with edges, and p01ntw1se curva- i1 fis
tures k; € R at vertices. Let {; = |T;| be the edge lengths of the
initial curve. To recover tangents we compute cumulative sums

K
0= 6, + Z %(fi—l,i + [i,i+1)Ki'

i=1
New tangent vectors are then given by T = {;(cos 8,sin6,). To

recover positions we solve the discrete P01sson equation Lf = b
where L is an m x m matrix with off-diagonal entries L; = —1/¢;
for any edge (i,j) and diagonal entries Ly = 1/¢,_;; +1/£;;;4. The
right-hand side b is the discrete divergence of the new tangent
field, given by b, = T,_;;/€,_1; — T,;11/¢, ;41 at each vertex. (Note
that this system can be solved as a pair of scalar Poisson equations
with either x- or y-components of T on the right-hand side.)
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Figure 11: Flow on a 1D bunny with 200 edges (top left). Even
after taking a large time step, the failure to close is slight (top
center) and yields little length distortion when projected onto the
nearest closed curve (top right). Bottom: log-log plot of worst
edge length distortion as a function of step size; the dashed line
represents quadratic convergence.

6 Conformal Surface Flows

Our treatment of surfaces closely parallels the curve case, ex-
cept that instead of quantities f, T, and k, we now work with
analogous quantities f, A, and p, respectively. The immersion
f : M — R® again describes the position of our surface in space;
the map A : M — H describes how tangents change from one
surface to the next; likewise the map p : M — R describes a
change in curvature. More precisely, for a prescribed function p,
we solve the time-independent Dirac equation

(D—p)A=7A (5)

for the smallest eigenvalue y to recover the function A, where
D is the quaternionic Dirac operator on f [Crane et al. 2011].
We then use A to compute new tangents T = AT A and solve the
Poisson equation

Af=v-T 6)

for new positions f . A surface obtained this way will have curva-
ture i = u+ (p — v)|df|, and will by construction be a conformal
deformation of the original surface. We solve these equations as
described in [Crane et al. 2011], except that for convenience we
now specify p as a value per vertex — Appendix G gives a simple
facewise construction of the final matrix used to solve Eq. (5).

6.1 Willmore Flow

The key motivation for this setup is that Willmore energy amounts
to a simple quadratic function of mean curvature half density:

Ey ()= [, H2ldfI* = [, u* = llull*.

Gradient flow with respect to u is then quite simply ¢t = —2u, or
equivalently, p = —H (Appendix F). We again apply the forward
Euler scheme p™! = p™ — 27H™, where H™ is the pointwise
mean curvature of the current mesh computed via the cotan
Laplacian [Desbrun et al. 1999]. In practice we express p with
respect to the previous surface in the flow, hence p™ = 0 and we
simply solve the smallest eigenvalue problem (D + TH™)A = yA.



Figure 12: Duck with nontrivial topology (left). Center: uncon-
strained flow yields distortion of both geometry and texture. Right:
an exactness constraint prevents distortion.

6.2 Constraints

For topological disks this flow can be integrated without further
modification. For more general surfaces, however, our flow direc-
tion must satisfy the following linear constraints:

e Total Curvature: As with curves, total curvature must re-
main constant (Appendix B), which is enforced via the con-
straint ({0, 1)) =0.

e Exactness: For non-simply connected surfaces (e.g., a
torus or annulus) we must add the constraint {(p,Z")) =
{p,Z") = {p,Z?)) =0 for Z solutions to DZ = v;, where
{v;} is a basis for harmonic vector fields on the surface
(Appendix C).

e Inversion: sphere inversions preserve both Willmore en-
ergy and conformal structure, but may produce area distor-
tion [Blaschke and Thomsen 1929]. To avoid inversions, we
apply the constraint ((p,N*)) = (p,N”)) = (p,N*)) =0,
where N¥* are the scalar components of the normal N
(Appendix D).

e Mobius Balancing (optional): We can also use Mobius
transformations to reduce area distortion, in particular by
adding {a,N) to p, where a € R® is computed as in Ap-
pendix E.1.

