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30.1 Introduction
Physically based animation of fluids such as smoke, water, and fire provides some of the
most stunning visuals in computer graphics, but it has historically been the domain of
high-quality offline rendering due to great computational cost. In this chapter we show
not only how these effects can be simulated and rendered in real time, as Figure 30-1
demonstrates, but also how they can be seamlessly integrated into real-time applica-
tions. Physically based effects have already changed the way interactive environments
are designed. But fluids open the doors to an even larger world of design possibilities.

In the past, artists have relied on particle systems to emulate 3D fluid effects in real-time
applications. Although particle systems can produce attractive results, they cannot match
the realistic appearance and behavior of fluid simulation. Real time fluids remain a chal-
lenge not only because they are more expensive to simulate, but also because the volumet-
ric data produced by simulation does not fit easily into the standard rasterization-based
rendering paradigm.
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In this chapter we give a detailed description of the technology used for the real-time
fluid effects in the NVIDIA GeForce 8 Series launch demo “Smoke in a Box” and dis-
cuss its integration into the upcoming game Hellgate: London.

The chapter consists of two parts:

● Section 30.2 covers simulation, including smoke, water, fire, and interaction with
solid obstacles, as well as performance and memory considerations. 

● Section 30.3 discusses how to render fluid phenomena and how to seamlessly inte-
grate fluid rendering into an existing rasterization-based framework.

30.2 Simulation

30.2.1 Background
Throughout this section we assume a working knowledge of general-purpose GPU
(GPGPU) methods—that is, applications of the GPU to problems other than conven-
tional raster graphics. In particular, we encourage the reader to look at Harris’s chapter
on 2D fluid simulation in GPU Gems (Harris 2004). As mentioned in that chapter,
implementing and debugging a 3D fluid solver is no simple task (even in a traditional
programming environment), and a solid understanding of the underlying mathematics
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Figure 30-1. Water Simulated and Rendered in Real Time on the GPU
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and physics can be of great help. Bridson et al. 2006 provides an excellent resource in
this respect.

Fortunately, a deep understanding of partial differential equations (PDEs) is not re-
quired to get some basic intuition about the concepts presented in this chapter. All
PDEs presented will have the form

which says that the rate at which some quantity x is changing is given by some function
f, which may itself depend on x and t. The reader may find it easier to think about this
relationship in the discrete setting of forward Euler integration:

In other words, the value of x at the next time step equals the current value of x plus
the current rate of change f (xn, t n) times the duration of the time step Δt. (Note that
superscripts are used to index the time step and do not imply exponentiation.) Be
warned, however, that the forward Euler scheme is not a good choice numerically—we
are suggesting it only as a way to think about the equations.

30.2.2 Equations of Fluid Motion
The motion of a fluid is often expressed in terms of its local velocity u as a function of
position and time. In computer animation, fluid is commonly modeled as inviscid (that
is, more like water than oil) and incompressible (meaning that volume does not change
over time). Given these assumptions, the velocity can be described by the momentum
equation:

subject to the incompressibility constraint:

where p is the pressure, ρ is the mass density, f represents any external forces (such as
gravity), and ∇ is the differential operator: 
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To define the equations of motion in a particular context, it is also necessary to specify
boundary conditions (that is, how the fluid behaves near solid obstacles or other fluids).

The basic task of a fluid solver is to compute a numerical approximation of u. This
velocity field can then be used to animate visual phenomena such as smoke particles or
a liquid surface.

30.2.3 Solving for Velocity
The popular “stable fluids” method for computing velocity was introduced in Stam 1999,
and a GPU implementation of this method for 2D fluids was presented in Harris 2004.
In this section we briefly describe how to solve for velocity but refer the reader to the cited
works for details.

In order to numerically solve the momentum equation, we must discretize our domain
(that is, the region of space through which the fluid flows) into computational
elements. We choose an Eulerian discretization, meaning that computational elements
are fixed in space throughout the simulation—only the values stored on these elements
change. In particular, we subdivide a rectilinear volume into a regular grid of cubical
cells. Each grid cell stores both scalar quantities (such as pressure, temperature, and so
on) and vector quantities (such as velocity). This scheme makes implementation on the
GPU simple, because there is a straightforward mapping between grid cells and voxels
in a 3D texture. Lagrangian schemes (that is, schemes where the computational ele-
ments are not fixed in space) such as smoothed-particle hydrodynamics (Müller et al.
2003) are also popular for fluid animation, but their irregular structure makes them
difficult to implement efficiently on the GPU.

Because we discretize space, we must also discretize derivatives in our equations: finite
differences numerically approximate derivatives by taking linear combinations of values
defined on the grid. As in Harris 2004, we store all quantities at cell centers for peda-
gogical simplicity, though a staggered MAC-style grid yields more-robust finite differ-
ences and can make it easier to define boundary conditions. (See Harlow and Welch
1965 for details.)

In a GPU implementation, cell attributes (velocity, pressure, and so on) are stored in
several 3D textures. At each simulation step, we update these values by running compu-
tational kernels over the grid. A kernel is implemented as a pixel shader that executes on
every cell in the grid and writes the results to an output texture. However, because
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GPUs are designed to render into 2D buffers, we must run kernels once for each slice
of a 3D volume.

To execute a kernel on a particular grid slice, we rasterize a single quad whose dimen-
sions equal the width and height of the volume. In Direct3D 10 we can directly render
into a 3D texture by specifying one of its slices as a render target. Placing the slice index
in a variable bound to the SV_RenderTargetArrayIndex semantic specifies the
slice to which a primitive coming out of the geometry shader is rasterized. (See Blythe
2006 for details.) By iterating over slice indices, we can execute a kernel over the entire
grid.

Rather than solve the momentum equation all at once, we split it into a set of simpler
operations that can be computed in succession: advection, application of external
forces, and pressure projection. Implementation of the corresponding kernels is detailed
in Harris 2004, but several examples from our Direct3D 10 framework are given in
Listing 30-1. Of particular interest is the routine PS_ADVECT_VEL: this kernel imple-
ments semi-Lagrangian advection, which is used as a building block for more accurate
advection in the next section.

Listing 30-1. Simulation Kernels

struct GS_OUTPUT_FLUIDSIM
{
// Index of the current grid cell (i,j,k in [0,gridSize] range)
float3 cellIndex : TEXCOORD0;

// Texture coordinates (x,y,z in [0,1] range) for the
// current grid cell and its immediate neighbors
float3 CENTERCELL : TEXCOORD1;
float3 LEFTCELL   : TEXCOORD2;
float3 RIGHTCELL  : TEXCOORD3;
float3 BOTTOMCELL : TEXCOORD4;
float3 TOPCELL    : TEXCOORD5;
float3 DOWNCELL   : TEXCOORD6;
float3 UPCELL     : TEXCOORD7;
float4 pos        : SV_Position; // 2D slice vertex in 

// homogeneous clip space
uint RTIndex     : SV_RenderTargetArrayIndex; // Specifies 

// destination slice
};

30.2  Simulation 637
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Listing 30-1 (continued). Simulation Kernels

float3 cellIndex2TexCoord(float3 index)
{
// Convert a value in the range [0,gridSize] to one in the range [0,1].
return float3(index.x / textureWidth,

index.y / textureHeight,
(index.z+0.5) / textureDepth);

