DISCRETE DIFFERENTIAL GEOMETRY:
AN APPLIED INTRODUCTION

Keenan Crane

Last updated: April 16, 2023

Contents

Chapter 1. Introduction

1.1.
1.2.
1.3.

Disclaimer
Copyright
Acknowledgements

Chapter 2. Combinatorial Surfaces

2.1.
2.2.
2.3.
24.
2.5.
2.6.
2.7.

Abstract Simplicial Complex

Anatomy of a Simplicial Complex: Star, Closure, and Link
Simplicial Surfaces

Adjacency Matrices

Halfedge Mesh

Written Exercises

Coding Exercises

Chapter 3. A Quick and Dirty Introduction to Differential Geometry

3.1.
3.2.
3.3.
3.4.
3.5.

The Geometry of Surfaces
Derivatives and Tangent Vectors
The Geometry of Curves
Curvature of Surfaces
Geometry in Coordinates

Chapter 4. A Quick and Dirty Introduction to Exterior Calculus

4.1.
42.
4.3.
44.
4.5.
4.6.
47.
4.8.

Exterior Algebra

Examples of Wedge and Star in R"
Vectors and 1-Forms

Differential Forms and the Wedge Product
Hodge Duality

Differential Operators

Integration and Stokes” Theorem

Discrete Exterior Calculus

Chapter 5. Curvature of Discrete Surfaces

5.1.
5.2.
5.3.
54.
5.5.
5.6.

Vector Area

Area Gradient

Volume Gradient

Other Definitions

Gauss-Bonnet

Numerical Tests and Convergence

Chapter 6. The Laplacian

6.1.
6.2.
6.3.

Basic Properties
Discretization via FEM
Discretization via DEC

100
100
103
107

6.4.
6.5.
6.6.
6.7.

CONTENTS

Meshes and Matrices

The Poisson Equation

Implicit Mean Curvature Flow
Boundary Conditions

Chapter 7. Surface Parameterization

7.1.
7.2.
7.3.
7.4.
7.5.

Conformal Structure

The Cauchy-Riemann Equation

Differential Forms on a Riemann Surface
Conformal Parameterization

Eigenvectors, Eigenvalues, and Optimization

Chapter 8. Vector Field Decomposition and Design

8.1.
8.2.
8.3.
8.4.

Hodge Decomposition

Homology Generators and Harmonic Bases
Connections and Parallel Transport

Vector Field Design

Chapter 9. Conclusion

Bibliography

Appendix A. Derivatives of Geometric Quantities

Al

List of Derivatives

110
112
113
115

120
122
123
124
126
130

137
138
145
150
157

161
162

164
168

CHAPTER 1

Introduction

04

01 ~
7 €

These notes focus on three-dimensional geometry processing, while simultaneously providing
a first course in traditional differential geometry. Our main goal is to show how fundamental
geometric concepts (like curvature) can be understood from complementary computational and
mathematical points of view. This dual perspective enriches understanding on both sides, and
leads to the development of practical algorithms for working with real-world geometric data.
Along the way we will revisit important ideas from calculus and linear algebra, putting a strong
emphasis on intuitive, visual understanding that complements the more traditional formal, algebraic
treatment. The course provides essential mathematical background as well as a large array of
real-world examples and applications. It also provides a short survey of recent developments in
digital geometry processing and discrete differential geometry. Topics include: curves and surfaces,
curvature, connections and parallel transport, exterior algebra, exterior calculus, Stokes” theorem,
simplicial homology, de Rham cohomology, Helmholtz-Hodge decomposition, conformal mapping,
finite element methods, and numerical linear algebra. Applications include: approximation
of curvature, curve and surface smoothing, surface parameterization, vector field design, and
computation of geodesic distance.

One goal of these notes is to provide an introduction to working with real-world geometric data,
expressed in the language of discrete exterior calculus (DEC). DEC is a simple, flexible, and efficient
framework which provides a unified platform for geometry processing. The notes provide essential
mathematical background as well as a large array of real-world examples, with an emphasis on
applications and implementation. The material should be accessible to anyone with some exposure
to basic linear algebra and vector calculus, though most of the key concepts are reviewed as needed.
Coding exercises depend on a basic knowledge of either Javascript or C++, though knowledge
of any programming language is likely sufficient: we do not make heavy use of paradigms like
inheritance, templates, efc. The notes also provide guided written exercises that can be used to
deepen understanding of the material.

1. INTRODUCTION 4

Why use exterior calculus? There are, after all, many other ways to describe algorithms for
mesh processing. One reason has to do with language: the exterior calculus of differential forms
is, to a large degree, the modern language of differential geometry and mathematical physics. By
learning to speak this language we can draw on a wealth of existing knowledge to develop new
algorithms, and better understand current algorithms in terms of a well-developed theory. It also
allows us to easily write down—and implement—many seemingly disparate algorithms in a single,
unified framework. In these notes, for instance, we’ll see how a large number of basic geometry
processing tasks (smoothing, parameterization, vector field design, efc.) can be expressed in only a
few lines of code, typically by solving a simple Poisson equation.

There is another good reason for taking this approach, beyond simply “saying the same thing
in a different way.” By first formulating algorithms in the smooth geometric setting, we can
ensure that essential structures are subsequently preserved at the discrete level. As one elementary
example, consider the vertex depicted above. If we take the sum of the tip angles 6;, we get a
number that is (in general) different from 27t. On any smooth surface, however, we expect this
number to be exactly 27—said in a differential-geometric way: the tangent space at any point should
consist of a “whole circle” of directions. Of course, if we consider finer and finer approximations of
a smooth surface by a triangle mesh, the vertex will eventually flatten out and our angle sum will
indeed approach 27t as expected. But there is an attractive alternative even at the coarse level: we
can redefine the meaning of “angle” so that it always yields the expected result. In particular, let

- 27

Lo

be the ratio between the angle sum 27t that we anticipate in the smooth setting, and the Euclidean
angle sum } ; 6; exhibited by our finite mesh, and consider the augmented angles

0; := s6..
In other words, we simply normalize the usual Euclidean angles such that they sum to exactly 27,
no matter how coarse our mesh is:
Zéi = sZBi = 271.
i i

From here we can carry out all the rest of our calculations as usual, using the augmented or
“discrete” angles §; rather than the usual Euclidean angles 6;. Conceptually, we can imagine that
each vertex has been smoothed out slightly, effectively pushing the curvature of our surface into
otherwise flat triangles. This particular convention may not always (or even often) be useful, but
in problems where the tangent space structure of a surface is critical it leads to highly effective
algorithms for mesh processing (see for example [KCPS13, SC18]).

This message is one theme we’ll encounter frequently in these notes: there is no one “right” way
to discretize a given geometric quantity, but rather many different ways, each suited to a particular
purpose. The hope, then, is that one can discretize a whole theory such that all the pieces fit
together nicely. DEC is one such theory, which has proven to be highly successful at preserving the
homological structure of a surface, as we'll discuss in Chapter 8.

The remainder of these notes proceeds as follows. We first give an overview of the differential
geometry of surfaces (Chapter 3), using a description that leads naturally into a discussion of
smooth exterior calculus (Chapter 4) and its discretization via DEC. We then study some basic
properties of discrete surfaces (Chapter 2) and their normals (Chapter 5), leading up to an equation
that is central to our applications: the discrete Poisson equation (Chapter 6). The remaining chapters
investigate various geometry processing applications, introducing essential geometric concepts

1. INTRODUCTION 5

along the way (conformal structure, homology, parallel transport, etc.). Coding exercises refer to a
supplementary C++ framework, available from

https://github.com/dgpdec/course

which includes basic mesh data structures, linear algebra libraries, and visualization tools—any
similar framework or library would be suitable for completing these exercises. Solutions to written
exercises are available upon request.

Our goal throughout these notes was to describe every concept in terms of a concrete geometric
picture—we have tried as much as possible to avoid abstract algebraic arguments. Likewise, to get
the most out of the written exercises one should try to make an intuitive geometric argument first,
and only later fill in the formal details.

https://github.com/dgpdec/course

1.3. ACKNOWLEDGEMENTS 6

1.1. Disclaimer

ACHTUNG!

These notes are very much a work in progress and there will be errors. As always, your brain
is the best tool for determining whether a statement is actually true! If you encounter errors please
don’t hesitate to contact the author, noting the page number and the version of the notes.

1.2. Copyright

Images were produced solely by the author with the exception of the Stanford Bunny mesh,
which is provided courtesy of the Stanford Graphics Computer Laboratory. Text in this document
was the sole creation of its author. (©Keenan Crane 2011-2021, all rights reserved.

1.3. Acknowledgements

These notes grew out of a course on discrete differential geometry (DDG) taught annually
starting in 2011, first at Caltech and now at CMU. Peter Schroder, Max Wardetzky, and Clarisse
Weischedel provided invaluable feedback for the first draft of many of these notes; Mathieu
Desbrun, Fernando de Goes, Peter Schroder, and Corentin Wallez provided extensive feedback on
the SIGGRAPH 2013 revision. Joshua Brakensiek and Mark Gillespie made some nice contributions
to written exercises; Nicholas Sharp and Rohan Sawhney helped revolutionize the associated
codebase. Thanks to Mark Pauly’s group at EPFL for suffering through (very) early versions of
these lectures, to Eitan Grinspun for detailed feedback and for helping develop exercises about
convergence, and to David Bommes for test-driving the whole thing at Aachen. David Bachman
and Katherine Breeden provided a bunch of useful feedback in Spring 2020, during their run of
the course at Harvey Mudd College and Pitzer College. Thanks also to those who have pointed
out errors over the years: Mirela Ben-Chen, Nina Amenta, Chris Wojtan, Yuliy Schwarzburg,
Robert Luo, Andrew Butts, Scott Livingston, Christopher Batty, Howard Cheng, Gilles-Philippe
Paillé, Jean-Francois Gagnon, Nicolas Gallego-Ortiz, Henrique Teles Maia, Joaquin Ruales, Papoj
Thamjaroenporn, Niklas Rieken, Yuxuan Mei, John C. Bowers, Alec Bartsch, and all the students in
15-458/858 at CMU and CS177 at Caltech, as well as others who I am forgetting!

Most of the algorithms described in these notes appear in previous literature. The method for
mean curvature flow appears in [DMSB99]. The conformal parameterization scheme described
in Chapter 7 is based on [MTADO08]. The approach to discrete Helmholtz-Hodge decomposition
described in Chapter 8 is based on the scheme described in [DKTO08]. The method for computing
smooth vector fields with prescribed singularities is based on [CDS10]; the improvement using
Helmholtz-Hodge decomposition (Section 8.4.1) is previously unpublished and due to Fernando de
Goes [dGC10]. More material on DEC itself can be found in a variety of sources [Hir03, DHLMO05,
DKTO08]. Finally, the cotan-Laplace operator central to many of these algorithms has a long history,
dating back at least as far as [Mac49].

CHAPTER 2

Combinatorial Surfaces

“Everything should be made as simple as possible, but no simpler.”
—Al

A surface is, roughly speaking, the “outer shell” of a shape—for instance, you can think of
a whole orange as a solid ball; its peel describes a spherical surface (especially if we consider
an idealized peel with zero thickness). Different objects we encounter in our daily lives have
boundaries described by different surfaces. For instance, the glaze covering a donut makes a torus
rather than a sphere. (Hopefully all this talk of oranges and donuts is making you hungry for some
geometry...) As a prelude to really getting into the differential geometry of surfaces, we're going to
start by looking at objects that are easy to understand from a purely discrete point of view, namely,
combinatorial surfaces, or descriptions of shapes that only tell you how surfaces are connected up and
not where they are in space. In discrete differential geometry, combinatorial surfaces effectively play
the same role that topological surfaces do in the smooth setting. We won't get deep into topology in
these notes, but working with discrete surfaces “sans geometry” should give you a pretty good feel
for what topology is all about. In particular, we’ll talk about several different ways to encode the
connectivity of combinatorial surfaces: using an abstract simplicial complex, adjacency matrices, and a
halfedge mesh, all of which tie in to the richer geometric objects and algorithms we want to work
with later on. (Those craving a more technical treatment may want to check out Hatcher’s book on
algebraic topology [Hat02].)

Taking a cue from “Al”} we're going to make some simplifying assumptions about what shapes
look like, while still retaining enough flexibility to describe the kinds of objects found in the
natural world. These simplifications will both make it easier to establish clean descriptions and
definitions of geometric phenomena (such as curvature), and will ultimately help us build lean,
clean algorithms that don’t need to consider lots of special situations and corner cases. The basic
simplifying assumption of differential geometry is that the shapes we want to study are manifold.

IThe quote above paraphrases Albert Einstein, who actually said, “It can scarcely be denied that the supreme goal of all theory
is to make the irreducible basic elements as simple and as few as possible without having to surrender the adequate representation of
a single datum of experience.”

2.1. ABSTRACT SIMPLICIAL COMPLEX 8

Loosely speaking this means that, at least under a microscope, they look the same as ordinary
Euclidean space. For instance, standing on the surface of the (spherical) Earth, it’s pretty hard to
tell that you're not standing on a flat plane. The manifold assumption is powerful because it lets us
translate many of the things we know how to do in flat Euclidean spaces (e.g., work with vectors,
differentiate, integrate, efc.) to more interesting curved spaces. There are in fact many distinct ways
in which a shape can “look like Euclidean space,” leading to many distinct sub-areas of differential
geometry (differential topology, conformal geometry, Riemannian geometry, ...). For now, we want
to focus on an utterly basic property of surfaces, namely that around any point you can find a small
neighborhood that is a topological disk.

polygonal disk (neither) polyhedron

A topological disk is, roughly speaking, any shape you can get by deforming the unit disk in the
plane without tearing it, puncturing it, or gluing its edges together. Some examples of shapes that
are disks include a flag, a leaf, and a glove. Some examples of shapes that are not disks include a
circle (i.e., a disk without its interior), a solid ball, a hollow sphere, a donut, a fidget spinner, and a
teapot. Pictured above, for instance, we have a topological disk (left) a topological annulus (center)
and a topological (sphere) made by gluing together a finite number of polygons along their edges.

In this chapter we'll start out by defining an abstract simplicial complex, which breaks a shape up
into simple pieces like edges, triangles, and tetrahedra. Any abstract simplicial complex can be
encoded by incidence matrices, which are basically just big tables recording which elements are next
to which other elements. Although this description can capture some pretty complicated shapes,
it’s often more general than what we really need for discrete differential geometry. We therefore take
a look at the halfedge mesh, which is specifically tailored to two-dimensional surfaces, and can easily
describe surfaces with general polygonal faces (rather than just triangles). The halfedge mesh will
serve as our basic data structure for most of the algorithms we consider in these notes. At the end
of the chapter, we’ll do some exercises that reveal some fun, interesting, and useful properties of
combinatorial surfaces, and will get some hands-on intuition for how all these representations fit
together by writing some code that lets us interactively navigate a combinatorial surface.

2.1. Abstract Simplicial Complex

How can we encode surfaces by a finite amount of information that makes it possible to
distinguish a sphere from a torus? For now, let’s forget about shape or geometry (how big, small,
thick, thin, etc., the shape is) and focus purely on connectivity: which pieces of the surface are
connected to each other, and how?

2.1. ABSTRACT SIMPLICIAL COMPLEX 9

0

5
4

FIGURE 1. An abstract simplicial complex specifies how vertices are connected, but
not where they are in space. For instance, both of the figures above represent the
same simplicial complex, comprised of six vertices, ten edges, five triangles, and
one tetrahedron.

There are many different ways to describe the connectivity of a discrete surface; one way is
to use a simplicial complex—which in in fact can encode much more complicated objects than just
surfaces. The basic idea is to start out with a set V' of vertices, which we can identify with a collection
of integers:

Vv={012...,n}
We also need some information about how these vertices are connected. The idea of a simplicial
complex is to specify subsets of these vertices that are “right next to each-other,” called k-simplices.
The number k € Z~_ is a nonnegative integer telling us how many elements are in this set: an
abstract k-simplex is a set of (k + 1) distinct vertices, and we call k the degree of the simplex. For
instance, here’s a triangle or 2-simplex:
{3,4,2}
and here’s a 1-simplex:
{3,5}

Geometrically, we can think of a 2-simplex as specifying a triangle, and a 1-simplex as specifying
an edge, as depicted in Figure 1, left; a O-simplex contains just a single vertex. For now we won't
associate specific locations with the vertices—for instance, Figure 1, right is another perfectly good
depiction of these simplices? For this reason we call these simplices abstract—they don’t pin down
some concrete shape in space, but just tell us (abstractly) how vertices are connected up. For this
reason we can go as high as we like without having to think about how this thing looks in space
(8-simplex, 4-simplex, 5-simplex, ...). We also don’t care (for now) about the order in which the
vertices® are specified: for instance {2,3,4} and {3,2,4} specify the same 2-simplex as {3,4,2}.
Note that for convenience, we will often identify any vertex i € V with the corresponding 0-simplex

{i} e K.

Any (nonempty) subset of a simplex is another simplex, which we call a face; a strict subset is
called a proper face. For instance, {2,3} is a proper face of {3,4,2}, and {2,3,4} is a face of {3,4,2},
but not a proper one.

An abstract simplicial complex is, roughly speaking, just a collection of abstract simplices. How-
ever, we will put a very basic condition on this collection that ensures we can work with it in
a natural way—and which ultimately helps us to make connections with smooth surfaces. In
particular, we will say that a collection of simplices K is a simplicial complex if for every simplex

Note: the plural of simplex is simplices—not “simplexes”!
3The plural of vertex is vertices—not “vertexes”!

2.2. ANATOMY OF A SIMPLICIAL COMPLEX: STAR, CLOSURE, AND LINK 10

o € K, every face ¢’ C ¢ is also contained in K. For instance, a bunch of triangles do not constitute
a simplicial complex; you have to include their edges and vertices as well. We will often assume
that a simplicial complex is finite (i.e., contains finitely many simplices), though in principle there’s
no reason you can’t consider an infinite complex—say, a triangulation of the whole Euclidean
plane.

A subcomplex K' of a simplicial complex K is a subset that is also a simplicial complex. For
instance, a single edge is not a subcomplex of any complex, but an edge with its two vertices is
a subcomplex. A complex K is a pure k-simplicial complex if every simplex ¢’ € K is contained in
some simplex of degree k (possibly itself). For instance, a bunch of triangles with edges and vertices
hanging off the side or floating around by themselves is not pure:

'/n

pure not pure

In the end, we end up with a pretty simple (and abstract) object: an abstract simplicial complex
is just a subset of the integers, closed under the operation of taking subsets. This deceivingly simple
object makes it possible to exactly encode the topology of any surface, no matter how complicated.
To do discrete differential geometry we’ll eventually need to associate some kind of shape with a
simplicial complex. But for now there are already some interesting things we can say about surfaces
in the purely combinatorial setting.

2.2. Anatomy of a Simplicial Complex: Star, Closure, and Link

When working with simplicial complexes;' it's helpful to be able to quickly and succinctly refer
to various elements and regions. Let’s start out by considering just a single vertexi € V. The
(simplicial) star of this vertex, denoted St(i) is the collection of all simplices ¢ € K such thati € ¢ °.
Consider for instance the following example:

St
St(i)

“Note: the plural of complex is complexes—not “complices”! Welcome to the English language.
5Be careful to distinguish this star from the Hodge star, which is a completely different object that we’ll study later.

2.2. ANATOMY OF A SIMPLICIAL COMPLEX: STAR, CLOSURE, AND LINK 11

From this picture, one gets the sense that the St(i) is sort of the “local neighborhood” of i. However,
this neighborhood is not itself a simplicial complex, since it doesn’t contain the “outer” edges. To
get such a complex, we can consider the closure Cl of St(i), which is the smallest subcomplex of K
containing St(7):

Cl

St6) CI(St(i))

What if we go the other direction, and take the closure before the star? In other words, we first
consider the closure Cl(i) which is the smallest subcomplex of K containing i. Since {i} has no
proper faces, the closure is just the vertex itself. If we then take the star, we therefore get the same
picture as the first one above, i.e., St(Cl(i)) = St(i):

St(Cl(7))

The only difference between these two sets is the ring of outer edges that was initially missing from
our subcomplex. We give this set a special name: the link Lk(i) = CI1(St(i)) \ St(Cl(i)) (where A\ B
denotes the set difference, i.e., all the elements of A that are not also in B):

Lk(i) = CI(St(:)) \ St(Cl(i))

More generally for any subset S of a simplicial complex K (not necessarily a subcomplex) we have
the following definitions:

e The star St(S) is the collection of all simplices in K that contain any simplex in S.
e The closure C1(S) is the smallest (i.e., fewest elements) subcomplex of K that contains S.
e The link Lk(S) is equal to CI1(St(S)) \ St(CL(S)).

2.2. ANATOMY OF A SIMPLICIAL COMPLEX: STAR, CLOSURE, AND LINK 12

Another closely related object is the boundary bd(K') of a pure k-subcomplex K’ C K. The
boundary is the closure of the set of all simplices ¢ that are proper faces of exactly one simplex
of K'. This definition naturally captures what you might think of as the “boundary” of a set. For

instance:

y bd(K')

The interior int(K') = K’ \ bd(K') is then everything but the boundary (as pictured above).

In general, these operations (star, closure, link, boundary, and interior) provide a natural way
to talk about and navigate any kind of simplicial complex in any dimension. In fact, they are a fair
bit more general than what we need to just talk about simple combinatorial surfaces. In a little bit,
we’ll introduce a different way to navigate around combinatorial surfaces called a half edge mesh,
which is in some ways “slicker” and easier to work with if we don’t care about the general case.
But to do so, we first need to define what we really mean by a combinatorial surface—and to do so,
we’ll need the star, closure, and link!

2.2.1. Oriented Simplicial Complex.

et

So far we’ve assumed that the order of vertices in a simplex doesn’t matter, and specified
simplices using sets. For instance, {i, j, k} is a triangle with vertices i, j, and k, and {j,i,k} or {k,j,i}
describe the same triangle. But in many cases, we’ll want to make a distinction between simplices
with different orientation, because the orientation encodes some information about a quantity we're

2.2. ANATOMY OF A SIMPLICIAL COMPLEX: STAR, CLOSURE, AND LINK 13

measuring or computing. For instance: the change in altitude from the bottom of a hill to the top of
the hill is opposite the change in altitude from the top of the hill to the bottom of the hill.

To capture the notion of orientation, we’ll start by replacing our unordered sets with ordered
tuples. For instance, if i, j € V are two vertices sharing an edge, then we have two distinct ordered
tuples (i,j) and (j, 7). The first tuple describes an oriented edge pointing from i to j, whereas the
second tuple points from j to i. For higher-degree simplices (triangles, tetrahedra, etc.), the story
gets just a bit more complicated. For instance, consider three vertices i, j, k € V sharing a common
triangle. Instead of the single ordered set {i, j, k}, we now have six possible ordered tuples:

(i,j,k) (i/k,j)
(G ki) (j i, k)
(k,i,j) (K j 1)

Each of these tuples specifies some way of walking around the triangle. For instance, we could
tirst visit 7, then j, then k. Or we could first visit j, then i, then k. If we consider these six different
possibilities, what we notice is that they fall into two obvious categories: we either walk “clockwise”
or “counter-clockwise” around the triangle. These two possibilities describe the two possible
orientations for our triangle:

C C

j4 YT >k

Since we don’t care about the starting point, an orientation of a simplex is really an equivalence class
of ordered tuples—in this case, the first column of tuples above are all equivalent (clockwise), and
the second column are all equivalent (counter-clockwise). Therefore, to specify an oriented triangle
we’ll just give a representative triple of indices, rather than singling out one particular tuple. For
instance, we'll say that

ijk == {(G,1,K), (i, i), (i,)
and

ikj = {0, k. j), (i, k), (K, j, i) }-
Hopefully this makes sense: a tuple written with parentheses describes one particular way of
walking around a triangle; a raw triple of indices refers to all tuples with equivalent orientation.

We'll basically always use the latter, since it gives us just enough information to know which
oriented simplex we're talking about: its vertices, and its orientation.

More generally, for any k-simplex we have two possible orientations: the set of all even permu-
tations of its vertices, and the set of all odd permutations of its vertices. For instance, with an edge
we havejustij = {(i,j)} and ji = {(j,7)}. For a triangle we have the two orientations ijk and jik
given above. For a tetrahedron we have ijkl and jikl. And so on. The only exception is 0-simplex,
where there is only one way to write the list of vertices (i.e., i = {i}). A O-simplex therefore has
only one possible orientation.

If two oriented simplices share vertices, then we can talk about their relative orientation. For
instance, the oriented edges ij and jk have the same orientation, because ij ends at j, whereas jk
starts at j. In contrast, ij and kj are oppositely oriented:

2.3. SIMPLICIAL SURFACES 14

i j k i j k

consistent orientation inconsistent orientation

Likewise, the oriented triangles ijk and jil have the same orientation (they are both “clockwise”)
whereas ijk and ijI are oppositely oriented:

j j

consistent orientation inconsistent orientation

Here, the edge ij has the same clockwise orientation as ijk, whereas ji has the opposite ori-
entation. In general, if two k-simplices 01,0, share exactly k vertices, then they have the same
orientation if their restrictions to these shared vertices are oppositely oriented k-simplices. More
precisely, for any oriented simplex ¢ a proper face ¢’ has the same orientation as ¢ if ¢’ appears in
some even permutation of o. An important special case is 0- and 1-simplices: an oriented edge ij
has the same orientation as j, but the opposite orientation of i; this convention captures the fact that
ij goes from i to j.

An (abstract) oriented simplicial complex is an abstract simplicial complex where each simplex
is assigned an orientation. I.e., we start with an ordinary simplicial complex, and simpy pick
one of two orientations for each simplex. There are no conditions on these orientations: they can
be assigned arbitrarily. Though (when possible) it’s often convenient to assume that k-simplices
sharing common (k — 1)-faces have the same orientation (for instance, that all triangles in a planar
triangulation have clockwise orientation).

2.3. Simplicial Surfaces

As mentioned at the beginning of this section, a general simplicial complex is a bit more general
than what we need to study ordinary shapes (a hat, a face, a heart, a banana), which are all pretty
well-captured by surfaces. Instead, it is often enough to work with an abstract simplicial surface.
An abstract simplicial surface is a pure simplicial 2-complex where the link of every vertex is a
single loop of edges, or equivalently, where the star of every vertex is a combinatorial disk made of
triangles. The fact that every vertex has a “disk-like” neighborhood captures the basic idea of a
topological surface; we therefore say that such a complex is manifold®

Unlike a general simplicial complex, a simplicial surface can’t have stuff like three triangles
meeting at an edge, or multiple “cones” of vertices meeting at a vertex. We will henceforth call
such configurations nonmanifold:

®Note that at this point we could very easily put a topology on our complex that makes it into a topological surface in
the usual sense. But the interesting point is that we don’t have to define a topology in order to understand a lot of the
behavior of topological surfaces: the purely combinatorial description will take us surprisingly far.

2.3. SIMPLICIAL SURFACES 15

manifold nonmanifold

We can extend our definition a bit to a simplicial surface with boundary by also allowing the link to
be a simple path of edges, rather than a loop:

For any simplicial surface K, its boundary bd(K) will always be a collection of (zero or more)
closed loops.

An oriented simpicial surface is an abstract simplicial surface where we can assign a consistent
orientation to every triangle, i.e., where any two triangles that share a common edge are given
the same orientation. We will henceforth assume that any simplicial surface whose faces can be
consistently oriented will be consistently oriented. Is a consistent orientation always available? At
tirst glance, it seems easy: start with an arbitrary triangle, assign it an arbitrary orientation, and
now “grow outwards,” assigning a consistent orientation to every triangle you encounter. The
problem is that, at some point, you may loop back around and discover that there is no way to
assign an orientation to a new triangle that is compatible with all previous orientations. Consider

for instance this combinatorial Mobius band:

SACTAN
o1

2.4. ADJACENCY MATRICES 16

Such unorientable surfaces don’t come up all that often in practice—though it’s certainly worth
being aware that they can!

Our definition of a simplicial surface easily extends to higher dimensions: a (combinatorial
or abstract) simplicial n-manifold is a pure simplicial n-complex where the link of every vertex
is a simplicial (n — 1)-sphere. A simplicial n-sphere is just a (simplicial) triangulation of the
n-dimensional sphere

§":={x c R": |x| =1},

i.e., the set of all points unit distance from the origin in n-dimensional space. For instance, 52 is
just the ordinary unit sphere; S! is the unit circle; and S° is nothing more than a pair of points. A
simplicial surface is then a simplicial 2-manifold: every link is a simplicial 1-sphere, i.e., a closed
loop of edges. A simplicial 3-manifold is a tetrahedral mesh where every vertex is enclosed by a
triangulation of the sphere. And so on. How about a simplicial 1-manifold? This would just mean
the link of every vertex is a pair of points; hence, a simplicial 1-manifold must be a collection of
closed loops (do you see why?).

From here there’s a lot more we could say about simplicial surfaces, but this will get the ball
rolling for now. In particular, it’s enough to let us define a halfedge mesh, which will be our basic
way of navigating around simplicial (and more generally, polyhedral) surfaces.

2.4. Adjacency Matrices

One nice way to encode an abstract simplicial complex is using adjacency matrices, which will
make it easy to do computation on simplicial complexes (by way of numerical linear algebra).
These matrices are also closely linked to the discrete differential forms which provides the foundations
for many of our geometric algorithms.

The first thing we have to do is assign distinct indices to simplices of each degree. For instance,
if we have a complex K comprised of vertices V, edges E, and triangles F, then we might assign
indices 0, ..., |V| — 1 to the vertices, 0, ..., |E| — 1 to the edges, and 0, .. ., |F| — 1 to the triangles. It
doesn’t matter which indices get assigned to which triangles, as long as each index is used only
once for each degree of simplex. For instance, here’s a simplicial 2-complex where we’ve indexed
all the vertices, edges, and faces: 3

2 5
4
1 3\ 2
0 3
0
1
To record how simplices are connected up, we’re going to store one matrix Ap that says which
edges contain which vertices, another matrix A; that says which triangles contain which edges,
and so on. We'll put a “1” in row r, column c of Ay if the rth edge contains the cth vertex; all other

entries get a “0”. Likewise, we’ll put a “1” in row r, column c of A; if the rth triangle contains the
cth edge. And so on. Hence, the number of columns in adjacency matrix Ay is the same as the

2.5. HALFEDGE MESH 17

number of k-simplices; the number of rows is the number of (k + 1)-simplices. In this example, our
matrices look like this:

0o 1 2 3

o[1 1 0 0] 01 2 3 4 5

111010 o1 10100

21100 1 11101010
d=310110 A=,1011001

410101 30000111

50001 1

One important thing to notice here is that—especially for a very large complex with a relatively
small number of connections—most of the entries are going to be zero. In practice, it’s therefore
essential to use a sparse matrix, i.e., a data structure that efficiently stores only the location and value
of nonzero entries. The design of sparse matrix data structures is an interesting question all on its
own, but conceptually you can imagine that a sparse matrix is simply a list of triples (7, ¢, x) where
r,¢ € IN specify the row and column index of a nonzero entry and x € R gives its value.

If we have an oriented simplicial complex, we can also build signed adjacency matrices, which
keep track of relative orientation in addition to connectivity. The only change is that the sign of
each nonzero entry will depend on the relative orientation of the two corresponding simplices: +1
if they have the same orientation; —1 if they have opposite orientation. For instance, here are the
signed adjacency matrices for a pair of consistently-oriented triangles sharing a common edge:

o
O - o
S = =
= O N
_ O w
|
—

A=

OR R OO w

2.5. Halfedge Mesh

As discussed above, many of the shapes we encounter in the natural world are well-captured
by manifold, orientable surfaces. Our third and final encoding of surface combinatorics, the halfedge
mesh, takes advantage of the special structure of such surfaces. In some ways, this encoding is less
general than, say, the adjacency matrix representation: we cannot capture edges that dangle off
the side of a triangulation, or surfaces like the M6bius band, or higher-dimensional shapes (e.g.,
volumes rather than surfaces). On the other hand, it will allow us to describe combinatorial surfaces
made of general polygons rather than just triangles, and in certain important cases even allows
us to use fewer triangles (or polygons) than is possible with any simplicial complex. (Formally, a
halfedge mesh allows us to encode a surface as a 2-dimensional CW complex; see [Hat02, Chapter 0]
for a definition.)

From our discussion in Section 2.3 we can notice a few things about any oriented simplicial
surface K (which for now we’ll assume has no boundary):

e every edge is contained in two polygons, and
e the edges around a vertex can be given a cyclic order.

2.5. HALFEDGE MESH 18

In fact, these same statements hold if our surface is made out of n-sided polygons rather than just
3-sided triangles:

The halfedge mesh takes advantage of this special structure to provide a particularly nice descrip-
tion of surfaces. The basic idea is to consider that for every unoriented edge {i, j} between vertices
i and j, we have two oriented edges ij # ji which in this context we refer to as halfedges. We'll use
H to denote the set of all halfedges; note that for a surface without boundary |H| = 2|E|, i.e., we
have twice as many halfedges as edges.

We can use information about how halfedges are connected up to describe an oriented simplicial
surface. In particular, we have two key functions: twin and next. The twin function is the map
1 : H — H such that

n(ij) = jis
i.e., that just takes any halfedge to the halfedge with the same vertices but in the opposite direction.
The next function is the map p : H — H such that

p(ij) = jk Vijke K,
i.e., that takes each halfedge of an oriented triangle ijk to the next halfedge around this triangle.

These maps are reasonably straightforward to figure out if we’re handed some other description of
the surface (such as an oriented simplicial complex or a pair of adjacency matrices).

Going the other direction, we can easily figure out the vertices, edges, and faces of a polygonal
mesh from nothing more than the two maps p and #. For instance, to get a face we can start with
some halfedge i1i» and use the map p to get the next halfedge i»iz = p(i1i2), then the next halfedge
isiy = p(i2i3), and then the next, until we eventually get back to i1ip. In other words, the faces of
the mesh are described by the orbits of the “next” map p. What do the orbits of the “twin” map 7y
give us? Well, starting with ij we get ji = #(ij) and then ij = #(ji). Hence, the orbits of 17 describe
the edges. To get the vertices, we can instead consider the orbits of the map p o7, i.e., first we get
the twin halfedge, then the next halfedge, then the twin, then the next, ..., until we get back to the
beginning. To summarize:

2.5. HALFEDGE MESH 19

e the faces are orbits of p,
e the edges are orbits of 7, and
e the vertices are orbits of p o 7.

In fact, any pair of maps p, 7 which satisfy some very basic properties will describe a valid
combinatorial surface. All we need is that (i) the set H has an even number of elements, (ii) p and 7
are both permutations of this set, and (iii) # is an involution with no fixed points, i.e., (1 (ij)) = ij for
all ij € H, and 7 (ij) # ij for any ij € H. This last condition is just common sense: it says that the
twin of your twin is yourself, and you are not your own twin. (If one of these statements were not
true about your real, biological twin, you’d be in serious trouble!) As long as p and 7 satisfy these
basic properties, we can trace out their orbits and recover a combinatorial surface.

In fact, if we index our halfedges in a special way we don’t even really have to worry about
1. In particular, suppose we assign the indices 0 and 1 to the first pair of halfedges, 2 and 3 to
the next pair of halfedges, and so on. Then 7 has a very simple description: the twin of any even
number h is h + 1; the twin of any odd number h is h — 1. The combinatorics of the surface are then
described entirely by the permutation p. In summary, then, every permutation of an even number
of things describes a combinatorial surface! Pretty weird. But true! Think about that next time you
encounter a permutation.