Overall we have a constraint basis {1, N*#, Z*”*} — these con-
straints are enforced as described in Section 4. On a mesh N is
the vector of vertex normals; the functions Z; are computed as de-
scribed in Appendix C.1. Mobius balancing must be applied after
the inversion constraint (otherwise it will be ignored), and prior
to any remaining constraints. Figure 12 compares surfaces of non-
trivial genus obtained with and without our exactness constraint.
Notice that this constraint is crucial not only for preserving tex-
ture, but also for preventing degenerate geometry. Figure 13
illustrates scale artifacts resulting from sphere inversions, and
the improved area distribution resulting from Mébius balancing.

Figure 13: Topologist’s view a of a coffee cup. Top: Sphere inver-
sions neither distort angles nor increase Willmore energy, but dis-
tort area in undesirable ways. Bottom: a simple linear constraint
prevents unnecessary inversion, and improves area distortion by
flowing toward a desired metric.

6.3 Boundary Conditions

We extend the boundary conditions described by Crane et
al. [2011], providing a more general treatment of prescribed
vectors, and allowing position-based constraints.

6.3.1 Prescribed Vectors

The surface boundary has a natural coordinate frame consisting
of the unit normal N, unit vector T tangent to the boundary, and
binormal B := T x N (Figure 14). We generalize the boundary
conditions of Crane et al. by prescribing a new direction V for
any linear combination V of N, T, and B. In particular, if 0 is
the angle between V and V, and w := V x V, then the function
Ay 1= (cos% — wsin%)(a — bV) maps V to V for any pair of
values a, b € R. (Numerical implementation mirrors [Crane et al.
2011, Sect. 5.7].) Bohle and Pinkall [2013] make the important
observation that the initial direction V has a profound effect on
the character of Eq. (5). In particular, this problem will be elliptic
if V does not coincide with the directions =N, and self-adjoint if V
is perpendicular to T; choosing V from the N —B plane (excluding
+N) therefore yields the best numerical behavior. Moreover, by
setting V = B and minimizing Willmore energy one can rapidly
produce surfaces of constant mean curvature, sought after in
applications such as architectural geometry [Pan et al. 2012].

6.3.2 Fixed Boundary

To force the boundary curve f|,), to match the boundary of a
target surface f, we find values A, along the boundary that
map initial tangents T to the target tangents T, and make initial
normals N parallel with target normals N, as in Section 6.3.1. We
approximate T at vertices as the mean of incident edge vectors;
N is any vertex normal orthogonal to T. Minimizing the residual
|(D — p)A|? subject to Al = A, yields a standard linear least
squares problem — in particular we build the matrix X described
in Appendix G, moving boundary columns to the right-hand side.
We recover the new surface by minimizing |df — ATA|? subject
to f | = fou, vielding a Poisson equation with fixed boundary
values. Figure 15, right shows one example.

Figure 14: Top left: prescribing new boundary data from the N —B
plane (excluding £N) results in a well-behaved boundary value
problem. For instance, rotated binormals at the top of a cylinder
produce a natural bend (top right); oscillating binormals on the
hemisphere yield a CMC surface (bottom).



Figure 15: The boundary of a hemisphere (left) is modified using
constraints on either tangents (center) or positions (right). In the
latter case a perfectly conformal deformation may not exist — we
instead find the deformation with least distortion in the £? sense.

6.4 Evaluation
6.4.1 Convergence

As with curves (Section 5.1), integrability is not satisfied exactly
due to spatial and temporal discretization error — the Poisson
equation used to recover position (Eq. (6)) distributes this error
over the domain. Even on coarse meshes the resulting conformal
distortion is slight, and converges linearly under temporal and
spatial refinement. Figure 16 plots conformal distortion for a flow
of fixed duration using progressively smaller time steps. (Spatial
refinement was investigated by Crane et al. [2011, Sect. 6.3].)

6.4.2 Comparison

We evaluated a variety of fairing methods in terms of numerical
stability and conformal distortion. The quality of a map ¢ :

f(M) — f(M) was measured via the quasi-conformal error Q,
defined as the ratio of largest to smallest singular value of the
differential d¢ [Sander et al. 2001]. Ideally, Q@ = 1. All methods
were carefully optimized and run on a 2.4 GHz Intel Core 2
Duo machine; for each method we used appropriate solvers from
SuiteSparse [Chen et al. 2008], re-using symbolic and numeric
factorizations wherever possible. The main cost in our method is
a sparse eigenvalue problem (Eq. (5)), solved via a simple inverse
power method, i.e., we prefactor X via CHOLMOD and repeatedly
apply backsubstitution. Since consecutive time steps are quite