}

float4 PS_ADVECT_VEL(GS_OUTPUT_FLUIDSIM in,
Texture3D velocity) : SV_Target

{
float3 pos = in.cellIndex;
float3 cellVelocity = velocity.Sample(samPointClamp, 

in.CENTERCELL).xyz;

pos -= timeStep * cellVelocity;
pos = cellIndex2TexCoord(pos);

return velocity.Sample(samLinear, pos);
}

float PS_DIVERGENCE(GS_OUTPUT_FLUIDSIM in,
Texture3D velocity) : SV_Target

{
// Get velocity values from neighboring cells.
float4 fieldL = velocity.Sample(samPointClamp, in.LEFTCELL);
float4 fieldR = velocity.Sample(samPointClamp, in.RIGHTCELL);
float4 fieldB = velocity.Sample(samPointClamp, in.BOTTOMCELL);
float4 fieldT = velocity.Sample(samPointClamp, in.TOPCELL);
float4 fieldD = velocity.Sample(samPointClamp, in.DOWNCELL);
float4 fieldU = velocity.Sample(samPointClamp, in.UPCELL);

// Compute the velocity’s divergence using central differences.
float divergence =  0.5 * ((fieldR.x - fieldL.x)+

(fieldT.y - fieldB.y)+
(fieldU.z - fieldD.z));

return divergence;
}
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Listing 30-1 (continued). Simulation Kernels

float PS_JACOBI(GS_OUTPUT_FLUIDSIM in,
Texture3D pressure,
Texture3D divergence) : SV_Target

{
// Get the divergence at the current cell.
float dC = divergence.Sample(samPointClamp, in.CENTERCELL);

// Get pressure values from neighboring cells.
float pL = pressure.Sample(samPointClamp, in.LEFTCELL);
float pR = pressure.Sample(samPointClamp, in.RIGHTCELL);
float pB = pressure.Sample(samPointClamp, in.BOTTOMCELL);
float pT = pressure.Sample(samPointClamp, in.TOPCELL);
float pD = pressure.Sample(samPointClamp, in.DOWNCELL);
float pU = pressure.Sample(samPointClamp, in.UPCELL);

// Compute the new pressure value for the center cell.
return(pL + pR + pB + pT + pU + pD - dC) / 6.0;

}

float4 PS_PROJECT(GS_OUTPUT_FLUIDSIM in,
Texture3D pressure,
Texture3D velocity): SV_Target

{   
// Compute the gradient of pressure at the current cell by
// taking central differences of neighboring pressure values.
float pL = pressure.Sample(samPointClamp, in.LEFTCELL);
float pR = pressure.Sample(samPointClamp, in.RIGHTCELL);
float pB = pressure.Sample(samPointClamp, in.BOTTOMCELL);
float pT = pressure.Sample(samPointClamp, in.TOPCELL);
float pD = pressure.Sample(samPointClamp, in.DOWNCELL);
float pU = pressure.Sample(samPointClamp, in.UPCELL);
float3 gradP = 0.5*float3(pR - pL, pT - pB, pU - pD);

// Project the velocity onto its divergence-free component by
// subtracting the gradient of pressure.
float3 vOld = velocity.Sample(samPointClamp, in.texcoords);
float3 vNew = vOld - gradP;

return float4(vNew, 0);
}

30.2  Simulation 639
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Improving Detail
The semi-Lagrangian advection scheme used by Stam is useful for animation because it
is unconditionally stable, meaning that large time steps will not cause the simulation to
“blow up.” However, it can introduce unwanted numerical smoothing, making water
look viscous or causing smoke to lose detail. To achieve higher-order accuracy, we use a
MacCormack scheme that performs two intermediate semi-Lagrangian advection steps.
Given a quantity φ and an advection scheme A (for example, the one implemented by
PS_ADVECT_VEL), higher-order accuracy is obtained using the following sequence of
operations (from Selle et al. 2007):

Here, φn is the quantity to be advected, and are intermediate quantities, and
φn+1 is the final advected quantity. The superscript on AR indicates that advection is
reversed (that is, time is run backward) for that step.

Unlike the standard semi-Lagrangian scheme, this MacCormack scheme is not uncon-
ditionally stable. Therefore, a limiter is applied to the resulting value φn+1, ensuring that
it falls within the range of values contributing to the initial semi-Lagrangian advection.
In our GPU solver, this means we must locate the eight nodes closest to the sample
point, access the corresponding texels exactly at their centers (to avoid getting interpo-
lated values), and clamp the final value to fall within the minimum and maximum
values found on these nodes, as shown in Figure 30-2. 

Once the intermediate semi-Lagrangian steps have been computed, the pixel shader in
Listing 30-2 completes advection using the MacCormack scheme.

Listing 30-2. MacCormack Advection Scheme

float4 PS_ADVECT_MACCORMACK(GS_OUTPUT_FLUIDSIM in,
float timestep) : SV_Target

{
// Trace back along the initial characteristic – we’ll use
// values near this semi-Lagrangian “particle” to clamp our
// final advected value.
float3 cellVelocity = velocity.Sample(samPointClamp, 

in.CENTERCELL).xyz;
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Listing 30-2 (continued). MacCormack Advection Scheme

float3 npos = in.cellIndex – timestep * cellVelocity;

// Find the cell corner closest to the “particle” and compute the
// texture coordinate corresponding to that location.
npos = floor(npos + float3(0.5f, 0.5f, 0.5f));
npos = cellIndex2TexCoord(npos);

// Get the values of nodes that contribute to the interpolated value.

// Texel centers will be a half-texel away from the cell corner.
float3 ht = float3(0.5f / textureWidth, 

0.5f / textureHeight,
0.5f / textureDepth);

float4 nodeValues[8];
nodeValues[0] = phi_n.Sample(samPointClamp, npos + 

float3(-ht.x, -ht.y, -ht.z));
nodeValues[1] = phi_n.Sample(samPointClamp, npos + 

float3(-ht.x, -ht.y,  ht.z));
nodeValues[2] = phi_n.Sample(samPointClamp, npos + 

float3(-ht.x,  ht.y, -ht.z));
nodeValues[3] = phi_n.Sample(samPointClamp, npos + 

float3(-ht.x,  ht.y,  ht.z));

30.2  Simulation 641

Figure 30-2. Limiter Applied to a MacCormack Advection Scheme in 2D
The result of the advection (blue) is clamped to the range of values from nodes (green) used to get
the interpolated value at the advected “particle” (red) in the initial semi-Lagrangian step.
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Listing 30-2 (continued). MacCormack Advection Scheme

nodeValues[4] = phi_n.Sample(samPointClamp, npos + 
float3(ht.x, -ht.y, -ht.z));

nodeValues[5] = phi_n.Sample(samPointClamp, npos + 
float3(ht.x, -ht.y,  ht.z));

nodeValues[6] = phi_n.Sample(samPointClamp, npos + 
float3(ht.x,  ht.y, -ht.z));

nodeValues[7] = phi_n.Sample(samPointClamp, npos + 
float3(ht.x,  ht.y,  ht.z));

// Determine a valid range for the result.
float4 phiMin = min(min(min(min(min(min(min(

nodeValues[0],  nodeValues [1]), nodeValues [2]), nodeValues [3]),
nodeValues[4]), nodeValues [5]), nodeValues [6]), nodeValues [7]);

float4 phiMax = max(max(max(max(max(max(max(
nodeValues[0],  nodeValues [1]), nodeValues [2]), nodeValues [3]),
nodeValues[4]), nodeValues [5]), nodeValues [6]), nodeValues [7]);

// Perform final advection, combining values from intermediate 
// advection steps.
float4 r = phi_n_1_hat.Sample(samLinear, nposTC) +

0.5 * (phi_n.Sample(samPointClamp, in.CENTERCELL) -
phi_n_hat.Sample(samPointClamp, in.CENTERCELL));

// Clamp result to the desired range.
r = max(min(r, phiMax), phiMin);

return r;
}

On the GPU, higher-order schemes are often a better way to get improved visual detail
than simply increasing the grid resolution, because math is cheap compared to band-
width. Figure 30-3 compares a higher-order scheme on a low-resolution grid with a
lower-order scheme on a high-resolution grid.

