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Abstract

This paper is concerned with the animation and control of vehicles
with complex dynamics such as helicopters, boats, and cars. Moti-
vated by recent developments in discrete geometric mechanics we
develop a general framework for integrating the dynamics of holo-
nomic and nonholonomic vehicles by preserving their state-space
geometry and motion invariants. We demonstrate that the resulting
integration schemes are superior to standard methods in numerical
robustness and efficiency, and can be applied to many types of vehi-
cles. In addition, we show how to use this framework in an optimal
control setting to automatically compute accurate and realistic mo-
tions for arbitrary user-specified constraints.

1 Introduction

A vehicle is an actuated mechanical system that moves and inter-
acts with its environment, such as a car, helicopter, or boat. While
vehicles constitute a highly visible component of the world around
us, the topic of vehicle dynamics has received little attention in the
computer animation literature, and only a few off-the-shelf solu-
tions for vehicle animation and control exist [Craft Animations;
Kineo CAM]. This deficiency is in sharp contrast with other ani-
mation and control tasks such as rigid/articulated/deformable body
simulation, fluid phenomena, and character animation for which a
plethora of techniques are available. Additionally, human famil-
iarity with vehicles’ highly idiosyncratic trajectories makes it diffi-
cult (or simply tedious) for artists to capture the essence of vehicle
motion. Although locomotion and actuation have been thoroughly
studied by roboticists [Latombe 1991; Murray et al. 1994], these
tools have not been adequately adapted to computer graphics appli-
cations where performance, controllability, and ease of implemen-
tation are key.

At first glance, vehicle simulation appears simple: a vehicle is eas-
ily modeled by its pose in the world and a set of internal variables
that describe its shape and/or internal dynamics. For example, a
basic car simulator might operate on a pose (the car’s current posi-
tion and orientation) defined as (x, y, θ)∈SE(2) and two internal
variables giving the orientation of the front wheels and the rolling
angle of the rear wheels. Interaction with the environment could
be described by either external forces such as contact forces, or by
constraints on the velocities such as wheel rolling constraints aris-
ing from traction with the ground. However, this last constraint is
not as simple as it may seem: it means that a car can only move in
the direction in which the front wheels are pointing to. Such con-
straints on the velocities are called nonholonomic and are one of
the reasons why parallel parking is a non-trivial task. Additionally,
non-holonomic constraints, which restrict the possible motions of
a mechanical system, are notoriously more delicate to enforce nu-
merically [Cortés and Martı́nez 2001; Bloch 2003] than holonomic
constraints, which restrict only the possible poses.

Figure 1: A snakeboard (see description in Fig. 7) is animated using our
nonholonomic integrator that realistically and efficiently accounts for hip
and foot motion. This paper presents a general framework for designing
variational holonomic integrators and structure-respecting nonholonomic
integrators for all sorts of vehicles, including cars, boats, and helicopters.
These Lie group-based integrators are particularly robust for large time
steps, and compete in efficiency with RK methods for small time steps.

Contributions. This paper introduces general integrators for vehi-
cles which handle both holonomic and non-holonomic constraints.
We provide a self-contained description of generic numerical al-
gorithms for vehicle integration, spell out specific integrators for
computer animation in the case of a car, a helicopter, a boat, and
a snake-board, and demonstrate numerical superiority compared to
traditional Euler and Runge-Kutta integrators.

Our work extends the recently developed geometric Lie group in-
tegrators [Bou-Rabee and Marsden 2009] to provide a principled
approach to the design of structure-preserving integrators for vehi-
cles. Compared to previous methods (most notably Cortés [2002],
Fedorov and Zenkov [2005], McLachlan and Perlmutter [2006] and
de Leon et al. [2004]) our approach to nonholonomic systems with
symmetries is more general as it can handle arbitrary group struc-
ture, constraints, and shape dynamics, and is not restricted to a con-
figuration space that is either solely a group or has a Chaplygin-type
symmetry. As a result, our formulation contains an additional dis-
crete momentum equation analogous to the continuous case (e.g.,
as described in [Bloch et al. 1996]) that explicitly accounts for and
respects the interaction between symmetries and constraints in the
vehicle dynamics.

Our resulting numerical schemes provide several practical benefits
directly relevant to computer graphics applications. First, a user
can easily apply our framework to any vehicle by supplying its
Lagrangian and constraints. Second, there is no need to use lo-
cal coordinates that require expensive chart-switching, or special
handling of singularities and numerical drift as required in previous
methods. Additionally, fairly large time steps can be used with-
out affecting numerical stability, making the method practical for
the frame rates often used in animation. Finally, motion is com-
puted in the minimum state-space dimension, thereby avoiding the
computational burden that the conventional use of Lagrange multi-
pliers induces. Consequently, our formulation allows the design of
motions for systems with intricate dynamics through a simple al-
gorithmic procedure, while benefiting from the desirable properties
of discrete mechanics and Lie group methods such as robust and
predictive numerics.

Outline. After a quick review of the current state of the art on reg-
ular and Lie group variational integrators in Sec. 2, we present a
formal, general treatment of the discrete variational principles used
to derive our integrators in Sec. 3. We then present the resulting



integrators, first for purely holonomic systems (Section 4), then for
nonholonomic systems (Section 5), along with the explicit expres-
sions necessary for implementation. The specific cases of a car, a
boat, a helicopter, and a snakeboard are detailed as concrete exam-
ples, though virtually any “exotic” vehicle could be derived from
our general exposition. We finally point out in Sec. 6 how these
integrators can be directly used in the context of optimal control to
design specific trajectories while minimizing a cost function such
as travel time or fuel consumption.

2 Background on Time Integrators

A mechanical integrator advances a dynamical system forward in
time. Such numerical algorithms are typically constructed by di-
rectly discretizing the differential equations that describe the trajec-
tory of the system, resulting in an update rule to compute the next
state in time. The integrators employed in this paper are instead
based on the discretization of geometric variational principles. We
start with a brief review of variational integrators, as well as their
recent extensions that handle group structure and symmetries (e.g.,
update of rotation matrices).

2.1 Variational Integrators

Variational integrators [Marsden and West 2001] are based on the
idea that the update rule for a discrete mechanical system (i.e.,
the time stepping scheme) should be derived directly from a vari-
ational principle rather than from the resulting differential equa-
tions. This concept of using a unifying principle from which the
equations of motion follow (typically through the calculus of vari-
ations [Lanczos 1949]) has been favored for decades in physics.
Chief among the variational principles of mechanics is Hamilton’s
principle which states that the path q(t) (with endpoint q(t0) and
q(t1)) taken by a mechanical system extremizes the action integral∫ t1
t0
L(q, q̇)dt, i.e., the time integral of the Lagrangian L of the sys-

tem, equal to the kinetic minus potential energy of the system. A
number of properties of the Lagrangian have direct consequences
on the mechanical system. For instance, a symmetry of the system
(i.e., a transformation that preserves the Lagrangian) leads to a mo-
mentum preservation—see [Stern and Desbrun 2006] for a longer
introductory exposition aimed at computer animation.