Note that even for surfaces made out of triangles, a halfedge mesh can describe triangulations
that a simplicial complex cannot. Consider for instance the following example:

N‘
j k =k

Here we obtain a cone by gluing two edges of the triangle ijk together. If we fill in the bottom
of the cone with a circular disk, then overall we have four halfedges: three halfedges hy, h1, h>
going around the triangle, and one halfedge h3 going around the disk. The next map is given by
p(ho) = h1,p(h) = hy, p(hy) = hg and p(h3) = h3, i.e., we have a loop around the triangle, and a
loop around the disk. The twin map is determined by the relationships 1 (hy) = hy and 17(hy) = h3,
i.e., two of the triangle halfedges are glued together, and the remaining triangle halfedge is glued
to the halfedge around the disk. There’s no way to describe this triangulation using a simplicial
complex (oriented or otherwise): a simplicial complex only allows us to specify the triangle ijk; we
have no further opportunity to specify how the edges get glued together. Likewise, including the
disk is totally out of the question: it’s not even an ordinary polygon; more like a “unigon!” Here’s

another interesting example:
i
J

i

2.5. HALFEDGE MESH 20

This time we have a torus made of two distinct triangles, but only one vertex. (Can you write
down corresponding maps # and p?) There’s clearly no way to describe this triangulation using a
simplicial complex: for one thing, the “set” {i,1,i} is not a set: it doesn’t have three distinct vertices.
Even if we allow repeats (i.e., multi-sets), we have no way in a simplicial complex to distinguish
between the two distinct triangles “iii” and “iii”, and no way to explain how these triangles get
glued together. A halfedge mesh handles these cases with ease, allowing us to describe interesting
spaces with fewer elements. In contrast, to describe a torus using a simplicial complex we need at
least 7 vertices, 21 edges, and 14 triang]les:

0
0 0
g
2 —
Al 6_ N
5
4
0 0 >
1 4

Here we’ve drawn this triangulation in two ways: on the left, we draw it on a square and imagine
that left/right and bottom /top sides get glued together. Amazingly enough, this same triangulation
can be drawn using straight lines and flat, non-intersecting triangles in IR3, as depicted on the
right—something known as the Csdszir polyhedron. In either case, it’s a lot more complicated than
the two-triangle decomposition of the torus we obtained via a halfedge mesh.

At a practical level, the halfedge description will provide the basic data structure for the
algorithms we’ll implement in these notes. By chasing “next” and “twin” halfedges around, you
can easily access any mesh element your heart desires. One final question though: how do we deal
with surfaces that have boundary (such as a disk or annulus)? These would seem to violate one of
our basic axioms, that every edge is contained in exactly two polygons. The easy answer is: just treat
each boundary component as a single polygon with many sides. In other words, turn your surface with
boundary into a surface without boundary by simply “filling in the holes” (and marking these extra
polygons in some way). From there you have a surface without boundary, and it’s just business as
usual.

2.6. WRITTEN EXERCISES 21

2.6. Written Exercises

EXERCISE 2.1 Euler’s Polyhedral Formula—Simplicial

The Euler characteristic x = V — E + F is a topological invariant: it remains the same even if we make
small local changes to the connectivity (like inserting a new vertex in the middle of a polygon).
It changes only if there is a global change to the topology, like adding an extra component, or an
additional handle. Show in particular that for any simplicial disk with V vertices, E edges, and F
faces, the following relationship holds:

V—-E+F=1

and explain, then, why V — E + F = 2 for any simplicial sphere. (For the purposes of this exercise,
you can think of a simplicial disk as a connected, planar simplicial 2-manifold with a single boundary
component.)

Hint: use induction. Note that induction is generally easier if you start with a given object and decompose

it into smaller pieces rather than trying to make it larger, because there are fewer cases to think about.
‘A Sl _&
I N o

sphere torus double torus
(§=0) (g=1) (§=2)

Clearly not all surfaces look like disks or spheres. Some surfaces have additional handles that
distinguish them topologically; the number of handles g is known as the genus of the surface
(see illustration above for examples). In fact, among all surfaces that have no boundary and are
connected (meaning a single piece), compact (meaning closed and contained in a ball of finite
size), and orientable (having two distinct sides), the genus is the only thing that distinguishes two
surfaces. A more general formula applies to such surfaces, namely

which is known as the Euler-L’'Huilier formula. This formula applies not only to simplicial surfaces,

but surfaces made of general n-gons (squares, pentagons, etc.). You do not have to prove this more
general formula, but it will be useful in the exercises that follow.

2.6. WRITTEN EXERCISES 22

regular irreqular

The valence of a vertex in a combinatorial surface is the number of edges that contain that vertex.
A vertex of a simplicial surface is said to be regular when its valence equals six. Many numerical
algorithms (such as subdivision) exhibit ideal behavior only in the regular case, and generally
behave better when the number of irregular valence vertices is small. The next few exercises explore
some useful facts about valence in combinatorial surfaces.

i

Y

—

EXERCISE 2.2 Platonic Solids

Even the ancient Greeks were interested in regular meshes. In particular, they knew that there
are only five genus-zero polyhedra where all faces have the same number of sides, and the same
number of faces meet at every vertex. These polyhedra are the Platonic solids: the tetrahedron,
icosahedron, octahedron, dodecahedron, and cube. Show that this list is indeed exhaustive. Hint:
you do not need to use any facts about lengths or angles; just connectivity.

EXERCISE 2.3 Regular Valence

Show that the only (connected, orientable) simplicial surface for which every vertex has regular
valence is a torus (g = 1). You may assume that the surface has finitely many faces. Hint: apply the
Euler-Poincaré formula.

2.6. WRITTEN EXERCISES 23

EXERCISE 2.4 Minimum Irregular Valence

Show that the minimum possible number of irregular valence vertices in a (connected, orientable)
simplicial surface K of genus g is given by

4,
m(K) = <0,
1,

0q 09 09
VAN
N — O©

4

assuming that all vertices have valence at least three and that there are finitely many faces. Note:
you do not actually have to construct the minimal triangulation; just make an argument based on
the Euler-Poincaré formula.

EXERCISE 2.5 Mean Valence (Triangle Mesh)

Show that the mean valence approaches six as the number of vertices in a (connected, orientable)
simplicial surface goes to infinity, and that the ratio of vertices to edges to triangles hence approaches

V:E:F=1:3:2.

You may assume that the genus g remains fixed as the number of vertices increases. Hint: Euler-
Poincaré formula!

EXERCISE 2.6 Mean Valence (Quad Mesh)

Similar to the previous exercise, consider a quad mesh, i.e., a combinatorial surface made entirely
out of four-sided quadrilaterials rather than three-sided triangles. Letting Q denote the number of
quadrilaterals, give an expression for the ratio

V:E:Q

in the limit as the number of vertices approaches infinity. You may again assume that the genus
remains fixed.

Knowing the approximate ratios of mesh elements can be useful when making decisions about
algorithm design (e.g., it costs about three times as much to store a quantity on edges as on vertices),
and simplifies discussions about asymptotic growth (since the number of different element types
are essentially related by a constant). Similar ratios can be computed for a tetrahedral mesh, though
here one has to be a bit more approximate:

EXERCISE 2.7 Mean Valence (Tetrahedral).

Letting V, E, F, and T be the number of vertices, edges, triangles, and tetrahedra in a manifold
simplicial 3-complex, come up with a rough estimate for the ratios

VIE:F:T
as the number of elements goes to infinity. For tet meshes, there is a formula analogous to Euler’s

polyhedral formula: V — E+ F — T = ¢, for some constant c that depends only on the global
topology (number of handles, efc.). To get a rough estimate, you should pretend that the link Lk(7)

2.6. WRITTEN EXERCISES 24

of every vertex i € V is a combinatorial icosahedron. Since you care about the asymptotic behavior,
you can safely ignore boundary vertices. Hint: which ratios can you figure out easily?

Here are some statistics on large-ish tetrahedral meshes coming from real data. Do they roughly
match your estimated ratios? (You should NOT worry if they don’t match exactly!)

2 F T A :
mesh #1 | 9344 | 64814 | 109660 | 54189 o't
mesh #2 | 10784 | 69807 | 114345 | 55323)
mesh #3 | 13630 | 97271 | 166689 | 83047 AT
mesh #4 | 20514 | 144661 | 245764 | 121616 [%@5?1%
mesh #5 | 21222 | 146117 | 245959 | 121063 RV

mesh #6 | 21464 | 144263 | 240663 | 117865
mesh #7 | 22933 | 163360 | 279634 | 139206
mesh #8 | 24522 | 175177 | 300272 | 149616
mesh #9 | 37483 | 262803 | 447463 | 222143

Y »w;‘frvg,w 0%
5 .ug‘f#»ge

EXERCISE 2.8 Star, Closure, and Link

For the subset S indicated below in dark blue (consisting of three vertices, three edges, and two
triangles), give the star St(S), the closure CI(S), and the link Lk(S), either by drawing pictures or
providing a list of simplices in each set.

a b
c d f f g c
) h
1] k / . 1
A' |
0
n p 7 n
S
’
S

EXERCISE 2.9 Boundary and Interior

For the subset K’ indicated above in dark blue (consisting of 12 vertices, 23 edges, and 12 triangles),
give the boundary bd(K’) and the interior int(X'), either by drawing pictures or providing a list of
simplices in each set.

2.6. WRITTEN EXERCISES 25

EXERCISE 2.10 Surface as Permutation

For the combinatorial surface pictured below, give the twin and next permutations # and p (resp.)
by filling out the following tables:

0[1]2]3

[1]2[3]4|5]6]7[8]9 h|0|1]2|8]4|5]6]7]|8|9
NEREREER O

|
n(h) |

A4

EXERCISE 2.11 Permutation as Surface

For the permutation p given below, describe the combinatorial surface it describes—either in words,
or by drawing a picture. You should assume that 7 is determined as described in Section 2.5, i.e.,
the twin of an even halfedge / is I + 1; the twin of an odd halfedge his h — 1.

EXERCISE 2.12 Surface as Matrices

Give the adjacency matrices Ag and A; for the simplicial disk depicted in the figure below.

2.7. CODING EXERCISES 26

For the next three exercises you may be as rigorous or as informal as you like, so long as you
correctly convey the core reason why each of the statements is true.

EXERCISE 2.13 Classification of Simplicial 1-Manifolds

Explain why every simplicial 1-manifold (possibly with boundary) cannot contain anything other
than paths of edges and closed loops of edges.

EXERCISE 2.14 Boundary Loops

Explain why the boundary of any simplicial surface (i.e., any simplicial 2-manifold) always has to
be a collection of closed loops.

EXERCISE 2.15 Boundary Has No Boundary

Explain why the boundary bd(K) of a simplicial manifold has no boundary. In other words, why
does bd(bd(K)) = @? Here you may assume that a simplicial manifold with boundary means a pure
simplicial k-complex where the link of every vertex is either a simplicial (k — 1)-sphere (in which
case it’s an interior vertex), or a simpicial (k — 1)-ball (in which case it’s a boundary vertex). For
instance, when k = 2 the link of a boundary vertex will just be a path of edges.

2.7. Coding Exercises

To get a feel for how we’re going to work with the combinatorics of a surface in practice, we’ll
now write some code that nicely ties together a bunch of the ideas discussed above. In particular,
given a half edge mesh describing the combinatorics of a manifold triangle mesh, you will build
the vertex-edge and edge-face adjacency matrices. These matrices can be used to implement two
concepts we've studied:

e the boundary and coboundary operators, and
e the star, closure, and link operators.

Later on, we’ll also see that these matrices have an important connection to discrete differential
forms. Note that the methods below must be implemented using these matrices; from here on out
you should not be doing everything purely in terms of halfedge operations. The input subset of
simplices S will be provided as a data structure containing sets of vertex, edge, and face indices.

CODING 1. Implement the method assignElement Indices, which assigns a unique index
to each vertex, edge, and face of the triangle mesh. For each type of element, indices should start at
zero—for instance, the vertices should be assigned indices 0, ..., |V| — 1, and the edges should be
assigned indices 0, .. ., |E| — 1, etc. The order doesn’t matter at all, so long as the mapping between
elements and indices is one-to-one. These indices provide a correspondence between elements of
the mesh, and rows/columns of matrices you will build in the next few coding exercises.

2.7. CODING EXERCISES 27

CODING 2. Implement the method buildvertexEdgeAdjacencyMatrix, which constructs
the unsigned vertex-edge adjacency matrix Ag € RIEXIVI (not the signed one), described in Sec-
tion 2.4. Since this matrix contains mostly zeros, it must be implemented using a sparse matrix data
structure (otherwise, computation will become extraordinarily slow on large meshes!).

CODING 3. Implement the method buildEdgeFaceAdjacencyMatrix, which constructs
the unsigned edge-face adjacency matrix A; € R/FI*IE| (just as in the previous exercise).

CODING 4. Implement the methods buildVertexVector, buildEdgeVector, buildFaceVector,
which each take a subset S of simplices as input, and construct a column vector encoding the
vertices, edges, or faces (respectively) in that subset. For instance, in buildVertexVector you
should build a column vector with | V| entries that has a “1” for each vertex in the subset, and “0”
for all other vertices.

For the remaining methods, recall that you must use the adjacency matrices (as discussed above);
you should not be implementing these methods directly using the halfedge data structure.

CODING 5. Implement the method star, which takes as input a subset S of simplices, and
computes the simplicial star St(S) of this subset. Hint: What happens if you apply the two unsigned
adjacency matrices in sequence? How do you get all the simplices in the star?

CODING 6. Implement the method closure, which finds the closure CI(S) of a given subset
S.

CODING 7. Implement the method 1ink, which finds the link Lk(S) of a given subset S. Hint:
use the star and the closure!

CODING 8. Implement the methods isComplex and isPureComplex, which check whether
a given subset S is a simplicial complex, and a pure simpicial complex, resp. The latter method
should return the degree of the complex if it’s pure, and -1 otherwise. Hint: use the c1osure method
for the first part, plus the adjacency matrices for the second part.

CODING 9. Implement the method boundary, which takes as input a subset S of simplices,
and finds the set of simplices contained in the boundary bd(S) of this subset. You should first use
the method isPure to make sure that the given subset is a pure simplicial complex (otherwise, we
do not have a straightforward definition for the boundary). Hint: think carefully about what the result
of applying an unsigned adjacency matrix can look like. What do you notice about the simplices that should
be included in the output set? See in particular Exercise 9.

Once everything is implemented you should be able to select a subset of simplices, and click on
buttons to apply various operators. You should verify that your code agrees with the examples you
computed by hand, and also passes all of the basic tests provided in the test suite.

CHAPTER 3

A Quick and Dirty Introduction to Differential Geometry

3.1. The Geometry of Surfaces

There are many ways to think about the geometry of a smooth surface (using charts, for instance)
but here’s a picture that is well-suited to the way we work with surfaces in the discrete setting.
Consider a little patch of material floating in space, as depicted below. Its geometry can be described
viaamap f : M — R? from a region M in the Euclidean plane R? to a subset f(M) of R:

The differential of such a map, denoted by df, tells us how to map a vector X in the plane to the
corresponding vector df(X) on the surface. Loosely speaking, imagine that M is a rubber sheet and
X is a little black line segment drawn on M. As we stretch and deform M into f(M), the segment
X also gets stretched and deformed into a different segment, which we call df(X). Later on we can
talk about how to explicitly express df (X) in coordinates and so on, but it’s important to realize that
fundamentally there’s nothing deeper to know about the differential than the picture you see here—the
differential simply tells you how to stretch out or “push forward” vectors as you go from one space
to another. For example, the length of a tangent vector X pushed forward by f can be expressed as

df(X) - df(X),

where - is the standard inner product (a.k.a. dot product or scalar product) on R3. Note that this
length is typically different than the length of the vector we started with! To keep things clear, we’ll
use angle brackets to denote the inner product in the plane, e.g., the length of the original vector
would be /(X, X). More generally, we can measure the inner product between any two tangent
vectors df(X) and df(Y):

8(X,Y) = df(X) - df(Y).
The map g is called the metric of the surface, or to be more pedantic, the metric induced by f. Note
that throughout we will use df(X) interchangeably to denote both the pushforward of a single

28

3.1. THE GEOMETRY OF SURFACES 29

vector or an entire vector field, i.e., a vector at every point of M. In most of the expressions we'll
consider this distinction won’t make a big difference, but it's worth being aware of. Throughout
we’ll use TM to denote the tangent bundle of M, i.e., the set of all tangent vectors.

So far we’ve been talking about tangent vectors, i.e., vectors that lay flat along the surface. We're
also interested in vectors that are orthogonal to the surface. In particular, we say that a vector
u € R3 is normal to the surface at a point p if

df(X)-u=0

for all tangent vectors X at p. For convenience, we often single out a particular normal vector N
called the unit normal, which has length one. Of course, at any given point there are two distinct
unit normal vectors: +N and —N. Which one should we use? If we can pick a consistent direction
for N then we say that M is orientable. For instance, the circular band on the left is orientable, but
the Mobius band on the right is not:

For orientable surfaces, we can actually think of N as a continuous map N : M — 52 (called the
Gauss map) which associates each point with its unit normal, viewed as a point on the unit sphere
S2. In fact, if we think of S? as a subset of IR® (consisting of all the points unit distance from the
origin), then we can do all the same things with N that we did with our map f. In particular, the
differential dN (called the Weingarten map) tells us about the change in the normal direction as
we move from one point to the other. For instance, we can look at the change in normal along a
particular tangent direction X by evaluating dN (X)—this interpretation will become useful when
we talk about the curvature of surfaces. Overall we end up with the following picture, which
captures the most fundamental ideas about the geometry of surfaces:

N

/ 5
-

M

@ g
AN

\
m

3.1. THE GEOMETRY OF SURFACES 30

3.1.1. Conformal Coordinates. When working with curves, one often introduces the idea of
an isometric (a.k.a. arc-length or unit speed) parameterization. The idea there is to make certain
expressions simpler by assuming that no “stretching” occurs as we go from the domain into R>.
One way to state this requirement is

|df(X)| = 1X],

i.e.,, we ask that the norm of any vector X is preserved.

For surfaces, an isometric parameterization does not always exist (not even locally!). Most of
the time you simply have to stretch things out. For instance, you may know that it’s impossible to
flatten the surface of the Earth onto the plane without distortion—that’s why we end up with all
sorts of different funky projections of the globe.

N
LA TAN
/47 BTN\
y/8u | \ N\
[/] 1\
] N I)
(U [>4] I |]
AL /AN W Y AN /]
A\ I/
N\ /S
N\ L/
)4

However, there is a setup that (like arc-length parameterization for curves) makes life a lot
easier when dealing with certain expressions, namely conformal coordinates. Put quite simply, a map
f is conformal if it preserves the angle between any two vectors. More specifically, a conformal map
f:R? D> M — R satisfies

df(X) - df (Y) = a(X,Y)

for all tangent vectors X, Y, where a is a positive function and (-, -) is the usual inner product on R2.
In practice, the function a is often replaced with e¢* for some real-valued function u—this way, one
never has to worry about whether the scaling is positive. Notice that vectors can still get stretched
out, but the surface never gets sheared—for instance, orthogonal vectors always stay orthogonal:

vt df(Y)

X f df (X)
/_-}

A key fact about conformal maps is that they always exist, as guaranteed by the uniformization
theorem. In a nutshell, the uniformization theorem says that any disk can be conformally mapped
to the plane. So if we consider any point p on our surface f(M), we know that we can always find
a conformal parameterization in some small, disk-like neighborhood around p. As with unit-speed
curves, it is often enough to simply know that a conformal parameterization exists—we do not
have to construct the map explicitly. And, as with arc-length parameterization, we have to keep
track of the least possible amount of information about how the domain gets stretched out: just a
single number at each point (as opposed to, say, an entire Jacobian matrix).

http://en.wikipedia.org/wiki/Uniformization_theorem
http://en.wikipedia.org/wiki/Uniformization_theorem
http://en.wikipedia.org/wiki/Jacobian_matrix_and_determinant

3.2. DERIVATIVES AND TANGENT VECTORS 31

3.2. Derivatives and Tangent Vectors

3.2.1. Derivatives on the Real Line. So far we’ve been thinking about the differential in a very
geometric way: it tells us how to stretch out or push forward tangent vectors as we go from one place
to another. In fact, we can apply this geometric viewpoint to pretty much any situation involving
derivatives. For instance, think about a good old fashioned real-valued function ¢(x) on the real
line. We typically visualize ¢ by plotting its value as a height over the x-axis:

¢ (x)]

In this case, the derivative ¢’ can be interpreted as the slope of the height function, as suggested
by the dashed line in the picture above. Alternatively, we can imagine that ¢ stretches out the real
line itself, indicated by the change in node spacing in this picture:

RS

dp(X)

¢(R)

Where the derivative is large, nodes are spaced far apart; where the derivative is small, nodes
are spaced close together. This picture inspires us to write the derivative of ¢ in terms of the
push-forward d¢(X) of a unit tangent vector X pointing along the positive x-axis:

¢' = do(X).

In other words, the derivative of ¢ is just the “stretch factor” as we go from one copy of R to the
other. But wait a minute—does this equality even make sense? The thing on the left is a scalar, but
the thing on the right is a vector! Of course, any tangent vector on the real line can be represented
as just a single value, quantifying its extent in the positive or negative direction. So this expression
does make sense—as long as we understand that we’re identifying tangent vectors on R with real
numbers. Often this kind of “type checking” can help verify that formulas and expressions are
correct, similar to the way you might check for matching units in a physical equation.

3.2. DERIVATIVES AND TANGENT VECTORS 32

Here’s another question: how is this interpretation of the derivative any different from our
usual interpretation in terms of height functions? Aren’t we also stretching out the real line in that
case? Well, yes and no—certainly the real line still gets stretched out into some other curve. But
this curve is now a subset of the plane R>—in particular, it’s the curve v = (x, ¢(x)). So for one
thing, “type checking” fails in this case: ¢’ is a scalar, but dv(X) is a 2-vector. But most importantly,
the amount of stretching experienced by the curve doesn’t correspond to our usual notion of the
derivative of ¢—for instance, if we look at the magnitude of |dy(X)| we get /1 + (¢')%. (Why is
this statement true geometrically? How could you write ¢’ in terms of dy(X)? Can you come up
with an expression that recovers the proper sign?)

3.2.2. Directional Derivatives. So far so good: we can think of the derivative of a real-valued
function on R as the pushforward of a (positively-oriented) unit tangent vector X. But what
does d¢(X) mean if ¢ is defined over some other domain, like the plane IR?? This question may
“stretch” your mind a little, but if you can understand this example then you're well on your way
to understanding derivatives in terms of tangent vectors. Let’s take a look at the geometry of the
problem—again, there are two ways we could plot ¢. The usual approach is to draw a height
function over the plane:

Ao(x)

The derivative has something to do with the slope of this hill, but in which direction? To answer
this question, we can introduce the idea of a directional derivative—i.e., we pick a vector X and
see how quickly we travel uphill (or downhill) in that direction. And again we can consider an
alternative picture:

RZ

X/’ R

3.2. DERIVATIVES AND TANGENT VECTORS 33

Since ¢ is a map from IR? to IR, we can imagine that it takes a flat sheet of rubber and stretches it out
into a long, skinny, one-dimensional object along the real line. Therefore if we draw an arrow X
on the original sheet, then the “stretched-out” arrow d¢(X) gives us the rate of change in ¢ along
the direction X, i.e., the directional derivative. What about type checking? As before, everything
matches up: d¢(X) is a tangent vector on R, so it can be represented by a single real number. (What
if we had continued to work with the height function above? How could we recover the directional
derivative in this case?)

By the way, don’t worry if this discussion seems horribly informal! We'll see a more explicit,
algebraic treatment of these ideas when we start talking about exterior calculus. The important
thing for now is to build some geometric intuition about derivatives. In particular: a map from any
space to any other space can be viewed as some kind of bending and twisting and stretching (or
possibly tearing!); derivatives can be understood in terms of what happens to little arrows along
the way.

3.3. THE GEOMETRY OF CURVES 34

3.3. The Geometry of Curves

)

dy(X
. /\ v(I)
I

The picture we looked at for surfaces is actually a nice way of thinking about shapes of any
dimension. For instance, we can think of a one-dimensional curve as a map ¢ : I — R3 from an
interval I = [0, T] C R of the real line to R®. Again the differential d tells us how tangent vectors
get stretched out by 7, and again the induced length of a tangent vector X is given by

jdy(X)| = \/dr(X) - dv(X).
Working with curves is often easier if 7y preserves length, i.e., if for every tangent vector X we have

|dy(X)| = [X].

/a7

There are various names for such a parameterization (“unit speed”, “arc-length”, “isometric”) but the
idea is simply that the curve doesn’t get stretched out when we go from R to R3>—think of y as a
completely relaxed rubber band. This unit-speed view is also often the right one for the discrete
setting where we have no notion of a base domain [—from the very beginning, the curve is given
to us as a subset of R? and all we can do is assume that it sits there in a relaxed state.

\

Suppose we have a unit-speed curve <y and a positively-oriented unit vector X on the interval I.
Then

T =dvy(X)

is a unit vector in IR? tangent to the curve. Carrying this idea one step further, we can look at the
change in tangent direction as we move along <. Since T may change at any rate (or not at all!) we

3.3. THE GEOMETRY OF CURVES 35

split up the change into two pieces: a unit vector N called the principal normal that expresses the
direction of change, and a scalar x € IR called the curvature that expresses the magnitude of change:

dT(X) = —«xN.

One thing to realize is that T and N are always orthogonal. Why? Because if the change in T were
parallel to T, then it would cease to have unit length! (This argument is a good one to keep in mind
any time you work with unit vector fields.) By convention, we choose N to be the normal pointing
to the “left” of the curve, i.e., if at any point we consider a plane spanned by the tangent and the
normal, N is a quarter turn in the counter-clockwise direction from T. Together with a third vector
B =T x N called the binormal, we end up with a very natural orthonormal coordinate frame called
the Frenet frame.

How does this frame change as we move along the curve? The answer is given by the Frenet-
Serret formula:

T 0 —x 0 T
N |=|x 0 -7 N
B’ 0 7 0 B
N——
Q’€R3X3 AcIR3x%3 QGIR3X3

Here T, N, and B are interpreted as row vectors, and a prime indicates the change in a quantity as
we move along the curve at unit speed. For instance, T’ = dT(X), where X is a positively-oriented
unit vector on I. The quantity 7 is called the torsion, and describes the way the normal and binormal
twist around the curve.

A concise proof of this formula was given by Cartan. First, since the vectors T, N, and B are
mutually orthogonal, one can easily verify that QQT = I, i.e., Q is an orthogonal matrix. Differenti-
ating this relationship in time, the identity vanishes and we’re left with Q'QT = —(Q'QT)7, i.e,,
the matrix Q'QT is skew-symmetric. But since A = Q'QT, A must also be skew-symmetric. Skew
symmetry implies that the diagonal of A is zero (why?) and moreover, we already know what the
top row (and hence the left column) looks like from our definition of x and N. The remaining value
A3 = —Azp is not constrained in any way, so we simply give it a name: T € R.

What do you think about this proof? On the one hand it’s easy to verify; on the other hand,
it provides little geometric understanding. For instance, why does N change in the direction of
both T and B, but B changes only in the direction of N? Can you come up with more geometric
arguments?

3.3.2. Visualizing Curvature. What's the curvature of a circle S? Well, if S has radius r then
it takes time 27tr to go all the way around the circle at unit speed. During this time the tangent
turns around by an angle 27t. Of course, since T has unit length the instantaneous change in T is
described exclusively by the instantaneous change in angle. So we end up with

k= |kN| = |dT(X)| =2r/2nr =1/r.

In other words, the curvature of a circle is simply the reciprocal of its radius. This fact should make
some intuitive sense: if we watch a circle grow bigger and bigger, it eventually looks just like a
straight line with zero curvature: lim, ;o 1/7 = 0. Similarly, if we watch a circle get smaller and
smaller it eventually looks like a single point with infinite curvature: lim, ,o1/r = co.

3.3. THE GEOMETRY OF CURVES 36

Now consider a smooth curve 7 in the plane. At any point p € < there is a circle S called the
osculating circle that best approximates y, meaning that it has the same tangent direction T and
curvature vector kN. In other words, the circle and the curve agree “up to second order.” (The
phrase “agree up to nth order” is just shorthand for saying that the first n derivatives are equal.)
How do we know such a circle exists? Easy: we can always construct a circle with the appropriate
curvature by setting r = 1/x; moreover every circle has some tangent pointing in the direction T.
Alternatively, we can consider a circle passing through p and two other points: one approaching
from the left, another approaching from the right. Since these three points are shared by both y and
S, the first and second derivatives will agree in the limit (consider that these points can be used to
obtain consistent finite difference approximations of T and xN).

The radius and center of the osculating circle are often referred to as the radius of curvature and
center of curvature, respectively. We can tell this same story for any curve in R? by considering the
osculating plane T x N, since this plane contains both the tangent and the curvature vector.

For curves it makes little difference whether we express curvature in terms of a change in the
tangent vector or a change in the (principal) normal, since the two vectors are the same up to a
quarter-rotation in the osculating plane. For surfaces, however, it will often make more sense to
think of curvature as the change in the normal vector, since we typically don’t have a distinguished
tangent vector to work with.

http://en.wikipedia.org/wiki/Finite_difference

3.4. CURVATURE OF SURFACES 37

3.4. Curvature of Surfaces

Let’s take a more in-depth look at the curvature of surfaces. The word “curvature” really
corresponds to our everyday understanding of what it means for something to be curved: eggshells,
donuts, and cavatappi pasta have a lot of curvature; floors, ceilings, and cardboard boxes do not.
But what about something like a beer bottle? Along one direction the bottle quickly curves around
in a circle; along another direction it’s completely flat and travels along a straight line:

This way of looking at curvature—in terms of curves contained in the surface—is often how we
treat curvature in general. In particular, let df(X) be a unit tangent direction at some distinguished
point on the surface, and consider a plane containing both df(X) and the corresponding normal N.
This plane intersects the surface in a curve, and the curvature «, of this curve is called the normal
curvature in the direction X:

Remember the Frenet-Serret formulas? They tell us that the change in the normal along a curve
is given by dN = xT — 7B. We can therefore get the normal curvature along X by extracting the
tangential part of dN:
df(X) - AN(X)

(%) = P

3.4. CURVATURE OF SURFACES 38

The factor |df(X)|? in the denominator simply normalizes any “stretching out” that occurs as we go
from the domain M into R®. Note that normal curvature is signed, meaning the surface can bend
toward the normal or away from it.

3.4.1. Principal, Mean, and Gaussian Curvature.

At any given point we can ask: along which directions does the surface bend the most? The
unit vectors X; and X, along which we find the maximum and minimum normal curvatures x; and
Ky are called the principal directions; the curvatures «; are called the principal curvatures. For instance,
the beer bottle above might have principal curvatures x; = 1, xk; = 0 at the marked point.

We can also talk about principal curvature in terms of the shape operator, which is the unique
map S : TM — TM satisfying

df(SX) = dN(X)

for all tangent vectors X. The shape operator S and the Weingarten map dN essentially represent
the same idea: they both tell us how the normal changes as we travel along a direction X. The only
difference is that S specifies this change in terms of a tangent vector on M, whereas dN gives us the
change as a tangent vector in R>. It's worth noting that many authors do not make this distinction,
and simply assume an isometric identification of tangent vectors on M and the corresponding
tangent vectors in R>. However, we choose to be more careful so that we can explicitly account for
the dependence of various quantities on the immersion f—this dependence becomes particularly
important if you actually want to compute something! (By the way, why can we always express the
change in N in terms of a tangent vector? It’s because N is the unit normal, hence it cannot grow or
shrink in the normal direction.)

One important fact about the principal directions and principal curvatures is that they corre-
spond to eigenvectors and eigenvalues (respectively) of the shape operator:

SXZ' = Kz'Xl'.

Moreover, the principal directions are orthogonal with respect to the induced metric: g(X;, Xp) =
df (X1) - df (X2) = 0. The principal curvatures therefore tell us everything there is to know about
normal curvature at a point, since we can express any tangent vector Y as a linear combination of
the principal directions X; and X5. In particular, if Y is a unit vector offset from X; by an angle 6,

3.4. CURVATURE OF SURFACES 39
then the associated normal curvature is
_ 2)
kn(Y) = K1 cos” 6 + K sin” 0,

as you should be able to easily verify using the relationships above. Often, however, working
directly with principal curvatures is fairly inconvenient—especially in the discrete setting.

On the other hand, two closely related quantities—called the mean curvature and the Gaussian
curvature will show up over and over again (and have some particularly nice interpretations in the
discrete world). The mean curvature H is the arithmetic mean of principal curvatures:

K1 + K2
2 7

and the Gaussian curvature is the (square of the) geometric mean:

H=

K= K1K2.

What do the values of H and K imply about the shape of the surface? Perhaps the most elementary
interpretation is that Gaussian curvature is like a logical “and” (is there curvature along both
directions?) whereas mean curvature is more like a logical “or” (is there curvature along at least one
direction?) Of course, you have to be a little careful here since you can also get zero mean curvature
when k1 = —x>.

It also helps to see pictures of surfaces with zero mean and Gaussian curvature. Zero-curvature
surfaces are so well-studied in mathematics that they have special names. Surfaces with zero
Gaussian curvature are called developable surfaces because they can be “developed” or flattened out
into the plane without any stretching or tearing. For instance, any piece of a cylinder is developable
since one of the principal curvatures is zero:

Surfaces with zero mean curvature are called minimal surfaces because (as we’ll see later) they
minimize surface area (with respect to certain constraints). Minimal surfaces tend to be saddle-like
since principal curvatures have equal magnitude but opposite sign:

Y
N\
ol

3.4. CURVATURE OF SURFACES 40

The saddle is also a good example of a surface with negative Gaussian curvature. What does a
surface with positive Gaussian curvature look like? The hemisphere is one example:

Note that in this case x; = x, and so principal directions are not uniquely defined—maximum
(and minimum) curvature is achieved along any direction X. Any such point on a surface is called
an umbilic point.

There are plenty of cute theorems and relationships involving curvature, but those are the basic
facts: the curvature of a surface is completely characterized by the principal curvatures, which are the
maximum and minimum normal curvatures. The Gaussian and mean curvature are simply averages
of the two principal curvatures, but (as we'll see) are often easier to get your hands on in practice.

3.4.2. The Fundamental Forms. For historical reasons, there are two objects we should proba-
bly mention: first fundamental form I and the second fundamental form II. I'm actually not sure what’s
so fundamental about these forms, since they’re nothing more than a mashup of the metric ¢ and
the shape operator S, which themselves are simple functions of two truly fundamental objects: the
immersion f and the Gauss map N. In fact, the first fundamental form is literally just the induced
metric, i.e.,

I(X,Y) :=g(X,Y).
The second fundamental form looks quite similar to our existing expression for normal curvature:
I(X,Y):=—-g(SX,Y) = —dN(X) - df(Y).

The most important thing to realize is that I and II do not introduce any new geometric ideas—just
another way of writing down things we’ve already seen.

3.5. GEOMETRY IN COORDINATES 41

3.5. Geometry in Coordinates

So far we’ve given fairly abstract descriptions of the geometric objects we’ve been working
with. For instance, we said that the differential df of an immersion f : M — R3 tells us how to
stretch out tangent vectors as we go from the domain M C R? into the image f(M) C R®. Alluding
to the picture above, we can be a bit more precise and define df(X) in terms of limits:

o J (P 1X) — f(p)
dfp(X) = lim 7 :
Still, this formula remains a bit abstract—we may want something more concrete to work with in
practice. When we start working with discrete surfaces we’ll see that df(X) often has an incredibly
concrete meaning—for instance, it might correspond to an edge in our mesh. But in the smooth
setting a more typical representation of df is the Jacobian matrix

aft/ax! afl/ox?
J=| af2/0x! 9f2/ox
af3/ax! afd/ox?

Here we pick coordinates on R? and R3, and imagine that

fla,x?) = (A, 22), folx!, x%), fo(x', 2%))
for some triple of scalar functions fi, f2, f3 : M — R. So if you wanted to evaluate df (X), you could
simply apply | to some vector X = [X! X?]T.

3.5.1. Coordinate Representations Considered Harmful. You can already see one drawback
of the approach taken above: expressions get a lot longer and more complicated to write out. But
there are other good reasons to avoid explicit matrix representations. The most profound reason is
that matrices can be used to represent many different types of objects, and these objects can behave
in very different ways. For instance, can you guess what the following matrix represents?

Vo

Give up? It’s quite clear, actually: it’s the adjacency matrix for the complete graph on two vertices.
No, wait a minute—it must be the Pauli matrix oy, representing spin angular momentum along the
x-axis. Or is it the matrix representation for an element of the dihedral group D,? You get the idea:
when working with matrices, it’s easy to forget where they come from—which makes it very easy

http://en.wikipedia.org/wiki/Adjacency_matrix
http://en.wikipedia.org/wiki/Pauli_matrices
http://en.wikipedia.org/wiki/Dihedral_group

3.5. GEOMETRY IN COORDINATES 42

to forget which rules they should obey! (Don’t you already have enough things to keep track of?)
The real philosophical point here is that matrices are not objects: they are merely representations of
objects! Or to paraphrase Plato: matrices are merely shadows on the wall of the cave, which give
us nothing more than a murky impression of the real objects we wish to illuminate.