30.2.4 Solid-Fluid Interaction
One of the benefits of using real-time simulation (versus precomputed animation) is
that fluid can interact with the environment. Figure 30-4 shows an example on one
such scene. In this section we discuss two simple ways to allow the environment to act
on the fluid. 
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A basic way to influence the velocity field is through the application of external forces.
To get the gross effect of an obstacle pushing fluid around, we can approximate the
obstacle with a basic shape such as a box or a ball and add the obstacle’s average velocity
to that region of the velocity field. Simple shapes like these can be described with an
implicit equation of the form f (x, y, z) ≤ 0 that can be easily evaluated by a pixel shader
at each grid cell.

Although we could explicitly add velocity to approximate simple motion, there are
situations in which more detail is required. In Hellgate: London, for example, we
wanted smoke to seep out through cracks in the ground. Adding a simple upward ve-
locity and smoke density in the shape of a crack resulted in uninteresting motion. In-
stead, we used the crack shape, shown inset in Figure 30-5, to define solid obstacles for
smoke to collide and interact with. Similarly, we wanted to achieve more-precise inter-
actions between smoke and an animated gargoyle, as shown in Figure 30-4. To do so,
we needed to be able to affect the fluid motion with dynamic obstacles (see the details
later in this section), which required a volumetric representation of the obstacle’s inte-
rior and of the velocity at its boundary (which we also explain later in this section).

30.2  Simulation 643

Figure 30-3. Bigger Is Not Always Better!
Left: MacCormack advection scheme (applied to both velocity and smoke density) on a 128×64×64
grid. Right: Semi-Lagrangian advection scheme on a 256×128×128 grid.

Figure 30-4. An Animated Gargoyle Pushes Smoke Around by Flapping Its Wings
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Dynamic Obstacles
So far we have assumed that a fluid occupies the entire rectilinear region defined by the
simulation grid. However, in most applications, the fluid domain (that is, the region of
the grid actually occupied by fluid) is much more interesting. Various methods for
handling static boundaries on the GPU are discussed in Harris et al. 2003, 
Liu et al. 2004, Wu et al. 2004, and Li et al. 2005. 

The fluid domain may change over time to adapt to dynamic obstacles in the environ-
ment, and in the case of liquids, such as water, the domain is constantly changing as the
liquid sloshes around (more in Section 30.2.7). In this section we describe the scheme
used for handling dynamic obstacles in Hellgate: London. For further discussion of dy-
namic obstacles, see Bridson et al. 2006 and Foster and Fedkiw 2001.

To deal with complex domains, we must consider the fluid’s behavior at the domain
boundary. In our discretized fluid, the domain boundary consists of the faces between
cells that contain fluid and cells that do not—that is, the face between a fluid cell and a
solid cell is part of the boundary, but the solid cell itself is not. A simple example of a
domain boundary is a static barrier placed around the perimeter of the simulation grid
to prevent fluid from “escaping” (without it, the fluid appears as though it is simply
flowing out into space). 
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Figure 30-5. Smoke Rises from a Crack in the Ground in the Game Hellgate: London
Inset: A slice from the obstacle texture that was used to block the smoke; white texels indicate an
obstacle, and black texels indicate open space.
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To support domain boundaries that change due to the presence of dynamic obstacles,
we need to modify some of our simulation steps. In our implementation, obstacles are
represented using an inside-outside voxelization. In addition, we keep a voxelized repre-
sentation of the obstacle’s velocity in solid cells adjacent to the domain boundary. This
information is stored in a pair of 3D textures that are updated whenever an obstacle
moves or deforms (we cover this later in this section).

At solid-fluid boundaries, we want to impose a free-slip boundary condition, which says
that the velocities of the fluid and the solid are the same in the direction normal to the
boundary:

In other words, the fluid cannot flow into or out of a solid, but it is allowed to flow
freely along its surface.

The free-slip boundary condition also affects the way we solve for pressure, because the
gradient of pressure is used in determining the final velocity. A detailed discussion of
pressure projection can be found in Bridson et al. 2006, but ultimately we just need to
make sure that the pressure values we compute satisfy the following:

where Δt is the size of the time step, Δx is the cell spacing, pi, j,k is the pressure value in
cell (i, j, k), di, j,k is the discrete velocity divergence computed for that cell, and Fi, j,k is
the set of indices of cells adjacent to cell (i, j, k) that contain fluid. (This equation is
simply a discrete form of the pressure-Poisson system ∇2p = ∇ ⋅ w in Harris 2004 that
respects solid boundaries.) It is also important that at solid-fluid boundaries, di, j,k is
computed using obstacle velocities.

In practice there’s a very simple trick for making sure all this happens: any time we
sample pressure from a neighboring cell (for example, in the pressure solve and pressure
projection steps), we check whether the neighbor contains a solid obstacle, as shown in
Figure 30-6. If it does, we use the pressure value from the center cell in place of the
neighbor’s pressure value. In other words, we nullify the solid cell’s contribution to the
preceding equation.

We can apply a similar trick for velocity values: whenever we sample a neighboring cell
(for example, when computing the velocity’s divergence), we first check to see if it con-
tains a solid. If so, we look up the obstacle’s velocity from our voxelization and use it in
place of the value stored in the fluid’s velocity field. 
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Because we cannot always solve the pressure-Poisson system to convergence, we explic-
itly enforce the free-slip boundary condition immediately following pressure projection.
We must also correct the result of the pressure projection step for fluid cells next to the
domain boundary. To do so, we compute the obstacle’s velocity component in the di-
rection normal to the boundary. This value replaces the corresponding component of
our fluid velocity at the center cell, as shown in Figure 30-7. Because solid-fluid bound-
aries are aligned with voxel faces, computing the projection of the velocity onto the
surface normal is simply a matter of selecting the appropriate component.

If two opposing faces of a fluid cell are solid-fluid boundaries, we could average the
velocity values from both sides. However, simply selecting one of the two faces gener-
ally gives acceptable results. 
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Figure 30-6. Accounting for Obstacles in the Computation of the Discrete Laplacian of Pressure
Left: A stencil used to compute the discrete Laplacian of pressure in 2D. Right: This stencil changes
near solid-fluid boundaries. Checking for solid neighbors and replacing their pressure values with
the central pressure value results in the same behavior.
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Figure 30-7. Enforcing the Free-Slip Boundary Condition After Pressure Projection
To enforce free-slip behavior at the boundary between a fluid cell (red) and a solid cell (black), we
modify the velocity of the fluid cell in the normal (u) direction so that it equals the obstacle’s
velocity in the normal direction. We retain the fluid velocity in the tangential (v) direction.

Copyright NVIDIA Corporation. All rights reserved.



Finally, it is important to realize that when very large time steps are used, quantities can
“leak” through boundaries during advection. For this reason we add an additional con-
straint to the advection steps to ensure that we never advect any quantity into the inte-
rior of an obstacle, guaranteeing that the value of advected quantities (for example,
smoke density) is always zero inside solid obstacles (see the PS_ADVECT_OBSTACLE
routine in Listing 30-3). In Listing 30-3, we show the simulation kernels modified to
take boundary conditions into account.