L L L L L
005 0.10 0.20 0.50 1.00

step size (1)

Figure 16: Curvature flow on a genus-3 pretzel. Top left: initial
surface. Top center: due to time discretization error the surface
may fail to close perfectly — here we take an excessively large time
step to exacerbate the effect. Top right: final surface recovered by
our algorithm (salt added for taste). Bottom: log-log plot of Q — 1
versus time step size; dashed line represents linear convergence.
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Figure 17: Various flows applied to (A) for 10s of CPU time at the
maximum stable time step. See Section 6.4.2 for a list of methods
used. Note that the majority of methods do not make significant
progress, exhibit significant conformal distortion, and /or demon-
strate unwanted geometric artifacts (e.g., ears become sharp spikes).
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similar, we use only a single power iteration; the overall cost is
therefore identical to a single linear solve. Note that we do not
require a specialized eigensolver like ARPACK. For non-simply
connected surfaces we must also solve for the functions Z;; the
matrix X can again be prefactored. Our implementation extends
freely-available code for solving Eq. (5) and (6) [Crane 2012].

Figure 17 shows the result of each method after 10s of CPU
time, using the maximum stable time step in each case. We
use an isotropic mesh with near-uniform edge lengths [Botsch
and Kobbelt 2004], a best-case scenario for traditional methods.
Methods were (B) explicit mean curvature flow [Brakke 1992],
(C) explicit bi-Laplacian flow [Taubin 1995]; (D) implicit discrete
Willmore flow [Bobenko and Schroder 2005], (E) implicit mod-
ified mean curvature flow [Kazhdan et al. 2012], (F) implicit
volume-controlled mean curvature flow [Eckstein et al. 2007],
(G) implicit mean curvature flow [Desbrun et al. 1999], (H) im-
plicit bi-Laplacian flow via backward Euler, (1) implicit Willmore
flow based on isometric bending [Wardetzky et al. 2007], and
(J) our conformal Willmore flow. The per time step cost of our
method relative to implicit mean curvature flow was 4.06x, 4.27x,
3.60%, 6.33%, 6.41x, 3.29%, and 4.07x in Figures 1, 2, 5, 12, 13,
18 and 19, respectively, requiring about 0.8 seconds on a mesh
of 13k triangles. Overall, however, our method exhibits a sub-
stantial net gain in performance, since we can take time steps
orders of magnitude larger than traditional methods. A notable
exception is (E), which rapidly flows to the unit sphere. However,
this method produces conformal distortion and sharp geomet-
ric features during intermediate steps (Figure 6); moreover, it
applies only to surfaces with spherical topology.

7 Conclusion

We have presented a method for curvature flow that exhibits
extraordinary stability even on highly degenerate meshes. This
type of robustness is especially valuable in computer graphics,
where meshes come from many disparate sources (e.g., simula-
tion, artist modeling, etc.) which do not often provide guarantees
on mesh quality. Our method is also the first to gracefully pre-
serve the appearance of texture throughout the flow. Note that
although we have developed this machinery in the context of
Willmore flow, it could be applied to other flows of interest by
simply changing the initial flow direction ;. A promising avenue
for future work is a more thorough investigation of curvature-
based filtering, as already hinted at in Section 4. We are also
eager to investigate whether this type of approach can be used
to help stabilize flows based on higher-order fairness energies.



Figure 18: Curvature flow on a highly irregular mesh (left) with minimum edge length less than 0.2% of mesh diameter. As predicted, our
flow remains stable for time steps T < 1. Top: first four steps of stable flow with T = 1 — €; bottom: unstable flow with T =1 + €, where
€ =3 x 107%. Notice that curvature in unstable flow exhibits oscillatory behavior characteristic of forward Euler.
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Appendices

For brevity, we omit the length element |df| and area element
|df|* from all integrals. We use JX to denote a quarter turn of X
in the counter-clockwise direction, which means that xdf (X) =

df (JX) and hence ((a, 8)) = fM *a A f3 for any two 1-forms a, f3.
Finally, V, E, and F denote vertices, edges, and faces, respectively.

A Closure Condition for Curves
The endpoints f(0) and f (L) agree as long as the tangent field T

integrates to zero. Note that since T has unit length, both T and
T’ are orthogonal to T. Differentiating in time therefore yields

o= T=[ UTTJT.