A more concrete example that often shows up in geometry is the distinction between linear
operators and bilinear forms. As a reminder, a linear operator is a map from one vector space to
another, e.g.,

fiR? = R*%u s f(u),
whereas a bilinear form is a map from a pair of vectors to a scalar, e.g.,
¢ R*xR? = R; (u,0) — g(u,v).

Sticking with these two examples let’s imagine that we're working in a coordinate system (x!, x?),
where f and g are represented by matrices A, B € R>*2 and their arguments are represented by
vectors u,v € R2. In other words, we have

and

X2 A

Now suppose we need to work in a different coordinate system (%!, £2), related to the first one
by a change of basis P € IR>*2. For instance, the vectors u and v get transformed via

i = Pu,
v = Pv.

How do we represent the maps f and g in this new coordinate system? We can’t simply evaluate
A, for instance, since A and @i are expressed in different bases. What we need to do is evaluate

f(u) = PAu=PAP '

and similarly
g(u,v) =u'Bv = (P 10)TB(P~1) = al (P~ TBP)7,

3.5. GEOMETRY IN COORDINATES 43

In other words, linear operators transform like
A~ PAPT,
whereas bilinear forms transform like
B+ P TBP L

So what we discover is that not all matrices transform the same way! But if we're constantly scrawling
out little grids of numbers, it’s very easy to lose track of which transformations should be applied
to which objects.

3.5.2. Standard Matrices in the Geometry of Surfaces. Admonitions about coordinates aside,
it’s useful to be aware of standard matrix representations for geometric objects because they
provide an essential link to classical results. We’ve already seen a matrix representation for one
object: the differential df can be encoded as the Jacobian matrix J containing first-order derivatives
of the immersion f. What about the other objects we’ve encountered in our study of surfaces?
Well, the induced metric g should be pretty easy to figure out since it’s just a function of the
differential —remember that

g(u,v) = df (u) - df (v).
Equivalently, if we use a matrix I € R**? to represent g, then we have
uTlv = (Ju)T(Jv)
which means that
I=1J7J.
We use the letter “I” to denote the matrix of the induced metric, which was historically referred to as

the first fundamental form —fewer authors use this terminology today. In older books on differential
geometry you may also see people talking about “E”, “F”, and “G”, which refer to particular entries

of I
E F
1_[FG}.

(Is it clear why “F” appears twice?) One might conjecture that these fifth, sixth, and seventh letters
of the alphabet have fallen out of fashion precisely because they are so coordinate-dependent and
hence carry little geometric meaning on their own. Nonetheless, it is useful to be able to recognize
these critters, because they do show up out there in the wild.

Earlier on, we also looked at the shape operator, defined as the unique map S : TM — TM
satisfying
dN(X) = df (SX),
and the second fundamental form, defined as
I(u,v) = g(Su,v).

(Remember that S turned out to be self-adjoint with respect to g, and likewise II turned out to be
symmetric with respect to its arguments u and v.) If we let S, I € IR?*? be the matrix representations
of S and II, respectively, then we have

u'llv = u'ISv

for all vectors u,v € R?, or equivalently,
I =1S.

3.5. GEOMETRY IN COORDINATES 44

Components of I are classically associated with lowercase letters from the Roman alphabet, namely

e f
H:[fg]’

which in coordinates (x, y) are given explicitly by

e = N'fxx/
f = N-fu,
g = N'fyy/

where N is the unit surface normal and f,,, denotes the second partial derivative along directions
x and y.

At this point we might want to stop and ask: how does a matrix like IS transform with respect
to a change of basis? The first term, I, is a bilinear form, but the second term S is a linear map! As
emphasized above, we can’t determine the answer by just staring at the matrices themselves—we
need to remember what they represent. In this case, we know that IS corresponds to the second
fundamental form, so it should transform like any other bilinear form: IS — P~ TISP~L.

Finally, we can verify that classical geometric expressions using matrices correspond to the
expressions we derived earlier using the differential. For instance, the classical expression for
normal curvature is

which we can rewrite as
u'lu u"ISu (Ju)T(JSu) df(u)-dN(u)

uTlu o'y (Ju)T(u) [df(w)]?
Up to a choice of sign, this expression is the same one we obtained earlier by considering a curve
embedded in the surface.

CHAPTER 4

A Quick and Dirty Introduction to Exterior Calculus

Many important concepts in differential geometry can be nicely expressed in the language of
exterior calculus. Initially these concepts will look exactly like objects you know and love from
vector calculus, and you may question the value of giving them funky new names. For instance,
scalar fields are no longer called scalar fields, but are now called 0-forms! In the long run we’ll see
that this new language makes it easy to generalize certain ideas from vector calculus—a central
example being Stokes” theorem, which in turn is intimately related to discretization, and ultimately,
computation.

The basic story of exterior calculus can be broken up into a few pieces:

e Linear Algebra: Little Arrows. If you've ever studied linear algebra, you probably re-
member that it has something to do with “little arrows”—also known as vectors. In fact, if
that’s all you can remember about linear algebra, now would be an extremely good time to go
back and do a review! We’re not going to do one here.

e Vector Calculus: How do Little Arrows Change? Likewise, if you've ever studied vector
calculus, then you remember it has to do with how “little arrows” change over space and
time (e.g., how fast the direction of the wind is changing). In other words, vector calculus
tells us how to differentiate vectors. We’'re not going to review that either!

o Exterior Algebra: Little Volumes. Linear algebra explored a bunch of things you can do
with vectors: you can add them, you can scale them, you can take inner products, and
outer products, and so forth. Exterior algebra just adds a couple more operations to this list
which make it easy to talk about things like area and volume. In particular, the operations
let us build up things called k-vectors, which can be thought of as “little k-dimensional
volumes.”

e Exterior Calculus: How do Little Volumes Change? Finally, if vector calculus is the study
of how “little arrows” change over space and time, then exterior calculus is the study of
how “little volumes” change over space and time. In other words, exterior calculus tells us
how to differentiate k-vectors.

That’s the big picture: exterior calculus is to exterior algebra what vector calculus is to linear
algebra. And little volumes are useful because they help us talk about integration in a very general
context. If that story still sounds a bit fuzzy, then read on!

45

4.1. EXTERIOR ALGEBRA 46

4.1. Exterior Algebra

As alluded to above, just as linear algebra is the natural language of “little arrows,” exterior
algebra is the natural language of “little volumes” which we will call k-vectors. The letter “k” denotes
the dimension, for instance, a 1-vector represents a “little length,” a 2-vector represents a “little
area,” and so on. A fundamental thing to remember about ordinary vectors is that they encode two
basic pieces of information: direction, and magnitude. Likewise, k-vectors will also have a direction
and a magnitude, though the notion of “direction” for k-dimensional volumes is a little bit trickier
than for one-dimensional vectors. In its full generality, exterior algebra makes sense in any vector
space V, but to keep things simple for now we’ll just stick to familiar examples like the plane IR?,
three-dimensional space R3, or more generally, n-dimensional space IR".

4.1.1. Warm Up: 1-Vectors and 2-Vectors. How do you describe a volume in R"? The basic
idea of exterior algebra is that, roughly speaking, k-dimensional volumes can be described by a list
of k vectors. In linear algebra we had a somewhat similar idea: k vectors can be used to describe a
k-dimensional linear subspace via the span (one vector spans a line; two vectors span a plane, and
so forth). In either case the particular choice of vectors is not so important: for instance, just as
many different pairs of vectors can span the same plane, many different pairs of vectors can be
used to describe the same 2-vector. Overall, the k-vectors that appear in exterior algebra are not so
different from linear subspaces, except that

(1) they have “finite extent”, i.e., they have a magnitude and
(2) they have an orientation.

What do we mean by “orientation?” A good analogy is to think about the difference between a line
¢ and a vector v:

A line encodes a direction but with no sense of orientation, i.e., no notion of which way along the
line is “forward” or “backward.” In contrast, a vector encodes a direction and a definite orientation
(e.g., +v and —v point in opposite directions); moreover, a vector has a definite magnitude, given
by its length. The analogy between lines and vectors capture the basic idea behind k-vectors: a
k-vector is to a k-dimensional linear subspace what a vector is to a line. In fact, ordinary vectors
provide our first example of an object in exterior algebra: a 1-vector is just an ordinary vector.

What about 2-vectors? A pretty good visualization of a 2-vector is to associate any two vectors
u,v in three-dimensional space R? with the volume spanned by a little parallelogram:

4.1. EXTERIOR ALGEBRA 47
v
%M
As a shorthand, we will denote this little parallelogram or 2-vector as u A v (here the A symbol
is pronounced “wedge”). As with ordinary vectors, two 2-vectors are considered “the same” if they
have the same magnitude and direction. For instance, all the parallelograms in the picture below

have been carefully constructed to have identical area. All three therefore depict the same 2-vector,
even though they are skewed and stretched by different amounts:

UL N0y =uUp Ny = Uz \Nvs3

In this sense, our parallelogram drawings are merely “cartoons” of a 2-vector, since they each
depict only one of many possibilities. However, since parallelograms faithfully represent many of
the features of 2-forms, we can use them to investigate the way general 2-forms behave.

First and foremost, how do we define orientation for a 2-vector? For 1-vectors, this was an
easy idea: the two (1-)vectors +u and —u have opposite orientation because they point in opposite
directions along the same line. Likewise, we can think of a 2-vector in R? as having two possible
orientations: “up” or “down”, corresponding to the two possible unit normals for the plane it sits
in: +N or —N. We will therefore distinguish between the two expressions u A v or v A u, writing
u AN v = —v A u to indicate that they have opposite orientation:

+N

What behavior can we observe by playing around with little parallelograms? For one thing, it
seems it must be the case that

ulNu=20,

since the “parallelogram” described by two copies of the same vector has no area at all! This idea
corresponds nicely with the idea that u Av = —v A u, sincewhenu =vwegetu Au = —uAu.

4.1. EXTERIOR ALGEBRA 48

Another thing we can notice is that scaling just one of the vectors by a factor 2 € R will scale
the area of our parallelogram by the same amount:

/u /’i 5/<au

We might therefore encode this behavior via the rule
(au) Nv=a(uAv).

Of course, the same kind of thing will happen if we scale the second vector rather than the first, i.e.,
u N (av) = a(u A o).

What can we say about the behavior of parallelograms when we add vectors? The following
picture helps answer this question:

02
u
01
u
u

The sum of the two areas on the left can be expressed as u A v1 + u A vp; the area on the right is
u A (v1 + v2). The middle image suggests that these two quantities are equal, since the area we lose
is identical to the area we gain. In other words, it seems that

UNvL+uNvy =uN (v1+02).
(Can you come up with a similar picture in 3D?)

To observe one final property, we must consider volumes rather than areas, which we will depict
as little parallelepipeds:

4.1. EXTERIOR ALGEBRA 49

/uv

Just as with 2-vectors, we can denote this little volume or 3-vector as u A v A w. Moreover,
we can think of this 3-vector as being constructed by first using two vectors to construct a little
parallelogram, and then extruding this parallelogram along a third vector:

0 !;% :: v
— —

u

Notice that the order doesn’t really seem to matter here: we can build the 2-vector u A v and
then extend it along w, or we can first build v A w and then extend it along u. We can summarize
this observation by saying that

(uAv)ANw=uA (vAw),

which means that we can simply write u A v A w without any ambiguity about which volume we
mean. What would happen, however, if we flipped the order of the two vectors used to build the

initial parallelogram? Earlier we said that u A v = —v A u, i.e., swapping the order of vectors swaps
the orientation of a 2-vector. Hence, we get (1 Av) Aw = —(v A u) Aw, or just
UNDNANW = —-DANUNW.

Ok, but what does this statement mean geometrically? The minus sign seems to indicate that the
two little volumes are identical up to orientation. But what does orientation mean for a volume? For
vectors we had two orientations (+u and —u) corresponding to “forward” and “backward”; for
2-vectors we had two orientations (1 A v and v A u) corresponding to “up” and “down” orientations
of the plane. Likewise, we can imagine that a little volume has either an “inward” or “outward”
orientation—for instance, you might imagine that the normal to the boundary points in and out, or
that one side of the boundary is painted red and the other is painted blue. In either case there are
just two orientations. By playing around a bit more we can notice that every time we swap a pair of
consecutive vectors in a 3-vector the orientation switches; if we swap another pair the orientation
switches back. Hence, any even permutation of vectors preserves orientation; any odd permutation reverses
orientation. In other words, the three 3-vectors

UNONW=0DANWANU=WANUNTD

4.1. EXTERIOR ALGEBRA 50

all have the same orientation, and the three-vectors
WAOANU=0ONUNW=UNWAND

all have the same orientation, but these two groups of three have opposite orientation.

4.1.2. The Wedge Product. Already we’ve established a bunch of rules about how little vol-
umes appear to behave, which start to provide a definition for the wedge product A. In particular,
for any collection of vectors u, v, w € R"” and scalars a,b € R we have

o (Antisymmetry) u ANv = —vAu

o (Associativity) (u Av) Aw =uA (v Aw)

e (Distributivity over addition) u A (v+w) =u Av+uAw

e (Distributivity of scalar multiplication) (au) A (bv) = ab(u A v)

In fact, these rules provide the right impression of how the wedge product behaves in any vector
space, for any number of vectors. For now we’ll hold off on a full-blown formal definition—the
more important thing to remember is where these rules came from. In other words, how did the
behavior of “little volumes” motivate us to write down this list in the first place? If you can get
your head around the geometric picture, the rules should follow naturally. (And conversely, if you
don’t take a minute to think about the geometry behind the wedge product, you may be forever
perplexed!)

Working out some concrete examples (e.g., in your homework) should also help to build up
some intuition for k-vectors and the wedge product. A bit later on we’ll revisit the wedge product
in the context of a somewhat different vector space: rather than individual vectors in R", we'll be
thinking about whole vector fields, leading to the idea of differential forms.

4.1.3. The Hodge Star. Often, it’s easiest to specify a set by instead specifying its complement.
For instance, if you asked me, “what foods do you like?” it would be much easier to say, “I like
everything except for natto ' and doogh *” rather than saying, “I like pizza, and apples, and hamburgers,
and sushi, and fesenjan, and chicken & waffles, and ...”. In linear algebra, a good example of this idea
is the orthogonal complement: if I want to specify a k-dimensional linear subspace W C V of an
n-dimensional linear space V, I can provide either a collection of vectors wy, . .., w, that span W, or
alternatively, I can provide a collection of vectors @y, . . ., @k spanning the vectors that are not in W,
i.e., its orthogonal complement. For instance, a plane in R? can be specified either by two vectors that
span it, or a single vector giving its normal:

INattois a Japanese dish consisting of sticky, fermented soy beans.
2Doogh is a salty Persian yogurt drink.

4.1. EXTERIOR ALGEBRA 51

orthogonal complement

*x(uAv)

‘~"plane

In exterior algebra, the Hodge star x (pronounced “star”) provides a sort of orthogonal comple-
ment for k-vectors. In particular, if we have a k-vector v in R", then xv will be an (n — k)-vector
that is in some sense “complementary.” What exactly do we mean by complementary? A good first

example is a 2-vector in R3:
+N
—-N

Just as a plane in IR® can be identified with its unit normal (which spans its orthogonal com-
plement), a 2-vector u A v can also be identified with some vector in the normal direction. But
which vector? Unlike a linear subspace, we need to pick a definite magnitude and direction for the
1-vector *(u A v). Here there is no “best” choice; we simply need to adopt a convention and stick
with it—a good analogy is the right hand rule used to determine the direction of a cross product
u X v. For a 2-vector u A v, we'll ask that

det(u,v,x(u Av)) >0,

i.e., the determinant of the two vectors comprising u A v and the third vector given by its Hodge
star should be positive. In fact, this rule corresponds to the usual right-hand rule in the sense that
*(1 A\ v) points in the same direction as u x v. What about the magnitude? Again we have a rule
based on the determinant—in particular, in the special case of two orthonormal vectors u1, up, we
ask that

det(uy, up, * (11 ANup)) = 1.
Since vectors in R" can always be expressed in an orthonormal basis, this rule uniquely pins down
the Hodge star for any 2-vector. In particular, we now really have x(u A v) = u x v, i.e., for two

vectors in Euclidean R? applying the wedge and then the star is equivalent to taking the cross
product. (But it will not be this easy in general!)

More generally, suppose ey, ...,e, is an orthonormal basis for R"”. If we start out with k
orthonormal vectors uy, . .., ug, then the Hodge star is uniquely determined by the relationship

(ul/\---/\uk)/*(ul/\---/\uk):el/\---/\en.

In short: if we wedge together a k-dimensional “unit volume” with the complementary (n — k)-
dimensional unit volume,” we should get the one and only n-dimensional unit volume on IR".

4.2. EXAMPLES OF WEDGE AND STAR IN R”" 52

An important special case (especially for thinking about surfaces) is the Hodge star of 1-vectors
in IR?, i.e., the Hodge star of ordinary vectors in the plane. Here things are easy to visualize: if we
have a 1-vector u, then its Hodge star xu will be an (n — k)-vector. But sincen —k=2—-1=1, we
just get another 1-vector, orthogonal to u. For instance, if u points “east” on a map, then xu will
point “north”:

* kU <€ & > 1

* kXU

As we continue to apply the Hodge star, we get a vector that points west, then south, then back
to east again. In other words, in 2D the Hodge star is just a quarter-rotation in the counter-clockwise
direction.

Finally, we can think about the interaction between the Hodge star and the wedge product. For
instance, for two 1-vectors 1, v in R3, we have

*(U 4 v) = *u + *v,

since adding two vectors and then rotating them by 90 degrees is no different from rotating them
each individually and then adding them. More generally, this same identity holds for any two
k-vectors in any dimension, i.e., the Hodge star distributes over addition (can you draw other
pictures that make this idea clearer?).

4.2. Examples of Wedge and Star in R"

To make all these ideas a bit more concrete, let’s consider some concrete examples. These
examples aren’t meant to be particularly “deep,” but rather just demonstrate the basic mechanics of
doing calculations with k-vectors. (You'll see some more interesting examples in your homework!)
Here we'll express (1-)vectors v in an orthonormal basis ey, . . ., e,. For instance, in 2D v := e; + e

is a vector of length v/2 making a 45° angle with the horizontal.

EXAMPLE 1. Let u := e; + 2¢, and v := e; + ey — e3 be 1-vectors in R3. Then their wedge
product is given by

uNv = (eg+2e)A(eg+ex—e3)

= e1N(eg+ex—e3)+2er N (eg+er—e3)
M‘gel/\62—61/\63—|-2€2/\€1—|—2M—02€2/\€3
61/\62—261/\62—61/\63—262/\63
= —61/\62—61/\63—282/\63.

4.2. EXAMPLES OF WEDGE AND STAR IN R”" 53

There are a couple things to notice in this calculation. First, any term e; A ¢; cancels to zero. Do
you remember why? It’s essentially because the parallelogram spanned by two copies of the same
vector has zero area. Also notice that at one point we replace 2e; A e; with —2e; A e;. Why did we
do that? Because e; A ep and ex A e; describe the same 2-vector, but with opposite orientation.

EXAMPLE 2. Let w := —e; A ey — e1 /\ ez — 2e2 A e3 be the 2-vector from the previous example.
Its Hodge star is given by

*w = *(—eg Nex—e1Ne3 —2e Nes)

— % (e1 Nex) —x(eg Aez) —2x (ex Aes)
—e3 — (—62) — 261

= —2e1+e —es.

The main thing we did here was use the right hand rule to determine which direction the wedge
of two basis vectors points. For instance, just as e; X e, = e3 when working with the cross product,
*(e1 A ep) = e3 when working with the wedge product and the Hodge star. A more detailed
discussion of these relationships, and about bases in exterior algebra, can be found in Section 4.5.1.

EXAMPLE 3. Letu := ey + ey +e3, v := e; + 23 + 3e3, and w := e; — e3 be 1-vectors in R3, and
suppose we want to compute u A v A w. Since the wedge product is associative, we can start out by
just computing either u A v or v A w, and then wedging the result with the remaining 1-vector. For
instance, we have

vAw = (eg+2e+3e3) A (e1 —e3)
= M—OelAe3+Zeerl—2e2/\63+3e3Ael—3M0
= —2e1 Ney —4eq1 Nez — 2ex Nes.
Wedging with u then yields
uN(vhw) = (e1+er+e3)A(—2e; Nex—4eg Nez—2er Ae3)
—2e1 Nexy Neg —4ey Nept Nes —2e3 Nep Nep
—2e1 Nexy Nes+4eg Ney Nes —2e1 Ney N es
0.

In the second calculation we avoided a lot of work by noticing that any term involving multiple
copies of the same basis 1-vector (e.g., e1 A\ e1 A e2) would have zero volume, since two of the edges
of the corresponding little parallelepiped would be parallel. Hence, we can just write down the
three remaining terms where all three bases show up (e.g., e2 A e3 A 7). By repeatedly swapping
pairs of bases, we can put all such 3-vectors into a canonical form (e.g.,e2 Ne3 Ae; = —ex Neg ANe3 =
e1 A ex A e3), at which point we just have several copies of the unit 3-vector e; A e A e3 scaled
by some magnitude. In this case, the magnitudes of all the terms summed to zero. What does
that mean geometrically? It must mean that our original 1-vectors u, v, and w are not linearly
independent, i.e., they describe a “flat” 3-vector with zero volume.

4.3. VECTORS AND 1-FORMS 54

4.3. Vectors and 1-Forms

Now that we have a basic language for working with “little volumes,” we continue with the
second part of our story, about exterior calculus.

Once upon a time there was a vector named v:

What information does v encode? One way to inspect a vector is to determine its extent or
length along a given direction. For instance, we can pick some arbitrary direction « and record the
length of the shadow cast by v along a:

The result is simply a number, which we can denote a(v). The notation here is meant to
emphasize the idea that « is a function: in particular, it’s a linear function that eats a vector and
produces a scalar. Any such function is called a I-form (also known as a covector).

Of course, it’s clear from the picture that the space of all 1-forms looks a lot like the space of
all vectors: we just had to pick some direction to measure along. But often there is good reason
to distinguish between vectors and 1-forms—the distinction is not unlike the one made between
row vectors and column vectors in linear algebra. For instance, even though rows and column both
represent “vectors,” we only allow ourselves to multiply rows with columns:

ol

[a e Ay] :
v?’l
If we wanted to multiply, say, two column vectors, we would first have to take the transpose of one
of them to convert it into a row:

Same deal with vectors and 1-forms, except that now we have two different operations: sharp
(), which converts a 1-form into a vector, and flat (b) which converts a vector into a 1-form. For
instance, it’s perfectly valid to write v’ (v) or a(at), since in either case we're feeding a vector to a
1-form. The operations § and b are called the musical isomorphisms.

4.3. VECTORS AND 1-FORMS 55

All this fuss over 1-forms versus vectors (or even row versus column vectors) may seem like
much ado about nothing. And indeed, in a flat space like the plane, the difference between the two
is pretty superficial. In curved spaces, however, there’s an important distinction between vectors
and 1-forms—in particular, we want to make sure that we're taking “measurements” in the right
space. For instance, suppose we want to measure the length of a vector v along the direction of
another vector u. It's important to remember that tangent vectors get stretched out by the map
f:R? > M — RR3 that takes us from the plane to some surface in R3. Therefore, the operations #
and b should satisfy relationships like

' (v) = g(u,v)
where ¢ is the metric induced by f. This way we're really measuring how things behave in the
“stretched out” space rather than the initial domain M.

4.3.1. Coordinates. Until now we’ve intentionally avoided the use of coordinates—in other
words, we've tried to express geometric relationships without reference to any particular coordinate
system x1,...,x,. Why avoid coordinates? Several reasons are often cited (people will mumble
something about “invariance”), but the real reason is quite simply that coordinate-free expressions
tend to be shorter, sweeter, and easier to extract meaning from. This approach is also particularly
valuable in geometry processing, because many coordinate-free expressions translate naturally to
basic operations on meshes.

Yet coordinates are still quite valuable in a number of situations. Sometimes there’s a special
coordinate basis that greatly simplifies analysis—recall our discussion of principal curvature di-
rections, for instance. At other times there’s simply no obvious way to prove something without
coordinates. For now we’re going to grind out a few basic facts about exterior calculus in coor-
dinates; at the end of the day we’ll keep whatever nice coordinate-free expressions we find and
politely forget that coordinates ever existed!

>

0 A 2
52 dx

9 1
T dx

Let’s setup our coordinate system. For reasons that will become clear later, we're going to use

the symbols a%, ceny % to represent an orthonormal basis for vectors in R”, and use dx, ..., dx"
to denote the corresponding 1-form basis. In other words, any vector v can be written as a linear
combination
| J n J
V=" Il +--+0 FT

and any 1-form can be written as a linear combination
a = aqdx’ + -+ apdx".

To keep yourself sane at this point, you should completely ignore the fact that the symbols % and dx’
look like derivatives—they're simply collections of unit-length orthogonal bases, as depicted above.

4.3. VECTORS AND 1-FORMS 56

The two bases dx’ and % are often referred to as dual bases, meaning they satisfy the relationship

/9) 1, i=j
d t = :51 = ’
* <8x]> J {0, otherwise.

This relationship captures precisely the behavior we’re looking for: a vector % “casts a shadow”

on the 1-form dx/ only if the two bases point in the same direction. Using this relationship, we can
work out that

a(v) = Z(xidxi (Ezﬂfﬂ) = Z(xivi
i j i

i.e., the pairing of a vector and a 1-form looks just like the standard Euclidean inner product.

4.3.2. Notation. It's worth saying a few words about notation. First, vectors and vector fields
tend to be represented by letters from the end of the Roman alphabet (1, v, w or X, Y, Z, respec-
tively), whereas 1-forms are given lowercase letters from the beginning of the Greek alphabet
(«, B, v, etc.). Although one often makes a linguistic distinction between a “vector” (meaning a
single arrow) and a “vector field” (meaning an arrow glued to every point of a space), there’s an
unfortunate precedent to use the term “1-form” to refer to both ideas—sadly, nobody ever says
“1-form field!” Scalar fields or 0-forms are often given letters from the middle of the Roman alphabet
(f, & h) or maybe lowercase Greek letters from somewhere near the end (¢, ¥, etc.).

You may also notice that we’ve been very particular about the placement of indices: coefficients
o' of vectors have indices up, coefficients &; of 1-forms have indices down. Similarly, vector bases
% have indices down (they’re in the denominator), and 1-form bases dx’ have indices up. The
reason for being so neurotic is to take advantage of Einstein summation notation: any time a pair of
variables is indexed by the same letter i in both the “up” and “down” position, we interpret this as

a sum over all possible values of i:
av' =Y w0,
i

The placement of indices also provides a cute mnemonic for the musical isomorphisms § and b. In
musical notation § indicates a half-step increase in pitch, corresponding to an upward movement
on the staff. For instance, both notes below correspond to a “C” with the same pitChS:

)
wif)nﬁc

I~

Therefore, to go from a 1-form to a vector we raise the indices. For instance, in a flat space we
don’t have to worry about the metric and so a 1-form

a = aqdx + - -+ adx”
becomes a vector
“t:ali+...+a” J
dx! ox"’
Similarly, b indicates a decrease in pitch and a downward motion on the staff:

3Atleastona tempered instrument!

4.3. VECTORS AND 1-FORMS

0
(~
D
oJ

and so b lowers the indices of a vector to give us a 1-form—e.g.,

_ 1 J n J
T
becomes
o = vydx! + - - + v,dx".

57

4.4. DIFFERENTIAL FORMS AND THE WEDGE PRODUCT 58

4.4. Differential Forms and the Wedge Product

In the last subsection we measured the length of a vector by projecting it onto different coordi-
nate axes; this measurement process effectively defined what we call a I-form. But what happens if
we have a collection of vectors? For instance, consider a pair of vectors u, v sitting in R3:

—

We can think of these vectors as defining a parallelogram, and much like we did with a single
vector we can measure this parallelogram by measuring the size of the “shadow” it casts on some
plane:

For instance, suppose we represent this plane via a pair of unit orthogonal 1-forms a and S.
Then the projected vectors have components

T
7

T
’

hence the (signed) projected area is given by the cross product

u' x v =a(u)p(v) —a(v)B(u).
Since we want to measure a lot of projected volumes in the future, we’ll give this operation the
special name “a A B”:
a A B(n,0) = (1) B(0) — () B(u).

As you may have already guessed, a A B is what we call a 2-form. Ultimately we'll interpret the
symbol A (pronounced “wedge”) as a binary operation on differential forms called the wedge
product. Algebraic properties of the wedge product follow directly from the way signed volumes
behave. For instance, notice that if we reverse the order of our axes «, B the sign of the area changes.
In other words, the wedge product is antisymmetric:

aANB=—-BANa.

4.4. DIFFERENTIAL FORMS AND THE WEDGE PRODUCT 59

An important consequence of antisymmetry is that the wedge of any 1-form with itself is zero:

N =—aANa
=aAa=0.

But don't let this statement become a purely algebraic fact! Geometrically, why should the
wedge of two 1-forms be zero? Quite simply because it represents projection onto a plane of zero
area! (Le., the plane spanned by « and «.)

Next, consider the projection onto two different planes spanned by «, f and «, y. The sum of
the projected areas can be written as

aNB(u,0) +aNy(u,0) = w(ugﬁ(v)—Mv)ﬁ(u)ﬂc(u)v(v —a(v)y(u)

Il
=
=

or in other words A distributes over +:
aAN(B+y)=aAB+any.

Finally, consider three vectors u, v, w that span a volume in R3:

_—

0
[—

We’d like to consider the projection of this volume onto the volume spanned by three 1-forms
«, B, and 7y, but the projection of one volume onto another is a bit difficult to visualize! For now
you can just cheat and imagine that « = dx!, B = dx?, and y = dx® so that the mental picture for
the projected volume looks just like the volume depicted above. One way to write the projected
volume is as the determinant of the projected vectors u’, v/, and w’:

a(u) a(v) a(w)
e ABAy(u,v,w):=det([u o w'])=det B(u) B(v) ,B(wg :

(Did you notice that the determinant of the upper-left 2x2 submatrix also gives us the wedge
product of two 1-forms?) Alternatively, we could express the volume as the area of one of the faces
times the length of the remaining edge:

4.4. DIFFERENTIAL FORMS AND THE WEDGE PRODUCT 60

Thinking about things this way, we might come up with an alternative definition of the wedge
product in terms of the triple product:

aANBAy(u,v,w) = (U xv) o
_ (lew/).u/
= (' xu') o

The important thing to notice here is that order is not important—we always get the same
volume, regardless of which face we pick (though we still have to be a bit careful about sign). A
more algebraic way of saying this is that the wedge product is associative:

(aAB)AY = A (BAY).
In summary, the wedge product of k 1-forms gives us a k-form, which measures the projected

volume of a collection of k vectors. As a result, the wedge product has the following properties for
any k-form «, [-form B, and m-form +:

e Antisymmetry: « A B = (—1)¥B A«
e Associativity: « A (BAY) = (x AB) Ay

and in the case where 8 and -y have the same degree (i.e., | = m) we have
e Distributivity: « A (B+7) =aAB+aNy

A separate fact is that a k-form is antisymmetric in its arguments—in other words, swapping the
relative order of two “input” vectors changes only the sign of the volume. For instance, if « is a
2-form then a(u,v) = —a(v, u). In general, an even number of swaps will preserve the sign; an odd
number of swaps will negate it. (One way to convince yourself is to consider what happens to the
determinant of a matrix when you exchange two of its columns.) Finally, you'll often hear people
say that k-forms are “multilinear ”—all this means is that if you keep all but one of the vectors fixed,
then a k-form looks like a linear map. Geometrically this makes sense: k-forms are built up from k
linear measurements of length (essentially just k different dot products).

4.4.1. Vector-Valued Forms. Up to this point we’ve considered only real-valued k-forms—for
instance, a (1) represents the length of the vector u along the direction a, which can be expressed
as a single real number. In general, however, a k-form can “spit out” all kinds of different values.
For instance, we might want to deal with quantities that are described by complex numbers (C) or
vectors in some larger vector space (e.g., R").

4.4. DIFFERENTIAL FORMS AND THE WEDGE PRODUCT 61

A good example of a vector-valued k-form is our map f : M — R3 which represents the
geometry of a surface. In the language of exterior calculus, f is an R3-valued O-form: at each point
p of M, it takes zero vectors as input and produces a point f(p) in R® as output. Similarly, the
differential df is an R*>-valued 1-form: it takes one vector (some direction u in the plane) and maps
it to a value df (u) in R® (representing the “stretched out” version of).

More generally, if E is a vector space then an E-valued k-form takes k vectors to a single value in
E. However, we have to be a bit careful here. For instance, think about our definition of a 2-form:

a A P(u,0) = a(u)p(v) — a(v)p(u).
If « and B are both E-valued 1-forms, then a(u) and B(v) are both vectors in E. But how do you

multiply two vectors? In general there may be no good answer: not every vector space comes with
a natural notion of multiplication.

However, there are plenty of spaces that do come with a well-defined product—for instance, the
product of two complex numbers a + bi and ¢ + di is given by (ac — bd) + (ad + bc)i, so we have
no trouble explicitly evaluating the expression above. In other cases we simply have to say which
product we want to use—in R for instance we could use the cross product x, in which case an
R3-valued 2-form looks like this:

aAB(u,v) = a(u) x p(v) —a(v) x B(u).

4.5. HODGE DUALITY 62

4.5. Hodge Duality

Previously we saw that a k-form measures the (signed) projected volume of a k-dimensional
parallelepiped. For instance, a 2-form measures the area of a parallelogram projected onto some
plane, as depicted above. But here’s a nice observation: a plane in R? can be described either by a
pair of basis directions (a, B), or by a normal direction -y. So rather than measuring projected area,
we could instead measure how well the normal of a parallelogram (1, v) lines up with the normal
of our plane. In other words, we could look for a 1-form v such that

y(u xv) =aApB(u,0).

This observation captures the idea behind Hodge duality: a k-dimensional volume in an n-dimensional
space can be specified either by k directions or by a complementary set of (n — k) directions. There
should therefore be some kind of natural correspondence between k-forms and (n — k)-forms.

4.5.1. Differential Forms and the Hodge Star. Let’s investigate this idea further by construct-
ing an explicit basis for the space of 0-forms, 1-forms, 2-forms, etc.—to keep things manageable
we’ll work with IR® and its standard coordinate system (x!, x2, x%). 0-forms are easy: any 0-form
can be thought of as some function times the constant 0-form, which we’ll denote “1.” We’ve already
seen the 1-form basis dx!, dx2, dx3, which looks like the standard orthonormal basis of a vector

space:

dx®

dx?
dxl

4.5. HODGE DUALITY 63

What about 2-forms? Well, consider that any 2-form can be expressed as the wedge of two
1-forms:

aAB = (adx’) A (,B]-dxj) = zxiﬁjdxi A daxl.
In other words, any 2-form looks like some linear combination of the basis 2-forms dx' A dx/. How
many of these bases are there? Initially it looks like there are a bunch of possibilities:

dx Adxl dxl Adx? dx Adxd
dx2 ANdxl dx? Adx? dx? A dxd
dx3 ANdxl dxd Adx? dx3 Adxd

But of course, not all of these guys are distinct: remember that the wedge product is antisym-

metric (x A B = —B A «), which has the important consequence & A & = 0. So really our table looks
more like this:

0 dxt Adx? —dx3 Adx?
—dxl A dx? 0 dx? A dxd
dx3 Adxl —dx? Adx® 0

and we're left with only three distinct bases: dx? A dx3, dx® A dx!, and dx! A dx?. Geometrically
all we’ve said is that there are three linearly-independent “planes” in R>:

How about 3-form bases? We certainly have at least one:
dxt Adx® A dxP.

Are there any others? Again the antisymmetry of A comes into play: many potential bases are just
permutations of this first one:

dx® Adx® Adxt = —dx® Adxt Adx® = dxt Adx® Adx,
and the rest vanish due to the appearance of repeated 1-forms:

dx? Ndxt Adx? = —dx® Adx? Adxt =0 Adx! = 0.