Listing 30-3. Modified Simulation Kernels to Account for Boundary Conditions

bool IsSolidCell(float3 cellTexCoords)
{
return obstacles.Sample(samPointClamp, cellTexCoords).r > 0.9;

}

float PS_JACOBI_OBSTACLE(GS_OUTPUT_FLUIDSIM in,
Texture3D pressure,
Texture3D divergence) : SV_Target

{
// Get the divergence and pressure at the current cell.
float dC = divergence.Sample(samPointClamp, in.CENTERCELL);
float pC = pressure.Sample(samPointClamp, in.CENTERCELL);

// Get the pressure values from neighboring cells.
float pL = pressure.Sample(samPointClamp, in.LEFTCELL);
float pR = pressure.Sample(samPointClamp, in.RIGHTCELL);
float pB = pressure.Sample(samPointClamp, in.BOTTOMCELL);
float pT = pressure.Sample(samPointClamp, in.TOPCELL);
float pD = pressure.Sample(samPointClamp, in.DOWNCELL);
float pU = pressure.Sample(samPointClamp, in.UPCELL);

// Make sure that the pressure in solid cells is effectively ignored.
if(IsSolidCell(in.LEFTCELL)) pL = pC;
if(IsSolidCell(in.RIGHTCELL)) pR = pC;
if(IsSolidCell(in.BOTTOMCELL)) pB = pC;
if(IsSolidCell(in.TOPCELL)) pT = pC;
if(IsSolidCell(in.DOWNCELL)) pD = pC;
if(IsSolidCell(in.UPCELL)) pU = pC;

// Compute the new pressure value.
return(pL + pR + pB + pT + pU + pD - dC) /6.0;

}
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Listing 30-3 (continued). Modified Simulation Kernels to Account for Boundary Conditions

float4 GetObstacleVelocity(float3 cellTexCoords)
{
return obstaclevelocity.Sample(samPointClamp, cellTexCoords);

}

float PS_DIVERGENCE_OBSTACLE(GS_OUTPUT_FLUIDSIM in,
Texture3D velocity) : SV_Target

{
// Get velocity values from neighboring cells.
float4 fieldL = velocity.Sample(samPointClamp, in.LEFTCELL);
float4 fieldR = velocity.Sample(samPointClamp, in.RIGHTCELL);
float4 fieldB = velocity.Sample(samPointClamp, in.BOTTOMCELL);
float4 fieldT = velocity.Sample(samPointClamp, in.TOPCELL);
float4 fieldD = velocity.Sample(samPointClamp, in.DOWNCELL);
float4 fieldU = velocity.Sample(samPointClamp, in.UPCELL);

// Use obstacle velocities for any solid cells.
if(IsBoundaryCell(in.LEFTCELL)) 
fieldL = GetObstacleVelocity(in.LEFTCELL);

if(IsBoundaryCell(in.RIGHTCELL)) 
fieldR = GetObstacleVelocity(in.RIGHTCELL);

if(IsBoundaryCell(in.BOTTOMCELL)) 
fieldB = GetObstacleVelocity(in.BOTTOMCELL);

if(IsBoundaryCell(in.TOPCELL)) 
fieldT = GetObstacleVelocity(in.TOPCELL);

if(IsBoundaryCell(in.DOWNCELL)) 
fieldD = GetObstacleVelocity(in.DOWNCELL);

if(IsBoundaryCell(in.UPCELL)) 
fieldU = GetObstacleVelocity(in.UPCELL);

// Compute the velocity’s divergence using central differences.
float divergence =  0.5 * ((fieldR.x - fieldL.x) +

(fieldT.y - fieldB.y) +
(fieldU.z - fieldD.z));

return divergence;
}
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Listing 30-3 (continued). Modified Simulation Kernels to Account for Boundary Conditions

float4 PS_PROJECT_OBSTACLE(GS_OUTPUT_FLUIDSIM in,
Texture3D pressure,
Texture3D velocity): SV_Target

{
// If the cell is solid, simply use the corresponding 
// obstacle velocity.
if(IsBoundaryCell(in.CENTERCELL))
{
return GetObstacleVelocity(in.CENTERCELL);

}

// Get pressure values for the current cell and its neighbors.
float pC = pressure.Sample(samPointClamp, in.CENTERCELL);
float pL = pressure.Sample(samPointClamp, in.LEFTCELL);
float pR = pressure.Sample(samPointClamp, in.RIGHTCELL);
float pB = pressure.Sample(samPointClamp, in.BOTTOMCELL);
float pT = pressure.Sample(samPointClamp, in.TOPCELL);
float pD = pressure.Sample(samPointClamp, in.DOWNCELL);
float pU = pressure.Sample(samPointClamp, in.UPCELL);

// Get obstacle velocities in neighboring solid cells. 
// (Note that these values are meaningless if a neighbor
// is not solid.)
float3 vL = GetObstacleVelocity(in.LEFTCELL);
float3 vR = GetObstacleVelocity(in.RIGHTCELL);
float3 vB = GetObstacleVelocity(in.BOTTOMCELL);
float3 vT = GetObstacleVelocity(in.TOPCELL);
float3 vD = GetObstacleVelocity(in.DOWNCELL);
float3 vU = GetObstacleVelocity(in.UPCELL);

float3 obstV = float3(0,0,0);
float3 vMask = float3(1,1,1);

// If an adjacent cell is solid, ignore its pressure
// and use its velocity.
if(IsBoundaryCell(in.LEFTCELL)) { 
pL = pC; obstV.x = vL.x; vMask.x = 0; }

if(IsBoundaryCell(in.RIGHTCELL)) { 
pR = pC; obstV.x = vR.x; vMask.x = 0; }
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Listing 30-3 (continued). Modified Simulation Kernels to Account for Boundary Conditions

if(IsBoundaryCell(in.BOTTOMCELL)) { 
pB = pC; obstV.y = vB.y; vMask.y = 0; }

if(IsBoundaryCell(in.TOPCELL)) { 
pT = pC; obstV.y = vT.y; vMask.y = 0; }

if(IsBoundaryCell(in.DOWNCELL)) { 
pD = pC; obstV.z = vD.z; vMask.z = 0; }

if(IsBoundaryCell(in.UPCELL)) { 
pU = pC; obstV.z = vU.z; vMask.z = 0; }

// Compute the gradient of pressure at the current cell by
// taking central differences of neighboring pressure values.
float gradP = 0.5*float3(pR - pL, pT - pB, pU - pD);

// Project the velocity onto its divergence-free component by
// subtracting the gradient of pressure.
float3 vOld = velocity.Sample(samPointClamp, in.texcoords);
float3 vNew = vOld - gradP;

// Explicitly enforce the free-slip boundary condition by 
// replacing the appropriate components of the new velocity with
// obstacle velocities.
vNew = (vMask * vNew) + obstV;

return vNew;
}

bool IsNonEmptyCell(float3 cellTexCoords)
{
return obstacles.Sample(samPointClamp, cellTexCoords, 0).r > 0.0);

}

float4 PS_ADVECT_OBSTACLE(GS_OUTPUT_FLUIDSIM in,
Texture3D velocity,
Texture3D color) : SV_Target

{
if(IsNonEmptyCell(in.CENTERCELL))
{
return 0;

}
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Listing 30-3 (continued). Modified Simulation Kernels to Account for Boundary Conditions

float3 cellVelocity = velocity.Sample(samPointClamp, 
in.CENTERCELL).xyz;

float3 pos = in.cellIndex – timeStep*cellVelocity;

float3 npos = float3(pos.x / textureWidth, 
pos.y / textureHeight, 
(pos.z+0.5) / textureDepth);

return color.Sample(samLinear, npos);
}

Voxelization
To handle boundary conditions for dynamic solids, we need a quick way of determining
whether a given cell contains a solid obstacle. We also need to know the solid’s velocity
for cells next to obstacle boundaries. To do this, we voxelize solid obstacles into an “in-
side-outside” texture and an “obstacle velocity” texture, as shown in Figure 30-8, using
two different voxelization routines.
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Inside – Outside Texture  

Velocity Texture  

Figure 30-8. Solid Obstacles Are Voxelized into an Inside-Outside Texture and an Obstacle Velocity
Texture
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Inside-Outside Voxelization
Our approach to obtain an inside-outside voxelization is inspired by the stencil shadow
volumes algorithm. The idea is simple: We render the input triangle mesh once into
each slice of the destination 3D texture using an orthogonal projection. The far clip
plane is set at infinity, and the near plane matches the depth of the current slice, as
shown in Figure 30-9. When drawing geometry, we use a stencil buffer (of the same
dimensions as the slice) that is initialized to zero. We set the stencil operations to incre-
ment for back faces and decrement for front faces (with wrapping in both cases). The
result is that any voxel inside the mesh receives a nonzero stencil value. We then do a
final pass that copies stencil values into the obstacle texture.1

As a result, we are able to distinguish among three types of cells: interior (nonzero sten-
cil value), exterior (zero stencil), and interior but next to the boundary (these cells are
tagged by the velocity voxelization algorithm, described next). Note that because this
method depends on having one back face for every front face, it is best suited to water-
tight closed meshes.