Although this variational approach may seem more mathematically
motivated than numerically relevant, integrators that respect varia-
tional properties exhibit improved numerics and remedy many prac-
tical issues in physically based simulation and animation. First,
variational integrators automatically preserve (linear and angular)
momenta exactly (because of the invariance of the Lagrangian with
respect to translation and rotation) while providing good energy
conservation over exponentially long simulation times for non-
dissipative systems. Second, arbitrarily accurate integrators can be
obtained through a simple change of quadrature rules. Finally, they
preserve the symplectic structure of the system, resulting in a much-
improved treatment of damping that is essentially independent of
time step [Kharevych et al. 2006]—a crucial property in computer
graphics where coarse and fine simulations of the same system are
often needed for preview purposes.

Practically speaking, variational integrators based on Hamilton’s
principle first approximate the time integral of the continuous La-
grangian by a quadrature, function of two consecutive states qk and
qk+1 (corresponding to time tk and tk+1, respectively):

L(qk, qk+1) ≈
∫ tk+1

tk

L(q(t), q̇(t))dt.

Equipped with this “discrete Lagrangian,” one can now formulate
a discrete principle for the path {q0, ..., qN} defined by the succes-
sive position at times tk = kh. This discrete principle requires

that

δ

N−1∑
k=0

L(qk, qk+1) = 0,

where variations are taken with respect to each position qk along
the path. Thus, if we useDi to denote the partial derivative w.r.t the
ith variable, we must have

D2L(qk−1, qk) +D1L(qk, qk+1) = 0

for every three consecutive positions qk−1, qk, qk+1 of the mechan-
ical system. This equation thus defines an integration scheme which
computes qk+1 using the two previous positions qk and qk−1.

Simple Example Consider a continuous, typical Lagrangian of the
form L(q, q̇) = 1

2
q̇TMq̇−V (q) (V being a potential function) and

define the discrete Lagrangian L(qk, qk+1) = hL
(
qk+ 1

2
, (qk+1 −

qk)/h
)
, using the notation qk+ 1

2
:= (qk + qk+1)/2. The resulting

update equation is:

Mqk+1 − 2qk + qk−1

h2
= −1

2
(∇V (qk− 1

2
) +∇V (qk+ 1

2
)),

which is a discrete analog of Newton’s law Mq̈ = −∇V (q).
This example can be easily generalized by replacing qk+1/2 by
qk+α = (1 − α) qk + α qk+1 as the quadrature point used to ap-
proximate the discrete Lagrangian, leading to variants of the update
equation. For controlled (i.e., non conservative) systems, forces can
be added using a discrete version of Lagrange-d’Alembert principle
in a similar manner [Stern and Desbrun 2006].

2.2 Lie Group Integrators

Classical integrators, including the variational ones just described,
advance a numerical solution in time by adding to the current con-
figuration a displacement in RN.However, a number of systems have
more complicated configuration spaces: a simple example most rel-
evant to the remainder of this paper is that of rigid bodies, whose
configuration space is the Lie group SE(3), i.e., the group of Eu-
clidean transformations; a member of this group is traditionally rep-
resented by a vector (∈ R3) to encode translation and a rotation
matrix (∈SO(3)) to encode orientation. This group, along with el-
ements of its associated Lie algebra se(3) (which can be thought as
infinitesimal elements of SE(3), i.e., instantaneous screw motions)
and the exponential map, have already been proven useful in graph-
ics [Alexa 2002; Kaufman et al. 2005]. Similarly, Lie group time
integrators have been proposed in the mechanics literature to auto-
matically enforce that the updated poses remain within the proper
group without recourse to computationally-expensive reprojection
or constraints [Hairer et al. 2006].

More abstractly, Lie group integrators preserve motion invariants
and group structure for systems with a Lie group configuration
space G. Its associated Lie algebra g (respectively, Lie coalge-
bra g∗) is used to encode quantities such as generalized velocity
and acceleration (respectively, generalized momentum and force).
While a Lie group forms a smooth manifold, its associated algebras
are simpler vector spaces—this latter fact makes the integration of
velocity simple, even for curved configuration spaces. These spe-
cial integrators often express the updated configuration in terms of
a group difference map τ , i.e., a map that expresses changes in the
group in terms of elements in its Lie algebra. The well-known ex-
ponential map was the first such map proposed for integration pur-
poses in [Simo et al. 1992]. Retaining the Lie group structure and
motion invariants under discretization has, since then, been proven
to be not only a nice mathematical property, but also key to im-
proved numerics, as they capture the right dynamics (even in long-
time integration) and exhibit increased accuracy [Iserles et al. 2000;
Bou-Rabee and Marsden 2009].

Throughout this paper we will use a generic configuration manifold
Q = M × G where G is a Lie group (with Lie algebra g). In our



case of vehicle dynamics, G = SE(3) is typically the group of
rigid body motions of an articulated body while M is a space of
internal variables of the vehicles. Note that now, a vehicle’s state is
entirely defined by a point q ∈ Q, and its velocity q̇ ∈ TqQ (TqQ
being the tangent space ofQ at q). The idea of Lie group integrators
is to transform the equations of motion from the original state space
TQ into equations on the reduced space TM × g—elements of
TG are translated to the origin and expressed in the algebra g. This
reduced space being a linear space, standard integration methods
can then be used as mentioned earlier.

The inverse of the transformation τ is used
to map curves in the algebra back onto the
group. Two standard group difference maps
τ have been commonly used to achieve this
transformation for any Lie group G:

• The exponential map exp : g→ G, defined by exp(ξ) = γ(1),
with γ : R→ G is the integral curve through the identity of the
vector field associated with ξ ∈ g (hence, with γ̇(0) = ξ);

• Canonical coordinates of the second kind ccsk : g → G,
ccsk(ξ) = exp(ξ1e1) · exp(ξ2e2) · ... · exp(ξnen), where {ei}
is the Lie algebra basis.

A third choice for τ , valid only for certain matrix groups [Celledoni
and Owren 2003] (which include the rigid motion groups SO(3),
SE(2), and SE(3)), is the Cayley map:

cay : g→ G, cay(ξ) = (e− ξ/2)−1(e+ ξ/2).

Although this last map provides only an approximation to the in-
tegral curve defined by exp, we include it because it is very easy
to compute and thus results in a more efficient implementation.
Other approaches are also possible, e.g., using retraction and other
commutator-free methods; we will however limit our exposition to
the three aforementioned maps in the formulation of the discrete
reduced principle presented in the next section.

2.3 Notation

Table 1 summarizes variables used in the remainder of this paper,
along with their usual computational representation. Most of these
variables are typical quantities in rigid body simulation, with the
exception of r which encodes the shape variables (e.g., tire ori-
entation for a car), and u which encodes the control inputs (e.g.,
torque on a car’s steering wheel).

Symbol Physical Meaning Numerical Representation
x translational position vector ∈ R3

R orientation matrix matrix ∈ R3×3

v linear velocity vector ∈ R3

ω angular velocity vector ∈ R3

g configuration (x,R)
ξ velocity vector ∈ R6 (= (v, ω))
µ momentum vector ∈ R6

f external/control forces vector ∈ R6

r shape coordinates vector ∈ R# of shape variables

u control inputs vector ∈ R# of inputs

Table 1: Common physical variables used in this vehicle simulation paper.