4.5. HODGE DUALITY 64

In general there is only one basis n-form dx! A - - - A dx", which measures the usual Euclidean
volume of a parallelpiped:

Finally, what about 4-forms on IR3? At this point it’s probably pretty easy to see that there
are none, since we’d need to pick four distinct 1-form bases from a collection of only three. Geo-
metrically: there are no four-dimensional volumes contained in R3! (Or volumes of any greater
dimension, for that matter.) The complete list of k-form bases on R3 is then

0-form bases: 1

1-form bases: dx!, dx?, dx3

2-form bases: dx2 A dx3, dx3 A dxt, dx! A dx?
3-form bases: dx! A dx? A dx3,

which means the number of bases is 1, 3, 3, 1. In fact you may see a more general pattern here: the
number of k-form bases on an n-dimensional space is given by the binomial coefficient

(%) =m0

(i.e., “n choose k”), since we want to pick k distinct 1-form bases and don’t care about the order. An
important identity here is

n\ n

k) \n—k)’

which, as anticipated, means that we have a one-to-one relationship between k-forms and (n — k)-
forms. In particular, we can identify any k-form with its complement. For example, on R3 we
have

4.5. HODGE DUALITY 65

*x1 = dx' Adx® Adx®
xdx! = dx® Ndx®
xdx?> = dx3 Adx!
*xdx® = dx! Ndx?
*(dx! Ndx?) = dx3
*(dx? Ndx3) = dx!
*(dx® Adxl) = dx?
*(dxt Adx? Adx®) = 1

The map * (pronounced “star”) is called the Hodge star and captures this idea that planes can be
identified with their normals and so forth. More generally, on any flat space we have

*(dxt Ndx A Adalk) = dxi Adxz A A dxn,

where (i1, i, ..., iy) is any even permutation of (1,2,...,n).

4.5.2. The Volume Form.

So far we’ve been talking about measuring volumes in flat spaces like R”. But how do we take
measurements in a curved space? Let’s think about our usual example of a surface f : R? D M —
IR3. If we consider a region of our surface spanned by a pair of orthogonal unit vectors u, v € R?,
it’s clear that we don’t want the area dx! A dx?(u,v) = 1 since that just gives us the area in the
plane. What we really want is the area of this region after it’s been “stretched-out” by the map f. In
other words, we want the size of the corresponding parallelogram in IR?, spanned by the vectors

df (u) and df (v).

EXERCISE 4.1

Letting u,v IR? be orthonormal (as above), show that

|df (u) x df (v)] = 4/ det(g),

i.e., show that the “stretching factor” as we go from the plane to the surface is given by the square
root of the determinant of the metric

det(g) := g(u,u)g(v,0) — g(1,0)>

3(1,0) 1= df (u) - df (v).

4.5. HODGE DUALITY 66

Therefore, we can measure the area of any little region on our surface by simply scaling the

volume in the plane by the determinant of the metric, i.e., by applying the 2-form \/det(g)dx! A dx?
to two vectors u, v spanning the region of interest. More generally, the n-form

w = \/det(g)dx' A~ Adx"

is called the volume form, and will play a key role when we talk about integration.

On curved spaces, we’d also like the Hodge star to capture the fact that volumes have been
stretched out. For instance, it makes a certain amount of sense to identify the constant function 1
with the volume form w, since w really represents unit volume on the curved space:

*xl =w

4.5.3. The Inner Product on k-Forms. More generally we’ll ask that any n-form constructed
from a pair of k-forms « and S satisfies

aNxp = (& B))w,
where ((«, B)) = Y_; «;B; is the inner product on k-forms. In fact, some authors use this relationship
as the definition of the wedge product—in other words, they’ll start with something like, “the wedge
product is the unique binary operation on k-forms such that « A xp = ({(«,))w,” and from there
derive all the properties we’ve established above. This treatment is a bit abstract, and makes it far
too easy to forget that the wedge product has an extraordinarily concrete geometric meaning. (It’s
certainly not the way Hermann Grassmann thought about it when he invented exterior algebra!).
In practice, however, this identity is quite useful. For instance, if u and v are vectors in R?, then we
can write

u‘v:*(ubA*vb),
i.e., on a flat space we can express the usual Euclidean inner product via the wedge product. Is it
clear geometrically that this identity is true? Think about what it says: the Hodge star turns v into a
plane with v as a normal. We then build a volume by extruding this plane along the direction u. If
u and v are nearly parallel the volume will be fairly large; if they’re nearly orthogonal the volume
will be quite shallow. (But to be sure we really got it right, you should try verifying this identity in
coordinates!) Similarly, we can express the Euclidean cross product as just

uxov=xu N0"))E,

i.e., we can create a plane with normal u x v by wedging together the two basis vectors u and v.
(Again, working this fact out in coordinates may help soothe your paranoia.)

4.6. DIFFERENTIAL OPERATORS 67

4.6. Differential Operators

Originally we set out to develop exterior calculus. The objects we’ve looked at so far—k-forms,
the wedge product A and the Hodge star x—actually describe a more general structure called an
exterior algebra. To turn our algebra into a calculus, we also need to know how quantities change,
as well as how to measure quantities. In other words, we need some tools for differentiation and
integration. Let’s start with differentiation.

In our discussion of surfaces we briefly looked at the differential df of a surface f : M — R3,
which tells us something about the way tangent vectors get “stretched out” as we move from the
domain M to a curved surface sitting in R3. More generally d is called the exterior derivative and is
responsible for building up many of the differential operators in exterior calculus. The basic idea
is that d tells us how quickly a k-form changes along every possible direction. But how exactly is it
defined? So far we’ve seen only a high-level geometric description.

4.6.1. Div, Grad, and Curl. Before jumping into the exterior derivative, it's worth reviewing
what the basic vector derivatives div, grad, and curl do, and more importantly, what they look like.
The key player here is the operator V (pronounced “nabla”) which can be expressed in coordinates
as the vector of all partial derivatives:

P o\

For instance, applying V to a scalar function ¢ : R" — R yields the gradient

(af afN\T
vo- (L2

which can be visualized as the direction of steepest ascent on some terrain:

it / /
/7

R Sa
NN

N A

MU R
NN OO0

We can also apply V to a vector field X in two different ways. The dot product gives us the
divergence
_ox! T oX"
oot ox"

V-X

4.6. DIFFERENTIAL OPERATORS 68

which measures how quickly the vector field is “spreading out”, and on R? the cross product gives
us the curl

3 2 5yl 3 9y2 1
Vxx:<ax 9X* 9X' 9X° 09X E)X),

ox2 9x37 9x3 oxl’ axl 9x2
which indicates how much a vector field is “spinning around.” For instance, here’s a pair of vector
fields with a lot of divergence and a lot of curl, respectively:

A
FAN I
o A

N P NN
NN A AN
~ N X X . A e AV .
~ W %N fomm s A - LI B
-~ -~ o~ B O U U A [vff///‘»\
e T N G N N R AN N s g AA A
e VNN s VAN s A A A e
///;\\\\\;///, \\\‘/////»\\\\
N T N N i NN S 0. IV NS
S U N AR TR e~ v v o *,//lff'/(¢{;r
I o A U N N NN SN N s =S
- S L N NI NN [N N L
LI U NN NN N e s s
LI T N N P

(Note that in this case one field is just a 90-degree rotation of the other!) On a typical day it’s
a lot more useful to think of div, grad and curl in terms of these kinds of pictures rather than the
ugly expressions above.

4.6.2. Think Differential. Not surprisingly, we can express similar notions using exterior
calculus. However, these notions will be a bit easier to generalize (for instance, what does “curl”
mean for a vector field in R*, where no cross product is defined?). Let’s first take a look at the
exterior derivative of O-forms (i.e., functions), which is often just called the differential. To keep
things simple, we'll start with real-valued functions ¢ : R” — RR. In coordinates, the differential is
defined as

9¢ ¢

dp = ——dx + -+ dx".

P g T

It's important to note that the terms g—j‘fi actually correspond to partial derivatives of our function ¢,

whereas the terms dx’ simply denote an orthonormal basis for R". In other words, you can think of
d¢ as just a list of all the partial derivatives of ¢. Of course, this object looks a lot like the gradient
V¢ we saw just a moment ago. And indeed the two are closely related, except for the fact that V¢
is a vector field and d¢ is a 1-form. More precisely,

Vo = (dg)".

4.6.3. Directional Derivatives. Another way to investigate the behavior of the exterior deriv-
ative is to see what happens when we stick a vector u into the 1-form df. In coordinates we get
something that looks like a dot product between the gradient of f and the vector u:

of of

P — 1)
df (u) = ax1“ + -4 o

u”.

4.6. DIFFERENTIAL OPERATORS 69

For instance, in R? we could stick in the unit vector u = (1,0) to get the partial derivative % along
the first coordinate axis:

(Compare this picture to the picture of the gradient we saw above.) In general, df (1) represents
the directional derivative of f along the direction u. In other words, it tells us how quickly f changes
if we take a short walk in the direction u. Returning again to vector calculus notation, we have

df(u) =u-Vf.

4.6.4. Properties of the Exterior Derivative. How do derivatives of arbitrary k-forms behave?
For one thing, we expect d to be linear—after all, a derivative is just the limit of a difference, and
differences are certainly linear! What about the derivative of a wedge of two forms? Harken-
ing back to good old-fashioned calculus, here’s a picture that explains the typical product rule

7 (f(0)g(x) = f'(x)g(x) + f(x)g' (x):

g(x+h)

O e R

O(h)

f(x) flx+h)

The dark region represents the value of fg at x; the light blue region represents the change in
this value as we move x some small distance h. As h gets smaller and smaller, the contribution
of the upper-right quadrant becomes negligible and we can write the derivative as the change in

4.6. DIFFERENTIAL OPERATORS 70

f times g plus the change in g times f. (Can you make this argument more rigorous?) Since a
k-form also measures a (signed) volume, this intuition also carries over to the exterior derivative of
a wedge product. In particular, if « is a k-form then d obeys the rule

d(aAB) =daAB+(—1) aAndp.

which says that the rate of change of the overall volume can be expressed in terms of changes in
the constituent volumes, exactly as in the picture above.

4.6.5. Exterior Derivative of 1-Forms. To be a little more concrete, let’s see what happens
when we differentiate a 1-form on R3. Working things out in coordinates turns out to be a total
mess, but in the end you may be pleasantly surprised with the simplicity of the outcome! (Later
on we'll see that these ideas can also be expressed quite nicely without coordinates using Stokes’
theorem, which paves the way to differentiation in the discrete setting.) Applying the linearity of d,
we have

de = d(aydx! + apdx? + azdx®)
= d(aydx') + d(adx?) + d(azdx®).

Each term ajdx/ can really be thought of a wedge product aj A dx/ between a 0-form «; and the
corresponding basis 1-form dx/. Applying the exterior derivative to one of these terms we get
. . . o, . .
d(aj A dx) = (day) A d + A (dd) = L A d.
~—— axt
=0

To keep things short we used the Einstein summation convention here, but let’s really write out all
the terms:

de = Mdx! Adx! + Bdx? Adx! + %dﬁ Adx'+
Sdx! Ndx® 4+ 3dxP Ndx® 4+ §%dxd A dxP+
Sadx! A dxd 4+ SJdx* Ndx® + $5dxd A dad,
Using the fact that w A B = —B A &, we get a much simpler expression
do = (2% — 2%%)dx® A dxd+
3§2 %3
1

T) dx® A dx'+
(5% — 54)dx! Adax,

Does this expression look familiar? If you look again at our review of vector derivatives, you'll
recognize that da basically looks like the curl of a*, except that it’s expressed as a 2-form instead of
a vector field. Also remember (from our discussion of Hodge duality) that a 2-form and a 1-form

are not so different here—geometrically they both specify some direction in IR3. Therefore, we can
express the curl of any vector field X as

VxX:(MWﬁ.

4.6. DIFFERENTIAL OPERATORS 71

It’s worth stepping through the sequence of operations here to check that everything makes sense:
b converts the vector field X into a 1-form X”; d computes something that looks like the curl, but
expressed as a 2-form dX’; x turns this 2-form into a 1-form *dX’; and finally g converts this

8
1-form back into the vector field (*de . The take-home message here, though, is that the exterior
derivative of a 1-form looks like the curl of a vector field.

So far we know how to express the gradient and the curl using d. What about our other favorite
vector derivative, the divergence? Instead of grinding through another tedious derivation, let’s
make a simple geometric observation: in R? at least, we can determine the divergence of a vector
tield by rotating it by 90 degrees and computing its curl (consider the example we saw earlier).
Moreover, in R? the Hodge star on 1-forms represents a rotation by 90 degrees, since it identifies
any line with the direction orthogonal to that line:

*

Therefore, we might suspect that divergence can be computed by first applying the Hodge star,
then applying the exterior derivative:

V- X=xdxX".

The leftmost Hodge star accounts for the fact that d « X” is an n-form instead of a 0-form—in vector
calculus divergence is viewed as a scalar quantity. Does this definition really work? Let’s give it a
try in coordinates on R3. First, we have

*X> = *(Xpdx! 4+ Xodx? + Xzdx®)
= Xqdx? A dx® + Xodx® A dx! + Xzdx! A dx?.

Differentiating we get

A« X" = Xgyl Ada? Ada3+

9%,
9K dx2 Adxd Adxt+

2

9X3 dx3 A dx! A dx?,

ox3

but of course we can rearrange these wedge products to simply
aXl X5 an,
dx X" =
* < dxl = 0x2 9x3
A final application of the Hodge star gives us the divergence
oX! L 0X?2 L X3
dxl 0x2 oxd

> dxl A dx?® A dx3.

*xdx X' =

as desired.

4.6. DIFFERENTIAL OPERATORS 72

In summary, for any scalar field ¢ and vector field X we have

Vo = (dp) ﬁ
VxX = (wa’)
V-X = xdxX°

One cute thing to notice here is that (in R%) grad, curl, and div are just d applied to a 0—, 1—
and 2— form, respectively.

4.6.6. The Laplacian. Another key differential operator from vector calculus is the scalar
Laplacian which (confusingly?!) is often denoted by A or V2, and is defined as

A=V-V,

i.e., the divergence of the gradient. Although the Laplacian may seem like yet another in a long list
of derivatives, it deserves your utmost respect: the Laplacian is central to fundamental physical
laws (any diffusion process and all forms of wave propagation, including the Schrodinger equation);
its eigenvalues capture almost everything there is to know about a given piece of geometry (can
you hear the shape of a drum?). Heavy tomes and entire lives have been devoted to the Laplacian,
and in the discrete setting we’ll see that this one simple operator can be applied to a diverse array
of tasks (surface parameterization, surface smoothing, vector field design and decomposition,
distance computation, fluid simulation... you name it, we got it!).

Fortunately, now that we know how to write div, grad and curl using exterior calculus, express-
ing the scalar Laplacian is straightforward: A = xd x d. More generally, the k-form Laplacian is given
by

Ai=xdxd+dxdx.
The name “Laplace-Beltrami” is used merely to indicate that the domain may have some amount
of curvature (encapsulated by the Hodge star). Some people like to define the operator J := *dx,
called the codifferential, and write the Laplacian as A = éd + dJ.

One question you might ask is: why is the Laplacian for O-forms different from the general
k-form Laplacian? Actually, it’s not—consider what happens when we apply the term d % dx to a
0-form ¢: x¢ is an n-form, and so d x ¢ must be an (1 + 1)-form. But there are no (n + 1)-forms on
an n-dimensional space! So this term is often omitted when writing the scalar Laplacian.

4.7. INTEGRATION AND STOKES’ THEOREM 73

4.7. Integration and Stokes” Theorem

In the previous section we talked about how to differentiate k-forms using the exterior derivative
d. We’d also like some way to integrate forms. Actually, there’s surprisingly little to say about
integration given the setup we already have. Suppose we want to compute the total area A of a
region () in the plane:

If you remember back to calculus class, the basic idea was to break up the domain into a bunch
of little pieces that are easy to measure (like squares) and add up their areas:

AQ ~ ZAZ'.
i

As these squares get smaller and smaller we get a better and better approximation, ultimately
achieving the true area
Ag = / dA.
0

Alternatively, we could write the individual areas using differential forms—in particular, A; =
dx! A dx?(u,v). Therefore, the area element d A is really nothing more than the standard volume
form dx! A dx? on R%. (Not too surprising, since the whole point of k-forms was to measure
volume!)

To make things more interesting, let’s say that the contribution of each little square is weighted
by some scalar function ¢. In this case we get the quantity

/QcpdA:/Qcpdxl/\dxz.

Again the integrand ¢ dx! A dx? can be thought of as a 2-form. In other words, you’ve been working
with differential forms your whole life, even if you didn’t realize it! More generally, integrands
on an n-dimensional space are always n-forms, since we need to “plug in” n orthogonal vectors
representing the local volume. For now, however, looking at surfaces (i.e., 2-manifolds) will give us
all the intuition we need.

4.7. INTEGRATION AND STOKES’ THEOREM 74

4.7.1. Integration on Surfaces.

If you think back to our discussion of the Hodge star, you'll remember the volume form
w = y/det(g)dx! A dx?,

which measures the area of little parallelograms on our surface. The factor /det(g) reminds us
that we can’t simply measure the volume in the domain M—we also have to take into account any
“stretching” induced by the map f : M — R2. Of course, when we integrate a function on a surface,
we should also take this stretching into account. For instance, to integrate a function ¢ : M — R,
we would write

/Qcpw:/ngb det(g) dx' A dx?.

In the case of a conformal parameterization things become even simpler—since /det(g) = a we
have just

dx' A dx?,
/ngax X

where a : M — R is the scaling factor. In other words, we scale the value of ¢ up or down
depending on the amount by which the surface locally “inflates” or “deflates.” In fact, this whole
story gives a nice geometric interpretation to good old-fashioned integrals: you can imagine that
Jq ¢ dA represents the area of some suitably deformed version of the initially planar region Q).

4.7.2. Stokes’ Theorem. The main reason for studying integration on manifolds is to take
advantage of the world’s most powerful tool: Stokes” theorem. Without further ado, Stokes” theorem

says that
/ do = / a,
Q a0

where « is any n — 1-form on an n-dimensional domain (). In other words, integrating a differential
form over the boundary of a manifold is the same as integrating its derivative over the entire
domain.

If this trick sounds familiar to you, it’s probably because you've seen it time and again in
different contexts and under different names: the divergence theorem, Green’s theorem, the fundamental
theorem of calculus, Cauchy’s integral formula, etc. Picking apart these special cases will really help us
understand the more general meaning of Stokes” theorem.

4.7.3. Divergence Theorem. Let’s start with the divergence theorem from vector calculus,

which says that
/ V-XdA:/ n-Xde,
Q 0

4.7. INTEGRATION AND STOKES’ THEOREM 75

where X is a vector field on () and n represents the unit normal field along the boundary of). A
better name for this theorem might have been the “what goes in must come out theorem”, because
if you think about X as the flow of water throughout the domain () then it’s clear that the amount
of water being pumped into () (via pipes in the ground) must be the same as the amount flowing
out of its boundary at any moment in time:

L B B B A A A A
R RV
AN MAA S
NN\ A A -

S ..

AN
DRI N N
SOV N N M e = - -

\\\\\

Let’s try writing this theorem using exterior calculus. First, remember that we can write the
divergence of X as V - X = d x X’. It’s a bit harder to see how to write the right-hand side of the
divergence theorem, but think about what integration does here: it takes tangents to the boundary
and sticks them into a 1-form. For instance, [,, X’ “adds up” the tangential components of X. To
get the normal component we could rotate X’ by a quarter turn, which conveniently enough is
achieved by hitting it with the Hodge star. Overall we get

/d*Xb:/ *Xb,
Q o0

which, as promised, is just a special case of Stokes’ theorem. Alternatively, we can use Stokes” theo-
rem to provide a more geometric interpretation of the divergence operator itself: when integrated
over any region ()—no matter how small—the divergence operator gives the total flux through
the region boundary. In the discrete case we'll see that this boundary flux interpretation is the only
notion of divergence—in other words, there’s no concept of divergence at a single point.

By the way, why does d x X” appear on the left-hand side instead of xd x X’? The reason is
that xd x X’ is a 0-form, so we have to hit it with another Hodge star to turn it into an object that
measures areas (i.e., a 2-form). Applying this transformation is no different from appending dA to
V - X—we're specifying how volume should be measured on our domain.

EXERCISE 4.2

Show that Stokes” theorem also implies Green’s theorem, which says that

/VdeA:/ FoX de,
O 20Q)

where () is a region in the plane and ¢ is a continuous unit vector field tangent to its boundary dQ).

4.7. INTEGRATION AND STOKES’ THEOREM 76

4.7.4. Fundamental Theorem of Calculus. The fundamental theorem of calculus is in fact so
fundamental that you may not even remember what it is. It basically says that for a real-valued
function ¢ : R — R on the real line

[% i = g6) — pta).

a
In other words, the total change over an interval [a, b] is (as you might expect) how much you end
up with minus how much you started with. But soft, behold! All we’ve done is written Stokes’

theorem once again:
dip = / ,
/[a,b] ¢ a[a,b}cp

since the boundary of the interval [a, b] consists only of the two endpoints 2 and b.

Hopefully these two examples give you a good feel for what Stokes” theorem says. In the end,
it reads almost like a Zen kdan: what happens on the outside is purely a function of the change
within. (Perhaps it is Stokes’ that deserves the name, “fundamental theorem of calculus!”)

4.8. DISCRETE EXTERIOR CALCULUS 77

4.8. Discrete Exterior Calculus

— > /’/
7 =

/4/'\ >
b T
N

So far we’ve been exploring exterior calculus purely in the smooth setting. Unfortunately this
theory was developed by some old-timers who did not know anything about computers, hence it
cannot be used directly by machines that store only a finite amount of information. For instance, if
we have a smooth vector field or a smooth 1-form we can’t possibly store the direction of every
little “arrow” at each point—there are far too many of them! Instead, we need to keep track of a
discrete (or really, finite) number of pieces of information that capture the essential behavior of the
objects we're working with; we call this scheme discrete exterior calculus (or DEC for short). The big
secret about DEC is that it’s literally nothing more than the good-old fashioned (continuous) exterior
calculus we’ve been learning about, except that we integrate differential forms over elements of
our mesh.

4.8.1. Discrete Differential Forms. One way to encode a 1-form might be to store a finite
collection of “arrows” associated with some subset of points. Instead, we're going to do some-
thing a bit different: we’re going to integrate our 1-form over each edge of a mesh, and store the
resulting numbers (remember that the integral of an n-form always spits out a single number) on
the corresponding edges. In other words, if « is a 1-form and e is an edge, then we’ll associate the

number
QAp = / o
e

with e, where the (") is meant to suggest a discrete quantity (not to be confused with a unit-length
vector).

Does this procedure seem a bit abstract to you? It shouldn’t! Think about what this integral
represents: it tells us how strongly the 1-form a “flows along” the edge e on average. More specifically,
remember how integration of a 1-form works: at each point along the edge we take the vector
tangent to the edge, stick it into the 1-form «, and sum up the resulting values—each value tells
us something about how well « “lines up” with the direction of the edge. For instance, we could
approximate the integral via the sum

1 N
Jamle (N gap,(u)),

where |e| denotes the length of the edge, {p;} is a sequence of points along the edge, and u := e/ |e|
is a unit vector tangent to the edge:

4.8. DISCRETE EXTERIOR CALCULUS 78

Of course, this quantity tells us absolutely nothing about the strength of the “flow” orthogonal to
the edge: it could be zero, it could be enormous! We don’t really know, because we didn’t take any
measurements along the orthogonal direction. However, the hope is that some of this information
will still be captured by nearby edges (which are most likely not parallel to e).

More generally, a k-form that has been integrated over each k-dimensional cell (edges in 1D,
faces in 2D, etc.) is called a discrete differential k-form. (If you ever find the distinction confusing,
you might find it helpful to substitute the word “integrated” for the word “discrete.”) In practice,
however, not every discrete differential form has to originate from a continuous one—for instance,
a bunch of arbitrary values assigned to each edge of a mesh is a perfectly good discrete 1-form.

4.8.2. Orientation. One thing you may have noticed in all of our illustrations so far is that each
edge is marked with a little arrow. Why? Well, one thing to remember is that direction matters when
you integrate. For instance, the fundamental theorem of calculus (and common sense) tells us that
the total change as you go from a to b is the opposite of the total change as you go from b to a:

[%t = 96) ~ pla) = ~(9(a) ~ p(0)) = — [Dax

Said in a much less fancy way: the elevation gain as you go from Pasadena to Altadena is 151
meters, so the elevation “gain” in the other direction must be -151 meters! Just keeping track of the
number 151 does you little good—you have to say what that quantity represents.

Altadena Altadena

151m -151m

Pasadena Pasadena

Therefore, when we store a discrete differential form it’s not enough to just store a number:
we also have to specify a canonical orientation for each element of our mesh, corresponding to the
orientation we used during integration. For an edge we’ve already seen that we can think about
orientation as a little arrow pointing from one vertex to another—we could also just think of an
edge as an ordered pair (i, j), meaning that we always integrate from i to ;.

More generally, suppose that each element of our mesh is an oriented k-simplex ¢, i.e., a collection
of k + 1 vertices p; € R" given in some fixed order (p1, ..., pr+1). The geometry associated with o

4.8. DISCRETE EXTERIOR CALCULUS 79

is the convex combination of these points:

k+1
{ Y Aipi
i=1

(Convince yourself that a 0-simplex is a vertex, a 1-simplex is an edge, a 2-simplex is a triangle, and
a 3-simplex is a tetrahedron.)

44

Two oriented k-simplices have the same orientation if and only if the vertices of one are an even
permutation of the vertices of another. For instance, the triangles (p1, p2, p3) and (p2, p3, p1) have
the same orientation; (p1, p2, p3) and (p2, p1, p3) have opposite orientation.

1% P3
p1 p2 p1 p2

If a simplex o7 is a (not necessarily proper) subset of another simplex 0y, then we say that oy is
a face of 0,. For instance, every vertex, edge, and triangle of a tetrahedron ¢ is a face of 0; as is &
itself! Moreover, the orientation of a simplex agrees with the orientation of one of its faces as long
as we see an even permutation on the shared vertices. For instance, the orientations of the edge
(p2, p1) and the triangle (p1, p3, p2) agree. Geometrically all we're saying is that the two “point” in
the same direction (as depicted above, right). To keep yourself sane while working with meshes,
the most important thing is to pick an orientation and stick with it!

k+1
Z/\izl,}\izo C R"
i=1

So in general, how do we integrate a k-form over an oriented k-simplex? Remember that a
k-form is going to “eat” k vectors at each point and spit out a number—a good canonical choice is to
take the ordered collection of edge vectors (p2 — p1, .- ., Pk+1 — p1) and orthonormalize them (using,
say the Gram-Schmidt algorithm) to get vectors (u, ..., uy). This way the sign of the integrand
changes whenever the orientation changes. Numerically, we can then approximate the integral via

a sum
[xn
o Nl

™=z

wp,(tq, ..., ug)

Il
—

4.8. DISCRETE EXTERIOR CALCULUS 80

where {p;} is a (usually carefully-chosen) collection of sample points. (Can you see why the
orientation of ¢ affects the sign of the integrand?) Sounds like a lot of work, but in practice
one rarely constructs discrete differential forms via integration: more often, discrete forms are
constructed via input data that is already discrete (e.g., vertex positions in a triangle mesh).

By the way, what's a discrete 0-form? Give up? Well, it must be a 0-form (i.e., a function) that’s
been integrated over every O-simplex v; (i.e., vertex) of a mesh:

<f>i=/vi4>

By convention, the integral of a function over a zero-dimensional set is simply the value of the
function at that point: ¢; = ¢(v;). In other words, in the case of 0-forms there is no difference
between storing point samples and storing integrated quantities: the two coincide. Note that
the orientation of a 0-simplex is always positive, since the identity map on one vertex is an even
permutation.

It’s also important to remember that differential forms don’t have to be real-valued. For instance,
we can think of a map f : M — RR® that encodes the geometry of a surface as an IR*>-valued 0-form;
its differential df is then an R3-valued 1-form, etc. Likewise, when we say that a discrete differential
form is a number stored on every mesh element, the word “number” is used in a fairly loose sense:
a number could be a real value, a vector, a complex number, a quaternion, etc. For instance, the
collection of (x,y, z) vertex coordinates of a mesh can be viewed as an R3-valued discrete 0-form
(namely, one that discretizes the map f). The only requirement, of course, is that we store the same
type of number on each mesh element.

4.8.3. The Discrete Exterior Derivative. One of the main advantages of working with in-
tegrated (i.e., “discrete”) differential forms instead of point samples is that we can easily take
advantage of Stokes’” theorem. Remember that Stokes’ theorem says

/d(x:/ o,
Q 0

for any k-form « and k + 1-dimensional domain (). In other words, we can integrate the derivative
of a differential form as long as we know its integral along the boundary. But that’s exactly the kind
of information encoded by a discrete differential form! For instance, if & is a discrete 1-form stored
on the three edges of a triangle ¢, then we have

3 3
/doc:/ uc:Z/oc:Z&i.
g I log i=1 e; i=1

€1

In other words, we can exactly evaluate the integral on the left by just adding up three numbers.
Pretty cool! In fact, the thing on the left is also a discrete differential form: it’s the 2-form du

integrated over the only triangle in our mesh. So for convenience, we'll call this guy “d&”, and
we’ll call the operation d the discrete exterior derivative. (In the future we will drop the hats from our

4.8. DISCRETE EXTERIOR CALCULUS 81

notation when the meaning is clear from context.) In other words, the discrete exterior derivative
takes a k-form that has already been integrated over each k-simplex and applies Stokes” theorem to
get the integral of the derivative over each k 4 1-simplex.

In practice (i.e., in code) you can see how this operation might be implemented by simply taking
local sums over the appropriate mesh elements. However, in the example above we made life
particularly easy on ourselves by giving each edge an orientation that agrees with the orientation
of the triangle. Unfortunately assigning a consistent orientation to every simplex is not always
possible, and in general we need to be more careful about sign when adding up our piecewise
integrals. For instance, in the example below we’d have

(lj&)l =& +ar+ a3
and
(56)2:5(4+5C5—562.

€1 €4

4.8.4. Discrete Hodge Star.

primal

s A

As hinted at above, a discrete k-form captures the behavior of a continuous k-form along k
directions, but not along the remaining n — k directions—for instance, a discrete 1-form in 2D
captures the flow along edges but not in the orthogonal direction. If you paid close attention to the
discussion of Hodge duality, this story starts to sound familiar! To capture Hodge duality in the
discrete setting, we’ll need to define a dual mesh. In general, the dual of an n-dimensional simplicial
mesh identifies every k-simplex in the primal (i.e., original) mesh with a unique (n — k)-cell in the
dual mesh. In a two-dimensional simplicial mesh, for instance, primal vertices are identified with
dual faces, primal edges are identified with dual edges, and primal faces are identified with dual
vertices. Note, however, that the dual cells are not always simplices! (See above.) A dual mesh is
an orthogonal dual if primal and dual elements are contained in orthogonal linear subspaces. For

4.8. DISCRETE EXTERIOR CALCULUS 82

instance, on a planar triangle mesh a dual edge would make a right angle with the corresponding
primal edge. For curved domains, we ask only that primal and dual elements be orthogonal
intrinsically, e.g., if one rigidly unfolds a pair of neighboring triangles into the plane, the primal and
dual edges should again be orthogonal.

The fact that dual mesh elements are contained in orthogonal linear subspaces leads naturally to
a notion of Hodge duality in the discrete setting. In particular, the discrete Hodge dual of a (discrete)
k-form on the primal mesh is an (n — k)-form on the dual mesh. Similarly, the Hodge dual of an
k-form on the dual mesh is an (n — k)-form on the primal mesh. Discrete forms on the primal mesh
are called primal forms and discrete forms on the dual mesh are called dual forms. Given a discrete
form & (whether primal or dual), we'll write its Hodge dual as %&.

i

primal 1-form (circulation) dual 1-form (flux)

Unlike continuous forms, discrete primal and dual forms live in different places (so for instance,
discrete primal k-forms and dual k-forms cannot be added to each other). In fact, primal and dual
forms often have different physical interpretations. For instance, a primal 1-form might represent
the total circulation along edges of the primal mesh, whereas in the same context a dual 1-form
might represent the total flux through the corresponding dual edges (see illustration above).

Of course, these two quantities (flux and circulation) are closely related, and naturally leads
into one definition for a discrete Hodge star called the diagonal Hodge star. Consider a primal k-form

. If &; is the value of & on the k-simplex ¢;, then the diagonal Hodge star is defined by

i =

for all i, where |o| indicates the (unsigned) volume of ¢ (which by convention equals one for a
vertex!) and |0*| is the volume of the corresponding dual cell. In other words, to compute the dual
form we simply multiply the scalar value stored on each cell by the ratio of corresponding dual
and primal volumes.

If we remember that a discrete form can be thought of as a continuous form integrated over
each cell, this definition for the Hodge star makes perfect sense: the primal and dual quantities
should have the same density, but we need to account for the fact that they are integrated over cells
of different volume. We therefore normalize by a ratio of volumes when mapping between primal

4.8. DISCRETE EXTERIOR CALCULUS 83

and dual. This particular Hodge star is called diagonal since the ith element of the dual differential
form depends only on the ith element of the primal differential form. It’s not hard to see, then, that
Hodge star taking dual forms to primal forms (the dual Hodge star) is the inverse of the one that
takes primal to dual (the primal Hodge star).

4.8.5. That's All, Folks! Hey, wait a minute, what about our other operations, like the wedge
product (A)? These operations can certainly be defined in the discrete setting, but we won’t go
into detail here—the basic recipe is to integrate, integrate, integrate. Actually, even in continuous
exterior calculus we omitted a couple operations like the Lie derivative (Lx) and the interior product
(ix). Coming up with a complete discrete calculus where the whole cast of characters d, A, x, Lx, iy,
etc., plays well together is an active and ongoing area of research.

CHAPTER 5

Curvature of Discrete Surfaces

For a smooth surface in IR?, the normal direction is easy to define: it is the unique direction
orthogonal to all tangent vectors—in other words, it’s the direction sticking “straight out” of the
surface. For discrete surfaces the story is not so simple. If a mesh has planar faces (all vertices lie in
a common plane) then of course the normal is well-defined: it is simply the normal of the plane.
But if the polygon is nonplanar, or if we ask for the normal at a vertex, then it is not as clear how the
normal should be defined.

In practice there are a number of different possibilities, which arise from different ways of
looking at the smooth geometry. But before jumping in, let’s establish a few basic geometric facts.

5.1. Vector Area

Here’s a simple question: how do you compute the area of a polygon in the plane? Suppose
our polygon has vertices p1, p2, . .., pn. One way to compute the area is to stick another point g in
the middle and sum up the areas of triangles g, p;, pi+1 as done on the left:

q

Pi+1

84

5.1. VECTOR AREA 85

A cute fact is that if we place g anywhere and sum up the signed triangle areas, we still recover
the polygon area! (Signed area just means negative if our vertices are oriented clockwise; positive if
they’re counter-clockwise.) You can get an idea of why this happens just by looking at the picture:
positive triangles that cover “too much” area get accounted for by negative triangles.

The proof is an application of Stokes” theorem—consider a different expression for the area A
of a planar polygon P:

A= / dx N\ dy.
P

Noting that dx A dy = d(x A dy) = —d(y A dx), we can also express the area as

1 1

A= f/d(x/\dy) —d(y Ndx) = 7/ xANdy —yAdx,

2Jp 2 Jap
where we’ve applied Stokes” theorem in the final step to convert our integral over the entire surface
into an integral over just the boundary. Now suppose that our polygon vertices have coordinates

pi = (x;,y;). From here we can explicitly work out the boundary integral by summing up the
integrals over each edge ¢;;:

/a x/\dy—y/\dx:Z/ x ANdy —y Adx.
P L’l‘]'

Since the coordinate functions x and y are linear along each edge (and their differentials dx and dy
are therefore constant), we can write these integrals as

Zfein/\d]/—y/\dx - EXiZXj (vj—vi) — yi;yj(xj — X;)

%E(Pi +pj) x (pj — pi)

= QL Pi X Pj = PiXPi—pjX Pi—pjX P
= Y piXpj

In short, we’ve shown that the area of a polygon can be written as simply

1
AZEZPZXPJ

EXERCISE 5.1

Complete the proof by showing that for any point g the signed areas of triangles (g, p;, pi+1) sum to
precisely the expression above.

5.1. VECTOR AREA 86

A more general version of the situation we just looked at with polygon areas is the vector area of
a surface patch f : M — R3, which is defined as the integral of the surface normal over the entire
domain:

Ny = / NdA.
M

A very nice property of the vector area is that it depends only on the shape of the boundary oM (as
you will demonstrate in the next exercise). As a result, two surfaces that look very different (such
as the ones above) can still have the same vector area—the physical intuition here is that the vector
area measures the total flux through the boundary curve.