Velocity Voxelization
The second voxelization algorithm computes an obstacle’s velocity at each grid cell that
contains part of the obstacle’s boundary. First, however, we need to know the obstacle’s
velocity at each vertex. A simple way to compute per-vertex velocities is to store vertex
positions pn−1 and pn from the previous and current frames, respectively, in a vertex
buffer. The instantaneous velocity vi of vertex i can be approximated with the forward
difference 

in a vertex shader.

Next, we must compute interpolated obstacle velocities for any grid cell containing a
piece of a surface mesh. As with the inside-outside voxelization, the mesh is rendered
once for each slice of the grid. This time, however, we must determine the intersection
of each triangle with the current slice.

The intersection between a slice and a triangle is a segment, a triangle, a point, or empty.
If the intersection is a segment, we draw a “thickened” version of the segment into the
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1. We can also implement this algorithm to work directly on the final texture instead of using an interme-
diate stencil buffer. To do so, we can use additive blending. Additionally, if the interior is defined using the
even-odd rule (instead of the nonzero rule we use), one can also use OpenGL’s glLogicOp.
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slice using a quad. This quad consists of the two end points of the original segment and
two additional points offset from these end points, as shown in Figure 30-10. The offset
distance w is equal to the diagonal length of one texel in a slice of the 3D texture, and
the offset direction is the projection of the triangle’s normal onto the slice. Using linear
interpolation, we determine velocity values at each end point and assign them to the
corresponding vertices of the quad. When the quad is drawn, these values get interpo-
lated across the grid cells as desired. 

These quads can be generated using a geometry shader that operates on mesh triangles,
producing four vertices if the intersection is a segment and zero vertices otherwise.
Because geometry shaders cannot output quads, we must instead use a two-triangle
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Render model N times with orthographic camera,

each time with a different near plane.

Near Plane

2DArray of N Stencil Buffers

Figure 30-9. Inside-Outside Voxelization of a Mesh
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strip. To compute the triangle-slice intersection, we intersect each triangle edge with the
slice. If exactly two edge-slice intersections are found, the corresponding intersection
points are used as end points for our segment. Velocity values at these points are com-
puted via interpolation along the appropriate triangle edges. The geometry shader
GS_GEN_BOUNDARY_VELOCITY in Listing 30-4 gives an implementation of this algo-
rithm. Figure 30-12 shows a few slices of a voxel volume resulting from the voxelization
of the model in Figure 30-11.

Listing 30-4. Geometry Shader for Velocity Voxelization

// GS_GEN_BOUNDARY_VELOCITY:
// Takes as input:
//  - one triangle (3 vertices),
//  - the sliceIdx,
//  - the sliceZ;
// and outputs:
//  - 2 triangles, if intersection of input triangle with slice
//    is a segment
//  - 0 triangles, otherwise
// The 2 triangles form a 1-voxel wide quadrilateral along the
// segment.
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Figure 30-10. A Triangle Intersects a Slice at a Segment with End Points e1 and e2.
These end points are offset a distance w in the direction of the projected normal Nproj to get the
other two vertices of the quad, e1′ and e2′.
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Figure 30-11. Simplified Geometry Can Be Used to Speed Up Voxelization

Figure 30-12. Slices of the 3D Textures Resulting from Applying Our Voxelization Algorithms to the
Model in Figure 30-11. 
The blue channel shows the result of the inside-outside voxelization (bright blue for cells next to
the boundary and dark blue for other cells inside). The red and green channels are used to
visualize two of the three components of the velocity.
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Listing 30-4 (continued). Geometry Shader for Velocity Voxelization

[maxvertexcount (4)]
void GS_GEN_BOUNDARY_VELOCITY(
triangle VsGenVelOutput input[3],
inout TriangleStream<GsGenVelOutput> triStream)

{
GsGenVelOutput output;
output.RTIndex = sliceIdx;

float minZ = min(min(input[0].Pos.z, input[1].Pos.z), input[2].Pos.z);
float maxZ = max(max(input[0].Pos.z, input[1].Pos.z), input[2].Pos.z);
if((sliceZ < minZ) || (sliceZ > maxZ))
// This triangle doesn't intersect the slice.
return;

GsGenVelIntVtx intersections[2];
for(int i=0; i<2; i++)
{
intersections[i].Pos = 0;
intersections[i].Velocity = 0;

}

int idx = 0;
if(idx < 2)
GetEdgePlaneIntersection(input[0], input[1], sliceZ, 

intersections, idx);
if(idx < 2)
GetEdgePlaneIntersection(input[1], input[2], sliceZ, 

intersections, idx);
if(idx < 2)
GetEdgePlaneIntersection(input[2], input[0], sliceZ, 

intersections, idx);

if(idx < 2)
return;

float sqrtOf2 = 1.414; // The diagonal of a pixel
float2 normal = sqrtOf2 * normalize(
cross((input[1].Pos - input[0].Pos), 

(input[2].Pos - input[0].Pos)).xy);
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Listing 30-4 (continued). Geometry Shader for Velocity Voxelization

for(int i=0; i<2; i++)
{
output.Pos = float4(intersections[i].Pos, 0, 1);
output.Velocity = intersections[i].Velocity;
triStream.Append(output);

output.Pos = float4((intersections[i].Pos + 
(normal*projSpacePixDim)), 0, 1);

output.Velocity = intersections[i].Velocity;
triStream.Append(output);

}
triStream.RestartStrip();

}

void GetEdgePlaneIntersection(
VsGenVelOutput vA, 
VsGenVelOutput vB,
float sliceZ, 
inout GsGenVelIntVtx intersections[2],
inout int idx)

{
float t = (sliceZ - vA.Pos.z) / (vB.Pos.z - vA.Pos.z);
if((t < 0) || (t > 1))
// Line-plane intersection is not within the edge's end points
// (A and B)
return;

intersections[idx].Pos = lerp(vA.Pos, vB.Pos, t).xy;
intersections[idx].Velocity = lerp(vA.Velocity, vB.Velocity, t);
idx++;

}

Optimizing Voxelization
Although voxelization requires a large number of draw calls, it can be made more effi-
cient using stream output (see Blythe 2006). Stream output allows an entire buffer of
transformed vertices to be cached when voxelizing deforming meshes such as skinned
characters, rather than recomputing these transformations for each slice.
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Additionally, instancing can be used to draw all slices in a single draw call, rather than
making a separate call for each slice. In this case, the instance ID can be used to specify
the target slice. 

Due to the relative coarseness of the simulation grid used, it is a good idea to use a low
level of detail mesh for each obstacle, as shown in Figure 30-11. Using simplified mod-
els allowed us to voxelize obstacles at every frame with little performance cost. 