3 Discrete Reduced Variational Principles
The discrete equations of motion for the vehicles we consider are
derived through a discrete reduced d’Alembert-Pontryagin varia-
tional principle, an extension of the Hamilton-Pontryagin principle
proposed for graphics in [Kharevych et al. 2006]. This principle
applies to systems with symmetries, holonomic and nonholonomic
constraints, as well as forcing. The holonomic version was intro-
duced in [Bou-Rabee and Marsden 2009] and extended to nonholo-
nomic systems with symmetries in [Kobilarov 2007]. The nonholo-

nomic integrators proposed in this latter reference apply to a gen-
eral class of systems that were studied in [Bloch et al. 1996; Koon
and Marsden 1997] and later in [Cendra et al. 2001b; Cendra et al.
2001a]. This section provide a formal, general treatment of these
discrete variational principles that we will use to derive our integra-
tors. Note that in practice, the Lie groups relevant to vehicles are
either SE(2) or SE(3); therefore, implementation-oriented read-
ers can safely skip the formal exposition in this section and refer
directly to the specific vehicle equations of motion in Sec. 4.

3.1 Holonomic Systems

Our discrete variational principle for holonomic systems fol-
lows [Bou-Rabee and Marsden 2009], with the addition of potential
functions and forcing (i.e., controls, external forces, and damping).
We consider systems that evolve on a finite dimensional Lie group
G whose state is described by configuration g ∈G and body-fixed
velocity ξ∈g, where g is the Lie algebra of G. The momentum of
the system is denoted µ ∈ g∗ where g∗ is the Lie coalgebra of G.
The system is subject to a body-fixed control force f : [0, T ]→ g∗.
In the discrete setting the continuous curves g(t), ξ(t), µ(t), f(t),
for t∈ [0, T ] are approximated by a discrete set of points at equally
spaced time intervals. For example, g :[0, T ]→G is given the tem-
poral discretization gd={g0, g1, . . . , gN} with gk :=g(kh), where
h=T/N is the time step.

Discrete Variational Principle The ingredients necessary to for-
mulate the principle are the Lagrangian ` : G × g → R and the
group difference map τ : g→ G. Similar to the example reviewed
in Sec. 2.1, we use a simple symplectic Euler scheme. For holo-
nomic vehicles on Lie groups the variational principle states that

δ

N−1∑
k=0

h
[
`(gk+α, ξk) +

〈
µk, τ

−1(g−1
k gk+1)/h− ξk

〉]
+

N−1∑
k=0

h〈fk+α, g−1
k+αδgk+α〉 = 0

(1)

where 〈., .〉 is the natural pairing (for implementation purposes, this
pairing will simply become a regular dot product since velocities
and momenta are numerically represented through vectors). This
principle can be regarded as the extremization of a discrete action
integral (as described in Sec. 2.1), to which we added a Lie group
update constraint (via the multiplier µk ∈ g∗), as well as the vir-
tual work done by external forces (expressed by the latter sum).
The update constraint states that the difference between two group
poses gk and gk+1 must be expressed using a Lie algebra element
ξk ∈ g, which also plays the role of the average body-fixed ve-
locity along that segment. The value α ∈ [0, 1] again determines
the quadrature point along each segment at which the Lagrangian
and the control forces are evaluated, i.e., gk+α = gkτ(αhξk) and
fk+α = (1 − α)fk + αfk+1. Typically, one picks α = 0, 1/2,
or 1; in general the resulting algorithms are implicit, with α= 1/2
yielding more accurate but more complex equations, while for cer-
tain simpler groups such as G = SE(2) choosing α= 1 provides
an explicit integrator.

Discrete Equations of Motion For the sake of simplicity, assume
the Lagrangian consists only of a kinetic energy term, `(g, ξ) =
〈I ξ, ξ〉, where I is the inertia tensor (including both mass and mo-
ments of inertia), and take α = 1. Applying the variations in (1)
directly results in the following equations

µk = I ξk, (2)
gk+1 = gkτ(hξk), (3)

(dτ−1
hξk

)∗µk − (dτ−1
−hξk−1

)∗µk−1 = hfk. (4)

Equation (2) means that the multiplier µk used to enforce the con-
straint in (1) can also be regarded as the momentum of the sys-
tem [Kharevych et al. 2006]. Equation (4) represents the balance



Figure 2: The discrete momentum equation (4) corresponds to a balance of
projected momenta. Indeed, for any group pose gk ∈ G, µk−1 and µk are
respectively the left-sided and right-sided momentum. In order to properly
take their difference, they must first be transformed using the tangent maps
to the same basis (one can think of this basis as being associated to point
gk). In this common basis, the difference between the two transformed vec-
tors represents the balance of momentum at gk . Consequently, it must equal
the external force hfk applied at that point.

of momentum. The map dτ ξ : g→ g is called the right-trivialized
tangent and is defined by

dτ ξ δ = (Dτ(ξ) · δ) τ(ξ)−1,

where D is the directional derivative along δ. More intuitively, the
derivative of the flow map τ at point τ(ξ) is taken in the direction
δ, and the resulting vector Dτ(ξ) · δ is translated by right multipli-
cation with τ(ξ)−1 to yield the Lie algebra element dτ ξ δ—which
can be thought of as the velocity expressed in a reference frame at-
tached at the group origin. The map dτ−1

ξ : g→ g is the inverse,
i.e. dτ−1

ξ ·dτ ξ δ = δ, and (dτ−1
ξ )∗ :g→g is the inverse transpose

defined by 〈(dτ−1
ξ )∗µ, δ〉 = 〈µ, dτ−1

ξ δ〉. In their general form
these maps operate on Lie algebra elements; but in our context, as
detailed in Sec. 4, they are easily implemented as matrices and the
transpose operator becomes the simple matrix transpose. By think-
ing of these linear maps as change-of-basis operators, the equations
of motion have a natural geometric interpretation sketched in Fig. 2.
In Sec. 4 we will provide the detailed form of Eqs.(2)-(4) when
G = SE(3), α = 1, and for both cases of τ = exp or τ = cay, as
these equations are especially well suited for animation purposes.

3.2 Nonholonomic Systems

In order to capture a wider variety of vehicle models we consider a
more general class of systems that have internal variables and are
subject to nonholonomic constraints. Such systems are defined on
a manifold Q = M × G, where M is the shape space. The group
component G describes the pose of the vehicle (e.g., position and
orientation for a car-like vehicle), just as in the holonomic case.
The shape space M describes internal variables (such as tire ori-
entation), and necessitates one additional ingredient known as the
connection. The connection describes how changes in shape affect
changes in the group, that is, it describes the nonholonomic con-
straints induced by internal variables. For example, the connection
might encode how the orientation of the front wheels and the rolling
of the rear wheels affect the overall motion of the car. It also de-
termines whether there is any continuing motion in the group when
the shape is not changing or locked (usually associated with sym-
metries and conservation laws).

Nonholonomic Constraints A nonholonomic constraint is de-
scribed by a distribution D which is a collection of linear sub-
spaces Dq ⊂ TqQ specifying the permissible velocities at each
point q ∈ Q. The group orbit of a point q ∈ G is the sub-
manifold Orb(q) := {gq | g ∈ G}, i.e., the set of points re-
sulting from applying transforming to q with respect to a global
basis fixed at the group origin. The tangent space Tq Orb(q) is

Ground truth Runge-Kutta 4 Lie Group integrator

Figure 3: Position (x), orientation (R), linear velocity (v) and angular
velocity (ω) versus time for a rigid body. While fourth-order Runge-Kutta
fails for a large time step, our approach (right) reproduces the ground-truth
orbits. This behavior is typical of structure-preserving integrators.

called the vertical space at q and represents the set of velocities
that leave the Lagrangian of the system invariant (i.e., the “sym-
metries” of the mechanical system mentioned earlier). The inter-
section space Sq⊂TqQ is then the subspace of tangent vectors that
satisfy the constraint while still preserving the Lagrangian, given by
Sq=Dq∩Tq Orb(q). Finally, define the vector space sq⊂TqQ/G
to be the set of Lie algebra elements that generate Sq . In other
words, curves in g with velocities in sq become curves in Dq when
translated to q. When deriving the equations of motion for nonholo-
nomic vehicles, this subspace of the Lie algebra is associated with
conserved quantities.