For a flat region the normal is constant over the surface and we get just the usual area times
the unit normal vector. Things get more interesting when the surface is not flat—for instance, the
vector area of a circular band is zero since opposing normals cancel each-other out:

EXERCISE 5.2

Using Stokes’ theorem, show that the vector area can be written as

1
Ny = = A df,
V=3 aMf If

where the product of two vectors in R is given by the usual cross product x.

u

Here’s another fairly basic question: consider a triangle sitting in IR?, and imagine that we're
allowed to pull on one of its vertices p. What's the quickest way to increase its area A? In other
words, what'’s the gradient of A with respect to p?

5.2. AREA GRADIENT 87

EXERCISE 5.3

Show that the area gradient is given by
1

where u is the edge vector across from p rotated by an angle 7t/2 in the plane of the triangle (such
that it points toward p).

You should require only a few very simple geometric arguments—there’s no need to write things
out in coordinates, etc.

5.2. Area Gradient

With these facts out of the way let’s take a look at some different ways to define vertex normals.
There are essentially only two definitions that arise naturally from the smooth picture: the area
gradient and the volume gradient; we’ll start with the former.

The area gradient asks, “which direction should we ‘push’ the surface in order to increase its
total area A as quickly as possible?” Sliding all points tangentially along the surface clearly doesn’t
change anything: we just end up with the same surface. In fact, the only thing we can do to increase
surface area is move the surface in the normal direction. The idea, then, is to define the vertex normal
as the gradient of area with respect to a given vertex.

Since we already know how to express the area gradient for a single triangle o, we can easily
express the area gradient for the entire surface:

VA=Y V,A.
g

Of course, a given vertex p influences only the areas of the triangles touching p. So we can just sum
up the area gradients over this small collection of triangles.

EXERCISE 5.4

Show that the gradient of surface area with respect to vertex p; can be expressed as

1
VpA =35 Y (cota; + cot Bj) (pj — pi)

J

where p; is the coordinate of the jth neighbor of p; and «; and ; are the angles across from edge

(pi, pi)-

5.2. AREA GRADIENT 88

Bi

5.2.1. Mean Curvature Vector. The expression for the area gradient derived in the last exercise
shows up all over discrete differential geometry, and is often referred to as the cotan formula.
Interestingly enough this same expression appears when taking a completely different approach
to defining vertex normals, by way of the mean curvature vector HN. In particular, for a smooth
surface f : M — R® we have

Af =2HN

where H is the mean curvature, N is the unit surface normal (which we’d like to compute), and A
is the Laplace-Beltrami operator (see below). Therefore, another way to define vertex normals for a
discrete surface is to simply apply a discrete Laplace operator to the vertex positions and normalize
the resulting vector.

The question now becomes, “how do you discretize the Laplacian?” We'll take a closer look at
this question in the future, but the remarkable fact is that the most straightforward discretization
of A leads us right back to the cotan formula! In other words, the vertex normals we get from the
mean curvature vector are precisely the same as the ones we get from the area gradient.

This whole story also helps us get better intuition for the Laplace-Beltrami operator A itself.
Unfortunately, there’s no really nice way to write A—the standard coordinate formula you’ll

find in a textbook on differential geometry is A¢p = ﬁ%(/1g1g"7-%¢), where g is the metric.

ox/
However, this obfuscated expression provides little intuition about what A really does, and is
damn-near useless when it comes to discretization since for a triangle mesh we never have a
coordinate representation of ¢! Earlier, we saw that the (0-form) Laplacian can be expressed
as A = *d % d, which leads to a fairly straightforward discretization. But for now, we’ll make
use of another tool we learned about earlier: conformal parameterization. Remember that if f is
a conformal map, then lengths on M and lengths on f(M) are related by a positive scaling e*.
In other words, |df(X)| = e"|X]| for some real-valued function # on M. Moreover, a conformal
parameterization always exists—in other words, we don’t have to make any special assumptions
about our geometry in order to use conformal coordinates in proofs or other calculations. The
reason conformal coordinates are useful when talking about Laplace-Beltrami is that we can write
A as simply a rescaling of the standard Laplacian in the plane, i.e., as the sum of second partial

5.3. VOLUME GRADIENT 89

derivatives divided by the metric scaling factor e%*:

pgp — AN X)L AdPOO)Y),

where X and Y are any pair of unit, orthogonal directions.

What's the geometric meaning here? Remember that for a good old-fashioned function ¢ : R —
R in 1D, second derivatives basically tell us about the curvature of a function, e.g., is it concave or
convex?

Well, since A is a sum of second derivatives, it's no surprise that it tells us something about the
mean curvature!

EXERCISE 5.5
Show that the relationship Af = 2HN holds.

5.3. Volume Gradient

An alternative way to come up with normals is to look at the volume gradient. Suppose that our
surface encloses some region of space with total volume V. As before, we know that sliding the
surface along itself tangentially doesn’t really change anything: we end up with the same surface,
which encloses the same region of space. Therefore, the quickest way to increase V is to again move
the surface in the normal direction. A somewhat surprising fact is that, in the discrete case, the
volume gradient actually yields a different definition for vertex normals than the one we got from
the area gradient. To express this gradient, we’ll use three-dimensional versions of our “basic facts”
from above.

First, much like we broke the area of a polygon into triangles, we're going to decompose the
volume enclosed by our surface into a collection of tetrahedra. Each tetrahedron includes exactly
one face of our discrete surface, along with a new point 4. For instance, here’s what the volume
might look like in the vicinity of a vertex p:

5.3. VOLUME GRADIENT 90

P

Just as in the polygon case the location of 4 makes no difference, as long as we work with the
signed volume of the tetrahedra. (Can you prove it?)

Next, what'’s the volume gradient for a single tetrahedron? One way to write the volume of a
tetis as

1
V= §Ah,

where A is the area of the base triangle and is the height. Then using the same kind of geometric
reasoning as in the triangle case, we know that

1

where N is the unit normal to the base.

To express the gradient of the enclosed volume with respect to a given vertex p, we simply sum
up the gradients for the tetrahedra containing p:

1
VY=Y Vi= 3 Y _AiN;.
i i
At first glance this sum does not lead to a nice expression for A,)V—for instance, it uses the normals

N; of faces that have little to do with our surface geometry. However, remember that we can place q
anywhere we please and still get the same expression for volume. In particular, if we put g directly

5.4. OTHER DEFINITIONS 91

on top of p, then the N; and A; coincide with the normals and areas (respectively) of the faces
containing p from our original surface:

EXERCISE 5.6

Show that the volume gradient points in the same direction as the vector area Ny (i.e., show that
they are the same up to a constant factor).

5.4. Other Definitions

So far we’ve only looked at definitions for vertex normals that arise from some smooth definition.
This way of thinking captures the essential spirit of discrete differential geometry: relationships
from the smooth setting should persist unperturbed in the discrete setting (e.g., Af = 2HN should
be true independent of whether A, H, and N are smooth objects or discrete ones). Nonetheless,
there are a number of common definitions for vertex normals that do not have a known origin in
the smooth world. (Perhaps you can find one?)

5.4.1. Uniform Weighting.

5.4. OTHER DEFINITIONS 92
Perhaps the simplest way to get vertex normals is to just add up the neighboring face normals:
Nu = ZNi
i

The main drawback to this approach is that two different tessellations of the same geometry can
produce very different vertex normals, as illustrated above.

5.4.2. Tip-Angle Weights.

A simple way to reduce dependence on the tessellation is to weigh face normals by their
corresponding tip angles 6, i.e., the interior angles incident on the vertex of interest:

N9 = ZeiNi
i

5.4. OTHER DEFINITIONS 93

5.4.3. Sphere-Inscribed Polytope.

Here’s another interesting approach to vertex normals: consider the sphere S? consisting of
all points unit distance from the origin in IR®. A nice fact about the sphere is that the unit normal
N at a point x € S? is simply the point itself! Le., N(x) = x. So if we start out with a polytope
whose vertices all sit on the sphere, one reasonable way to define vertex normals is to simply use
the vertex positions.

In fact, it’s not too hard to show that the direction of the normal at a vertex p; can be expressed
purgly in terms of the edge vectors ¢; = p; — p;, where p; are the immediate neighbors of p;. In
particular, we have

NS = ln_l 78]' x ej+1
¢ & Teleal

where the constant ¢ € R can be ignored since we’re only interested in the direction of the normal.

(For a detailed derivation of this expression, see Max, “Weights for Computing Vertex Normals from

Facet Normals.”) Of course, since this expression depends only on the edge vectors it can be

evaluated on any mesh (not just those inscribed in a sphere).

CODING 10. For the coding portion of this assignment, you will implement the vertex normals
derived above, as well as the angle defect expression you derived when studying topological
invariants of discrete surfaces. In particular, you should write methods that compute:

the vertex normal Ny; using uniform weights
the vertex normal Ny using face area weights
the vertex normal Ny using tip angle weights
the mean curvature normal A f

the sphere-inscribed normal N

the Gaussian curvature K using tip angle defect
the total Gaussian curvature of the entire mesh
the Euler characteristic of the mesh

Once you've successfully implemented these methods, test them out on some meshes. Do you
notice that some definitions work better than others? When? Why? Can you explain the behavior
of the mean curvature normal? Does your total angle defect agree with the discrete Gauss-Bonnet
theorem? (You can check, using the value you computed for the Euler characteristic.)

5.5. GAUSS-BONNET 94

5.5. Gauss-Bonnet

EXERCISE 5.7

Area of a Spherical Triangle. Show that the area of a spherical triangle on the unit sphere with
interior angles a1, ap, a3 is

A=u01+ay+ a3 — 7.

Hint: consider the areas A1, Ay, As of the three shaded regions (called “diangles”) pictured below.

@ §

EXERCISE 5.8

Area of a Spherical Polygon. Show that the area of a spherical polygon with consecutive interior

angles B1,..., By is

A= (2—1’[)7‘[4—2[51'.

i=1

Hint: use the expression for the area of a spherical triangle you just derived!

EXERCISE 5.9

Angle Defect. Recall that for a discrete planar curve we can define the curvature at a vertex as
the distance on the unit circle between the two adjacent normals. For a discrete surface we can
define discrete Gaussian curvature at a vertex v as the area on the unit sphere bounded by a spherical
polygon whose vertices are the unit normals of the faces around v. Show that this area is equal to

5.6. NUMERICAL TESTS AND CONVERGENCE 95

the angle defect
d(v) =2m—) Z¢(v)
feF,
where F, is the set of faces containing v and Z(v) is the interior angle of the face f at vertex v.
Hint: consider planes that contain two consecutive normals and their intersection with the unit sphere.

v
N3 N> /N\A N

N,
4 Ny

EXERCISE 5.10

Discrete Gauss-Bonnet Theorem. Consider a (connected, orientable) simplicial surface K with
finitely many vertices V, edges E and faces F. Show that a discrete analog of the Gauss-Bonnet
theorem holds for simplicial surfaces, namely

Y d(v) =2mx
veV
where x = |V| — |E| + |F| is the Euler characteristic of the surface.

This fact perfectly mirrors the smooth Gauss-Bonnet theorem, namely that the total Gaussian
curvature K is always a constant multiple of the Euler characteristic:

/ KdA = 27y
M

5.6. Numerical Tests and Convergence

In the coding part of this assignment, we will verify that the discrete Gauss-Bonnet theorem
derived in the previous exercise really produces an exact value for the total Gaussian curvature in
practice; we will also perform a numerical comparison between angle defect and other ways of
approximating pointwise Gaussian curvature. The basic idea in all of our coding exercises will be
to re-implement key methods within a larger mesh processing framework. We will describe the
relevant inputs and outputs and ask you to fill in the rest. Methods are typically referred to by the
class name, followed by two colons, followed by the method name. For example, Mesh: : read ()
refers to a method called read in the class Mesh.

Both a C++ or JavaScript code framework have been developed for these exercises; see their
respective webpages, as well as the DDG course webpage for further information. The routines
you are asked to re-implement will typically be marked with a “TODO”. When implementing

https://github.com/geometrycollective/ddg-exercises
https://github.com/cmu-geometry/ddg-exercises-js
http://geometry.cs.cmu.edu/ddg

5.6. NUMERICAL TESTS AND CONVERGENCE 96

a member function, it’s important to realize that the necessary data is most often not passed to
the method directly—instead, you will likely want to access member data from the parent class.
For instance, when implementing methods in the Geomet ry class, you can access the coordinates
of a vertex v via the variable this.positions[v]: even though the array positions is not
explicitly passed to the method, it is a known member of Geometry. (If this idea sounds totally
unfamiliar, you may want to read a bit about object oriented programming!)

5.6.1. Total Curvature.

CODING 11. Implement the method Vertex::angleDefect (), which should return the
angle defect discussed above, equal to 27t minus the sum of angles incident on the given vertex.

As we will discuss later on, the angle defect at a vertex actually describes the total

Gaussian curvature in a neighborhood around the vertex—in particular, the boundary

of this neighborhood can be drawn by connecting the consecutive midpoints of triangles

incident on the vertex of interest. Therefore, if we want to visualize the Gaussian curvature
itself, we must divide the angle defect by the area of the vertex neighborhood.

CODING 12. Implement the method Face: :area (), which should return the triangle area.

CODING 13. Implement the method Vertex: :area (), which should return one third the
sum of the areas of all incident triangles.

(These routines will automatically be used by the viewer; you do not have to call them explicitly.)

CODING 14. Implement the method Mesh: :totalGaussianCurvature (), which returns
the sum of the angle defect over all vertices.

With these methods implemented, you should now be able to compile and run the code. For
each mesh in the data directory, you should verify that the total angle defect is equal to 27t times
the Euler characteristic of the surface—both of these quantities will be displayed in the lower left
corner of the viewer window, and the viewer will warn you (in red) if something is wrong. (Food
for thought: why does your code produce a value slightly different from zero for the torus?) The
angle defect itself can be visualized by pressing the ‘a” key. Moreover, the ‘d” key will deform the
surface—press this key several times and verify that the total angle defect remains unchanged. For
reference, the image below shows the correct appearance for the torus mesh; red values indicate
positive curvature, blue values indicate negative curvature, and black indicates no curvature.

https://en.wikipedia.org/wiki/Object-oriented_programming

5.6. NUMERICAL TESTS AND CONVERGENCE 97

5.6.2. Pointwise Curvature Estimates. In the previous section, we verified that the total angle
defect always gives us the correct value for the total Gaussian curvature. In this section we will
look at how accurately angle defect approximates the Gaussian curvature at each point, comparing
it with a more traditional estimate based on local interpolation. The basic idea behind interpolation
is to find some nice, smooth function that exactly passes through a given collection of data points.
Once we have this function, we can evaluate it and its derivatives at any point analytically. In some
sense, it is our “best guess” for what the original object looked like, before it was sampled into a
finite collection of points. Of course, this guess may get better (or worse) depending on what kind
of functions we use to do the interpolation!

For this particular experiment, we will fit the neighborhood of each triangle to a quadratic
polynomial; from there we can analytically evaluate the Gaussian curvature at the center of the
triangle. A routine for performing this fit is already provided for you; here we give a high-level
overview of how this routine was derived. In particular, consider the three vertices of a triangle,

5.6. NUMERICAL TESTS AND CONVERGENCE 98

plus the three remaining vertices of the neighboring triangles. We seek a quadratic polynomial
h:R?> = R; (x,y) — h(x,y)

that describes the height of the surface relative to the plane of the center triangle. “Quadratic
polynomial” means that / can be expressed as a linear combination of terms involving products of
at most two copies of the arguments x and y, i.e.,

h(x,y) = ax* + by2 +exy+dx+ey+f,

where a,b,c,d, e, f € R are unknown coefficients. To determine the value of these coefficients, we
can solve a system of equations

h(xi,y:)) =hi, i=1,...,6,

where (x;,y;) € R? is the location of one of our six vertices (expressed relative to the plane of the
center triangle), and #; € R is the height of this point over the plane. Notice that even though / is
quadratic in x and y, it is linear in the unknown values a,b, c,d, e and f. Therefore, we have a small
linear system for the unknown coefficients, which can be solved efficiently. Once we have definite
values for these coefficients, we can then evaluate the Gaussian curvature of the height function
using a well-established formula

hyxhy,y —h

y
(14 h% + hi)?
(Can you derive this formula yourself?) Subscripts here denote partial derivatives, e.g., hyy = %gyh.

In the code, we evaluate K at the barycenter p of the middle triangle, i.e., at the average of its three
vertex positions.

A common way to compare the accuracy of different numerical methods is to examine the
rate of convergence. In other words, as we refine the mesh, how quickly does the estimated value
approach the correct value? The question of convergence is a subtle one, because it depends both
on how we refine the mesh, and how we quantify the error. In the next exercise you will look at
convergence of Gaussian curvature estimates on the unit sphere, which is known to have curvature
K =1 at every point. In particular you will use two different sequences of progressively finer
meshes: irregular meshes, which are not structured in any particular way, and semi-regular meshes,
which are obtained by repeatedly subdividing an initial mesh. Error will be measured in two
different norms: the L? norm, which essentially measures the average error, and the L* norm, which
measures the worst error. You will also measure the error in total curvature, i.e., the (absolute value
of) the difference between the sum of all the numerical values and the value predicted by the
Gauss-Bonnet theorem.

CODING 15. Once you have verified that your implementation correctly computes the angle
defect (by completing the exercises above), run your code on each of the meshes in the subdirectories
data/irregular and data/semiregular, respectively, using the flag ~sphere. It is essential
that you use this flag—otherwise, you will not get the necessary output! For each mesh, record
the values for L2 error, L® error, error in total Gaussian curvature, and mean edge length that are
printed on the command line. (For convenience, these values are also printed on a single line at
the very end of the output.) Plot each of these error functions against mean edge length, clearly
labeling the approximation method, the mesh sequence, and the error norm used in each case. Plots
should be drawn on a log-log scale; error functions for a given mesh sequence should all be drawn
in the same plot. (Please let us know if you need guidance on suitable plotting software.) What
can you infer about the different curvature approximation methods? Do they always converge? Is
the rate of convergence always the same? Give an interpretation of the slope of an error plot on a
log-log scale. If you visualize the two curvature estimates in the viewer (using ‘a” and ’q” keys for

5.6. NUMERICAL TESTS AND CONVERGENCE 99

angle defect and quadratic fit, respectively), do you notice anything about where error appears?
How do you think these two approximations would behave in the presence of noise? Finally, from
your experience interacting with the viewer, which one seems cheaper to compute?

To submit the coding portion of your assignment, please send us only the files Vertex. cpp,
Face.cpp, and Mesh. cpp. These files should compile within the default code template provided
with the assignment. Make sure to include your full name in a comment at the top of each file.

CHAPTER 6

The Laplacian

Earlier we mentioned that the Laplace-Beltrami operator (commonly abbreviated as just the
Laplacian) plays a fundamental role in a variety of geometric and physical equations. In this
chapter we’ll put the Laplacian to work by coming up with a discrete version of the Poisson equation
for triangulated surfaces. As in the chapter on vertex normals, we’ll see that the same discrete
expression for the Laplacian (via the cotan formula) arises from two very different ways of looking at
the problem: using test functions (often known as Galerkin projection), or by integrating differential
forms (often called discrete exterior calculus).

6.1. Basic Properties

Before we start talking about discretization, let’s establish a few basic facts about the Laplace
operator A and the standard Poisson problem

Ay = p.

Poisson equations show up all over the place—for instance, in physics p might represent a mass
density in which case the solution ¢ would (up to suitable constants) give the corresponding gravi-
tational potential. Similarly, if p describes an charge density then ¢ gives the corresponding electric
potential (you'll get to play around with these equations in the code portion of this assignment). In
geometry processing a surprising number of things can be done by solving a Poisson equation (e.g.,
smoothing a surface, computing a vector field with prescribed singularities, or even computing the
geodesic distance on a surface).

Often we'll be interested in solving Poisson equations on a compact surface M without bound-
ary.

EXERCISE 6.1

A twice-differentiable function ¢ : M — R is called harmonic if it sits in the kernel of the Laplacian,
ie., Ap = 0. Argue that the only harmonic functions on a compact connected domain without
boundary are the constant functions.

Your argument does not have to be incredibly formal—there are just a couple simple observa-
tions that capture the main idea. This fact is quite important because it implies that we can add a
constant to any solution to a Poisson equation. In other words, if ¢ satisfies A¢ = p, then so does
¢+csince A(p+c) =Ap+Ac=Ap+0=p.

EXERCISE 6.2

100

6.1. BASIC PROPERTIES 101

A separate fact is that on a compact domain without boundary, constant functions are not in the
image of A. In other words, there is no function ¢ such that A¢ = c. Why?

This fact is also important because it tells us when a given Poisson equation admits a solution.
In particular, if p has a constant component then the problem is not well-posed. In some situations,
however, it may make sense to simply remove the constant component. Le., instead of trying to
solve A¢ = p one can solve A = p — p, where p := [, 0 dV/|M|and | M| is the total volume of M.
However, you must be certain that this trick makes sense in the context of your particular problem!

When working with PDEs like the Poisson equation, it’s often useful to have an inner product
between functions. An extremely common inner product is the L? inner product (-, -), which takes
the integral of the pointwise product of two functions over the entire domain ():

(f.9) = [f)g(x)dx.

In spirit, this operation is similar to the usual dot product on R": it measures the degree to which
two functions “line up.” For instance, the top two functions have a large inner product; the bottom
two have a smaller inner product (as indicated by the dark blue regions):

Similarly, for two vector fields X and Y we can define an L? inner product

(X,Y) = / X(x) - Y(x)dx
Q
which measures how much the two fields “line up” at each point.

Using the L? inner product we can express an important relationship known as Green’s first
identity. Green’s identity says that for any sufficiently differentiable functions f and g

(Af,8) = =(Vf,Vg) +(N-Vf,g)a,

where (-,)5 denotes the inner product on the boundary and N is the outward unit normal.

EXERCISE 6.3

Using exterior calculus, show that Green’s identity holds. Hint: apply Stokes’ theorem to the
(n —1)-form g df.

6.1. BASIC PROPERTIES 102

One last key fact about the Laplacian is that it is positive-semidefinite, i.e., A satisfies

(Mg, ¢) >0

for all functions ¢. (By the way, why isn’t this quantity strictly greater than zero?) Words cannot
express the importance of (semi)definiteness. Let’s think about a very simple example: functions of
the form ¢(x,y) = ax? + bxy + cy? in the plane. Any such function can also be expressed in matrix

form:
px,y) =[x y] [bL/lz b?] [;] = ax? + bxy + cy?,

xT _\Af_/\,./
X

and we can likewise define positive-semidefiniteness for A. But what does it actually look like?
As depicted below, positive-definite matrices (x! Ax > 0) look like a bowl, positive-semidefinite
matrices (x’ Ax > 0) look like a half-cylinder, and indefinite matrices (x” Ax might be positive or
negative depending on x) look like a saddle:

definite semidefinite indefinite

Now suppose you're a back country skiier riding down this kind of terrain in the middle of
a howling blizzard. You're cold and exhausted, and you know you parked your truck in a place
where the ground levels out, but where exactly is it? The snow is blowing hard and visibility is
low—all you can do is keep your fingers crossed and follow the slope of the mountain as you make
your descent. (Trust me: this is really how one feels when doing numerical optimization!) If you
were smart and went skiing in Pos Def Valley then you can just keep heading down and will soon
arrive safely back at the truck. But maybe you were feeling a bit more adventurous that day and
took a trip to Semi Def Valley. In that case you'll still get to the bottom, but may have to hike back
and forth along the length of the valley before you find your car. Finally, if your motto is “safety
second” then you threw caution to the wind and took a wild ride in Indef Valley. In this case you
may never make it home!

In short: positive-semidefinite matrices are nice because it’s easy to find the minimum of the
quadratic functions they describe—many tools in numerical linear algebra are based on this idea.
Same goes for positive-semidefinite linear operators like the Laplacian A, which can often be thought
of as sort of infinite-dimensional matrices (if you take some time to read about the spectral theorem,
you'll find that this analogy runs even deeper). Given the ubiquity of Poisson equations in geometry
and physics, it’s a damn good thing A is positive-semidefinite!

EXERCISE 6.4

Using Green'’s first identity, show that A is negative-semidefinite on any compact surface M without
boundary. From a practical perspective, why are negative semi-definite operators just as good as
positive semi-definite ones?

http://en.wikipedia.org/wiki/Spectral_theorem

6.2. DISCRETIZATION VIA FEM 103

6.2. Discretization via FEM

il

The solution to a geometric or physical problem is often described by a function: the temperature
at each point on the Earth, the curvature at each point on a surface, the amount of light hitting each
point of your retina, etc. Yet the space of all possible functions is mind-bogglingly large—too large
to be represented on a computer. The basic idea behind the finite element method (FEM) is to pick a
smaller space of functions and try to find the best possible solution from within this space. More
specifically, if u is the true solution to a problem and {¢;} is a collection of basis functions, then we
seek the linear combination of these functions

U= in(Pi' xi € R
i

such that the difference ||ii — u|| is as small as possible with respect to some norm. (Above we see a
detailed curve u and its best approximation i by a collection of bump-like basis functions ¢;.)

Let’s start out with a very simple question: suppose we have a vector v € IR?, and want to find
the best approximation ¢ within a plane spanned by two basis vectors ey, e; € R3:

(5]

€1

Since 7 is forced to stay in the plane, the best we can do is make sure there’s error only in the
normal direction. In other words, we want the error ¢ — v to be orthogonal to both basis vectors e;
and es:

6.2. DISCRETIZATION VIA FEM 104

)

N

|
o

In this case we get a system of two linear equations for two unknowns, and can easily compute
the optimal vector 3.

Now a harder question: suppose we want to solve a standard Poisson problem
Au = f.

How do we check whether a given function i is the best possible solution? The basic picture still
applies, except that our bases are now functions ¢ instead of finite-dimensional vectors ¢;, and the
simple vector dot product - gets replaced by the L? inner product. Unfortunately, when trying to
solve a Poisson equation we don’t know what the correct solution u looks like (otherwise we’d
be done already!). So instead of the error i — u, we'll have to look at the residual Aii — f, which
measures how closely i satisfies our original equation. In particular, we want to “test” that the
residual vanishes along each basis direction ¢;:

(A — f, ¢j) =0,
again resulting in a system of linear equations. This condition ensures that the solution behaves
just as the true solution would over a large collection of possible “measurements.”

Next, let’s work out the details of this system for a triangulated surface. The most natural
choice of basis functions are the piecewise linear hat functions ¢;, which equal one at their associated
vertex and zero at all other vertices:

At this point you might object: if all our functions are linear, and A is a second derivative,
aren’t we just going to get zero every time we evaluate Au? Fortunately we're saved by Green’s
identity—let’s see what happens if we apply this identity to our triangle mesh, by breaking up the
integral into a sum over individual triangles o

<Au/¢]> = Zk(A“/¢j>Uk
= YV, Vo) g + k(N - Vi, ¢)ag,-

If the mesh has no boundary then this final sum will disappear since the normals of adjacent
triangles are oppositely oriented, hence the boundary integrals along shared edges cancel each-other
out:

6.2. DISCRETIZATION VIA FEM 105

I

In this case, we're left with simply

<V1/i, V(P]>

in each triangle o}. In other words, we can “test” Au as long as we can compute the gradients of
both the candidate solution u and each basis function ¢;. But remember that u is itself a linear
combination of the bases ¢;, so we have

(Vu,V;) = <V infl’i, V4’j> = ZM(V% Vo;).

The critical thing now becomes the inner product between the gradients of the basis functions in
each triangle. If we can compute these, then we can simply build the matrix

Aij = (V(Pi,V(P]')
and solve the problem
Ax =b

for the coefficients x, where the entries on the right-hand side are given by b; = (f, ¢;) (i.e., we just
take the same “measurements” on the right-hand side).

EXERCISE 6.5

Show that the aspect ratio of a triangle can be expressed as the sum of the cotangents of the interior
angles at its base, i.e.,

w
e cota + cot .

h<

29

6.2. DISCRETIZATION VIA FEM 106

EXERCISE 6.6

Let e be the edge vector along the base of a triangle. Show that on the interior of a triangle, the
gradient of the hat function ¢ associated with the opposite vertex is given by

et

Vo =,
9 2A
where et is the vector e rotated by a quarter turn in the counter-clockwise direction and A is the

area of the triangle.

EXERCISE 6.7

Show that for any hat function ¢ associated with a given vertex

(Vop, Vo) = %(cotrx + cotB)

within a given triangle, where « and f are the interior angles at the remaining two vertices.

EXERCISE 6.8

6.3. DISCRETIZATION VIA DEC 107

Show that for the hat functions ¢; and ¢; associated with vertices 7 and j (respectively) of the same
triangle, we have

<V(Pi, V(P]> = —% coto,

where 0 is the angle between the opposing edge vectors.

Putting all these facts together, we find that we can express the Laplacian of u at vertex i via the
infamous cotan formula

(Au); = =) (cota; + cot Bj) (u; — u;),

]

N —

where we sum over the immediate neighbors of vertex i.

6.3. Discretization via DEC

The FEM approach reflects a fairly standard way to discretize partial differential equations.
But let’s try a different approach, based on discrete exterior calculus (DEC). Interestingly enough,
although these two approaches are quite different, we end up with exactly the same result!

Again we want to solve the Poisson equation Au = f, which (if you remember our discussion
of differential operators) can also be expressed as

*dxdu = f.

We already outlined how to discretize this kind of expression in the notes on discrete exterior
calculus, but let’s walk through it step by step. We start out with a 0-form u, which is specified as a
number u; at each vertex:

6.3. DISCRETIZATION VIA DEC 108

Next, we compute the discrete exterior derivative du, which just means that we want to integrate
the derivative along each edge:

(Note that the boundary de;; of the edge is simply its two endpoints v; and v;.) The Hodge star
converts a circulation along the edge ¢;; into the flux through the corresponding dual edge ¢};. In

]
particular, we take the fotal circulation along the primal edge, divide it by the edge length to get the
average pointwise circulation, then multiply by the dual edge length to get the total flux through the

dual edge:

6.3. DISCRETIZATION VIA DEC 109

Here |e;j| and |¢};| denote the length of the primal and dual edges, respectively. Next, we take
the derivative of *du and integrate over the whole dual cell:

eS| SeSwsey

The final Hodge star simply divides this quantity by the area of C; to get the average value over
the cell, and we end up with a system of linear equations

1 e
|Cil 5 [eij]

(*d xdu); = (uj—ui) = fi

where f; is the value of the right-hand side at vertex i. In practice, however, it’s often preferable to
move the area factor |C;| to the right hand side, since the resulting system

| *
il = |Cilfi

(d *du);
\u\

can be represented by a symmetric matrix. (Symmetric matrices are often easier to deal with
numerically and lead to more efficient algorithms.) Another way of looking at this transformation
is to imagine that we discretized the system

dxdu = xf.

In other words, we converted an equation in terms of O-forms into an equation in terms of n-
forms. When working with surfaces, the operator d x d is sometimes referred to as the conformal
Laplacian, because it does not change when we subject our surface to a conformal transformation.
Alternatively, we can think of d x d as simply an operator that gives us the value of the Laplacian
integrated over each dual cell of the mesh (instead of the pointwise value).

EXERCISE 6.9

Consider a simplicial surface and suppose we place the vertices of the dual mesh at the circumcen-
ters of the triangles (i.e., the center of the unique circle containing all three vertices):

6.4. MESHES AND MATRICES 110

Demonstrate that the dual edge e* (i.e., the line between the two circumcenters) bisects the
primal edge orthogonally, and use this fact to show that

|ei*j —l(cottx-%—cotﬁ)
el 2 "~

Hence the DEC discretization yields precisely the same “cotan-Laplace” operator as the Galerkin
discretization.

6.4. Meshes and Matrices

So far we’ve been giving a sort of “algorithmic” description of operators like Laplace. For
instance, we determined that the Laplacian of a scalar function u at a vertex i can be approximated
as ,

(Au); = 5 Z(cotocj + cot B;) (uj — u;),
]
where the sum is taken over the immediate neighbors j of i. In code, this sum could easily be
expressed as a loop and evaluated at any vertex. However, a key aspect of working with discrete
differential operators is building their matrix representation. The motivation for encoding an operator
as a matrix is so that we can solve systems like

Au=f

using a standard numerical linear algebra package. (To make matters even more complicated, some
linear solvers are perfectly happy to work with algorithmic representations of operators called
callback functions—in general, however, we’ll need a matrix.)

In the case of the Poisson equation, we want to construct a matrix L € RIVI* VI (where |V| is

the number of mesh vertices) such that for any vector u € RIV| of values at vertices, the expression
Lu effectively evaluates the formula above. But let’s start with something simpler—consider an
operator B that computes the sum of all neighboring values:

(Bu)i = Zu]
]

How do we build the matrix representation of this operator? Think of B a machine that takes a
vector u of input values at each vertex and spits out another vector Bu of output values. In order

6.4. MESHES AND MATRICES 111

for this story to make sense, we need to know which values correspond to which vertices. In other
words, we need to assign a unique index to each vertex of our mesh, in the range 1,. .., |V|:

It doesn’t matter which numbers we assign to which vertices, so long as there’s one number for
every vertex and one vertex for every number. This mesh has twelve vertices and vertex 1 is next
to vertices 2, 3,4, 5, and 9. So we could compute the sum of the neighboring values as

U
Uz
Us
Uy
Us
Ug
uz
us
Ug
Uio
Ui
L U1

(Buyy=[0 1111000100 0]

Here we’ve put a “1” in the jth place whenever vertex j is a neighbor of vertex 1 and a “0” otherwise.
Since this row gives the “output” value at the first vertex, we’ll make it the first row of the matrix B.
The entire matrix looks like this:

6.5. THE POISSON EQUATION 112

ro011 11000100 07
100101001100
100010101010
110011010000
101100110000
B— 010100010101
001010010011
0001111000071
111000000110
01 00010O01O0T11
001 0001O011QO0T1
L0 0000111011 0]

(You could verify that this matrix is correct, or you could go outside and play in the sunshine.
Your choice.) In practice, fortunately, we don’t have to build matrices “by hand”—we can simply
start with a matrix of zeros and fill in the nonzero entries by looping over local neighborhoods of
our mesh.

Finally, one important thing to notice here is that many of the entries of B are zero. In fact,
for most discrete operators the number of zeros far outnumbers the number of nonzeros. For
this reason, it’s usually a good idea to use a sparse matrix, i.e., a data structure that stores only
the location and value of nonzero entries (rather than explicitly storing every single entry of the
matrix). The design of sparse matrix data structures is an interesting question all on its own, but
conceptually you can imagine that a sparse matrix is simply a list of triples (i, j, x) where i,j € N
specify the row and column index of a nonzero entry and x € IR gives its value.

6.5. The Poisson Equation

In the first part of the coding assignment you’ll build the cotan-Laplace operator and use it to
solve the scalar Poisson equation
Ap=p
on a triangle mesh, where p can be thought of as a (mass or charge) density and ¢ can be thought
of as a (gravitational or electric) potential. Once you’ve implemented the methods below, you can
visualize the results via the Viewer. (If you want to play with the density function p, take a look at
the method Viewer: :updatePotential.)

Recall from the end of Section 6.3 that it’s often convenient to put the vertex areas |C;| on the
right-hand side, so that the system becomes symmetric. In our matrix representation, this means
our Poisson equation becomes a matrix equation

Lu = Mp, (1)

where the matrix L € R"*" encodes the cotan formula, and M € R"*" encodes the multiplication of
the value ¢; at each vertex by the vertex area |C;|. (In the finite element setting, L is often called the
stiffness matrix, and M is the mass matrix.) The Laplace operator can then be expressed as A := M~!L,
though in practice one typically solves Equation 1 rather than building the matrix A directly.

CODING 16. Implement the method Mesh: : indexVertices () which assigns a unique ID to
each vertex in the range O, ..., |V| — 1.

6.6. IMPLICIT MEAN CURVATURE FLOW 113

CODING 17. Derive an expression for the cotangent of a given angle purely in terms of the
two incident edge vectors and the standard Euclidean dot product (-) and cross product ().
Implement the method HalfEdge: : cotan (), which computes the cotangent of the angle across
from a given halfedge.