Finally, if an obstacle is transformed by a simple analytic transformation (versus a com-
plex skinning operation, for example), voxelization can be precomputed and the inverse
of the transformation can be applied whenever accessing the 3D textures. A simple ex-
ample is a mesh undergoing rigid translation and rotation: texture coordinates used to
access the inside-outside and obstacle velocity textures can be multiplied by the inverse
of the corresponding transformation matrix to get the appropriate values.

30.2.5 Smoke
Although the velocity field describes the fluid’s motion, it does not look much like a
fluid when visualized directly. To get interesting visual effects, we must keep track of
additional quantities that are pushed around by the fluid. For instance, we can keep
track of density and temperature to obtain the appearance of smoke (Fedkiw et al.
2001). For each additional quantity φ, we must allocate an additional texture with the
same dimensions as our grid. The evolution of values in this texture is governed by the
same advection equation used for velocity:

In other words, we can use the same MacCormack advection routine we used to evolve
the velocity.

To achieve the particular effect seen in Figure 30-4, for example, we inject a three-
 dimensional Gaussian “splat” into a color texture each frame to provide a source of
“smoke.” These color values have no real physical significance, but they create attractive
swirling patterns as they are advected throughout the volume by the fluid velocity.

To get a more physically plausible appearance, we must make sure that hot smoke rises
and cool smoke falls. To do so, we need to keep track of the fluid temperature T (which
again is advected by u). Unlike color, temperature values have an influence on the dy-
namics of the fluid. This influence is described by the buoyant force:

∂
∂

= − ⋅ ∇( )
φ

φ
t
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where P is pressure, m is the molar mass of the gas, g is the acceleration due to gravity,
and R is the universal gas constant. In practice, all of these physical constants can be
treated as a single value and can be tweaked to achieve the desired visual appearance.
The value T0 is the ambient or “room” temperature, and T represents the temperature
values being advected through the flow. z is the normalized upward-direction vector.
The buoyant force should be thought of as an “external” force and should be added to
the velocity field immediately following velocity advection.

30.2.6 Fire
Fire is not very different from smoke except that we must store an additional quantity,
called the reaction coordinate, that keeps track of the time elapsed since gas was ignited.
A reaction coordinate of one indicates that the gas was just ignited, and a coordinate of
less than zero indicates that the fuel has been completely exhausted. The evolution of
these values is described by the following equation (from Nguyen et al. 2002):

In other words, the reaction coordinate is advected through the flow and decremented
by a constant amount (k) at each time step. In practice, this integration is performed by
passing a value for k to the advection routine (PS_ADVECT_MACCORMACK), which is
added to the result of the advection. (This value should be nonzero only when advect-
ing the reaction coordinate.) Reaction coordinates do not have an effect on the dynam-
ics of the fluid but are later used for rendering (see Section 30.3).

Figure 30-14 (in Section 30.2.10) demonstrates one possible fire effect: a ball of fuel is
continuously generated near the bottom of the volume by setting the reaction coordi-
nate in a spherical region to one. For a more advanced treatment of flames, see Nguyen
et al. 2002.

30.2.7 Water
Water is modeled differently from the fluid phenomena discussed thus far. With fire or
smoke, we are interested in visualizing a density defined throughout the entire volume,
but with water the visually interesting part is the interface between air and liquid.
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Therefore, we need some way of representing this interface and tracking how it deforms
as it is pushed around by the fluid velocity.

The level set method (Sethian 1999) is a popular representation of a liquid surface and is
particularly well suited to a GPU implementation because it requires only a scalar value
at each grid cell. In a level set, each cell records the shortest signed distance φ from the
cell center to the water surface. Cells in the grid are classified according to the value of
φ: if φ < 0, the cell contains water; otherwise, it contains air. Wherever φ equals zero is
exactly where the water meets the air (the zero set). Because advection will not preserve
the distance field property of a level set, it is common to periodically reinitialize the
level set. Reinitialization ensures that each cell does indeed store the shortest distance to
the zero set. However, this property isn’t needed to simply define the surface, and for
real-time animation, it is possible to get decent results without reinitialization.
Figure 30-1, at the beginning of this chapter, shows the quality of the results.

Just as with color, temperature, and other attributes, the level set is advected by the fluid,
but it also affects the simulation dynamics. In fact, the level set defines the fluid domain:
in simple models of water and air, we assume that the air has a negligible effect on the
liquid and do not perform simulation wherever φ ≥ 0. In practice, this means we set the
pressure outside of the liquid to zero before solving for pressure and modify the pressure
only in liquid cells. It also means that we do not apply external forces such as gravity
outside of the liquid. To make sure that only fluid cells are processed, we check the value
of the level set texture in the relevant shaders and mask computations at a cell if the
value of φ is above some threshold. Two alternatives that may be more efficient are to use
z-cull to eliminate cells (if the GPU does not support dynamic flow control) (Sander et
al. 2004) and to use a sparse data structure (Lefohn et al. 2004).

30.2.8 Performance Considerations
One major factor in writing an efficient solver is bandwidth. For each frame of anima-
tion, the solver runs a large number of arithmetically simple kernels, in between which
data must be transferred to and from texture memory. Although most of these kernels
exhibit good locality, bandwidth is still a major issue: using 32-bit floating-point tex-
tures to store quantities yields roughly half the performance of 16-bit textures. Surpris-
ingly, there is little visually discernible degradation that results from using 16-bit
storage, as is shown in Figure 30-13. Note that arithmetic operations are still performed
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in 32-bit floating point, meaning that results are periodically truncated as they are writ-
ten to the destination textures.

In some cases it is tempting to store multiple cell attributes in a single texture in order
to reduce memory usage or for convenience, but doing so is not always optimal in
terms of memory bandwidth. For instance, suppose we packed both inside-outside and
velocity information about an obstacle into a single RGBA texture. Iteratively solving
the pressure-Poisson equation requires that we load inside-outside values numerous
times each frame, but meanwhile the obstacle’s velocity would go unused. Because
packing these two textures together requires four times as many bytes transferred from
memory as well as cache space, it may be wise to keep the obstacle’s inside-outside in-
formation in its own scalar texture. 

30.2.9 Storage
Table 30-1 gives some of the storage requirements needed for simulating and rendering
fluids, which amounts to 41 bytes per cell for simulation and 20 bytes per pixel for
rendering. However, most of this storage is required only temporarily while simulating
or rendering, and hence it can be shared among multiple fluid simulations. In Hellgate:
London, we stored the exclusive textures (the third column of the table) with each in-
stance of smoke, but we created global versions of the rest of the textures (the last col-
umn of the table), which were shared by all the smoke simulations.
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Figure 30-13. Smoke Simulated Using 16-Bit (Top Row) and 32-Bit (Bottom Row) Floating-Point
Textures for Storage
Note that although some fine-scale detail differs between the two sequences, the overall motion is
consistent.
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30.2.10 Numerical Issues
Because real-time applications are so demanding, we have chosen the simplest numeri-
cal schemes that still give acceptable visual results. Note, however, that for high-quality
animation, more accurate alternatives are preferable. 

One of the most expensive parts of the simulation is solving the pressure-Poisson system,
∇2p = ∇ ⋅ u*. We use the Jacobi method to solve this system because it is easy to imple-
ment efficiently on the GPU. However, several other suitable solvers have been imple-
mented on the GPU, including the Conjugate Gradient method (Bolz et al. 2003) and
the Multigrid method (Goodnight et al. 2003). Cyclic reduction is a particularly inter-
esting option because it is direct and can take advantage of banded systems (Kass et al.
2006). When picking an iterative solver, it may be worth considering not only the over-
all rate of convergence but also the convergence rate of different spatial frequencies in the
residual (Briggs et al. 2000). Because there may not be enough time to reach conver-
gence in a real-time application, the distribution of frequencies will have some impact
on the appearance of the solution.