Dynamics We will express vehicle trajectories in coordinates
(r, g)∈M×G and use a basis ea for the Lie algebra g (hence an
element ξ ∈ g is written ξaea). Each system is subject to a control
force f : [0, T ] → T ∗M which we assume is restricted to shape
space. The Lagrangian ` :TrM×g→R is now a function of a ve-
locity vector ṙ ∈ TrM in the shape space as well as the body-fixed
velocity ξ∈g. For simplicity, we assume that the Lagrangian does
not depend on the group configuration g∈G; this is often the case
in practice since interaction with the environment is achieved di-
rectly through kinematic constraints rather than through a position-
dependent potential.

Nonholonomic constraints and symmetry directions are encoded
with a nonholonomic connection A. The connection is a map,
dependent on the shape coordinates r, that is linear in the veloci-
ties, leaves vertical vectors unchanged, and annihilates (i.e., maps
to zero) vectors that satisfy the constraints while not lying in the
symmetry directions, i.e. horizontal vectors. The connection is typ-
ically constructed as A = Akin +Asym, where Akin is the kine-
matic connection enforcing nonholonomic constraints andAsym is
the connection corresponding to symmetries in the constrained di-
rections (i.e., the group orbit directions satisfying the constraints).
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Figure 4: Stability and efficiency of our variational integrator for a rigid body: averaged over 20 runs using a wide range of initial conditions on a 4-minute
animation, our integrator shows much improved robustness in the presence of large timesteps over RK2, implicit RK2 (RK2i), and RK4 (dashes indicate blow-
ups), while its accuracy remains between 2nd and 4th order. Computational efficiency is similar to RKs for average time steps, but superior for small time steps
as the solver then requires a single iteration for convergence; Newmark (NWM) leads to larger errors in position, as well as in rotation for large time steps.

Figure 5: Stability and efficiency of our nonholonomic integrator for car trajectories: averaged over 50 runs using a large range of initial conditions and
steering commands for a one-minute long animation, our nonholonomic integrator remains as accurate as RK2, at a fraction of the computational complexity.

The connection thus satisfies:

g−1ġ +Akin(r) ṙ = 0,

Asym(r) ṙ = Ω,

where Ω ∈ sr, the “locked angular velocity” (i.e., the body veloc-
ity obtained by locking the joints r; see [Bloch et al. 1996]), is
computed from conservation laws along the constrained symmetry
directions in Sq . Adding the two equations yields:

g−1ġ +A(r)ṙ = Ω.

There are a number of systems for which such connection is known
explicitly; in Sec. 5 we give two concrete examples of wheeled ve-
hicles where this connection can be used directly.

Discrete Variational Principle The discrete reduced d’Alembert-
Pontryagin principle for nonholonomic systems is now defined as
(using the notation ξk :=Ωk−A(rk+α)·uk):

δ

N−1∑
k=0

h [`(rk+α, uk, ξk) + 〈pk, (rk+1 − rk)/h− uk〉

+〈µk, τ−1(g−1
k gk+1)/h− ξk〉

]
+

N−1∑
k=0

[h〈fk+α, δrk+α〉] = 0,

subject to:

vertical variations (δrk, g
−1
k δgk)=(0, ηk), ηk ∈ srk

horizontal variations (δrk, g
−1
k δgk)=(δrk,−A(rk)δrk), (5)

where pk ∈ T ∗M is a Lagrange multiplier. In the above formula-
tion, the variations δuk, δΩk, δpk, δµk are unconstrained. The gen-
eral nonholonomic integrator that results from this principle will be
provided in Sec. 5.

3.3 Numerical Tests and Comparisons

The discrete variational approach yields an update scheme differ-
ent from standard integration algorithms such as classical Runge-
Kutta. We simulated a holonomic and a nonholonomic system rep-

resentative of each class of vehicles in order to confirm the numer-
ical advantages of this scheme. While long-time energy and struc-
ture preservation are the main performance benchmarks in the dis-
crete mechanics literature [Marsden and West 2001; Cortés 2002;
Kharevych et al. 2006; Bou-Rabee and Marsden 2009], animation
quality also depends heavily on the pose error with respect to the
ground truth trajectory of the vehicle. Also important for computer
animation is the robustness of integrators when using large time
steps. The results discussed next are averaged over 20 different runs
with randomly chosen initial conditions and inertial properties.

Holonomic Rigid Body Our first test uses four-minute trajecto-
ries of a simple, free-floating rigid body in SE(3). Fig. 4 shows
the resulting pose error and computation time for our method along
with second and fourth order Runge-Kutta methods (RK2, im-
plicit RK2, and RK4 respectively) and Newmark as a function
of the total number of time steps. In order to avoid singularities
and costly switching of coordinate charts the RK methods were im-
plemented using quaternions to represent rotations and reprojection
(normalization of the quaternion) after each internal and external
RK step. A standard form of implicit RK2 was used (see, e.g.,
Sec.11.5 in [Dormand 1996]) to update the dynamics only while
the reconstruction was performed explicitly using quaternions. The
alternative of applying implicit RK2 to both the dynamics and re-
construction is not straightforward since it results in integration
of nonlinearly constrained ordinary differential equations and re-
quires a more complex approach. In order to implement Newmark’s
method for Lie groups we extended the Lie-Newmark method for
rotational dynamics proposed by [Krysl and Endres 2005] to gen-
eral Lie groups and applied it to the rigid body case. The graphs
confirm the superior stability of the variational integrator, which be-
haves well even for time steps whereRK methods blow up (dashed
lines indicate NaN values or do not fit in the plot). Improved stabil-
ity is likely due to the structure- and energy-preserving properties
of our integrators as evidenced by Fig. 3 which shows the velocity
and pose orbits of a particular run using a large time step. Ground
truth in this figure was computed by running RK4 with small time



steps and subsampling the resulting trajectory. Fig. 4 also confirms
that the improved behavior of the variational method does not come
at a high cost. In fact, while not quite as accurate due to our choice
of low-order quadrature, our method requires less computation time
than RK4 as the time-step gets smaller and is nearly twice as effi-
cient as RK4 on average. Interestingly, error accumulates faster in
translational components than in rotational components. This could
be explained by the fact that rotation is decoupled from translation
and hence has its own error dynamics, whereas translation suffers
from small cumulative errors in rotation. Finally, notice that the
extensions of Newmark and implicit RK2 schemes to Lie groups
suffer, respectively, from significant position errors (in case of New-
mark due to the different reconstruction equations) and lack of ro-
bustness in the presence of large time steps (in case of RK2 due
to difficulty in obtaining a good solution to the multiple implicit
quadratic equations necessary to update the dynamics), rendering
them both inadequate for graphics purposes.