CODING 18. Implement the methods Face: :area () and Vertex: :dualArea (). For the
dual area of a vertex you can simply use one-third the area of the incident faces—you do not need
to compute the area of the circumcentric dual cell. (This choice of area will not affect the order of
convergence.)

CODING 19. Using the methods you’ve written so far, implement the method Mesh: :buildLaplacian ()
which builds a sparse matrix representing the cotan-Laplace operator. (Remember to initialize the
matrix to the correct size!)

CODING 20. Implement the method Mesh: : solveScalarPoissonProblem () which solves
the problem A¢ = p where p is a scalar density on vertices (stored in Vertex: : rho). You can
use the method solve from SparseMatrix.h; p and ¢ should be represented by instances of
DenseMatrix of the appropriate size. Be careful about appropriately incorporating dual areas into
your computations; also remember that the right-hand side cannot have a constant component!

You should verify that your code produces results that look something like these two images
(density on the left; corresponding potential on the right):

6.6. Implicit Mean Curvature Flow

Next, you'll use nearly identical code to smooth out geometric detail on a surface mesh (also
known as fairing or curvature flow). The basic idea is captured by the heat equation, which describes

6.6. IMPLICIT MEAN CURVATURE FLOW 114

the way heat diffuses over a domain. For instance, if u is a scalar function describing the temperature
at every point on the real line, then the heat equation is given by

ou 0%u

ot ox2

Geometrically this equation simply says that concave bumps get pushed down and convex
bumps get pushed up—after a long time the heat distribution becomes completely flat. We also
could have written this equation using the Laplacian: %—”t‘ = Au. In fact, this equation is exactly
the one we’ll use to smooth out a surface, except that instead of considering the evolution of
temperature, we consider the flow of the surface f : M — R3 itself:

A af.
ot
Remember from our discussion of vertex normals that Af = 2HN, i.e., the Laplacian of position
yields (twice) the mean curvature times the unit normal. Therefore, the equation above reads,
“move the surface in the direction of the normal, with strength proportional to mean curvature.” In
other words, it describes a mean curvature flow.

So how do we compute this flow? We already know how to discretize the term A f—just use

the cotangent discretization of Laplace. But what about the time derivative %? There are all sorts
of interesting things to say about discretizing time, but for now let’s use a very simple idea: the
change over time can be approximated by the difference of two consecutive states:

of _fu—fo
ot h
where f is the initial state of our system (here the initial configuration of our mesh) and f is the

configuration after a mean curvature flow of some duration # > 0. Our discrete mean curvature
flow then becomes
fn—fo

0= af.

The only remaining question is: which values of f do we use on the right-hand side? One idea is to
use fo, which results in the system

fh = fo + I’lAfO

This scheme, called forward Euler, is attractive because it can be evaluated directly using the known
data fo—we don’t have to solve a linear system. Unfortunately, forward Euler is not numerically
stable, which means we can take only very small time steps h. One attractive alternative is to use f,
as the argument to A, leading to the system

(I =hA) fu = fo,
A

where [is the identity matrix (try the derivation yourself!) This scheme, called backward Euler, is
far more stable, though we now have to solve a linear system Af;, = fq. Fortunately this system is

6.7. BOUNDARY CONDITIONS 115

highly sparse, which means it’s not too expensive to solve in practice. (Note that this system is not
much different from the Poisson system.)

CODING 21. Implement the method Mesh: :buildFlowOperator (), which should look very
similar to Mesh: :buildLaplacian.

CODING 22. Implement the method Mesh: :computeImplicitMeanCurvatureFlow ().
Note that you can treat each of the components of f (x, y, and z) as separate scalar quantities.

You should verify that your code produces results that look something like these two images
(original mesh on the left; smoothed mesh on the right):

6.7. Boundary Conditions

Boundary conditions are exactly what they sound like: conditions that solutions to a equation (like
the Laplace or Poisson equation) must satisfy along the domain boundary. In general, boundary
conditions can be a pain in the butt: they’re often difficult to work out, and are easy to get wrong
in code. From a practical point of view, a nice thing about working with surfaces (rather than
regions of R", which must have boundary) is that you can first consider a domain without boundary;,
then add the additional complexity of boundary conditions once everything is working properly.
However, for many problems boundary conditions are critical, because they determine the behavior
of the entire solution—consider for instance the Laplace equation, where the solution on the interior
is completely determined by the values on the boundary.

Let’s take a look at how to derive and implement boundary conditions for a Laplace equation
Au = 0 on a surface M with boundary 0 M. We will use n to denote the unit normal to the boundary,
which by convention we will assume points outward. Two of the most common kinds of boundary
conditions are

e Dirichlet — along dM, the value of u must equal a given function g : 0M — R. With
Dirichlet boundary conditions, a Laplace equation effectively tries to extend or interpolate
the known boundary values g over the rest of the domain as smoothly as possible, yielding
the function u.

e Neumann — along dM, the normal derivative du /dn must equal a function i : oM — R.
With Neumann conditions, a Laplace equation also seeks a function that is as smooth as
possible, but now with prescribed “slope” at the boundary—alternatively, if we think of

6.7. BOUNDARY CONDITIONS 116

the function u as describing the steady-state temperature at each point of the domain,
Neumann conditions describe an inflow /outflow of heat at the boundary.

6.7.0.1. Dirichlet Boundary Conditions. Let’s first consider a Poisson problem with Dirichlet
boundary conditions (Laplace is the special case where f = 0):

Au = f onM,
u = g onodM.

In the discrete case, this equation will always have a unique solution, no matter which functions f
and g we pick. The physical intuition behind the existence and uniqueness of a solution is that this
equation describes the steady-state temperature u in a system with a heat source f on the interior,
and clamped to a temperature g along the boundary.

Recall that in the discrete case we can express Au via the cotan formula, yielding an equation

1
5 Y (cotaj+cot ;) (uj—u;) =0
JEN (i)
for each vertex i, where the sum is taken over all neighbors N (i) of vertex i. If j is on the boundary,
its value is already given by u; = g; for some known constant g;.

Block matrices. This fact does not really change our expression for the discrete Laplacian
(except, perhaps, for swapping out some “u”s for some “g”s), but it does affect the way we
assemble the matrix representing our linear system. In general, a nice way to keep track of what’s
going on with boundary conditions is to express matrices in block form, i.e., to write out a matrix
where each entry actually corresponds to a smaller matrix. In this case, suppose we index our
vertices so that all the interior vertices come first, followed by all the boundary vertices; let [, B C V
denote the set of interior and boundary vertices, respectively. Then we can write the cotan matrix

L € RIV*IVlin block form as
L — [Ly Lis]
Lgr Lap |’

where Lyy is the |I| x |I| block of L, corresponding to entries L;; where both i and j are boundary
vertices (and similarly for Ljp € RU<IBI g, € RIBXI Lgp € IR‘B|X|B|). Note also that since L is a
symmetric matrix, Lp; = LITB. Likewise, consider a discrete Poisson equation

Lu=b,

where u € RI"I are the solution values at each vertex, and the right-hand side b := Mf gives the
source values f; at each vertex times the vertex areas |C;| (see discussion around Equation 1). We
can write this system in block form as

Lt Lis ur | _ | br
Ler Lsa up bp |

For a Dirichlet problem, we already know that up = g, where g € RIFl is the vector of known
boundary values. Hence, we just have to solve for the unknown values ur € R, which we can do
by solving the first row of our block equation:

Lijur = by — Lg.

Since Ly is an I x I matrix (and has full rank), this smaller system alone is enough to determine all
the unknown values. Equivalently, we can imagine that while building row i of the Laplace matrix,
we check if the current neighbor j is on the boundary—if so, we subtract the (known) value g; times
the cotan weight for edge ij from the entry of the right-hand side corresponding to vertex i.

6.7. BOUNDARY CONDITIONS 117

An alternative—but completely equivalent—way to enforce Dirichlet conditions is to build a
larger system, where we still solve for both u; and up, but force the boundary values to be equal to

the given Dirichlet data:
Lir Lis ur | _ | bz
0 Ip up g |’

where here Ip notes the B x B identity matrix. This system is slightly larger and no longer symmetric,
and hence may take a bit longer to solve. When faced with alternatives like these, a good maxim
is: get it right, then make it fast. In other words, choose the formulation that you find easiest to
implement in a bug-free fashion. Once everything is working correctly, then you can split hairs over
whether the implementation can be made faster using (say) a solver that handles only symmetric
matrices.

6.7.0.2. Neumann Boundary Conditions. Let’s now consider a Laplace problem with Neumann
boundary conditions:
Au = f onM,
ou/on = h onodM.

The normal derivative du/dn can also be written as n - Vu, which will be helpful for working out
the discrete version. Importantly, unlike the Dirichlet problem, the Neumann problem does not always
have a solution!. Intuitively, f acts as a heat source on the interior of the domain, and / describes
how much heat is flowing in and out through the domain boundary. Hence, “what goes in must
come out”: the two functions must integrate to the same value in order for this equation to be
meaningful. This observation is made more explicit via the divergence theorem: the integral over
the boundary of the normal derivatives h must be equal to the integral over the whole domain of
the source function f:

hds:/ n-wds:/ V~VudA:/ AudA:/ FdA.
oM oM M M M

If f and h are not compatible in this way, then the equation has no solutions'. Note also that if a
solution does exist, it is unique only up to constant shifts u + ¢ for ¢ € IR, since both the Laplacian
and the normal derivative eliminate constants.

Similar to Section 6.3, we can discretize our Poisson equation by asking that Au and f integrate
to the same value over the dual cell C; associated with each vertex i:

/CiAudA:/CifdA. @)

When i is an interior vertex, the integral on the left-hand side leads to the same discrete expression
for (Au); as before, via the cotan formula. But at boundary vertices, the cell C; is “clipped” by the
domain boundary, and we must revise our formula. First, we apply the divergence theorem to
Equation 2 to obtain an integral over the cell boundary:

/AudA:/ v-VudA:/ n-Vu ds. 3)
C; C; aC;

The cell boundary dC; can be decomposed into a piece running through the domain interior, and a
piece along the domain boundary d M. On the interior, we can further break up the cell boundary
into linear segments within each triangle ijk, such as the dark blue segment ¢ in the figure below:

IThis fact is especially dangerous, because some numerical linear solvers will still return a solution anyway! For instance,
the standard “backslash” operator will give the least-squares solution, without reporting any kind of error. The best
thing to do, always, is to check the residual yourself. L.e., if you think you have a solution to a system Ax = b, just take an
extra moment to compute ||Ax — b|| and see that it really is equal to (numerical) zero.

6.7. BOUNDARY CONDITIONS 118

Within each triangle ijk, the function u can be expressed as a linear combination of hat functions
¢p at the three vertices:

u= Y uppp.
pedijk}
As shown in Exercise 6, the gradient of ¢y is orthogonal to edge ij. Since the normal 7;; is parallel
to this edge, our integrand over the segment ¢ becomes just

Tli]' -Vu = Z upni]-(-V%) = ui(ni]- . V(Pz) + Llj(?li]' . V¢j)r
pefijk}

i.e., the contribution from ¢ depends only on the values of u at vertices i and j. Using a calculation
very similar to Exercise 7, we then get

/ n-Vuds = %cot(u;— u;).
g

When j is an interior edge, the segment on the other side of edge ij likewise contributes a term
3 cot aj(uj — u;), and we get the usual cotan weight for this edge. But when ij is a boundary edge,
we get a contribution only from one side (and hence do not need to worry about the “unknown”
angle in the basic cotan formula, which is not needed).

Most importantly, we still need to account for the contribution along the domain boundary oM.
Let a2 and b be the points where the dual cell boundary 0C; meets d M:

j a ?iai 7bib k

We need to add to our integral the contribution of n - Vu along the segments ia and bi—
intuitively, we need to account for any flow into or out of the domain. How do we compute these
values? Though it is tempting at this moment to, for instance, write down an expression for the
gradient “just inside” the domain, the whole point is that we get to choose this value, i.e., we get to
choose how much “stuff” is flowing in or out of the domain at the vertex i. In particular, if we
imagine that we have a continuous function / : dM — R determining our Neumann boundary
conditions, then we can choose a value /; representing the integral of the normal flux through this

piece of the boundary:
hi = / n-Vu.
aC;NOM

6.7. BOUNDARY CONDITIONS 119

For instance, suppose we already had values h;j and hy; giving the total flux through boundary
edges ij and ki (i.e., the normal derivative times the edge length). Then we would want to add the
term h; = (hi]' + hy;) /2 to the overall integral from Equation 3. Importantly, since the Neumann
values are known constants that are added to our expression for the Laplacian at vertex i, they are
subtracted from the right-hand side in our final matrix equation.

The construction of the final system can again be made clear by writing it in block form. First,
we build the full |V| x |V| matrix L, making only one minor modification: for edges ij along the
domain boundary, we have entries L;; = 1 cota (where a is the one angle we know), rather than
%(cot a + cot B). The diagonal entries L;; should still be the sum of all off-diagonal entries, so that
the rows sum to zero (hence, constant functions are still in the null space of L). Using this matrix,
our Poisson problem with Neumann boundary conditions then becomes simply

_ | b1
Lu_[bg—h}’

where h € RIBl is the vector of (integrated) Neumann values along the boundary. Notice that unlike
the Dirichlet problem, we still have to solve for all values of u—mnot just the interior values—and
hence use the full matrix L.

CHAPTER 7

Surface Parameterization

In this chapter we’re going to look at the problem of surface parameterization. The basic idea
is that we have a surface sitting in space, and we want to “flatten it out” in the plane. The oldest
example, perhaps, is making a map of the Earth:

One thing you’ll notice about maps of the Earth is that they all look distorted in some way:
Greenland looks way too big, or “north” doesn’t quite make a right angle with “east.” These
phenomena reflect a general fact about surface parameterization: it’s usually impossible to flatten
a surface while perfectly preserving both lengths and angles—in other words, not every surface
admits an isometric parameterization. It is, however, always possible to find an angle-preserving or
conformal parameterization, which is what we’ll do in this assignment.

120

7. SURFACE PARAMETERIZATION 121

7.0.1. Two Quarter Turns Make a Flip: A Brief Review of Complex Numbers. If you've ever
seen the complex numbers, you've probably encountered the totally abysmal description of the
imaginary unit 7 as the “square root” of negative one:

i=+v—1.

Since the square of any real number is nonnegative, one argues, the number i must be “imaginary.”
Makes sense, right? The problem with this story is that it neglects the simple geometric meaning of
i, which turns out to be quite real! So, let’s start over: the symbol i denotes a quarter-turn in the
counter-clockwise direction. For instance, if z is a vector pointing east, then iz is a vector pointing
north:

’

iz

What happens if we apply another quarter turn? We get a half turn, of course!

177 <€ ® > Z

In other words, we have i(iz) = —z. We can abbreviate this statement by writing i’z = —z, which
means we must have

i.e., two quarter turns make a flip. That’s all. No square roots, and very little imagination required.
Thinking of the imaginary unit i as a 90-degree rotation will be essential in our discussion of
conformal maps.

7.1. CONFORMAL STRUCTURE 122

7.1. Conformal Structure

For a surface f: M — IR sitting in space, we also have a simple way to express 90-degree rotations.
In particular, if df(X) is a tangent vector in IR3, we can express a quarter turn in the counter-
clockwise direction by taking the cross product with the unit normal N:

N x df (X),

Since the vector N x df (X) is also tangent to the immersed surface f(M), there must be some
corresponding tangent vector on the domain M—Ilet’s call this vector JX. In other words,

4 (TX) = N x df (X)),

The map J is called the conformal structure induced by the immersion f. (Some might prefer to
call J an almost complex structure or a linear complex structure, but for surfaces all of these ideas are
essentially the same.) A Riemann surface is a surface with a complex structure, i.e., it is a surface
where we know how to measure angles between tangent vectors (but possibly not their length).

The most important thing to remember about the conformal structure 7 is that, like the
imaginary unit i, there is nothing strange or mysterious about it: it denotes a quarter turn in the
counter-clockwise direction. And, as before, two quarter turns make a flip:

j 2 - _1d/
where id just denotes the identity.

At this point you might be wondering, “ok, so why do we bother with two different objects, i
and J, that do exactly the same thing?” This story is especially confusing given that the domain M
in the picture above looks an awful lot like a piece of the (complex) plane. But in general, M does
not have to be a piece of the plane—it can be any topological surface (a sphere, a donut, etc.). And
in general, tangent vectors are not complex numbers! Therefore, it doesn’t make much sense to write
iX, nor does it make sense to write 7 z. But there’s clearly a relationship we want to capture here,
and that relationship is described by our good friends Augustin Cauchy and Bernhard Riemann.

7.2. THE CAUCHY-RIEMANN EQUATION 123

7.2. The Cauchy-Riemann Equation

C
/ |
e
[
Vi
[|
1 >
abstract domain parameterization 1

Remember that, like the cartographers of yore, our goal is to parameterize a given surface over
the plane. In particular, we want to find a map that preserves angles. How can we express this
condition more explicitly? Well, we know how to express 90-degree rotations on the surface, using
the complex structure 7. And we know how to express 90-degree rotations in the plane, using
the imaginary unit i. Therefore, an angle-preserving or conformal map z : M — C must satisfy the
Cauchy-Riemann equation

dz(JX) = idz(X)

for all tangent vectors X on M. In other words, rotating a vector by 90-degrees and then mapping it
into the plane is no different from mapping it into the plane and then rotating it by 90 degrees. To
be more precise, z is a holomorphic function, meaning that it preserves both angles and orientation
(dz(X) x dz(JX) sticks “out” of the plane). Maps that preserve angles but reverse orientation are
called antiholomorphic.

Note that the meaning of dz in the Cauchy-Riemann equation is no different from the meaning
of df when we talk about an immersion f: it tells us how tangent vectors get “stretched out” as we
go from one space to another. In fact, like f, the map z is just another immersion of M—this time into
C instead of R3. The basic idea of the Cauchy-Riemann equation is that both of these immersions
should share an identical notion of angle, as emphasized in the illustration above. One way to look
at this picture is to imagine that we start out with the abstract domain M, which “doesn’t know”
how to measure the angle between two vectors. By immersing M in three-dimensional space (via
the map f), we inherit the usual Euclidean notion of angle. We then look for a map z to the complex
plane that shares this same notion of angle (but perhaps a different notion of length!).

7.3. DIFFERENTIAL FORMS ON A RIEMANN SURFACE 124

7.3. Differential Forms on a Riemann Surface

Half of life is knowing what you want. The other half is knowing how to get it. In this case, we
know what we want: a map z satisfying the Cauchy-Riemann equation. But how do we actually
compute it? In order to connect this question to our existing computational tools, let’s rewrite
Cauchy-Riemann in terms of exterior calculus. In fact, let’s revisit the whole idea of differential
forms in the context of surfaces and their conformal structure. As we’ll see, this way of thinking
can lead to some beautifully simple geometric expressions.

Recall our geometric interpretation of real-valued differential forms: a k-form measures some
k-dimensional volume (length, area, etc.). One thing to notice is that on an n-manifold, there are no
n + 1-dimensional volumes to measure. For instance, we can’t measure two-dimensional areas on
a curve—just one-dimensional lengths. Likewise, we can’t measure three-dimensional volumes
on a surface—just 1D lengths and 2D areas. For this reason, differential forms on surfaces become
particularly simple to understand:

e 0-forms look like scalar functions,
e 1-forms look like vector fields, and
e 2-forms look like scalar multiples of area.

That’s where the list ends! There are no 3-forms (or 4-forms, or 5-forms...) to worry about. (A
more algebraic way to convince yourself of this fact is to consider the antisymmetry of the wedge
product: @ A B = —B A a. What happens when you take the wedge of more than two basis 1-forms?)

The Hodge star is also particularly easy to express on surfaces. Recall the basic idea behind the
Hodge star: in n-dimensions, we can specify any k-dimensional linear subspace via a complemen-
tary (n — k)-dimensional subspace. For instance, we can describe a plane in R either by two basis
vectors, or by a single normal vector. On surfaces, the most interesting case is perhaps the Hodge
star on 1-forms. Roughly speaking, any 1-form « can also be specified via an orthogonal 1-form %«
of equal length:

™

Look familiar? At this point it becomes clear that, at least on surfaces, the Hodge star on 1-forms is
closely connected to the conformal structure 7. More precisely, if « is a 1-form on a surface M then

7.3. DIFFERENTIAL FORMS ON A RIEMANN SURFACE 125

we can define the 1-form Hodge star x via

*u(X) = a(JIX)
for any tangent vector field X. In other words, applying x« to a vector X is the same as applying
« to the rotated vector JX. The Hodge star on 2-forms can also be expressed via the conformal
structure. In particular, let w be any 2-form on a surface M, and let X be any unit vector field. Then
we have

*w = w(X, JX).
In other words, by using our 2-form to measure a little square of unit area, we can determine the
associated “scale factor,” which is just a scalar function on the surface (i.e., a O-form).

Notice that we’ve adopted a particular convention here: there are two equal and opposite
directions orthogonal to &, and we could have just as easily adopted the convention that xa(X) =
—ua(JX) (many authors do!). An important thing to be aware of is how this choice affects our
expression for the inner product.

EXERCISE 7.1

Like the inner product for vectors, functions, or vector fields, the inner product on 1-forms captures
the notion of how well two 1-forms “line up.” Any such inner product should be positive-definite,
i.e., we should have ((«, a)) > 0 for any 1-form «. Show that the inner product

(B = [sanp.

on real-valued 1-forms g, B is positive-definite only if we adopt the convention *a(X) = a(JX).
Likewise, show that the inner product

o B) = [wnsp.

is positive-definite only if we adopt the convention xa(X) = —a(JX). Hint: evaluate the expressions
*o A a(X, JX) and a A xa(X, TX).

Throughout we will adopt the former convention (xa(X) := a(JX)), and will use double bars
|| - || to denote the corresponding norm, i.e.,

[laf| 2=/ (o, @)

EXERCISE 7.2

Show that the Hodge star preserves the norm of any 1-form «, i.e.,
[af| = el

What's the geometric intuition?

7.3.1. Complex Differential Forms. In general, a k-form is a multilinear map from k vectors
to a scalar. However, a “scalar” does not have to be a real number. For instance, when we looked
at the area vector, we viewed the map f : M — R? as an R3-valued 0-form, and its differential
df : TM — R® as an R*-valued 1-form. Likewise, we can also talk about complex-valued k-forms,

7.4. CONFORMAL PARAMETERIZATION 126

i.e., functions taking k vectors to a single complex number. In the complex setting, it becomes
difficult to interpret k-forms as objects measuring k-dimensional volumes (what's a “complex”
volume?), but we still retain all the same algebraic properties (multilinearity, antisymmetry, etc.).
We also have a few new tools at our disposal.

EXERCISE 7.3

Let z = a + bi be any complex number. The complex conjugate of z is the number zZ := a — bi. Show
that for any two complex numbers u, v € C we have

v =u-v+ (U X0)i

where on the right-hand side we interpret u, v as vectors in R2. Hint: expand the left-hand side in
components. Remember that i> = —1!

EXERCISE 7.4

In the real setting, inner products are symmetric: we can exchange the two arguments without
affecting the result. In the complex setting, the analogous concept is that an inner product is
Hermitian: changing the arguments only conjugates the result. In other words, for any Hermitian
inner product (-, -) on complex numbers, we have

(u,v) = (v, u).
Show that the inner product
(u,v) := v
introduced in the previous exercise is Hermitian and positive-definite. Hint: use the formula you just
derived!

Just as we can conjugate complex numbers, we can conjugate complex-valued 1-forms. As one
might expect, this operation simply flips the imaginary part of the result:

(@)(X) = («(X)).
Similarly, we can define (« A B)(X,Y) := (a A B(X,Y)), in which case « A B = & A B (Why?).

EXERCISE 7.5

Let «, B be complex 1-forms on M. Show that the inner product

{(a, B)) := Re /M *x A\ B

is Hermitian and positive-definite. Hint: evaluate the integrand on a basis (X, JX); the second part of
your proof should be very similar to the real case.

7.4. Conformal Parameterization

At long last we have all the tools we need to describe our algorithm for conformal parame-
terization. Remember that we want to find a map z : M — C that satisfies the Cauchy-Riemann

7.4. CONFORMAL PARAMETERIZATION 127

equation
dz(JX) = idz(X)
for all tangent vectors X. If we interpret dz as a complex-valued 1-form, we can rewrite this
relationship as just
*dz = idz.

Note that the geometric meaning of this statement hasn’t changed: the map xdz rotates its argument
by 90 degrees before mapping it to the plane; idz rotates vectors by 90-degrees after mapping them
into the plane. Ultimately, angles are preserved. We can measure the failure of a map to be conformal
by measuring the total difference between the expression on the left and the expression on the right:

Ec(z) == §|| xdz — idz||*.

The quantity E(z) is called the conformal energy. To compute a conformal map, then, we just need to
solve a simple convex quadratic optimization problem

min E¢(z),
z
subject to appropriate constraints. First, however, we're going to rewrite this energy in terms of

familiar objects like the Laplacian—this formulation will make it particularly simple to setup and
solve our optimization problem in the discrete setting.

EXERCISE 7.6

Let u,v be complex functions on M. Assuming that the normal derivative of either function
vanishes along the boundary, show the first Green’s identity

({du, dv)) = ((Au,v))

where A = — xd x d is the Laplace-Beltrami operator on 0-forms. Hint: you already proved this fact in
the real case!

EXERCISE 7.7

Let z be a map from a topological disk M to the complex plane C. Show that the total signed area
A(z) of the region z(M) C C can be expressed as

Az) = —% /M dz A dz.

EXERCISE 7.8

Assuming that z has vanishing normal derivatives along the boundary, show that the conformal
energy Ec(z) can be expressed as

Ec(z) = Ep(z) — A(z),

where the first term is the Dirichlet energy Ep(z) := 3((Az,z)). Hint: use the results of the last two
exercises!

7.4. CONFORMAL PARAMETERIZATION 128

EXERCISE 7.9

Suppose z is a piecewise linear map on a simplicial disk, i.e., we have one value of z per vertex.
Starting with the formula you derived in Exercise 7, show that the signed area of the image z(M)
can be expressed as the sum

i _ _
A(z) = —1@; Zizj — Zjzi.
ij el

where Ej denotes the set of oriented boundary edges. Hint: first, use Stokes” theorem. Next, break up
the integral into an integral over each edge. Finally, think of dz as the pushforward of the edge vectors.

CODING 23. Implement the method ConformalParameterization: :buildEnergy (),
which builds a |V| x |V| matrix corresponding to the conformal energy Ec. For the Dirichlet energy,
you can reuse the expression you previously derived for the discrete Laplace operator (i.e., the cotan
formula)—the only difference is that these values are now the entries of a complex matrix rather than
areal one (SparseMatrix<Complex>). For the area term, subtract the expression your derived
in Exercise 9 from the Laplacian. You may find it easiest to simply iterate over halfedges of the
boundary loop.

Great. So to compute a conformal map we just have to know how to discretize the Laplacian A
(which already did while studying the Poisson equation) and the signed area A. However, let’s
take another look at our optimization problem—originally we said we want to solve

min || x dz — idz||%.
z

There’s a glaring problem with this formulation, namely that any constant map z(p) = zp € Cisa
global minimizer. In other words, if we map the whole surface M to a single point z in the complex
plane then the conformal energy is zero. (Why? Because the derivative dz is zero everywhere!)
Intuitively, we can imagine that we’re trying to stretch out a tiny sheet of elastic material (like a
small piece of a rubber balloon) over a large region in the plane. If we don’t nail this sheet down in
enough places, it will simply collapse into a point:

) @&~

We therefore need to add some additional constraints to make the solution more “interesting.”
But which constraints should we use? If we use too few constraints, the solution may still be
uninteresting—for instance, if we just nail our elastic sheet to a single point, it can still collapse
around that point. If we use too many constraints, there may be no solution at all—in other
words, there may be no perfectly conformal map (xdz = idz) that satisfies all our constraints

7.4. CONFORMAL PARAMETERIZATION 129

simultaneously. To understand this situation better, let’s take another look at harmonic functions
and how they relate to holomorphic maps.

EXERCISE 7.10

Recall that a function is harmonic if it sits in the kernel of the Laplace-Beltrami operator A. Show
that any holomorphic map z : M — C is harmonic. Hint: use the Cauchy-Riemann equation and the
expression for Laplace-Beltrami you derived in the homework on vertex normals.

Another way to investigate the relationship between harmonic and holomorphic functions is to
consider our optimization problem

What does the minimizer look like? Well, to make things a bit easier to analyze, let’s imagine that
the map z is prescribed along dM, i.e., we “nail down” all the points along the boundary. From
our discussion of vertex normals, you may recall that the signed area is also now fixed, since
it can be expressed as a boundary integral. In other words, if we pin down the boundary then
A(z) evaluates to the same constant for all maps z, and so we need only consider the map that
minimizes the Dirichlet energy Ep(z) = 3((Az,z)). In particular, since Ep is positive and quadratic,
its minimum will be found wherever its gradient vanishes, i.e., wherever

Az

|
©

In conclusion: the minimizer of conformal energy subject to fixed boundary conditions is harmonic.
Is it also holomorphic? In other words, does it preserve angles? Sadly, no: even though every
conformal map is harmonic, not every harmonic map is conformal.

EXERCISE 7.11

Let M be a topological disk and let ¢ : M — C be a harmonic function (A¢ = 0) with zero
imaginary part, i.e., Im(z) = 0. Give a simple geometric reason for why ¢ is not a holomorphic
map. (You answer should involve prose only—no direct calculations!)

7.5. EIGENVECTORS, EIGENVALUES, AND OPTIMIZATION 130

/";0
V=

harmomc

conformal

From a practical perspective, this observation means that we can’t just haphazardly nail down
pieces of our rubber sheet and hope for the best—in general, a harmonic map will not preserve

angles (as illustrated above, where we pin the boundary to a given rectangle). Instead, let’s consider
the following optimization problem:

mzin Ec(z)
st ||lz|| =1, (4)
{(z. 1) =0,

where 1 denotes the constant function z(p) = 1, i.e., the function equal to “1” at every point. What
do these constraints mean geometrically? Well, suppose A is the total area of the surface f(M).
Then the second constraint is equivalent to

1
il A=
1 /Mzd 0,

i.e., the average value of the solution is zero. Equivalently: the solution must be centered around
the origin. The first constraint makes sure that the solution doesn’t collapse around the origin, i.e.,
in order for the norm to be nonzero, there must be at least one nonzero point z(p) # 0. Together,
these conditions are sort of the “weakest” things we can ask for: we don’t know where we want
our map to go, but we sure don’t want it to collapse!

7.5. Eigenvectors, Eigenvalues, and Optimization

Ok, next question: how do we actually solve an optimization problem like Equation 4? At first
glance it might look rather nasty and nonlinear, but in fact problems of this form turn out to be
some of the nicest ones we can hope to solve. To study the situation in more detail, let’s revisit
an important topic in linear algebra: eigenvalue problems. Often, eigenvectors and eigenvalues are
introduced in the context of real, finite-dimensional matrices A € R"*"—in particular, we say that
a unit vector e € R" is an eigenvector of A if

Ae = Ae

7.5. EIGENVECTORS, EIGENVALUES, AND OPTIMIZATION 131

for some constant A € R. As with all things in life, it’s better if we can attach some kind of geometric
meaning to this statement. One way to visualize a linear map is to apply it to a bunch of vectors
in space and see how they change. For instance, suppose we apply a matrix A € R3*3 to all the
unit vectors in R3, i.e., the unit sphere. What happens? For one thing, any point on the sphere
corresponding to an eigenvector e¢; will grow or shrink by the associated factor A;, but remain
pointing in the same direction. What about the rest of the sphere? Well, if A is a symmetric matrix
(AT = A), then the three corresponding eigenvectors ey, e, e3 are mutually orthogonal (as you will
prove in just a minute!). We can therefore visualize a symmetric linear map as a “squishing” of a
sphere along these three axes, where the amount of squish is determined by the magnitude of the
eigenvalues A;:

€1

Aeq

Aze@
e
2 e3)\383

This picture provides a fairly decent mental image not only for real symmetric matrices, but more
generally for any self-adjoint linear operator. A linear operator is just any map from one vector space
to another that is, well, linear! Earlier, for instance, we looked at the Laplace operator A, which
(roughly speaking) maps functions to the sum of their second derivatives. Functions form a vector
space (you can add two functions, subtract them, multiply them by scalars, etc.), and the Laplacian
A is said to be linear since it preserves basic vector space operations, e.g.,

A(agp + byp) = aA¢p + bAY

for any pair of functions ¢, and scalars a,b € RR. In the context of general linear operators, the
idea of eigenvectors and eigenvalues is essentially unchanged: an eigenfunction of a linear operator
is any function that changes only by a scalar multiple when we hit it with the operator. For instance,
the constant function 1 is an eigenfunction of the Laplacian with associated eigenvalue A = 0, since
Al = 0 = 01. In the next few exercises we’ll look at some important properties of linear operators
and their eigenfunctions, which will help us develop algorithms for conformal maps (and other
geometry processing problems).

EXERCISE 7.12

Let A be a linear operator and let ((-, -)) be a Hermitian inner product. The adjoint of A, denoted by
A* is the unique linear operator satisfying

{Ax,y) = ({x, A7)

for all vectors x, y. An operator is called self-adjoint if A* = A. Show that all the eigenvalues of a
self-adjoint operator are real.

7.5. EIGENVECTORS, EIGENVALUES, AND OPTIMIZATION 132

EXERCISE 7.13

Let A be a self-adjoint linear operator. Show that any two eigenfunctions ¢;, ¢; of A with distinct
eigenvalues A;, A; must be orthogonal, i.e., {(e;, ¢j)) = 0.

If you've had much experience with real symmetric matrices, these facts should look familiar:
eigenvalues are real, and eigenvectors are orthogonal. We’ve glossed over a lot of important
points here—for instance, why should eigenfunctions always exist? But the main point is that if an
operator is “nice enough” (e.g., the Laplacian A on a compact surface) it will indeed behave much
like a good old-fashioned matrix. This relationship is particularly valuable in geometry processing,
where we would ultimately like to approximate continuous, infinite-dimensional linear operators
with discrete, finite-dimensional matrices which we can actually store on our computer. For the
moment, this way of thinking will help us develop an algorithm for solving our optimization
problem above.

EXERCISE 7.14

Let A € R™ " be a real symmetric positive-definite matrix, i.e., xTAx > 0 for all x. Show that a
solution to the optimization problem

min x'Ax
X
s.t. ||XH =1

is given by any solution to the eigenvalue problem

Ax = Ax,
where x is a unit eigenfunction and A € R is the smallest eigenvalue of A. Moreover, show that
the minimal value itself is the eigenvalue A. Hint: note that the constraint ||x|| = 1 is equivalent to the

constraint ((x,x)) = 1 and use the method of Lagrange multipliers.

In other words, our optimization problem (Equation 4) reduces to a standard eigenvalue
problem. So, how do we solve an eigenvalue problem? In general, there are many fascinating
eigenvalue algorithms with fancy names and very, very complicated descriptions. Fortunately for
us, when looking for just the extreme eigenvalues of a matrix (i.e., the biggest or the smallest) we
can often do just as well by using the stupidest algorithm imaginable. That algorithm is called the
power method.

EXERCISE 7.15

The Power Method. Let A € R"*" be a real symmetric matrix with distinct, nonzero eigenvalues
0 < Ayq,..., Ay, and corresponding eigenvectors xi, . . ., x,. Consider the iterative procedure
y < Ay,

i.e., we just repeatedly hit the vector y with the matrix A. Show that the unit vector y/|y| converges
to the eigenvector x; corresponding to the largest eigenvalue A,, as long as y is not initially orthog-
onal to x,,. Hint: express y as a linear combination of the eigenvectors.

7.5. EIGENVECTORS, EIGENVALUES, AND OPTIMIZATION 133

To keep things simple, we made the assumption that A has distinct, nonzero eigenvalues, but
in general the same principle applies: hit a vector over and over again with a matrix and you'll
end up with a vector parallel to the “largest” eigenvector, i.e., the eigenvector corresponding to the
largest eigenvalue. (How far can you generalize your proof?) Geometrically, we can imagine that
our unit sphere is gets squashed more and more until it ends up looking like a thin spindle along
the direction of the largest eigenvector:

BESES

Notice that this scheme gives us the largest eigenvalue (and its associated eigenvector). To find
the smallest eigenvalue we need only make a slight modification.