Recalling that f' =T and T’ = kN, we get

0=J [[UT,T)f = —Jf;uJ,T’/,TS'fUT,T’))f
— I [H T RN) + LIERRTTf = - [L S,

where on the first line we apply partial integration and the fun-
damental theorem of calculus. Hence, ((x, f*)) = ((k, f”)) =0.

B Total Mean Curvature Half Density

Let f : M — ImH be an immersion of a closed surface experi-
encing a conformal flow. At time ¢ = 0, we have A(0) =1 and
p(0) =0, hence the time derivative of Eq. (5) is simply DA = p.
Integrating over M and applying Stokes’ theorem we get

[, pldff == df ndi={ ddf)=[,  dfA=0,

or in other words, ((0,1)) = 0. Integrating the relationship
0 = u+ pldf| over M we see that total curvature is conserved.

C Exactness

A transformation A is integrable as long as the resulting differ-
ential 8 := Adf A is exact (f = df for some new immersion f).
When M is simply-connected, it is sufficient for 8 to be closed
(d8 = 0) - this condition leads directly to Eq. (5) (see [Crane
et al. 2011, App. B]). When M is not simply connected, we must
also ensure that 8 has no harmonic component. Here we seek the
corresponding condition on curvature.

Let {w}, i=1,...,2g be a basis for real-valued harmonic 1-forms
on a closed surface M, and note that H-linear combinations of
these bases span all harmonic 1-forms. To preserve integrability,
then, we must ensure that ({3, w,)) = 0 for all i. Differentiating
B with respect to time yields § = Adf + df A = 2Im(df A) which
means that A must satisfy (Im(df 1), w;)) = 0, or equivalently
Im f u KOIA df A =0 for all i. Evaluating the integrand yields

xew; A (X,JX) = w,(JX)df (JX) + w,(X)df (X)
=df (X)X + w,(JX)IX) = df (Y}) =t v;,

=,

where Y, is a harmonic vector field on M and v is its pushfor-
ward to the immersed surface. The condition on A is then just
Im{(A, v;)) = O for all harmonic bases v;.

To find the equivalent condition on p, consider the 2g solutions
Z, to DZ, = v,. A quaternion has no imaginary component if its
scalar product with all vectors a € R is zero, hence our condition
on A becomes

0= <a, fM ivi> = —fM (via,i> = —fM <DZia,i>
=—J, <Zia,Di> = —fM (Za,p) = fM (Z,a)p.
where we have used the self-adjointness of D and the fact that

DA = p. In other words, p must be orthogonal to each of the
three imaginary components of each of the functions Z;:

(6, Z7) =(p,Z") =p,2Z7) =0.

C.1 Implementation

On a mesh, we compute the functions Z; € H"! as follows:
I. Pick 2g random discrete 1-forms a; € R/,

II. Extract harmonic components w; via Hodge decomposition.

III. Orthogonalize {w;} via the Gram-Schmidt process.

IV. Construct corresponding vector fields v; € ImH'*!.

V. Solve XZ; = v, for each harmonic vector field v;.

For Hodge decomposition, we use the method of

Desbrun et al. [2008]. The matrix X is given in

Appendix G (here p = 0). To get the vector fields €;

v;, we construct appropriate vectors v € ImH in €2
each triangle. Let e; and e, be two edge vectors

(see inset), and let coil, coiz be the corresponding 1-form values.
Then v must satisfy (v,e;) = o and (v,e,) = w?. If we express
v as a linear combination v = a,e; + a,e,, we get a 2 x 2 system

Loy e ) a]-[2]

for the coefficients a;,a, € R.
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D Inversions

We seek an explicit expression for a change in curvature p cor-
responding to a sphere inversion. Any inversion can be written
as (f 7! —¢)7!, where ¢ € R® is the inversion center. Consider a
time-varying inversion with c(0) = 0 and ¢ = a € R®. Then

L1 o) L = faf,
where we have used the identity iq’l = —q7'4q~!. Hence,
df = df(af) + (fa)df. But since df(t) = A(6)df (0)A(t) and
A(0) =1, we also have df = df A + Adf, implying that A = af .
The corresponding change in curvature p is determined via the

relationship DA = p. In particular, let b € R? be the component
of a orthogonal to N so that a = b+ (a,N) N. Then

df Abdf(X,JX)=df X)bdf (JX) — df (JX)bdf (X)
=df (X)bNdf (X) — Ndf (X)bdf (X)
=df (X)(bN + Nb)df (X) =0,

where we have used the identities Ndf (X) = df (JX), Ndf (X) =
—df (X)N, and bN = —Nb. Hence D(bf) = 0 and we find that
any curvature change corresponding to an inversion has the form

. . df Aa,NYNdf 2N|df)?
p= DA = — ) = 3
|df] |df |
for some a € R®. To avoid such motions, we therefore require
(o, N*) = (o, N")) = (p,N*)) =0

where N*, N, N* are the scalar components of the normal N.