Ideally we would like to solve the pressure-Poisson system exactly in order to satisfy the
incompressibility constraint and preserve fluid volume. For fluids like smoke and fire,
however, a change in volume does not always produce objectionable visual artifacts.
Hence we can adjust the number of iterations when solving this system according to
available resources. Figure 30-14 compares the appearance of a flame using different
numbers of Jacobi iterations. Seen in motion, spinning vortices tend to “flatten out” a
bit more when using only a small number of iterations, but the overall appearance is
very similar.
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Table 30-1. Storage Needed for Simulating and Rendering Fluids

Total Space Exclusive Textures Shared Textures
Fluid Simulation 32 bytes per cell 12 bytes per cell

1×RGBA16 (velocity)

2×R16 (pressure and density)

20 bytes per cell

2×RGBA16 (temporary)

2×R16 (temporary)

Voxelization 9 bytes per cell — 9 bytes per cell

1×RGBA16 (velocity)

1×R8 (inside-outside)

Rendering 20 bytes per pixel — 20 bytes per pixel of off-screen render target 

1×RGBA32 (ray data)

1×R32 (scene depth)
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For a more thorough discussion of GPGPU performance issues, see Pharr 2005. 

For liquids, on the other hand, a change of volume is immediately apparent: fluid appears
to either pour out from nowhere or disappear entirely! Even something as simple as water
sitting in a tank can potentially be problematic if too few iterations are used to solve for
pressure: because information does not travel from the tank floor to the water surface,
pressure from the floor cannot counteract the force of gravity. As a result, the water slowly
sinks through the bottom of the tank, as shown in Figure 30-15. 
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Figure 30-14. Fire Simulation Using 20 Jacobi Iterations (Top Row) and 1,000 Jacobi Iterations
(Bottom Row) for the Pressure Solve
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Unfortunately, in a real-time application, it is not always possible to solve for p exactly
(regardless of the particular solver used) because computation time is constrained by the
target frame rate and the resource requirements of other concurrent processes. In simple
situations where we know that the liquid should tend toward a static equilibrium, we
can force the correct behavior by manipulating the level set in the following way:

Here φ∞ is a level set whose zero set tells us what the surface should look like if we let
the liquid settle for a long period of time. For example, the equilibrium level set for a
tank of water would be simply φ∞ (x, y, z) = y − h, where y is the vertical distance from
the bottom of the tank and h is the desired height of the water. See Figure 30-16. 

The function A is the advection operator, and the parameter β ∈ [0, 1] controls the
amount of damping applied to the solution we get from advection. Larger values of β
permit fewer solver iterations but also decrease the liveliness of the fluid. Note that this
damping is applied only in regions of the domain where φ∞ is negative—this keeps
splashes evolving outside of the domain of the equilibrium solution lively, though it can
result in temporary volume gain.

Ultimately, however, this kind of nonphysical manipulation of the level set is a hack,
and its use should be considered judiciously. Consider an environment in which the
player scoops up water with a bowl and then sets the bowl down at an arbitrary loca-
tion on a table: we do not know beforehand what the equilibrium level set should look
like and hence cannot prevent water from sinking through the bottom of the bowl.
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Gravity

Pressure

Figure 30-15. Uncorrected Water Simulation
Pressure pushing up from the bottom of the tank may not be able to counteract the force of gravity
on the liquid’s surface when using a small number of Jacobi iterations to solve for pressure.
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30.3 Rendering

30.3.1 Volume Rendering
The result of our simulation is a collection of values stored in a 3D texture. However,
there is no mechanism in Direct3D or OpenGL for displaying this texture directly.
Therefore we render the fluid using a ray-marching pixel shader. Our approach is very
similar to the one described in Scharsach 2005.

The placement of the fluid in the scene is determined by six quads, which represent the
faces of the simulation volume. These quads are drawn into a deferred shading buffer to
determine where and how rays should be cast. We then render the fluid by marching
rays through the volume and accumulating densities from the 3D texture, as shown in
Figure 30-17. 

Volume Ray Casting
In order to cast a ray, we need to know where it enters the volume, in which direction it is
traveling, and how many samples to take. One way to get these values is to perform sev-
eral ray-plane intersections in the ray-marching shader. However, precomputing these
values and storing them in a texture makes it easier to perform proper compositing and

Figure 30-16. Combining Level Sets to Counter a Low Convergence Rate
To preserve fluid volume even under extreme performance constraints, the results of level set
advection are combined with a known equilibrium level setφ∞.
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clipping (more on this later in this section), which is the approach we use here. As a pre-
pass, we generate a screen-size texture, called the RayData texture, which encodes, for
every pixel that is to be rendered, the entry point of the ray in texture space, and the
depth through the volume that the ray traverses. To get the depth through the volume, we
draw first the back faces of the volume with a shader that outputs the distance from the
eye to the fragment’s position (in view space) into the alpha channel. We then run a simi-
lar shader on the front faces but enable subtractive blending using Equation 1. Further-
more, to get the entry point of the ray, we also output into the RGB channel the
texture-space coordinates of each fragment generated for the front faces.

To render the volume, we draw a full-screen quad with a ray-marching shader. This
shader looks up into the RayData texture to find the pixels that we need to ray-cast
through, and the ray entry point and marching distance through the volume for those
pixels. The number of samples that the ray-marching shader uses is proportional to the
marching distance (we use a step size equal to half a voxel). The ray direction is given
by the vector from the eye to the entry point (both in texture space). At each step along
the ray, we sample values from the texture containing the simulated values and blend
them front to back according to Equation 2. By blending from front to back, we can
terminate ray casting early if the color saturates (we exit if FinalColor.a > 0.99). For a
more physically based rendering model, see Fedkiw et al. 2001.
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Figure 30-17. A Conceptual Overview of Ray Casting
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Compositing
There are two problems with the ray-marching algorithm described so far. First, rays
continue to march through the volume even if they encounter other scene geometry.
See the right side of Figure 30-18 for an illustration. Second, rays are traced even for
parts of the volume that are completely occluded, as the left side of Figure 30-18 shows.
However, we can modify our computation of volume depth such that we march
through only relevant parts of the grid.

Previously we used the distance to the back faces of the volume to determine where ray
marching should terminate. To handle obstacles that intersect the volume, we instead
use the minimum of the back-face distance and the scene distance (that is, the distance
between the eye and the closest obstacle in the scene). The scene distance can be calcu-
lated by reading the scene depth and reverse projecting it back to view space to find the
distance from the eye to the scene. If the depth buffer cannot be read as a texture in a
pixel shader, as is the case in Direct3D 10 when using multisample antialiasing, this
distance can be computed in the main scene rendering pass using multiple render tar-
gets; this is the approach we use.

To deal with cases in which the scene geometry completely occludes part of the volume,
we compare the front-facing fragments’ distance to the scene distance. If the front-face
distance is greater than the scene distance (that is, the fragment is occluded), we output

FinalColor rgb SampleColor rgb SampleColor a FinalColor. . .+= × × −1 ..

. . .

a

FinalColor a SampleColor a FinalColor a

( )

+= × −( )1
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Figure 30-18. Rays Are Clipped According to Scene Depth to Account for Occlusion
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a large negative value in the red channel. This way, the final texture-space position
computed for the corresponding texel in the RayData texture will be outside the vol-
ume, and hence no samples will be taken along the corresponding ray.

Clipping
We also need to modify our ray-marching algorithm to handle the cases in which the
camera is located inside the fluid volume and the camera’s near plane clips parts of the
front faces of the volume, as shown in Figure 30-19.