EXERCISE 7.16

Let e be an eigenfunction of an invertible linear operator A, with associated eigenvalue A. Show
that

Ale = %e,
i.e., show that e is also an eigenfunction of the inverse, but has the reciprocal eigenvalue. Explain

why this relationship makes sense geometrically, in light of the picture at the beginning of this
section.

To get the smallest eigenvalue, then, we can simply apply the power method using the inverse
matrix A~! instead of the original matrix A. (Why?) In practice, however, we don’t want to explicitly
compute the inverse matrix A~!, for two very important reasons:

(1) computing the inverse of a matrix is, in general, numerically unstable and,
(2) even very sparse matrices can have very dense inverses (e.g., a sparse matrix that takes up
~100MB of memory might have an inverse that takes up ~10GB of memory!).

Instead of inverting A and iteratively applying it to some initial vector, we can just solve a linear
system at each step:
ALGORITHM 1 (The Inverse Power Method).

Require: Initial guess yo.
1: while Residual(A,y; 1) > € do
2: Solve Ayi =vyi 1
3 yi < vi/lyil
4: end while

7.5. EIGENVECTORS, EIGENVALUES, AND OPTIMIZATION 134

The function “Residual” measures how far our current guess y is from being an eigenvector.
Recalling that eT Ae = A for any eigenvector e and eigenvalue A (Exercise 14), we could write this
function as

Residual(A,y) := Ay — (y"Ay)y,
being careful to note that y is a unit vector.

CODING 24. Implement the routine
smallestEig(const SparseMatrix<T>& A, const DenseMatrixé& x),

which can be found in src/SparseMatrix.inl. To compute the residual, you may call the
subroutine residual (A,vy).

CODING 25. Implement the routine
residual (const SparseMatrix<T>& A, const DenseMatrixé& x),

which can be found in src/SparseMatrix.inl.

We now have a concrete procedure for solving eigenvalue problems. Can we use it to compute
a conformal map? Well, remember that our optimization problem (Equation 4) involves two
constraints: we want our solution to have unit L? norm ||z|| = 1, and we want it to be orthogonal
to any constant function ({(z, 1)) = 0). Both of these constraints demand minor modifications to
our existing eigenvalue algorithm.

First, we have the constraint ||z|]| = 1, which says that we want the function ||z|| to have
unit norm. What does it mean for a discrete function to have unit norm? It doesn’t mean that the
Euclidean norm +/|z1|2 + - - - + |z,| equals one (notice, for instance, that this quantity does not take
into account the fact that triangles in our mesh may have very different sizes). Instead, we should
remember that the discrete collection of values z; actually determine a continuous, piecewise linear
function defined everywhere on our surface (Section 6.2). Hence, what we’re really asking for here
is a function with unit L? norm, i.e., we want to ensure that [, [z|> dA equals one. In general we
can write this kind of condition using a mass matrix, which expresses the L? norm of a function in
terms of its degrees of freedom. In other words, we want to cook up a matrix B € CIVI*IVl such that
zHBz = [, M |z|?> dA. Actually, in this case we’ve already derived the matrix B: the norm of a 0-form
can be written as ||z|| = z A *z (Section 4.5.3), and the discrete Hodge star on primal 0-forms is just
a diagonal | V| x |V| matrix xo whose entries are equal to one-third the area of all triangles incident
on the corresponding vertex (Section 4.8.4). Hence, our unit-norm constraint can be expressed as
zH %0z =1.

Ok, but how do we enforce this constraint in our eigensolver? We now have a problem of the

form
Ax = ABx,

called a generalized eigenvalue problem. In the case where A is symmetric and B is symmetric positive-
definite, one can (and should!) easily show, using similar methods to those used above, that
the (generalized) eigenvalues A are still real and the (generalized) eigenvectors x are orthogonal
with respect to B, i.e., xZH Bx; = J;;. Likewise, if we consider the matrix C := B~!A then we get a
standard eigenvalue problem Cx = Ax where C is self-adjoint with respect to B, and all of our earlier
reasoning about the power method carries through. But since we’d rather not invert B explicitly,
we get a slightly modified version of the (inverse) power method:

7.5. EIGENVECTORS, EIGENVALUES, AND OPTIMIZATION 135

ALGORITHM 2 (Generalized Inverse Power Method).

Require: Initial guess yo.
1: while Residual(A,B,y; 1) > € do
2: w< By, 4
3: Solve Ay; = w

4y < vi/\/yBy;
5. end while

In other words, before each iteration we simply hit the previous iterate y;_; with the mass matrix
B (can you formally justify this scheme? It should involve just a simple algebraic manipulation of
the original scheme!). Notice that we also divide by the norm with respect to the mass matrix rather
than the usual Euclidean norm.

Ok, so what about the other constraint: ((z, 1)) = 0? Once again we should recognize that the
inner product ((-,-)) is the L? inner product—not the Euclidean inner product—and adjust our
algorithm accordingly. In particular, we simply need to add the line

yi < vi — (yHB1)1

to our generalized eigenvalue algorithm, right before the normalization step. In other words, we
project y onto 1, and remove that component from our current iterate.

CODING 26. Modify the routine

smallestEig(const SparseMatrix<T>& A, const SparseMatrix<T>& B, const
DenseMatrix& x)

to enforce the constraints (y, 1) = 0 and ||y|| = 1. Make sure to use the appropriate mass matrix,
not just the Euclidean norm. Also, be sure to perform the projection before normalization, to ensure
that the final solution has unit norm upon termination of the loop.

CODING 27. Implement the routine
ConformalParameterization: :update (),

which computes a conformal parameterization of a simplicial disk by computing the first non-
trivial eigenvector of the conformal energy. This routine should call your previous two routines,
buildEnergy () and smallestEig (). It should also copy the resulting values from the eigen-
vector to the texture coordinates Vertex: : texcoord associated with each vertex. (Once this
method has been implemented, you should be able to successfully flatten meshes from the Viewer.)

7.5.1. (Smallest) Eigenvalue Problems are Easy! As mentioned above, there are a lot of eigen-
value algorithms out there—many of which are far more sophisticated than the simple iterative
scheme we describe above. Can’t we do better by using something “more advanced?” Believe it
or not, for many standard geometry processing tasks (such as conformal parameterization) the
answer is, “probably not!” At least, not if we make a slight modification to our implementation of
the (inverse) power method.

7.5. EIGENVECTORS, EIGENVALUES, AND OPTIMIZATION 136

In particular, our current implementation of the power method solves a linear system for
each iteration. However, we can save an enormous amount of work by taking advantage of
prefactorization. Roughly speaking, prefactorization decomposes our initial matrix A into a product
of matrices that allow us to very quickly compute the solution to a system of the form Ax = b. (For
instance, it is always possible to write a square matrix A as the product of a lower triangular matrix
L and an upper triangular matrix U, after which point we can quickly solve a system by applying
forward- and back-substitution.) From a practical perspective, a prefactorization allows us to
quickly solve a sequence of linear systems where the matrix A stays fixed but the right-hand side b
changes (Ax = by, Ax = by, ...). Of course, “a sequence of systems with a changing right-hand side”
sounds a lot like the (inverse) power method!

CODING 28. Prefactorization. Modify your implementation of the inverse power method
to take advantage of prefactorization. In particular, you can create a SparseFactor object and
prefactor the matrix A via the method SparseFactor: :build (). To solve a linear system using
this factorization, use the method backsolve () in SparseMatrix.h.

There are two important rules of thumb about matrix prefactorization in the context of geometry
processing (at least when it comes to nice sparse operators like cotan-Laplace):

(1) factoring a matrix costs about as much as solving a single linear system, and
(2) the cost of backsubstitution is almost negligible compared to factorization.

The main outcome, then, is that (at least for the types of matrices we’ve considered in these notes)
computing the smallest eigenvector via the power method costs about as much as solving a single
linear system. In fact, in our code framework all linear systems are solved by first computing a
prefactorization, since (at least these days. ..) prefactored or direct linear solvers tend to be the most
efficient way to solve a sparse linear system—especially if you don’t have a good preconditioner.
They also tend to be much more reliable than standard iterative methods like conjugate gradient,
which may be very slow to converge for, e.g., poor triangulations. An important exception is when
working with very large meshes, where matrix factors may not be able to fit into memory—in this
case, a simple iterative solver may be your best bet. In general, understanding the tradeoffs among
different linear solvers (and other numerical tools) can make or break the effectiveness of a given
geometry processing algorithm—know them well!

CHAPTER 8

Vector Field Decomposition and Design

In this chapter we look at several tools for working with tangent vector fields on surfaces. A
tangent vector field consists of vectors lying flat along the surface—for instance, the hair on the
back of your cat or the direction of the wind on the surface of the Earth. One way to describe a
vector field is to simply specify each vector individually. This process is quite tedious, however,
and in practice there are much more convenient ways to describe a vector field. In this assignment
we’re going to look at two different but closely related descriptions. First, we’ll see how any tangent
vector field can be expressed in terms of a scalar potential, vector potential, and a harmonic component,
using a tool called Helmholtz-Hodge decomposition. Next, we’ll see how a vector field can instead be
expressed purely in terms of its singularities. Finally, we'll tie these two perspectives together and
show how Helmholtz-Hodge decomposition and singularity-based editing can be combined into a
highly effective tool for vector field design.

Our discussion of vector fields is closely related to the discussion of homology that we initiated
while studying loops on surfaces. Remember that, very roughly speaking, homology is a tool that
helps us detect certain “interesting features” of a space—for example, the homology generators
of a surface were noncontractible loops that wrap around each handle. In the context of vector
tields, we’ll see a very closely related notion of de Rham cohomology, which helps us detect fields
that also “wrap around” in a similar way. Interestingly enough, these two ideas turn out to be
nearly identical in the discrete setting (the only difference is a matrix transpose!).

137

8.1. HODGE DECOMPOSITION 138

8.1. Hodge Decomposition

8.1.1. Breaking Up is Easy to Do. The most important tools we’ll need have very little to do
with geometry or topology—just good old fashioned linear algebra. In particular, we're going to
show that any chain complex involving three vector spaces yields a decomposition of the space “in
the middle” into three natural pieces. This perspective will ultimately help us make sense of objects
in both the continuous and discrete setting.

First, let’s recall some important ideas from linear algebra. In particular, let A : U — V be a
linear map between vector spaces U and V, and let ((,)) be an inner product on V. The adjoint A*
of A is the unique linear operator A* : V — U such that

(Au,0)) = ((u, A™0))

for all vectors u € U and v € V. For instance, in the case where the operator A can be represented
by a real matrix, its adjoint A* is the matrix transpose. There are a few natural spaces associated
with any linear operator. One is the image, consisting of vectors in V that can be obtained by
applying A to some vector in U:

im(A) :={ve V|Au=v,u € U}.

A complementary idea is the cokernel, consisting of vectors in V' that cannot be obtained as the image
of some vector in U:

coker(A) :=im(A)L.

Here the symbol + denotes the orthogonal complement, i.e., all vectors in V orthogonal to im(A).
Finally, we have the kernel, consisting of all vectors u that get mapped to the trivial vector 0 € V:

ker(A) :={u € U|Au = 0}.

EXERCISE 8.1

Show that the cokernel of a linear operator is the same as the kernel of its adjoint.

In the context of surfaces, we found “interesting” loops (i.e., the noncontractible ones) by
looking for subsets that had an empty boundary but were not themselves the boundary of a larger
set. This basic idea can be applied in lots of other settings—in particular, consider a sequence of
vector spaces U, V, W connected by twomaps A: U — V and B: V — W. A common shorthand
for such a sequence is

u-tv-=ow
We say that this sequence is a chain complex if
BoA =0,

i.e., if any vector mapped into V by A subsequently gets “killed” when we apply B. An interesting
question we can ask, then, is, “are there additional elements of V that get killed by B for some other
reason?” As with loops on surfaces, answering this question helps us unearth interesting stuff
about the space V.

EXERCISE 8.2

8.1. HODGE DECOMPOSITION 139

The intersection N of two linear subspaces is the collection of all vectors common to both of them.
Show that
im(A)Nim(B*) =0,

for any chain complex U 4, v -5 W. In other words, show that the maps A and B* don't
produce any common vectors except for the zero vector. Hint: use the condition Bo A = 0 and the
result of the previous exercise.

Finally, we get to the punchline. If things are starting to feel a bit abstract at this point, don’t
dismay! The meaning of this decomposition will become quite clear in the next section, when we
apply it to tangent vector fields on surfaces.

im(A)

EXERCISE 8.3

Show that any vector v € V can be expressed as
v=Au+B'w+z

for some triple of vectors u € U, w € W and z € V such that A*z = 0 and Bz = 0. Equivalently,
show that the vector space U can be decomposed into the three orthogonal subspaces im(A),
im(B*), and Z := ker(B) \ im(A), where the backslash denotes the set of all vectors in ker(B) that
are not in im(A) (excluding the origin). Hint: start with the two pieces of V you considered in the
previous exercise, and consider what the rest looks like. It may be helpful to recall some basic facts about
unions, intersection, and complements, e.g., (V1 U Va)* = V- N Vs

8.1. HODGE DECOMPOSITION 140

8.1.2. Helmholtz-Hodge Decomposition.

divergence-free harmonic

curl-free

(coexact)
(exact)

In any flow, certain features naturally catch the eye: wind swirling around the Great Red Spot
on Jupiter, or water being sucked down into a mysterious abyss through the bathtub drain. Many
of these features can be given a precise mathematical description using the decomposition we
studied in the previous section. Consider, for instance, the vector field depicted above. Visually, we
experience three features: a swirling spot, a sucking sink, and a steady flow around a lazy river,
each of which is quite distinct. But can we apply the same kind of decomposition to any vector
tield? To answer this question, let’s look at a chain complex called the de Rham complex, which
shows up again and again in exterior calculus.

EXERCISE 8.4

Let d be the exterior derivative on k-forms and let § := xdx be the associated codifferential, acting
on k + 1-forms. Assuming that the domain M has no boundary, show that d and ¢ are adjoint, i.e.,
show that

{{da,) = (@, 3B))
for any k-form « and (k + 1)-form B. Hint: Stokes’ theorem!

8.1. HODGE DECOMPOSITION 141

EXERCISE 8.5

Helmholtz-Hodge Decomposition. Let QF denote the space of real-valued k-forms on a closed
compact n-dimensional manifold M, equipped with its usual L? inner product. A de Rham complex
is a sequence !

Q1 4 ok 4 oF,

Any such sequence is exact: if you recall, d o d = 0 was one of the defining properties of the exterior
derivative d. Show that any k-form w can be expressed as

w = da+ 5B+

for some (k — 1)-form &, k + 1-form B, and k-form o € QF such that dy = 0 and 6y = 0. Hint: apply
the results of Exercises 3 and 4.

The three pieces dw, 68, and 7y show up often enough in exterior calculus that they are given
special names. In particular, a k-form is

o exact if it can be expressed as the image of the exterior derivative (e.g., da),

e coexact if it can be expressed as the image of the codifferential (e.g., 68), and

e harmonic if it is in the kernel of both d and é—in other words, a harmonic form is both
closed (dy = 0) and co-closed (6y = 0).

We can gain some valuable intuition about these conditions by again considering the special case of
surfaces. Recall that dp = (V¢)’, i.e., the exterior derivative of a O-form ¢ looks like its gradient. In
a similar vein, we have the following fact.

EXERCISE 8.6

Let 8 be a 2-form on a surface M. As with any volume form, we can think of § as the Hodge dual
of some O-form ¢, i.e., p = x¢. Show that

3B =((Ve)*-),

i.e., the codifferential of a 2-form looks like the gradient, rotated by 90 degrees in the counter-
clockwise direction. Hint: on a surface, what does the Hodge star on 1-forms look like? Remember our
discussion of conformal structure.

Therefore, in the special case of surfaces we can write any vector field X as the sum of a curl-free
V¢, a divergence-free part (Vu)*, and a harmonic part Y which is both curl- and divergence-free. In
other words,

X=V¢+(Vu):+Y,

IMost people use the term “de Rham complex” to refer to the entire sequence going from 0-forms to n-forms, but for our
purposes this little piece will suffice.

8.1. HODGE DECOMPOSITION 142

where ¢ and u are scalar functions and Y is a vector field. The corresponding de Rham complex
can also be expressed in terms of vector calculus, namely

C*—=x—>C”

=

where C* denotes the space of smooth, real-valued functions on M, and X denotes the space of
smooth vector fields.

With this interpretation in mind, we can visualize the Hodge decomposition of a 1-form on
a surface via the two functions « and x, which are sometimes called a “scalar potential” and a
“vector potential,” respectively:

But wait a minute—what’s the corresponding picture for the harmonic component? Actually, the
absence of a picture is the whole point! The harmonic component is precisely the piece that cannot
be expressed in terms of some “potential.” In this example, for instance, any such potential would
have to keep increasing monotonically as we walk around the torus. Of course, no periodic function
can increase indefinitely, unless your name happens to be M.C. Escher:

8.1. HODGE DECOMPOSITION 143

EXERCISE 8.7

Above, we said that a k-form vy is harmonic if it is both closed (dy = 0) and co-closed (6 = 0).
Some authors instead define harmonic k-forms as elements of the kernel of the k-form Laplacian
A := dé + éd. Show that these two definitions are equivalent, i.e., show that < is harmonic if and
only if

Ay = 0.

8.1.3. Computing a Decomposition. So far our discussion of Helmholtz-Hodge decomposi-
tion has been very ephemeral: there exists a decomposition of any k-form into its three constituent
pieces. Unfortunately, although compilers are quite good at interpreting “if,” “while,” and “for
each” statements, they aren’t particulary adept at understanding “there exists” statements! So,
how do we actually compute a decomposition of real data? Fortunately, we’ve already written
everything down in terms of exterior calculus, which will make the translation to the discrete
setting straightforward.

EXERCISE 8.8

Let A be a linear operator and let A* be its adjoint. Show that
im(A) Nker(A*) =0,

i.e., any vector in the image of A is not in the kernel of A*.

EXERCISE 8.9

8.1. HODGE DECOMPOSITION 144

Let w be a real-valued k-form on a closed compact domain. From Exercise 5 we know that w can be
expressed as w = da + 6 + y for some k — 1-form «, k 4+ 1-form 8, and harmonic k-form -y. Show
that « and f are solutions to the linear equations

odu = dw

and
dép =dw,
respectively. Hint: as always, if you get stuck, think about what you did in the previous exercise!

A practical procedure for decomposing a vector field is therefore:
ALGORITHM 3 (Helmholtz-Hodge Decomposition).

1: Solve dda = dw
2: Solve dép = dw
3y w—da—9p

In other words, we compute the two potentials, then see what remains. (By the way, can you
apply this procedure to any chain complex, or do we need some special structure from the de
Rham complex?) The nice thing about this algorithm is that we can implement it using the discrete
differential operators we’ve already looked at—no additional discretization required!

To be a bit more explicit, let dy € RIEXIVI and d; € RIFIIEl be the discrete exterior derivatives
on 0- and 1-forms, respectively, where V, E, and F, denote the set of vertices, edges, and faces in
a triangulated surface. Also let xg € RIVIXIVI & € RIEIXIEl and %, € RIFIXIFl denote the diagonal
Hodge star matrices computed using the circumcentric dual. (At this point you may find it useful
to review the earlier material on discrete exterior calculus.) The two systems above can then be
discretized as

xg tdd x1 doa = %y tdE +1 w

and

d] *1_1 d{*zﬁ = dlw,
where a € RVl and g € R/ are encoded as a single value per vertex and per face, respectively.
Computationally, it is often more efficient if we can solve an equivalent symmetric system. In the
case of the first system we can simply remove the factor x, ' from both sides, yielding

dg *1 dolX = dg *1 W.
This system is also positive-semidefinite—independent of the quality of the triangulation—since
the operator d{ *; dy on the left-hand side is simply the restriction of the positive-definite Laplace-
Beltrami operator A to the space of piecewise linear functions (see our discussion of the Poisson
equation). Therefore, we can always solve for the potential « using a highly efficient numerical
method like sparse Cholesky factorization—this method is implemented in our code framework
via the routine solvePositiveDefinite. As for the second equation, consider the change of
variables 8 := x,8. We can then solve the symmetric system

dl*l_ld{B:dﬂU

and recover the final solution by computing 8 = %, 8. (This final step comes at virtually no
additional cost since the matrix x; is diagonal—the inverse simply divides each entry of by a

8.2. HOMOLOGY GENERATORS AND HARMONIC BASES 145

known constant.) Unlike the first equation, this system is not always positive-semidefinite. A
sufficient (though not actually necessary) condition for positive-definiteness is that the entries of
the 1-form Hodge star x; are positive. In general, however, this condition will not be met, but
we can still efficiently compute a solution using LU factorization, which is implemented in our
code framework via the method solveSquare. (An extremely rough rule of thumb is that LU
factorization is about twice as costly as Cholesky, since it involves two distinct factors.)

CODING 29. Implement the methods

void HodgeStarOForm<T> :: Dbuild()
void HodgeStarlForm<T> :: Dbuild()
void HodgeStar2Form<T> :: Dbuild()

inDiscreteExteriorCalculus. inl, which build the diagonal Hodge star matrices xg, x1, and
*2, respectively. Notice that these methods are templated on a type T, which can be Real, Complex,
or Quaternion. In all cases, however, the matrices should have real entries (i.e., the imaginary
parts should be zero). This setup will allow you to solve a variety of different geometry processing
problems using the same collection of routines.

CODING 30. Implement the methods
vold ExteriorDerivativeOForm<T> :: build()
vold ExteriorDerivativelForm<T> :: build()
in DiscreteExteriorCalculus.inl, which build the discrete exterior derivatives dy and d;
on O-forms and 1-forms, respectively. Check that these two matrices have been properly built by
computing their product and verifying that the resulting matrix is zero.

CODING 31. Implement the methods

HodgeDecomposition :: computeZeroFormPotential ()
HodgeDecomposition :: computeTwoFormPotential ()
HodgeDecomposition :: extractHarmonicPart ()

using the matrices you built in the last two exercises. You should now be able to visualize the three
components of the provided tangent vector fields from the Viewer. Compare the speed of solving
the two linear systems with the generic routine solve () versus the more specialized routines
solvePositiveDefinite () and solveSquare (), respectively.

One final question: why should this procedure work in the discrete setting? In other words,
how do we know that any discrete vector field can be decomposed as in the smooth case? Well,
as you should have verified in Coding 30, the sequence of vector spaces corresponding to the
discrete exterior derivatives dy and d; is exact. Therefore, all of our previous results about Hodge
decomposition still apply! In other words, it makes no difference (at least not in this case) whether
we work with infinite-dimensional function spaces or finite-dimensional vector spaces. Ideally,
this kind of behavior is exactly the kind of thing we want to capture in the discrete setting: our
discretization should preserve the most essential structural properties of a smooth theory, so that
we can directly apply all the same theorems and results without doing any additional work.

8.2. Homology Generators and Harmonic Bases

When working with surfaces of nontrivial topology, we often need to be able to compute two
things: generators for the first homology group, and bases for the space of harmonic 1-forms. Loosely
speaking, homology generators represent all the “basic types” of nontrivial loops on a surface. For
instance, on a torus we can find two homology generators: a loop going around the inner radius,
and a loop going around the outer radius—more generally, a closed surface of genus g will have

8.2. HOMOLOGY GENERATORS AND HARMONIC BASES 146

2g generators. Likewise, we will have 2¢ distinct bases for the harmonic 1-forms, each circulating
around a different handle in a different direction (see for example the harmonic component we
extracted above via Helmholtz-Hodge decomposition). People have come up with lots of funky
schemes for computing these objects on triangle meshes; here we describe the two methods that
are perhaps simplest and most efficient. In fact, these methods are closely related: we first compute
a collection of homology generators, then use these generators to construct a basis for harmonic
1-forms.

8.2.1. Homology Generators. The algorithm for finding generators, called tree-cotree decompo-
sition [Epp03, EW05], depends on nothing more than the most elementary graph algorithms. If
you don’t remember anything about graphs, here’s a quick and dirty reminder. A graph is a set
of vertices V and a collection of edges E which connect these vertices, i.e., each edge ¢;; € E is
an unordered pair {v;, v} of distinct vertices v;, v; € V. For example, the vertices and edges of a
simplicial surface describe a graph. The faces and dual edges also describe a graph. A subgraph is
a subset of a graph that is also a graph. A graph is connected if every vertex can be reached from
every other vertex along some sequence of edges. A tree is a connected graph containing no cycles.
If we wanted to be a bit more geometric (we are studying geometry, after all), we could say that
a tree is a simplicial 1-complex that is both connected and simply-connected. If most of this stuff
sounds unfamiliar to you, go read about graphs! They’re important. And fun.

To find a set of generators, we’ll need to compute a couple spanning trees. A spanning tree is
just a tree touching all the vertices of a given graph. How do we compute a spanning tree? If
you've studied graphs before, you might vaguely recall someone mumbling something like, “Prim’s
algorithm. .. Kruskal’s algorithm. .. O(nlogn)...” These two algorithms compute minimal spanning
trees, i.e., spanning trees with minimum total edges weight. We don’t care about edge weight, ergo,
we don’t care about Prim or Kruskal (sorry guys). Actually, we can use a much simpler linear time
algorithm to get a spanning tree:

8.2. HOMOLOGY GENERATORS AND HARMONIC BASES 147

ALGORITHM 4 (X-First Search).

Put any vertex in a bag, marking it as visited. Until this bag is empty, pull out a vertex and put
all unvisited neighbors in the bag, marking them as visited. Every time you put a neighbor in the bag,
add the corresponding edge to the tree.

Pretty easy. A “bag” here could be a stack, a queue, or... whatever. In other words, you could
do depth-first search. Or breadth-first search. Or anything-first search. The point is, we just need
to visit all the vertices®. Oh yeah, and we’ll call the initial vertex the root. Once we know how to
compute a spanning tree, finding a collection of generators on a simplicial surface is also easy:

ALGORITHM 5 (Tree-Cotree).

1: Build a spanning tree T* of dual edges.

2: Build a spanning tree T of primal edges that do not cross edges in T*.

3: For each dual edge eﬁ that is neither contained in T* nor crossed by T, follow both of its
endpoints back to the root of T*. The resulting loop is a generator.

Overall, the algorithm will produce 2g generating loops. Instead of writing a proof, let’s just
get a sense for how this algorithm works in practice:

EXERCISE 8.10

Recall that the fundamental polygon of the torus is just a square with opposite sides glued together.
Consider the following graph on the torus:

’ »

This discussion inspired by Jeff.

8.2. HOMOLOGY GENERATORS AND HARMONIC BASES 148

Run the tree-cotree algorithm by hand, i.e., draw a primal and dual spanning tree on this graph.
How many generators did you get? Hint: be careful about corners and edges!

CODING 32. Implement the methods
TreeCotree::buildPrimalSpanningTree (),
TreeCotree: :buildDualSpanningCoTree (), and
TreeCotree::buildCycles(),
which can be found in TreeCotree.h.

Finally, though we will not show it here, TREE-COTREE will work for surfaces with boundary
as long as T* contains a dual edge crossing a primal edge incident on each boundary loop.

8.2.2. Harmonic Bases. Once we have the homology generators, the harmonic 1-form bases
can also be found using a rather simple procedure [TACSDO06]. In fact, we can take advantage of
our newly-acquired knowledge of Hodge decomposition. Suppose we start out with a 1-form w
that is closed but not exact. From Exercise 5, we know that w must then have the form

w=da+y

for some 0-form a« and harmonic 1-form <. Using our procedure for Helmholtz-Hodge decomposi-
tion (Algorithm 8.1.3) we can easily extract just the harmonic part. In fact, since w has no coexact
component we need only solve the first equation dda = dw, or equivalently

Ax = dw.

In other words, just a standard scalar Poisson equation. We can then extract the harmonic compo-
nent via v = w — du as before.

Sounds pretty good, but where did w come from in the first place? In other words, how do we
construct a 1-form that is closed but not exact? Well, once we have our generators, it’s quite easy.
For every edge crossing from the “left” of the generator to the “right,” set w to +1; for every edge
crossing from the “right” to the “left,” set w to —1:

+1
1 |

+1
-1

+1
-1

+1

8.2. HOMOLOGY GENERATORS AND HARMONIC BASES 149

For all remaining edges, set w to zero. The resulting 1-form is closed. Why? Well, remember
that the discrete exterior derviative on 1-forms is just the (oriented) sum of edge values around
each triangle. Therefore, in each triangle crossed by our generator, we get1 —1+40 = 0:

(In all other triangles we get 0 + 0+ 0 = 0.) Ok, so this particular choice of w is closed. But is it
also exact?

EXERCISE 8.11

Show that the 1-form w described above is not exact, i.e., it has a nonzero harmonic component.
Hint: Stokes’ theorem!

CODING 33. Implement the method
HarmonicBases: :buildClosedPrimalOneForm (), which constructs a closed discrete primal
1-form corresponding to a given homology generator. Be careful about orientation!

If you successfully completed Exercise 11, you probably noticed that w integrates to a nonzero
value along the corresponding generator ¢. Likewise, it’s not hard to verify that w vanishes when
integrated along any other generator. As a result, we can use this procedure to construct a basis for
the harmonic 1-forms on a triangulated surface.

EXERCISE 8.12

Let {1, ..., {2 be a collection of homology generators, constructed as described in Section 8.2.1. Let
w1, ..., w1 be the corresponding closed 1-forms, and let 4, ..., 7y, be the corresponding harmonic
components. Show that the -; are linearly independent.

ALGORITHM 6 (Harmonic-Basis).

: Compute homology generators ¢4, ..., ¢, using TREE-COTREE.
:fori=1,...,ndo

Construct a closed 1-form w; corresponding to /;.

Solve Ax; = dw;.

Vi + wi —da;
end for

S e

As discussed in the chapter on parameterization, we can greatly accelerate the process by
prefactoring the Laplace operator. Since the cost of prefactorization is typically far greater than the

8.3. CONNECTIONS AND PARALLEL TRANSPORT 150

cost of backsubstitution (and since TREE-COTREE amounts to a simple linear traversal), the overall
cost of this algorithm is roughly the same as the cost of solving a single Poisson equation.

CODING 34. Implement the method HarmonicBases::build() which implements the
algorithm HARMONIC-BASIS described above. You should prefactor the Laplacian using a
SparseFactor object, and solve the Poisson equations via backsolvePositiveDefinite ().

8.3. Connections and Parallel Transport

In discrete differential geometry, there are often many ways to discretize a particular smooth
object. As discussed earlier, however, the hope is that we can discretize all the objects in a given
theory so that relationships from the smooth theory still hold in the discrete picture. For instance,
when we looked at Hodge decomposition we discretized the exterior derivative and the Hodge
star in such a way that the Hodge decomposition has an identical expression in both the smooth
and discrete world: w = da + B + <. In the case of surfaces, we represented a vector field as a
discrete 1-form, i.e., a number associated with each oriented edge giving the circulation along (or
flux through) that edge.

In this section we’re going to adopt a different perspective based on the theory of connections
and parallel transport. This time around, we're going to represent a vector field as an angle-valued
dual 0-form. More plainly, we're going to store an angle on each face that gives the direction of
the field. Note that this representation ignores magnitude, so what we’re really working with is a
direction field. Before going too much further with the discrete theory, though, let’s first talk about
the smooth objects we want to discretize!

8.3.1. Parallel Transport.

Suppose we have a tangent vector u = df(X) sitting on an immersed surface f(M). How do
we move from one point of the surface to another while preserving the direction of u? If f(M) is
completely flat (like the plane itself) then the most natural thing is to slide # from one point to the
other along a straight path—keeping the angle with some reference direction fixed—to obtain a
new vector u’. This process is called parallel transport, and the tangent vectors u and u’ are, as usual,
said to be parallel. Parallel transport on a curved surface is a bit trickier. If we keep u pointing in
the same direction, then it ceases to be tangent and now sticks out the side. On the other hand, if
we instead keep u flat against the surface then we no longer have a consistent, global reference
direction. Overall, the notion of “same direction” is not very well-defined!

8.3. CONNECTIONS AND PARALLEL TRANSPORT 151
P
pPq
—

Still, having some notion of “same direction” could be very convenient in a lot of situations.
So, rather than looking for some “natural” definition, let’s define for ourselves what it means to
be parallel! Ok, but how do we do that? One idea is to explicitly specify a parallel transport map
Py : Ty,M — T, M that immediately “teleports” vectors from the tangent plane T, M to the tangent
plane T; M. We could then say that—by definition—two vectors X € T,M and Y € T, M are parallel
if Ppy(X) = Y. (Or equivalently, if the embedded vector u := df(X) is the same as v := df(Y)).
Unfortunately we’d have to specify this map for every pair of points p, g on our surface. Sounds like
a lot of work! But we’re on the right track.

An alternative is to describe what it means for vectors to be parallel locally. In other words, how
must a vector change as we move along the surface in order to remain parallel? One way to encode
this information is via a connection 1-form, which we can express as a linear map w : TM — TM,
i.e., given a direction of motion Z, the quantity w(Z) tells us how much a vector X must change in
order to remain parallel. (The reason w is called a “connection” is because it tells us how to connect
nearby tangent spaces, i.e., how to identify tangent vectors in one space with vectors in a “nearby”
space.) To get any more formal than this takes a bit of work—for now let’s just make sure we have
a solid geometric intuition, which should serve us well in the discrete setting;:

EXERCISE 8.13

Take a stiff piece of cardboard and draw an arrow on it. Now roll it around on the surface of a
basketball for a while. In effect, you're defining a map between the tangent plane where you first
set down the cardboard and the tangent plane at the current location. The rolling and twisting
motion you apply at any given moment effectively defines a connection (at least along a particular
path). Try the following experiment. Starting at some clearly marked initial point, be very careful
to note which direction your arrow points. Now roll the cardboard around for a while, eventually
bringing it back to the initial point. Does the arrow point in the same direction as it did initially?
What happens if you take a different path?

The phenomenon you've (hopefully) just observed is something called the holonomy of the
connection, i.e., the failure of the connection to preserve the direction of a vector as we go around a
closed loop. We'll say a bit more about holonomy in just a minute.

8.3.2. Discrete Connections.

8.3. CONNECTIONS AND PARALLEL TRANSPORT 152

unold translate rotate Jold %
NN

How should we specify a connection in the discrete setting? Well, for a given a pair of triangles
(i,7), we can imagine rigidly unfolding them the plane, translating a vector from one to the other,
applying a rotation by some small angle 6;;, and then rigidly “refolding” these triangles into their
initial configuration, as illustrated above. In other words, we can describe a connection on a triangle
mesh via a single angle ¢;; € R for each oriented dual edge in our mesh. We should also make
sure that ¢;; = —@;j. In other words, the motion we make going from face j to face i should be the
opposite of the motion from i to j. Enforcing symmetry ensures that our notion of “parallel” is
consistent no matter which direction we travel. The whole collection of angles ¢ € RIFl is called a
discrete connection.

By the way, does this object sound familiar? It should! In particular, we have a single number
per oriented dual edge, which changes sign when we change orientation. In other words, ¢ is a
real-valued, dual, discrete 1-form.

8.3.3. The Levi-Civita Connection. In terms of the picture above, we said that an angle ¢;; = 0
means “just translate; don’t rotate.” If we set all of our angles to zero, we get a very special
connection called the Levi-Civita connection®. The Levi-Civita connection effectively tries to “twist”
a tangent vector as little as possible as it moves it from one point to the next. There are many
ways to describe the Levi-Civita connection in the smooth setting, but a particularly nice geometric
description is given by Kobayashi:

THEOREM 1. (Kobayashi) The Levi-Civita connection on a smooth surface is the pullback under the
Gauss map of the Levi-Civita connection on the sphere.

N x Z

3Those with some geometry background should note that a discrete connection really encodes the deviation from
Levi-Civita; it should not be thought of as the connection itself.

8.3. CONNECTIONS AND PARALLEL TRANSPORT 153

What does this statement mean? First, recall that the Gauss map N : M — S? takes a point on
the surface to its corresponding unit normal—this normal can also be thought of as a point on the
unit sphere. And what'’s the Levi-Civita connection on the sphere? Well, we said that Levi-Civita
tries to “twist” vectors as little as possible. On a sphere, it’s not hard to see that the motion of
least twist looks like a rotation of the tangent plane along a great arc in the direction Z of parallel
transport. More explicitly, we want a rotation around the axis N x Z, where N is the normal of
our initial tangent plane. Altogether, then, Kobayashi’s theorem says the following. If we start out
with a tangent vector X on our surface and want to transport it in the direction Z, we should first
find the tangent plane with normal N on the sphere, and the two corresponding tangent vectors
X and Z. (Extrinsically, of course, these are just the same two vectors!) We can then apply an
(infinitesimal) rotation along the great arc in the direction Z, dragging X along with us.