(a,N)N =—2(a,N)

E Méobius Balancing

We seek a sphere inversion that moves our current surface to-
wards a desired distribution of area, up to uniform global scaling.
If dA is the desired metric, then we have |df|* = e2“dA for some
real function u. Since the metric of the transformed surface is
|df |2 = |A|*|df|?, the change in scale factor is i = %% log|A|* =
2Re(A). For a sphere inversion, A = af for some a € R? (Ap-
pendix D). Hence, i = —2(a, f). The optimal direction for a is
found by solving

max (1, mean(u) — u)),

lal,=1
where |- |, is the appropriate norm, described below. In other
words, we want to move away from our current scale factors
u and toward uniform factors mean(u) as quickly as possible.
Letting u° := u — mean(u), the objective can be expressed as

((a, f),u®) = [, (a, FHu’ =a, [, u"f) = (a,v),
N——

:=veR3

where we omit a constant factor 2. Since the direction a deter-
mines a change in mean curvature half-density, the value of |a],

is given not by the usual Euclidean norm on R® but rather the
%? norm of the induced function p = —2(a,N). In particular,

la|> := 4], (a,N)* = (Ba,a),
where B € R**3 equals B = 4fM N ® N. We then want to solve

max (a,v) s.t. (Ba,a)=1,

aeR3

which amounts to solving Ba = v, then normalizing a w.r.t. B.

Figure 19: Left: original surface. Gradient descent with respect to
w scales features uniformly (center left). Removing low-frequency
components of the flow (center right) closely approximates stan-
dard (position-based) Willmore flow (right).

E.1 Implementation

On a mesh with vertex areas V, desired vertex areas V', and ver-
tex normals N, the balancing direction a is computed as follows:

I. Compute scale factors u; « %log(vi/ V") at each vertex.

v
i=1

. 14
II. Remove the mean via ui0 —u — Vu,/ I|:|1 V.

III. Compute the vector v «— Y Vifu?.

IV. Solve Ba =v where B=4), VNN/.

V. Normalize a «— a/(Ba,a)/?.

F Scaling Flow

Consider an immersed surface f : M — R3. In a sufficiently
small ball around any point p € M we can express f via
the height function h,(q) = (N(p),f(q) — f(p)). Noting that
N(p) and f(p) are constant with respect to q, we have Ah, =
(N(p),Af) =2H (N(p),N). In particular, when q = p we get
H(p)= %(Ahp)( p). Now consider an evolution of the surface that

looks like hp = —h,, at some point p, i.e., an exponential scaling
down of height over the tangent plane. Then differentiating H(p)
in time yields H(p) = %(Ahp)(p) = —%(Ahp)(p) = —%H(p), ie.,
the change in H must be proportional to H itself. This evolution
is the same as the evolution p = —%H, since a small normal

deformation f = f + ehN over a plane is isometric (hence con-
formal) up to first order. In particular, dN = O for a plane,

hence g(u,v) = <df(u),df(v)> = g(u,v)+e(dh(u) (N,df (v)) +
dh(v) (N,df (u))) +0(e?), but (N, df (u)) = 0 for all u.

G Facewise Construction of Dirac Operator

To compute the functions A (Eq. (5)) and Z; (Appendix C.1),
we need to solve linear systems involving the Dirac operator D.
By locally applying the discrete Dirac operator (plus the desired
potential) followed by its adjoint, one finds that the final matrix
X € HV™IVI can be expressed as a sum of matrices X, € HIV*IV!
corresponding to each face, with nonzero entries

Xj= _% + é(piej - pjei) + %pipj
for every ordered pair (i, ) of vertices in the kth triangle, where

A, is the triangle area, p; € R is the value of p at vertex i, and
e; € H is the edge vector opposite vertex i in triangle k.