Nonholonomic Car Our numerical comparisons for nonholo-
nomic motions use one-minute trajectories of a car with simple
dynamics (Sec. 5.2.1). The vehicle is controlled using sinusoidal
inputs of frequency and amplitude designed to produce nontrivial
paths such as parallel parking, sharp turns, and winding maneuvers.
Since the trajectory is relatively short the RK methods (Fig. 5) re-
main stable, due in part to the simpler group structure of SE(2).
Yet our integrator performs as well as RK2 at half the computa-
tional time due to its explicit update scheme.

4 Holonomic Vehicles

In this section we consider vehicles that can be modeled as a single
unconstrained underactuated rigid body. We allow the vehicle to
have actuated parts whose motion does not affect the inertial prop-
erties of the system such as rudders, fins, or thrusters. The configu-
ration space of the body isG = SE(3) and the space of joint angles
of the actuators isM . The dynamics of the system evolve onG only
and the joint angles γ ∈ M affect only the way control forces are
applied. Such systems can be studied using the variational principle
introduced in Sec. 3.1.

The vehicle body-fixed angular and linear velocities are denoted
ω ∈ R3 and v ∈ R3. The vector (ω, v) ∈ R6 corresponds to a
Lie algebra element ξ∈se(3) through

ξ =

[
ω̂ v
0 0

]
, (6)

where the map ·̂ : R3 → so(3) is defined by

ω̂ =

 0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0


The Lagrangian ` : R6 → R of such systems is given by

`(ω, v) =
1

2

(
ωT Jω + vT M v

)
where J and M are the rotational and translational inertia matri-
ces. The system is controlled using an input u : [0, T ]→U, where
U⊂Rc (c≤n) is the set of controls. The controls are applied with
respect to a body-fixed basis defined by the columns of the matrix
F : M → L(R6,Rc) that depend on the actuator angles γ ∈ M
(L(Rm,Rn) denoting a m-by-n real matrix). The total resulting
control force is F (γ)u. In addition, the vehicle can be subject to
external forces that depend on its current position and velocity de-
fined by fext : (SO(3) × R3)×R6 → R6. Such forces typically
include gravity, buoyancy, drag, lift, or effects from wind/currents.

4.1 Continuous Equations of Motion

The continuous equations of motion (encoding the evolution of the
position x, orientation R, and velocities ω and v) are derived from
the reduced Lagrange-d’Alembert principle [Marsden and Ratiu
1999; Bullo and Lewis 2004] and have the standard form:[

Ṙ
ẋ

]
=

[
R ω̂
R v

]
, (7)[

J ω̇
M v̇

]
=

[
Jω × ω + M v × v

M v × ω

]
+ F (γ)u+ fext. (8)

Eq. (8) are called the forced Euler-Poincaré equations and (7) are
known as the reconstruction equations.

4.2 Variational Integrator

The discrete equations of motion to update position (xk), orienta-
tion matrix (Rk), and velocities (ωk and vk) are derived through the
variational principle (1). Choosing α = 1 results in a symplectic
Euler variational integrator (see [Kobilarov 2007; Bou-Rabee and
Marsden 2009] for details) of the form:[
Rk+1 xk+1

0 1

]
=

[
Rk xk
0 1

] [
τ(hωk) hBτ (hωk)vk

0 1

]
, (9)

CTτ (h(ωk, vk))

[
Jωk
M vk

]
− CTτ (−h(ωk−1, vk−1))

[
Jωk−1

M vk−1

]
= hF (γk)uk + hfext((Rk, xk), (ωk−1, vk−1)),

(10)

for k = 1, ..., N − 1. In these expressions, the map τ can be ei-
ther the exponential map or the Cayley map (we denote by Ik the
identity matrix of dimension k):

exp(ω) =

{
I3, if ω = 0

I3 + sin ‖ω‖
‖ω‖ ω̂ + 1−cos ‖ω‖

‖ω‖2 ω̂2, if ω 6= 0
, (11)

cay(ω) = I3 +
4

4 + ‖ω‖2

(
ω̂ +

ω̂2

2

)
(12)

The associated map Bτ : R3 → L(R3,R3) is, depending on the
choice of τ , respectively:

Bexp(ω) =


I3, if ω = 0

I3 +
(

1−cos ‖ω‖
‖ω‖

)
ω̂
‖ω‖

+
(

1− sin ‖ω‖
‖ω‖

)
ω̂2

‖ω‖2
, if ω 6= 0

Bcay(ω) =
2

4 + ‖ω‖2 (2I3 + ω̂)

(13)

Finally, the map Cτ : R6→L(R6,R6) is, depending on the choice
of the group difference map τ :

Cexp((ω, v)) = I6 −
1

2
[ad(ω,v)] +

1

12
[ad(ω,v)]

2, or

Ccay((ω, v)) =

[
I3 − 1

2
ω̂ + 1

4
ωωT 03

− 1
2

(
I3 − 1

2
ω̂
)
v̂ I3 − 1

2
ω̂

]
,

(14)

where: [ad(ω,v)] =

[
ω̂ 03

v̂ ω̂

]
.

For computational efficiency, we recommend to ignore the
quadratic terms in these latter matrices, thus resulting in the map

CTLN((ω, v)) = I6 −
1

2
[ad(ω,v)],

which corresponds to the trapezoidal Lie-Newmark scheme [Bou-
Rabee and Marsden 2009]. This map can be substituted for either
Cexp or Ccay without losing the second-order accuracy of the dis-
crete Euler-Poincaré equations. The integrator update step is sum-
marized in Fig. 6 and described in pseudocode in Appendix A.



Given (Rk, xk, ωk−1, vk−1)
- pick τ = exp or τ = cay
- compute matrices Bτ and Cτ using (13)-(14)
- Solve (10) for (ωk, vk) using a Newton-type solver
- Update (Rk+1, xk+1) using (9)

Figure 6: Pseudocode of our holonomic integrator for an implicit step.

4.3 Examples of Holonomic Vehicles

4.3.1 Simple helicopter

Consider the following model of a helicopter depicted in Fig. 7. The
vehicle is modeled as a single underactuated rigid body on SE(3)
with massm and principal moments of rotational inertia J1, J2, J3.
The inertia tensors are J = diag(J1, J2, J3) and M = mI3. The
system is subject to external force due to gravity

fext((R, x), (ω, v)) = (0, 0, 0, RT (0, 0,−9.81m)).

The vehicle is controlled through a collective uc (lift produced by
the main rotor) and a yaw uψ (force produced by the rear rotor),
while the direction of the lift is controlled by tilting the main blades
forward or backward through a pitch γp and sideways through a roll
γr . The shape variables are thus γ = (γp, γr), and the controls are
u = (uc, uψ). The resulting control matrix becomes:

F (γ) =


dt sin γr 0

dt sin γp cos γr 0
0 dr

sin γp cos γr 0
− sin γr −1

cos γp cos γr 0


The discrete equations of motion are then obtained by substitut-
ing these specific expressions into the general integrator derived in
Sec. 4.2. Examples of motion generated by this integrator can be
found in Figs. 9 and 12.