EXERCISE 8.14

Use Kobayashi’s theorem to justify the “unfold, translate, refold” procedure that is used to define
the discrete Levi-Civita connection. Hint: think about unfolding as a rotation.

8.3.4. Holonomy.

At this point you may be wondering what all this stuff has to do with vector field design. Well,
once we define a connection on our mesh, there’s an easy way to construct a vector field: start out
with an initial vector, parallel transport it to its neighbors using the connection, and repeat until
you’'ve covered the surface (as depicted above). One thing to notice is that the vector field we end
up with is completely determined by our choice of connection. In effect, we can design vector fields
by instead designing connections.

However, something can go wrong here: depending on which connection we use, the procedure
above may not provide a consistent description of any vector field. For instance, consider the
planar mesh below, and a connection that applies a rotation of 18° as we cross each edge in counter-
clockwise order. By the time we get back to the beginning, we’ve rotated our initial vector @ by
only 5 x 18° = 90°. In other words, our connection would have us believe that @ and ® are parallel
vectors!

8.3. CONNECTIONS AND PARALLEL TRANSPORT 154

AT AT

This phenomenon is referred to as the holonomy of the connection. More generally, holonomy
is the difference in angle between an initial and final vector that has been transported around a
closed loop. (This definition applies in both the discrete and smooth setting.)

8.3.5. Trivial Connections. To construct a consistently-defined vector field, we must ensure
that our connection has zero holonomy around every loop. Such a connection is called a trivial
connection. In fact, the following exercise shows that this condition is sufficient to guarantee
consistency everywhere:

EXERCISE 8.15

Show that parallel transport by a trivial connection is path-independent. Hint: consider two different
paths from point a to point b.

As a result we can forget about the particular paths along which vectors are transported, and
can again imagine that we simply “teleport” them directly from one point to another. If we then
reconstruct a vector field via a trivial connection, we get a parallel vector field, i.e., a field where (at
least according to the connection) every vector is parallel to every other vector. In a sense, parallel
vector fields on surfaces are a generalization of constant vector fields in the plane. But actually, the
following exercise shows that any vector field can be considered parallel—as long as we choose the
right connection:

EXERCISE 8.16

Show that every discrete vector field (i.e., a vector per face) is parallel with respect to some trivial
discrete connection. Hint: think about the difference between vectors in adjacent triangles.

8.3.6. Curvature of a Connection. We can use a trivial connection to define a vector field, but
how do we find a trivial connection? The first thing you might try is the Levi-Civita connection—
after all, it has a simple, straightforward definition. Sadly, the Levi-Civita connection is not in
general trivial:

EXERCISE 8.17

Show that the holonomy of the discrete Levi-Civita connection around the boundary of any dual

8.3. CONNECTIONS AND PARALLEL TRANSPORT 155

cell equals the angle defect of the enclosed vertex.

Therefore, unless our mesh is completely flat, Levi-Civita will exhibit some non-zero amount of
holonomy. Actually, you may recall that angle defect is used to define a discrete notion of Gaussian
curvature. We can also use a connection to determine curvature—in particular, the curvature of a
connection (smooth or discrete) over a topological disk D C M is given by the holonomy around
the region boundary oD.

EXERCISE 8.18

Show that these two notions of curvature are the same, i.e., show that the curvature of the discrete
Levi-Civita connection over any disk D equals the total discrete Gaussian curvature over that
region. Hint: use induction on faces.

Curvature gives us one tool to test whether a connection is trivial. In particular, a trivial
connection must have zero curvature everywhere. For this reason it’s reasonable to say that every
trivial connection is “flat.” But is every flat connection also trivial? Well, remember that the
curvature of a connection is defined in terms of the holonomy around region boundaries. Any such
boundary is called a contractible loop because it can be continuously deformed to a point without
“catching” on anything:

In general, there may also be noncontractible loops on a surface that cannot be described as the
boundary of any disk. For instance, consider the loop < pictured on the torus to the left:

8.3. CONNECTIONS AND PARALLEL TRANSPORT 156

In general a surface of genus ¢ will have 2¢ “basic types” of noncontractible loops called
generators. More precisely, two loops are said to be homotopic if we can get from one to the other
by simply sliding it along the surface without ever breaking it. No two distinct generators are
homotopic to each other, and what’s more, we can connect multiple copies of the generators to
“generate” any noncontractible loop on the surface. For instance, consider the loop 73, which consists
of three copies of 7 joined end-to-end. (Formally, the space of loops together with the operation of
concatenation describe the first homology group on the surface.)

If we want to check if a connection is trivial, we need to know that it has nontrivial holonomy
around both contractible and noncontractible loops. Equivalently: it must have zero curvature and
nontrivial holonomy around noncontractible loops. As you're about to demonstrate, though, we
don’t need to check all the loops—just a small collection of basis loops.

EXERCISE 8.19

Show that the holonomy around any discrete loop is determined by the curvature at each vertex
and the holonomy around a collection of 2¢ generators.

8.3.7. Singularities. There’s one more issue we run into when trying to find a trivial connection.
You may remember the Gauss-Bonnet theorem, which says that Y .y d(v) = 27y, i.e., the total
Gaussian curvature over a surface equals 27t times the Euler characteristic x. In fact, this theorem
holds if we replace the Gaussian curvature with the curvature of any connection (not just Levi-
Civita). But something’s odd here: didn’t we say that a trivial connection should have zero
holonomy—hence zero curvature? So unless x = 0 (i.e., M is a torus) we have a problem!

Fortunately the solution is simple: we can permit our connection to exhibit nonzero holonomy
(hence nonzero curvature) around some loops, as long as this holonomy is an integer multiple
of 27t. Geometrically, a vector parallel transported around any closed loop will still end up back
where it started, even if it “spins around” some whole number of times k along the way. Any vertex
where k # 0 is called a singularity (see below for some examples). As we'll see in the moment,
singularities actually make it easier to design vector fields with the desired appearance, since one
can control the global appearance of the field using only a small number of degrees of freedom.

8.4. VECTOR FIELD DESIGN 157

N—

/\

N

8.4. Vector Field Design

Now on to the fun part: designing vector fields. At this point, you've already written most
of the code you'll need! But let’s take a look at the details. To keep things simple we’re going to
assume that M is a topological sphere, so you can forget about non-contractible loops for now.

Our goal is to find a connection 1-form ¢ such that the holonomy around every loop is zero.
If we let ¢j; = 0 for every dual edge ¢}, then the holonomy around any dual cell will be equal to
the integrated Gaussian curvature over that cell (Exercise 17), which we’ll denote by K ¢ RV,
Therefore, we need to find angles ¢;; such that

i.e., the holonomy around the boundary of every dual cell should exactly cancel the Gaussian
curvature. (Notice that dg is the discrete exterior derivative on dual 1-forms.) We also need to
incorporate singularities. That’s easy enough: we can just ask that the angles ¢;; cancel the existing
Gaussian curvature, but add curvature corresponding to singularities:

dl ¢ = —K + 27k. (6)

Here k € Z!V is a vector of integers encoding the type of singularity we want at each vertex. To
“design” a vector field, then, we can just set k to a nonzero value wherever we want a singularity.
Of course, we need to make sure that } ; k; = x so that we do not violate Gauss-Bonnet.

CODING 35. Implement the method Vertex: :totalGaussCurvature () which computes
the total Gauss curvature of the dual vertex associated with a given vertex, i.e., 271 minus the sum
of incident angles.

We now have a nice linear system whose solution gives us a trivial connection with a prescribed
set of singularities. One last question, though: is the solution unique? Well, our connection
is determined by one angle per edge, and we have one equation to satisfy per dual cell—or
equivalently, one per vertex. But since we have roughly three times as many edges as vertices
(which you showed earlier on!), this system is underdetermined. In other words, there are many
different trivial connections on our surface. Which one gives us the “nicest” vector field? While
there’s no completely objectively answer to this question, the most reasonable thing may be
to look for the trivial connection closest to Levi-Civita. Why? Well, remember that Levi-Civita
“twists” vectors as little as possible, so we're effectively asking for the smoothest vector field.
Computationally, then, we need to find the solution to Equation 6 with minimum norm (since the
angles ¢;; already encode the deviation from Levi-Civita). As a result, we get the optimization
problem

: 2

min

min ol "
st. dle =—K+2nk.

8.4. VECTOR FIELD DESIGN 158

One way to solve this problem would be to use some kind of steepest descent method, like we did
for mean curvature flow. However, we can be a bit more clever here by recognizing that Equation 7
is equivalent to looking for the solution to Equation 6 that has no component in the null space of
d}—any other solution will have larger norm.

EXERCISE 8.20

Show that the null space of d] is spanned by the columns of d]. Hint: what happens when you apply d
twice?

Hence, to get the smoothest trivial connection with the prescribed curvature we could (1)
compute any solution ¢ to Equation 6, then (2) project out the null space component by computing
Q=@ — le (d1d1T) 14, @. Overall, then, we get a trivial connection by solving two nice, sparse linear
systems. Sounds pretty good, and in fact that’s how the algorithm was originally proposed way
back in 2010. But it turns out there’s an even nicer, more elegant way to compute trivial connections,
using Helmholtz-Hodge decomposition. (This formulation will also make it a little easier to work
with surfaces of nontrivial topology.)

8.4.1. Trivial Connections++. So far, we’ve been working with a 1-form ¢, which describes
the deviation of our connection from Levi-Civita. Just for fun, let’s rewrite this problem in the
smooth setting, on a closed surface M of genus g. Our measure of smoothness is still the total
deviation from Levi-Civita, which we can again write as ||¢||?>. We still have the same constraint
on simply-connected cycles, namely dp = u where u = —K + 27tk (in the smooth setting, we can
think of k as a sum of Dirac deltas). This time around, we’'ll also consider the holonomy around the
2¢ nontrivial generators ¢;. Again, we’ll use the 1-form ¢ to “cancel” the holonomy we experience
in the smooth setting, i.e., we'll enforce the constraint

/liQDZUi/

where —v; is the holonomy we get by walking around the loop /;. (In the discrete setting we can
measure this quantity as before: transport a vector around each loop by unfolding, sliding, and
refolding without any extra in-plane rotation.) Overall, then, we get the optimization problem

: 2
min
in o]

st. do=u, (8)
[ro=uvi,i=1,...,2.

Like any other 1-form, ¢ has a Hodge decomposition, i.e., we can write it as

¢ =du+p+y

for some O-form &, 2-form 8, and harmonic 1-form <y. This expression can be used to simplify our
optimization problem, as you are about to show!

EXERCISE 8.21

8.4. VECTOR FIELD DESIGN 159

Show that Equation 8 can be rewritten as
min 16617 + /11

s.t. d(Sﬁ: u,
ffi(slg+’y:vi/ i = 1,,2g

Hint: use Stokes’ theorem and the result of Exercise 3.

There are a couple nice things about this reformulation. First, we can find the coexact part
by simply solving the linear equation dép = u, or equivalently d xd x § = u. As with Hodge
decomposition, we can make this system even nicer by making the substitution § := %f, in which
case we end up with a standard scalar Poisson problem

AB = u.)

We can then recover B itself via B = 3, as before. Note that the solution § is unique up to a
constant, since on a compact domain the only harmonic 0-forms are the constant functions (as you
showed when we studied the Poisson equation). Of course, since constants are in the kernel of 4,
we still get a uniquely-determined coexact part 6 8.

The second nice thing about this formulation is that we can directly solve for the harmonic part
7 by solving the system of linear equations

—0.— | 6B,
/fi7 (& /é,'B

i.e., since dp is uniquely determined by Equation 9, we can just move it to the right-hand side.

A slightly nicer way to write this latter system is using the period matrix of our surface. Let
{1,..., ¢ be a collection of homology generators, and let 1, ..., {>; be a basis for the harmonic
1-forms. The period matrix P € IR%*2 is then given by

Pij = /12,- Ci,

i.e., it measures how much each harmonic basis “lines up” with each generating cycle. Period
matrices have an intimate relationship with the conformal structure of a surface, which we discussed
when looking at parameterization. But we don’t have time to talk about that now—we have to
compute vector fields! In the discrete setting, we can compute the entries of the period matrix by
simply summing up 1-form values over generating cycles. In other words, if /; is a collection of
dual edges forming a loop, and ¢; is a dual discrete 1-form (i.e., a value per dual edge), then we

have
Pi=) (&)

8;6&'

CODING 36. Implement the method Connection: :buildPeriodMatrix (), which simply
sums up the values of the harmonic 1-form bases over each homology generator. (You should
compute these quantities using your existing implementation of TREE-COTREE and HARMONIC-
BASIS.)

Once we have the period matrix, we can express our constraint on generator holonomy as
follows. Let z € R be the coefficients of the harmonic component -y with respect to our basis of

8.4. VECTOR FIELD DESIGN 160

harmonic 1-forms, i.e.,
28

v =)z

i=1
Also, let v € R% be the right-hand side of our constraint equation, encoding both the desired
generator holonomy as well as the integrals of the coexact part along each generator:

Vi :Vi—‘/‘ 5‘3
4

Then the harmonic component can be found by solving the 2¢ x 2¢ linear system
Pz =19,

where the period matrix P is constant (i.e., it depends only on the mesh geometry and not the
configuration of singularities or generator holonomy).

Overall, then, we have the following algorithm for computing the smoothest vector field on a
simplicial surface with a prescribed collection of singularities:

ALGORITHM 7 (Trivial-Connection++).

Require: Vector k € Z!V| of singularity indices adding up to 27t

1: Solve AB = u
2: Solve Pz =¥
3 @< o+

The resulting 1-form can be used to produce a unit vector field via the procedure described
in Section 8.3.4. Note that the most expensive part of the entire algorithm is prefactoring the
cotan-Laplace matrix, which is subsequently used to compute both the harmonic 1-form bases and
to update the potential 8. In comparison, all other steps (finding generating loops, etc.) have a
negligible cost, and moreover can be computed just once upon initialization (e.g., the period matrix
P). In short, finding the smoothest vector field with prescribed singularities costs about as much as solving a
single scalar Poisson problem! If you've been paying attention, you'll notice that this statement is kind
of a theme in these notes: if treated correctly, many of the fundamental geometry processing tasks
we're interested in basically boil down to solving a Poisson equation. (This outcome is particularly
nice, since in principle we can use the same prefactorization for many different applications!)

CODING 37. Write the method Connection: :compute (), which implements the algorithm
TRIVIAL-CONNNECTION++. You should now be able to edit vector fields through the Viewer by
shift-clicking on singularities.

CHAPTER 9

Conclusion

Given the framework you've already built, a bunch of other geometry processing algorithms
can be implemented almost immediately. For instance, one can compute shortest paths or geodesic
distance by solving a Poisson equation and integrating a heat flow, just as in Chapter 6 [CWW13].
One can also improve the quality of the mesh itself, again by solving simple Poisson equations
[MMdGD11]. More broadly, one can use these tools to simulate mechanical phenomena such as
elastic bodies [ACOLO00]. These topics (and more!) will be covered in a future revision of these
notes.

161

[ACOL00]
[CDS10]
[CWW13]
[dGC10]
[DHLMO5]

[DKTO8]

[DMSB99]
[Epp03]
[EW05]
[Hat02]
[Hir03]
[KCPS13]
[Mac49]
[MMdAGD11]
[MTADOS]

[SC18]
[TACSDO6]

Bibliography

Marc Alexa, Daniel Cohen-Or, and David Levin. As-Rigid-as-Possible Shape Interpolation. In Proc. ACM
SIGGRAPH, pages 157-164, 2000.

Keenan Crane, Mathieu Desbrun, and Peter Schroder. Trivial Connections on Discrete Surfaces. Comp.
Graph. Forum, 29(5):1525-1533, 2010.

Keenan Crane, Clarisse Weischedel, and Max Wardetzky. Geodesics in Heat: A New Approach to Comput-
ing Distance Based on Heat Flow. ACM Trans. Graph., 2013.

Fernando de Goes and Keenan Crane. Trivial Connections Revisited: A Simplified Algorithm for Simply-
Connected Surfaces, 2010.

Mathieu Desbrun, Anil Hirani, Melvin Leok, and Jerrold Marsden. Discrete Exterior Calculus. ArXiv
e-prints, 2005.

Mathieu Desbrun, Eva Kanso, and Yiying Tong. Discrete Differential Forms for Computational Modeling.
In Alexander I. Bobenko, Peter Schroder, John M. Sullivan, and Giinther M. Ziegler, editors, Discrete
Differential Geometry, volume 38 of Oberwolfach Seminars, pages 287-324. Birkhéduser Verlag, 2008.
Mathieu Desbrun, Mark Meyer, Peter Schroder, and Alan Barr. Implicit Fairing of Irregular Meshes using
Diffusion and Curvature Flow. In Proc. ACM SIGGRAPH, pages 317-324, 1999.

David Eppstein. Dynamic Generators of Topologically Embedded Graphs. In Proc. ACM-SIAM Symp. Disc.
Alg. (SODA), 2003.

Jeff Erickson and Kim Whittlesey. Greedy Optimal Homotopy and Homology Generators. In Proc. ACM-
SIAM Symp. Disc. Alg. (SODA), 2005.

A. Hatcher. Algebraic Topology. Algebraic Topology. Cambridge University Press, 2002.

Anil Hirani. Discrete Exterior Calculus. PhD thesis, Pasadena, CA, USA, 2003.

Felix Knoppel, Keenan Crane, Ulrich Pinkall, and Peter Schroder. Globally Optimal Direction Fields. In
Proc. ACM SIGGRAPH, 2013.

Richard MacNeal. The Solution of Partial Differential Equations by means of Electrical Networks. PhD thesis,
Caltech, 1949.

Patrick Mullen, Pooran Memari, Fernando de Goes, and Mathieu Desbrun. HOT: Hodge-optimized
triangulations. In Proc. ACM SIGGRAPH, 2011.

Patrick Mullen, Yiying Tong, Pierre Alliez, and Mathieu Desbrun. Spectral Conformal Parameterization.
Comp. Graph. Forum, 27(5):1487-1494, 2008.

Nick Sharp and Keenan Crane. Variational surface cutting. ACM Trans. Graph., 37(4), 2018.

Y. Tong, P. Alliez, D. Cohen-Steiner, and M. Desbrun. Designing Quadrangulations with Discrete Harmonic
Forms. In Proc. Symp. Geom. Proc., 2006.

162

http://onlinelibrary.wiley.com/doi/10.1111/j.1467-8659.2010.01761.x/full
http://www.geometry.caltech.edu/pubs/DKT05.pdf
http://dx.doi.org/10.1145/311535.311576
http://dx.doi.org/10.1145/311535.311576
http://resolver.caltech.edu/CaltechETD:etd-04282004-143609
http://www.geometry.caltech.edu/pubs/MTAD08.pdf

Appendices

163

APPENDIX A

Derivatives of Geometric Quantities

Here we consider derivatives of some basic geometric quantities associated with triangulated
surfaces. Such derivatives are needed for, e.g., computing the gradient of a discrete energy, which
is often needed for energy minimization. Though the final expressions are given below, you are
encouraged to try and derive them yourself. In general, there are a variety of ways to obtain the
gradient for a discrete energy:

e By hand, in components — The usual strategy for taking a gradient (which you may have
learned in an introductory calculus class) is to simply write out a list of partial derivatives,
expressed in components. For instance, for an energy ¢(x1, ..., x,) you might write out
the derivative d¢/0dxq, then d¢/dx,, and so on. The upside to this approach is that it
will always produce an answer: as long as you are willing to carefully grind through
enough applications of the chain rule, you will eventually come up with the correct
expression. For this reason, it is also easy to automate this process algorithmically (see
symbolic differentiation, below). On the other hand, writing everything out in components
can sometimes take a great deal of work (especially for a large number of variables), and
without careful simplification may lead to long complicated expressions that are difficult
to interpret and implement (see examples below). One way to simplify such calculations is
to work out derivatives in terms of matrices or tensors (instead of individual components),
though even here there can sometimes be a disconnect between expressions and their
geometric meaning. In general, it is always good to look for simplifications you can make
based on geometry—for instance, if your calculation has a term e;; + ejx + ex; where the
vectors e are the edges of a triangle, you know this expression can be simplified to zero!

e Symbolic differentiation — Symbolic differentiation is very much like taking derivatives
by hand, except that the process is automated algorithmically. If you've ever used a
package like Mathematica or Maple to compute a derivative, you have probably (unknow-
ingly) used symbolic differentiation. The basic idea is that, given an input expression,
the algorithm builds a corresponding expression tree; one can then obtain derivatives by
applying deterministic transformations to this expression tree. Further transformations
will simplify the expression, though in general the problem of expression simplification is
not easy: in practice, even good implementations of symbolic differentiation can produce
derivative expressions that are far longer and more complicated than needed (see examples
below). On the other hand, once an expression is available, it can be efficiently evaluated
and re-evaluated to obtain derivates at different points in the domain of the function.

e Numerical differentiation — A very different approach to obtaining derivatives is to
forget entirely about finding a closed-form expression, and simply obtain a numerical
approximation. For instance, if ¢(x) is a function of a single variable x, its derivative at a
point xy can be approximated by the finite difference 1 (¢(xo + €) — ¢(xo)) for some small
value ¢ > 0 (essentially just a first-order Taylor series approximation). For a function of
many variables, this process is repeated for each variable, i.e., just take a difference between
the value at the point of interest and the value at a point where one of the coordinates

164

A. DERIVATIVES OF GEOMETRIC QUANTITIES 165

has been slightly perturbed. The numerical approach makes it trivial to differentiate very
complicated functions ¢, since one need only evaluate the function ¢ at a given point,
and does not need to know anything about what this function looks like. For instance,
one can differentiate arbitrary pieces of code provided as a “black box.” On the other
hand, numerical differentiation can be very expensive computationally since it requires
many evaluations of ¢ (especially for higher-order derivatives); moreover, it can produce
inaccurate and unpredictable results, especially since it is not obvious how to choose the
parameter &.

e Automatic differentiation — An algorithmic approach that is a sort of middle ground
between numerical and symbolic differentiation is automatic differentiation. The basic idea
here is that rather than manipulating ordinary values, the algorithm works with tuples
that encode the value and its derivative. Operations defined on these tuples encode a
transformation of both the value and its derivative (essentially by the chain rule). For
instance, if we have two tuples (x,x’) and (y,y’) then their product might be defined

s (x,x") % (y,y') == (xxy,xxy' + x’ x y), where the second term reflects the product
rule (xy)" = xy’ + x'y. Once these operations have been defined, one can evaluate an
expression and its derivative simultaneously by simply constructing the expression from
tuples rather than ordinary values. This approach is that it yields derivatives that are
typically more accurate than basic numerical differentiation; it is also fairly efficient and
can be applied to a rather general class of functions. On the other hand, it is often less
efficient than symbolic differentiation (which can take advantage of simplification), and
can often require far more computation than simple expressions derived using geometric
insight.

¢ By hand, using geometric arguments — The approach we will take here, described in
greater detail below, is to take derivatives by hand, but use geometric arguments rather
than grinding out partial derivatives in coordinates. This approach cannot always be
applied, but is highly effective for differentiating fundamental quantities that appear in
geometry (lengths, angles, areas, and so forth). It can also provide some geometric insight
into the meaning of derivatives, which are often connected to other objects in interesting
and surprising ways. For instance, in Chapter 5 we saw that the derivative of discrete
surface area yields a mean curvature normal expressed in terms of the cotangent Laplacian;
a fact that would be missed entirely when using numerical or automatic differentiation.
Finally, expressions derived this way are often short and sweet, meaning that they are easy
to implement and less prone to common numerical artifacts (such as cancellation error)
that might arise in automatically-derived expressions. See below for further discussion.

For a given quantity, the basic recipe for obtaining the gradient via geometric arguments follows
a standard pattern:

e First, find the unit vector such that moving in that direction increases the quantity the
fastest. This direction gives the direction of the gradient.

e Next, find the rate of change when moving in this direction. This quantity gives the
magnitude of the gradient.

To make this idea clear, consider the following example:

A. DERIVATIVES OF GEOMETRIC QUANTITIES 166

Example. Let ¢ be the length of the vector u := b — a, where a and b are points in R?. Let
il := u// be the unit vector in the same direction as u. Show that the gradient of ¢ with respect
to the location of the point a is given by

Vil =—1
b
u
v‘ﬁé-—a /Y/

Solution. The fastest way to increase ¢ is to move a along the direction of —u (since a small
motion in the orthogonal direction Ju looks like a rotation, which does not change the length).
Since moving a4 by one unit increases the length ¢ by one unit, the magnitude of the gradient is
1. Thus, V¢ = —1.

(If you feel uneasy about this approach you may wish to compute the same expression in
coordinates, just to be sure that you get the same thing!)

Two examples illustrate the benefit of the geometric approach. Recall that in Chapter 5 you
were asked to derive an expression for the gradient of the area of a triangle with respect to one of
its vertices. In particular, if the triangle has vertices a,b,c € R3, then the gradient of its area A with
respect to the vertex a can be expressed as

This formula can be obtained via a simple geometric argument, has a clear geometric meaning, and
generally leads to a an efficient and error-free implementation. In contrast, here’s the expression
produced by taking partial derivatives via Mathematica (even after calling FullSimplify []):

n2s5]= a = {al, a2, a3};
b= {bl, b2, b3};
c={cl, c2, c3};
w=Cross[b-a, c-a]/2;
A=Vw.w;
FullSimplify[{0.; A, dazA, 9a3A}]
outzol- { ((b2-c2) (-b2cl+a2 (-bl+cl) +al (b2-c2) +blc2) +
(b3 -c3) (-b3cl+a3 (-bl+cl) +al (b3-c3) +blc3))/
(24/((a2bl-alb2-a2cl+b2cl+alc2-blc2)”+
(a3b1—a1b3—a3c1+b3c1+alc3—b1c3)2+
(a3b2-a2b3-a3c2+b3c2+a2c3-b2c3)?)),
((bl-cl) (a2 (bl-cl) +b2cl-blc2+al (-b2+c2)) +
(b3 -c3) (-b3c2+a3 (-b2+c2) +a2 (b3-c3) +b2c3)) /
(24/((a2bl-alb2-a2cl+b2cl+alc2-blc2)?+
(a3bl-alb3-a3cl+b3cl+ale3-blc3)?+
(a3b2-a2b3-a3c2+b3c2+a2c3-b2e3)?)),
((bl-cl) (a3 (bl-cl) +b3cl-blc3+al (-b3+c3)) +
(b2 -c2) (a3 (b2-c2) +b3c2-b2c3+a2 (-b3+c3))) /
(24/((a2bl-alb2-a2cl+b2cl+alc2-blc2)?+
(a3b1—a1b3—a3c1+b3c1+alc3—b1c3)2+
(a3b2-a2b3-a3c2+b3c2+a2c3-b2c3)?))}

Longer expressions like these of course produce the correct values. But without further sim-
plification (by hand) they will often be less efficient, and can potentially exhibit poorer numerical

A. DERIVATIVES OF GEOMETRIC QUANTITIES 167

behavior due to the use of a longer sequence of floating-point operations. Moreover, they are far less
easy to understand/interpret, especially if this calculation is just one small piece of a much larger
equation (as it often is). In general, taking gradients the “geometric way” often provides greater
simplicity and deeper insight than just grinding everything out in components. Another example
is the expression for the gradient of angle via partial derivatives, as computed by Mathematica (see
below for a much simpler expression derived via geometric arguments):

nisel= a = {al, a2, a3};
b= (bl, b2, b3};
€= (cl, 2, c3};

(a-b).(c-b) s

Y(a-b).(a-b) V(c-b).(c-b)

FullSimplify[{0a16, 0a20, 0a36}]

6 = ArcCos|

Outezl= {(alez +alb3? -a2b2 (al+bl-2cl) -a3b3 (al +bl-2cl) +a2? (bl-cl) +a3? (bl-cl) -b2?cl -

b3*cl+a2 (al-bl)c2-alb2c2+blb2c2+a3 (al—bl)c3—a1b3c3+b1b3c3\/

i

((al-b1)?+ (a2 -b2)? + (a3-b3)2)>? [(bl -c1)? + (b2 -c2)? + (b3 -¢3)?

r
I ((al-bl) (-bl+cl) + (a2 -b2) (-b2+c2) + (a3 -b3) (-b3 +c3))?
\‘\ ((al-b1)2+ (a2-b2)2+ (a3-b3)2) ((bl-cl)?+ (b2-c2)? + (b3 -c3)2) !
(a3”b2 - a3b2b3 +blb2cl +al® (b2 -c2) -a3” c2 -bl*c2 +2a3b3 c2 b3’ c2 -

al (a2 (bl-cl) +b2 (bl +cl) - 2blc2) +a2 (bl (bl -cl) - (a3 -b3) (b3-c3)) -a3b2c3 +

bznzca)/

|1 ((al-bl) (-bl+cl) + (a2 -b2) (-b2+c2) + (a3 -b3) (-b3 +c3))?
\“ ((al-b1)2+ (a2 -b2)2 + (a3-b3)2?) ((bl-cl)?+ (b2-c2)2 + (b3 -c3)?) !

(b3 (blcl+ (a2 -b2) (a2-c2)) +a3 (bl (bl -cl) - (a2 -b2) (b2 -c2)) +al® (b3 -c3) -

((a1-b1)? + (a2 -b2)% + (a3-13)2)¥% [(b1 -c1)? + (b2-c2)% + (b3 -c3)2

(b1% + (a2 -b2)?) c3 - al (a3 (bl -cl) +b3 (bl+cl) —Zblc3)>/

((al-b1)? + (a2 -b2)? + (a3 -b3)?)¥* [(b1 ~c1)? + (b2 - c2)? + (b3 - c3)?

| ((al-bl) (-bl+cl) + (a2 -b2) (-b2+c2) + (a3 -b3) (-b3 +c3))? }
\© ((al-b1)Z+ (a2-b2)2 + (a3 -b3)?) ((bl-c1)2 + (b2-c2)? + (b3 -C3)2)

A.1. LIST OF DERIVATIVES 168
A.1. List of Derivatives
We here give expressions for the derivatives of a variety of basic quantities often associated

with triangle and tetrahedral meshes in IR®. Unless otherwise noted, we assume quantities are
associated with geometry in R® (though many of the expressions easily generalize).

A.1.1. Edge Length.

Let ¢ be the length of the vector u := b — a, where a and b are points in R3. Let i := u// be the
unit vector in the same direction as u. Then the gradient of ¢ with respect to the location of the
point a is given by

vaf - _12
Similarly,
Vil =1
A.1.2. Triangle Area.
P
u

Consider any triangle in IR?, and let u be the vector along the edge opposite a vertex p. Then
the gradient of the triangle area A with respect to the location of p is

where N is the unit normal of the triangle (oriented so that N x u points from u toward p, as in the
figure above).

A.1.3. Tetrahedron Volume.

A.1. LIST OF DERIVATIVES 169

p

Consider any tetrahedron in IR?, and let N be the unit normal of a triangle pointing toward the
opposite vertex p (as in the figure above). The gradient of volume of the tetrahedron with respect
to the location of p is

1

where A is the area of the triangle with normal N.

A.1.4. Interior Angle.

Consider a triangle with vertices a,b,c € R3, and let « be the signed angle between vectors
u:=b—aandv:=c—a. Then

Vo = —(Vya+Vea),
Ve = —(Nxu)/|u?
Vi = (Nxov)/|v%

A.1.4.1. Cosine. Let 0 be the angle between two vectors u,v € R3. Then

Vyucost = (v—(v,m)t)/|u||v],
Vocos® = (u—(u,0)0)/|ullv|,

where # := u/|u| and 9 := v/|v|. If u and v are edge vectors of a triangle with vertices a,b,c € R5,
namely # := b —a and v := ¢ — a, then

Vacosf = —(V, cosf + V,cosb).

A.1. LIST OF DERIVATIVES 170

A.1.4.2. Cotangent. For any angle 6 that depends on a vertex position p, we have
1
V,cotd = ————V 0.
4 sin2g 7

The expression for the gradient of 6 with respect to p can then be computed as above.

A.1.5. Dihedral Angle.

Ps3

Consider a pair of triangles sharing an edge e, with vertices and normals labeled as in the
figure above; let 0 be the interior dihedral angle 8, complementary to the angle ¢ between normals.
Explicitly, we can write 0 as

0= atanZ(e . (N1 X Nz),Nl . Nz),
where the use of the two-argument arc tangent function ensures we obtain the proper sign. Then

Vp39 = |€|N1/(2A1),
Vp49 = |6|N2/(2A2),

where A1, A; are the areas of the triangles with normals Nj, Ny, respectively. Gradients with respect
to p1 and p can be found in the appendix to Wardetzky et al, “Discrete Quadratic Curvature Energies”
(CAGD 2007).

A.1.6. Triangle Normal.

N\i\e

Consider a triangle in IR?, and let ¢ be the vector along an edge opposite a vertex p. If we move
p in the direction w, the resulting change in the unit normal N (with orientation as depicted above)

A.1. LIST OF DERIVATIVES 171

can be expressed as

(N, w)

dN(w) = 7

e X N,

where A is the triangle area. The corresponding Jacobian matrix is given by

1 T
ﬂ(e X N)N .

A.1.7. Unit Vector.

Consider the unit vector u := (b — a)/|b — a| associated with two points 4,b € R>. The change
in this vector with respect to a motion of the endpoint b in the direction v can be expressed as

du(v) = v omjn <f,u>u,

where r := |b — a| is the distance between a and b. The corresponding Jacobian matrix is
1
—(I—uul),
.

where I denotes the 3 x 3 identity matrix.

A.1.8. Cross Product.

A.1. LIST OF DERIVATIVES 172

For any two vectors u,v € R3, consider the vector
_ uUXov
" luxo|
If we move u in the direction s, then the resulting change to w is given by

dw(s) = (ws)

= —"Lwxo.
|u x v|

The corresponding Jacobian matrix is

_ T
|uxv|(w><v)w .

	Chapter 1. Introduction
	1.1. Disclaimer
	1.2. Copyright
	1.3. Acknowledgements

	Chapter 2. Combinatorial Surfaces
	2.1. Abstract Simplicial Complex
	2.2. Anatomy of a Simplicial Complex: Star, Closure, and Link
	2.3. Simplicial Surfaces
	2.4. Adjacency Matrices
	2.5. Halfedge Mesh
	2.6. Written Exercises
	2.7. Coding Exercises

	Chapter 3. A Quick and Dirty Introduction to Differential Geometry
	3.1. The Geometry of Surfaces
	3.2. Derivatives and Tangent Vectors
	3.3. The Geometry of Curves
	3.4. Curvature of Surfaces
	3.5. Geometry in Coordinates

	Chapter 4. A Quick and Dirty Introduction to Exterior Calculus
	4.1. Exterior Algebra
	4.2. Examples of Wedge and Star in Rn
	4.3. Vectors and 1-Forms
	4.4. Differential Forms and the Wedge Product
	4.5. Hodge Duality
	4.6. Differential Operators
	4.7. Integration and Stokes' Theorem
	4.8. Discrete Exterior Calculus

	Chapter 5. Curvature of Discrete Surfaces
	5.1. Vector Area
	5.2. Area Gradient
	5.3. Volume Gradient
	5.4. Other Definitions
	5.5. Gauss-Bonnet
	5.6. Numerical Tests and Convergence

	Chapter 6. The Laplacian
	6.1. Basic Properties
	6.2. Discretization via FEM
	6.3. Discretization via DEC
	6.4. Meshes and Matrices
	6.5. The Poisson Equation
	6.6. Implicit Mean Curvature Flow
	6.7. Boundary Conditions

	Chapter 7. Surface Parameterization
	7.1. Conformal Structure
	7.2. The Cauchy-Riemann Equation
	7.3. Differential Forms on a Riemann Surface
	7.4. Conformal Parameterization
	7.5. Eigenvectors, Eigenvalues, and Optimization

	Chapter 8. Vector Field Decomposition and Design
	8.1. Hodge Decomposition
	8.2. Homology Generators and Harmonic Bases
	8.3. Connections and Parallel Transport
	8.4. Vector Field Design

	Chapter 9. Conclusion
	Bibliography
	Appendix A. Derivatives of Geometric Quantities
	A.1. List of Derivatives