In regions where the front faces were clipped, we have no information about where rays
enter the volume, and we have incorrect values for the volume depth.

To deal with these regions, we mark the pixels where the back faces of the volume have
been rendered but not the front faces. This marking is done by writing a negative color
value into the green channel when rendering the back faces of the fluid volume to the
RayData texture. Note that the RayData texture is cleared to zero before either front or
back faces are rendered to it. Because we do not use the RGB values of the destination
color when rendering the front faces with alpha blending (Equation 1), the pixels for
which the green channel contains a negative color after rendering the front faces are
those where the back faces of the fluid volume were rendered but not the front (due to
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Figure 30-19. Part of the Fluid Volume May Be Clipped by the Near Plane
In areas where the front faces of the fluid volume get clipped by the near plane of the camera, we
have incorrect information for ray marching.
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clipping). In the ray-casting shader, we explicitly initialize the position of these marked
pixels to the appropriate texture-space position of the corresponding point on the near
plane. We also correct the depth value read from the RayData texture by subtracting
from it the distance from the eye to the corresponding point on the near plane.

Filtering
The ray-marching algorithm presented so far has several visible artifacts. One such
artifact is banding, which results from using an integral number of equally spaced sam-
ples. This artifact is especially visible when the scene inside the fluid volume has rapidly
changing depth values, as illustrated in Figure 30-20.

To suppress it, we take one more sample than necessary and weigh its contribution to
the final color by d/sampleWidth, as shown in Figure 30-21. In the figure, d is the dif-
ference between the scene distance at the fragment and the total distance traveled by
the ray at the last sample, and sampleWidth is the typical step size along the ray.

Banding, however, usually remains present to some degree and can become even more
obvious with high-frequency variations in either the volume density or the mapping
between density and color (known as the transfer function). This well-known problem is
addressed in Hadwiger 2004 and Sigg and Hadwiger 2005. Common solutions include
increasing the sampling frequency, jittering the samples along the ray direction, or
using higher-order filters when sampling the volume. It is usually a good idea to com-
bine several of these techniques to find a good performance-to-quality trade-off. In
Hellgate: London, we used trilinear jittered sampling at a frequency of twice per voxel.
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Figure 30-20. Dealing with Banding
Using scene depth can cause banding artifacts (left), which can be solved using weighted
sampling (right).
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Off-Screen Ray Marching
If the resolution of the simulation grid is low compared to screen resolution, there is
little visual benefit in ray casting at high resolution. Instead, we draw the fluid into a
smaller off-screen render target and then composite the result into the final image. This
approach works well except in areas of the image where there are sharp depth disconti-
nuities in scene geometry, as shown in Figure 30-22, and where the camera clips the
fluid volume.

This issue is discussed in depth by Iain Cantlay in Chapter 23 of this book, “High-
Speed, Off-Screen Particles.” In Hellgate: London, we use a similar approach to the one
presented there: we draw most of the smoke at a low resolution but render pixels in
problematic areas at screen resolution. We find these areas by running an edge-
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d

sampleWidth

Figure 30-21. Reducing Banding by Taking an Additional Weighted Sample
Taking an additional weighted sample can help reduce banding artifacts such as those seen in
Figure 30-20.

Figure 30-22. Fixing Artifacts Introduced by Low-Resolution Off-Screen Rendering
Left: Ray marching at a low resolution and upsampling can cause artifacts near sharp silhouettes.
Center: Detecting these features and rendering the corresponding fragments at higher resolution.
Right: The resulting artifact-free image.

Copyright NVIDIA Corporation. All rights reserved.



detection filter on the RayData texture computed earlier in this section. Specifically, we
run a Sobel edge-detection filter on the texture’s alpha channel (to find edges of obsta-
cles intersecting the volume), red channel (to find edges of obstacles occluding the
volume), and green channel (to find the edges where the near plane of the camera clips
the volume).

Fire 
Rendering fire is similar to rendering smoke except that instead of blending values as we
march, we accumulate values that are determined by the reaction coordinate Y rather than
the smoke density (see Section 30.2.6). In particular, we use an artist-defined 1D texture
that maps reaction coordinates to colors in a way that gives the appearance of fire. A more
physically based discussion of fire rendering can be found in Nguyen et al. 2002.

The fire volume can also be used as a light source if desired. The simplest approach is to
sample the volume at several locations and treat each sample as a point light source.
The reaction coordinate and the 1D color texture can be used to determine the inten-
sity and color of the light. However, this approach can lead to severe flickering if not
enough point samples are used, and it may not capture the overall behavior of the light.
A different approach is to downsample the texture of reaction coordinates to an ex-
tremely low resolution and then use every voxel as a light source. The latter approach
will be less prone to flickering, but it won’t capture any high-frequency lighting effects
(such as local lighting due to sparks).

30.3.2 Rendering Liquids
To render a liquid surface, we also march through a volume, but this time we look at
values from the level set φ. Instead of integrating values as we march, we look for the
first place along the ray where φ = 0. Once this point is found, we shade it just as we
would shade any other surface fragment, using ∇φ at that point to approximate the
shading normal. For water, it is particularly important that we do not see artifacts of
the grid resolution, so we use tricubic interpolation to filter these values. Figure 30-1 at
the beginning of the chapter demonstrates the rendered results. See Sigg and Hadwiger
2005 and Hadwiger et al. 2005 for details on how to quickly intersect and filter volume
isosurface data such as a level set on the GPU.

Refraction
For fluids like water, there are several ways to make the surface appear as though it re-
fracts the objects behind it. Ray tracing is one possibility, but casting rays is expensive,
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and there may be no way to find ray intersections with other scene geometry. Instead, we
use an approximation that gives the impression of refraction but is fast and simple to
implement.

First, we render the objects behind the fluid volume into a background texture. 

Next, we determine the nearest ray intersection with the water surface at every pixel by
marching through the volume. This produces a pair of textures containing hit locations
and shading normals; the alpha value in the texture containing hit locations is set to
zero if there was no ray-surface intersection at a pixel, and set to one otherwise. We
then shade the hit points with a refraction shader that uses the background texture.
Finally, foreground objects are added to create the final image.

The appearance of refraction is achieved by looking up a pixel in the background image
near the point being shaded and taking its value as the refracted color. This refracted
color is then used in the shading equation as usual. More precisely, this background
pixel is accessed at a texture coordinate t that is equal to the location p of the pixel
being shaded offset by a vector proportional to the projection of the surface normal N
onto the image plane. In other words, if Ph and Pv are an orthonormal basis for the
image plane oriented with the viewport, then 

where β > 0 is a scalar parameter that controls the severity of the effect. The vectors Pv

and Ph are defined by

where z is up and V is the view direction.

The effect of applying this transformation to the texture coordinates is that a convex
region of the surface will magnify the image behind it, a concave region will shrink the
image, and flat (with respect to the viewer) regions will allow rays to pass straight
through. 

30.4 Conclusion
In this chapter, we hope to have demonstrated that physically based fluid animation is a
valuable tool for creating interactive environments, and to have provided some of the
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basic building blocks needed to start developing a practical implementation. However,
this is by no means the end of the line: we have omitted discussion of a large number of
possible directions for fluid animation, including melting (Carlson et al. 2002), visco -
elastic fluids (Goktekin et al. 2004), and multiphase flows (Lossasso et al. 2006). We
have also omitted discussion of a number of interesting data structures and algorithms,
such as sparse level sets (Lefohn et al. 2004), which may significantly improve simulation
performance; or mesh-based surface extraction (Ziegler et al. 2006), which may permit
more efficient rendering of liquids.
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