4.3.2 Boat subject to external disturbances

Consider a simple boat modeled as a rigid body subject to gravity,
buoyancy, wind forces, and hydrodynamic forces from solid-fluid
interaction that typically include drag, waves, and currents. The
boat has inertia tensors J and M, and is controlled by two fixed
thrusters placed at the rear of the boat attached at positions cr ∈
R3 and cl ∈ R3 with respect to the body-fixed frame, producing
propelling forces ur and ul, respectively. The control input vector
is u = (ur, ul) and there are no shape variables (M = ∅), resulting
in the control matrix

F (γ) =

[
0 −c3r −c2r 1 0 0
0 −c3l c2l 1 0 0

]T
External forces acting on the boat of mass m can be modeled as

fext = 9.81

[
RT ((xs − x)× (0, 0,Πs))

RT (0, 0,−m+ Πs)

]
+

1

A

∑
i

[
ri × fh((R, x), (ω, v), ri)
fh((R, x), (ω, v), ri)

]
dAi, (15)

where the scalar Πs is the volume of the submerged part of the boat
(measured in liters) and xs ∈ R3 are the global coordinates of the

Figure 7: Helicopter and Snakeboard: (left) the helicopter model used in
our tests; (right) pose & shape space variables of the snakeboard.

Figure 8: Our vehicle integrator can easily be coupled with standard simu-
lation methods for other physical phenomena. Here a holonomic boat with
rear thrusters interacts with a turbulent free-surface flow.

volume centroid, ri ∈ R3 are the body-fixed coordinates of a point
centered at a surface patch with area dAi of the boundary of the
submerged part of the boat, and fh : (SO(3)×R3)×R6×R3→R3

is the hydrodynamic force that depends on the state of the vehicle
and the relative position of the patch. The summation provides a
boundary-element approximation of the continuous resulting force
from the water to the boat, where A =

∑
i dAi is the total sub-

merged surface area. A simple approximation of the hydrodynamic
force fh is:

fh((R, x), (ω, v), ri) = −E(ṙi −RT η(x+Rri))− Pni,

where ṙi = v+ω× ri is the velocity of the ith surface element, η :
R3 → R3 is the water fluid velocity expressed in the global frame,
E is a positive definite damping matrix, ni ∈ R3 is the outward-
pointing unit normal to the vessel surface at point ri (in body-fixed
coordinates), and the scalar P is a fixed magnitude of the normal
force (typically due to pressure) exerted by the water. Fig. 8 shows
an example of such a boat model coupled with a liquid animation
generated using the FLIP method [Zhu and Bridson 2005].

5 Nonholonomic Vehicles

We now consider a more general class of vehicles whose dynam-
ics are affected by changes in shape (such as cars) and are sub-
ject to nonholonomic constraints. Such systems were introduced
in Sec. 3.2. In this section we provide discrete equations of mo-
tion that can either be used to directly simulate vehicle trajecto-
ries, or can be applied as constraints in an optimal control problem.
For simplicity we discuss only the rigid motion groups SE(2) and
SE(3), though our algorithms are valid for any group G.

5.1 Nonholonomic Integrator

Discrete nonholonomic equations of motion are derived by apply-
ing the variational principle expressed in Eq. (5). This principle is
defined in terms of the variables ξ ∈ g and µ ∈ g∗ which are ele-
ments of the Lie algebra and its dual, respectively. These elements
can be represented simply as a vector in Rn and written in coordi-
nates as ξ = ξiEi and µ = µiE

i where {Ei} is any orthonormal
basis for the Lie algebra and {Ei} is the corresponding dual basis.
As a concrete example, an element ξ∈se(3) is encoded as a vector
(ω, v) ∈ R6, where ω and v are the angular and linear velocities,
respectively (see Eq. (6)).

With this setup, the resulting nonholonomic integrator resulting



Figure 9: Helicopter: in this animation generated with our integrator for
holonomic systems, a helicopter is manipulated through a joystick.

from the discrete variational principle in Eq. (5) is:
gk+1 = gk τ(h(Ωk −A(rk+α) · uk)),

rk+1 = rk + huk,

[e1(rk), ..., eb(rk)]T DEPτ (k) = 0,

∂`k+α
∂u

− ∂`k−1+α

∂u
− h

(
α
∂`k−1+α

∂r
+ (1− α)

∂`k+α
∂r

)
= [A(rk)]T DEPτ (k) + h (αfk−1+α + (1− α)fk+α) ,

(16)

for b = 1, ..., dim(sr), and k = 1, ..., N − 1. We have used the
notation `k+α := `(rk+α, uk, ξk) and the discrete Euler-Poincaré
operator (DEP):

DEPτ (k) := CTτ (hξk)µk − CTτ (−hξk−1)µk−1

− hfext(gk, ξk−1),
(17)

where ξk = Ωk−A(rk+α)·uk and µk =
∂`k+α
∂ξ

. The basis vectors
eb(r) are chosen so that span{eb(r)} = sr . Therefore, the matrix
[e1(rk), ..., eb(rk)] acts as a projection onto the subspace spanned
by all body-fixed velocity directions that leave the Lagrangian in-
variant and that satisfy the constraints. The definition of the map
Cτ depends on the group, and the most common case G = SE(3)
(which we stick to in this paper) was already explicitly given in
Eq. (14) for τ =exp and τ =cay. The function fext :G×Rn→Rn
defines any external forces acting on the body such as gravity or
friction while forces fk refer to controls applied to shape variables.

5.2 Examples with Nonholonomic Constraints

5.2.1 Car with simple dynamics

We study the kinematic car model defined in [Kelly and Murray
1995] with added simple dynamics. The configuration space is
Q=S1×S1×SE(2) with coordinates q = (ψ, σ, θ, x, y), where
(θ, x, y) are the orientation and position of the car, ψ is the rolling
angle of the rear wheels, and σ is defined by σ = tan(φ) where
φ is the steering angle. The car has mass m, rear wheel inertia I ,
rotational inertia K, and we assume that the steering inertia is neg-
ligible. The car is controlled by rear wheels torque fψ and steering
velocity uσ . The Lagrangian is then expressed as:

L(q, q̇) =
1

2

(
Iψ̇2 +Kθ̇2 +m(ẋ2 + ẏ2)

)
,

and the constraints (see [Kelly and Murray 1995]) are
cos θdx+ sin θdy = ρdψ,

− sin θdx+ cos θdy = 0,

dθ =
ρ

l
σdψ,

where l is the distance between front and rear wheel axles, and ρ is
the radius of the wheels. These constraints simply encode the fact
that the car must turn in the direction in which the front wheels are
pointing, that the car cannot slide sideways, and that the change in
orientation is proportional to the steering angle and turning rate of
the wheels, respectively.

Note now that the Lagrangian and constraints are invariant to rota-
tion and translation of the orientation and position of the car. The
reduced Lagrangian can be expressed as

`(r, u, ξ) =
1

2

uT [ I 0
0 0

]
u+ ξT

 K 0 0
0 m 0
0 0 m

 ξ
,

where we defined u = (uψ, uσ), ξ = −A(r) · u, and where the
shape coordinates are denoted by r = (ψ, σ). For this car model,
the matrix representation of the connection A dependent on r is:

[A(r)] =

− ρl σ 0
−ρ 0
0 0

 (18)

Car Integrator The discrete equations of motion are derived by
substituting the Lagrangian and the connection of the steered car
into (5). If we pick τ = exp, the equations of motion in Eq. (16)
simplify to:

gk+1 = gk exp(−hA(rk+α) · uk),

rk+1 = rk + huk,

∂`k+α
∂u

− ∂`k−1+α

∂u

= A(rk)T (µk − µk−1) + h (αfk−1+α + (1− α)fk+α) ,

for k = 1, ..., N − 1. The exponential map exp for G = SE(2)
are given in Appendix B. After substituting the Lagrangian and the
body-fixed velocity ξ, one can explicitly write the update equations
of the configuration variables as follows:

xk+1 − xk =

{ vk
ωk

(sin(θk + hωk)− sin θk) if ω 6= 0;

cos θkhvk if ω = 0.

yk+1 − yk =

{ vk
ωk

(− cos(θk + hωk) + cos θk) if ω 6= 0;

sin θkhvk if ω = 0.

θk+1 = θk + hωk,

σk+1 = σk + huσk ,

(I + ρ2m)(uψk − u
ψ
k−1) +

ρ2K

l2
σk(σk+αu

ψ
k − σk−1+αu

ψ
k−1)

= h
(
αfψk−1+α + (1− α)fψk+α

)
,

where we defined vk = ρuψk , and ωk = (ρ/l)σk+αu
ψ
k . The inte-

grator is easily implemented as it is fully explicit for any quadrature
choice (i.e., for any α ∈ [0, 1]).

5.2.2 The snakeboard

The snakeboard is a wheeled board closely resembling the popu-
lar skateboard with the main difference that both the front and the
rear wheels can be steered independently. This feature causes an in-
teresting interplay between momentum conservation and nonholo-
nomic constraints: the rider is able to build up velocity without
pushing off the ground by transferring the momentum generated by
a twist of the torso into motion of the board coupled with steering of
the wheels through pivoting of the feet. When the steering wheels
stop turning, the systems moves along a circular arc and the mo-
mentum around the center of this rotation is conserved. A robotic
version of the snakeboard also exists, equipped with a momentum-
generating rotor and steering servos [Ostrowski 1996].

The shape space variables of the snakeboard are r=(ψ,φ)∈S1×S1

denoting the rotor angle and the steering wheels angle, while its



configuration is defined by (θ, x, y)∈ SE(2) denoting orientation
and position of the board (see Fig. 7(right)), leading to a configura-
tion space Q=S1×S1×SE(2). Additional parameters are its mass
m, the distance l from its center to the wheels, and the moments
of inertia I and J of the board and the steering. The kinematic
constraints of the snakeboard are:

− l cosφdθ − sin(θ + φ)dx+ cos(θ + φ)dy = 0,

l cosφdθ − sin(θ − φ)dx+ cos(θ − φ)dy = 0,

reflecting the fact that the system must move in the direction in
which the wheels are pointing and spinning. The constraint distri-
bution is spanned by three covectors:

Dq = span

{
∂

∂ψ
,
∂

∂φ
, c
∂

∂θ
+ a

∂

∂x
+ b

∂

∂y

}
,

where a = −2l cos θ cos2 φ, b = −2l sin θ cos2 φ, c = sin 2φ.
The group directions defining the vertical space are:

Vq = span

{
∂

∂θ
,
∂

∂x
,
∂

∂y

}
;

therefore, the constrained symmetry space is expressed as:

Sq = Vq ∩ Dq = span

{
c
∂

∂θ
+ a

∂

∂x
+ b

∂

∂y

}
. (19)

Since Dq =Sq⊕Hq, we have Hq = span
{

∂
∂ψ
, ∂
∂φ

}
. Finally, the

Lagrangian of the system is L(q, q̇) = 1
2
q̇TMq̇ where:

M =


I 0 I 0 0
0 2J 0 0 0
I 0 ml2 0 0
0 0 0 m 0
0 0 0 0 m

.
Consequently, the reduced Lagrangian is expressed as: `(r, u, ξ) =
(u, ξ)TM(u, ξ). There is only one direction along which snake-
board motions lead to momentum conservation: it is defined by
the basis vector:

e1(r) = 2l cos2 φ

 tanφ
l
−1
0

,
and, thus, there is only one momentum variable µ1 =

〈
∂`
∂ξ
, e1(r)

〉
.

Using this variable we can derive the connection according to [Os-
trowski 1996; Bloch et al. 1996] as:

[A(r)] =

 I
ml2

sin2 φ 0
− I

2ml
sin 2φ 0

0 0

, and Ω =
1

4ml2 cos2 φ
µ.

Snakeboard Integrator The discrete equations of motion are de-
rived by substituting the particular expression of the Lagrangian
and the connection for the snakeboard directly into (5). Selecting
τ = exp simplifies the equations to:

gk+1 = gk exp(h(Ωk −A(rk+α) · uk)),

rk+1 = rk + huk,

e1(rk)T (µk − µk−1) = 0,

∂`k+α
∂u

− ∂`k−1+α

∂u
= h (αfk−1+α + (1− α)fk+α) ,

for k = 1, ..., N−1. Setting ξ = (ξ1, ξ2, 0) computed from ξk =

Ωk−A(rk+α)·uk (with uk=(uψk , u
φ
k)), the final discrete equations

of motion are obtained by substituting:

µ = (ml2ξ1 + Iuφ,mξ2, 0),
∂`

∂u
= (I(uψ + ξ1), 2Juφ),

leading to an explicit update for the next state. Fig. 1 shows this
integrator in action, where the rider first twists his hip to create
momentum, then rotates its feet.

6 Optimal Control of Vehicles
Control is an important aspect of computer animation. This is par-
ticularly true of vehicle animation: when the vehicle dynamics is
complex and underactuated, desirable trajectories might be very
difficult to generate by directly applying inputs. A common ap-
proach to avoid this delicate tweaking of control inputs is to perform
interpolation of keyframes created by the designer or through cap-
turing the joystick movements generated by expert pilots. An alter-
native approach, called optimal control, is to let the computer pick
an optimal set of inputs to achieve a particular motion (see [Popović
et al. 2000]—or [Grzeszczuk et al. 1998] for an example of neu-
ral network based control). We sketch how to use the integrators
we developed to devise a method for automatic generation of nat-
ural vehicle motions based on numerical optimization of trajecto-
ries that satisfy vehicle dynamics and minimize a user-defined cost
function. Our integrators offer a particularly robust and efficient
framework for optimal control as they are coordinate-free and use
a minimum state dimension discretization, thus avoiding issues of
chart-switching and singularities.

Figure 10: Controlling cars and boats: (left) optimal navigation and station
keeping subject to wind forces (shown as arrows along the path). The boat
starts with zero velocity and must arrive at the designated position with
zero velocity (docking); (right) a car travels through a tunnel, and avoids
obstacles on its way, with the least amount of steering.

Formulation and Implementation In this section, we provide a
direct optimal control formulation that results in a constrained op-
timization problem of minimizing a chosen cost function subject to
the dynamics of a vehicle. Depending on the scenario that the user
wishes to achieve, typical cost functions include minimum control
effort, minimum time, minimum distance, or safest travel (achieved
by augmenting the cost function with a repulsive potential from
hazards along the path). Additional constraints such as joint limits
and obstacle avoidance can be imposed in the form of inequalities
or as penalizing terms in the cost function.

We follow the Discrete Mechanics and Optimal Control (DMOC)
approach introduced in [Junge et al. 2005], where the dynamics is
implemented using the integrators introduced above, i.e., the tra-
jectory of a vehicle is optimized subject to a discrete variational

Minimize Cost Function
subject to

initial and final poses and velocities,
and: // for each pose along the path
for each k = 1 to N do

- dynamics: eqs. (9)-(10) or eqs. (16)
- pose and velocity bounds
- shape variable bounds, e.g. joint limits
- additional constraints on k-th state

Figure 11: Pseudocode of the nonlinear optimization performed for vehicle
control: a cost function is minimized under the constraint that each pose
along the resulting path satisfies the update equations of our integrator.



principle such as (1) and (5). The overall optimization procedure
is described in Fig. 11; we refer the reader to [Junge et al. 2005]
for further details regarding the optimization setup. The resulting
formulation can be solved using a standard constrained optimiza-
tion technique such as sequential quadratic programming (SQP).
Examples in this section were implemented using the SNOPT pack-
age [Gill et al. 2002] since it supports sparse constraint Jacobians
which are needed for efficiency. We successfully tested optimal
control of all the vehicles presented above: we were able to get a
helicopter across a digital canyon while minimizing control effort
(see Figs. 12, 9), get a boat to make a docking maneuver automati-
cally, and control a car among obstacles (see Fig. 10).

7 Conclusion

We presented a new framework for designing Lie group integrators
for a wide assortment of holonomic and non-holonomic vehicles,
including cars, boats, snakeboards and helicopters, and discussed
how one might design and implement integrators for additional ve-
hicles. We demonstrated that Lie group integrators respect struc-
ture and are particularly robust for large time steps, while retaining
(sometimes even improving) the efficiency of Runge-Kutta meth-
ods. We also showed how these integrators can be applied to opti-
mal control, quickly producing trajectories that fit users’ constraints
and can later be edited to their liking. In the future we plan to de-
velop hierarchical solvers for optimal control in order to accelerate
convergence as well as to offer level-of-detail control of the gener-
ated motion.
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Appendix

A Pseudocode

In this first appendix, we provide pseudocode (Matlab-style) of our
time integrators for unconstrained systems (HolInt) and nonholo-
nomic systems (NonhInt). Both integrators are defined for systems
for which the vehicle pose is described by G = SE(3). In their
general form the integrators are implicit and an update is performed
by solving the dynamics equations Unconstr Dyn and Nonh Dyn,
respectively. However, these updates can be made explicit for cer-
tain systems such as the car and the snakeboard as we presented
in 5.2. Moreover, we systematically use the update map τ = cay
and the operator CTLN in this pseudocode. Control forces in the un-
constrained case are computed using a matrix function F. External
forces are computed using function fext. Finally, the nonholonomic
integrator code assumes the existence of a matrix function A (the
connection) as well as a symbolic expression for the vector RDEL
as defined in function Nonh Dyn as we discussed in Sec. 3.2.

Function [ξk, gk+1] = HolInt(ξk−1, gk)
% mass matrix

I =

[
J 0
0 M

]
% initial guess (e.g. Euler step)
ξk = ξk−1 + h · inv(I) · (se3 ad (h · ξk)t · I ·ξk−1

+ fext(ξk−1, gk) + F(γk)uk)
% implicit dynamics solve (e.g. Newton’s method)
ξk = fsolve(Unconstr Dyn, ξk, ξk−1, gk)
% explicit pose update
gk+1 = gk · se3 cay(hξk)

Function [uk,Ωk, rk+1, gk+1]=NholInt(uk−1,Ωk−1, rk, gk)
% initial guess (e.g. Euler step)

uk = uk−1 + h (αfk−1+α + (1− α)fk+α)
Ωk = Ωk−1

% implicit dynamics solve (e.g. Newton’s method)
[uk,Ωk] = fsolve(Nonh Dyn, uk,Ωk, uk−1,Ωk−1, rk, gk)
ξk = Ωk −A(rk + h · α · uk) · uk
% explicit pose update
rk+1 = rk + h · uk
gk+1 = gk · se3 cay(hξk)

Function f = Unconstr Dyn(ξk, ξk−1, gk)
f = se3 DEP(ξk, ξk−1, gk)− hF(γk)uk

Function f = Nonh Dyn(uk,Ωk, uk−1,Ωk−1, rk, gk)
ξk−1 = Ωk−1 −A(rk − h · (1− α) · uk−1) · uk−1

ξk = Ωk −A(rk + h · α · uk) · uk
DEP = se3 DEP(ξk, ξk−1, gk)

RDEL=
∂`k+α
∂u
−∂`k−1+α

∂u
−h
(
α
∂`k−1+α

∂r
+(1− α)

∂`k+α
∂r

)
f=

[
[e1(rk), ..., eb(rk)]t ·DEP;

RDEL−[A(rk)]t ·DEP−h (αfk−1+α + (1− α)fk+α)
]

Function f = se3 DEP(ξk, ξk−1, gk)
f = se3 CTLN(h · ξk)t · I ·ξk
− se3 CTLN(−h · ξk−1)t · I ·ξk−1 − h · fext(gk, ξk−1)

Function f = so3 cay(ω)
ω̂ = so3 ad(ω)
f = eye(3) + 4/(4 + norm(ω)2) · (ω̂ + ω̂ · ω̂/2)

Function f = se3 cay(ξ)
ω = ξ(1 : 3)
v = ξ(4 : 6)
B = 2/(4 + norm(hω)2) · (2 · eye(3) + so3 ad(hω))

f =

[
so3 cay(hω) hB · v

0 1

]
Function f = se3 CTLN (ξ)
f = eye(6)−0.5 · se3 ad (ξ)

Function f = se3 ad(ξ)
ω = ξ(1 : 3)
v = ξ(4 : 6)

f =

[
so3 ad(ω) zeros(3)
so3 ad(v) so3 ad(ω)

]
Function f = so3 ad(ω)

f =

 0 −ω(3) ω(2)
ω(3) 0 −ω(1)
−ω(2) ω(1) 0


B Group Difference Maps on SE(2)

The coordinates of SE(2) are (θ, x, y) with matrix representation
g ∈ SE(2) given by:

g =

 cos θ − sin θ x
sin θ cos θ y

0 0 1

 . (20)

Using the isomorphic map ·̂ : R3 → se(2) given by:

v̂ =

 0 −v1 v2

v1 0 v3

0 0 0

 for v =

v1

v2

v3

 ∈ R3,

{ê1, ê2, ê3} can be used as a basis for se(2), where {e1, e2, e3} is
the standard basis of R3.



Figure 12: Optimized trajectories of a helicopter flying through in a complex canyon (left), and automatically landing on the mark (right).

The two maps τ : se(2)→ SE(2) are given by

exp(v)=



 cos v1 − sin v1 v2 sin v1−v3(1−cos v1)

v1

sin v1 cos v1 v2(1−cos v1)+v3 sin v1

v1

0 0 1

 if v1 6= 0

 1 0 v2

0 1 v3

0 0 1

 if v1 = 0

cay(v)=

 1
4+(v1)2

[
(v1)2− 4 −4v1 −2v1v3 + 4v2

4v1 (v1)2− 4 2v1v2 + 4v3

]
0 0 1


The maps Cτ can be expressed as the 3× 3 matrices:

Cexp(v) = I3 −
1

2
[adv] +

1

12
[adv]2, (21)

Ccay(v) = I3 −
1

2
[adv] +

1

4

[
v1 · v 03×2

]
, (22)

where:

[adv] =

 0 0 0
v3 0 −v1

−v2 v1 0

 .
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