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Abstract. The Laplace-Beltrami operator A plays a central role in geometric algorithms on curved do-
mains. The so-called cotangent formula provides a convenient approximation of the Laplace-Beltrami operator
for 2-dimensional triangulated surfaces. This note extends the cotangent formula to the n-dimensional case.
In particular, we give an expression for the gradient of the volume of an n-dimensional simplex in terms of
the volumes of its faces and the cotangents of its dihedral angles, which in turn provides an n-dimensional
discrete Laplace operator. As an important special case we give a convenient expression for tetrahedral
meshes (n = 3).

1 Introduction

To motivate the cotangent formula, consider solving the Poisson equation
Au=f

on a curved surface (M, g). Here f : M — R is a source term, u : M — R is an unknown function, and A is
the Laplace-Beltrami operator associated with M—or more simply, just the Laplacian. A common way to
approximate the solution is to replace M by a triangulation K with vertices V and edges E, and solve the
matrix equation

Lu = Mf.

Here u,f € RIV| encode the two functions, and M, L € RIV!*IVI are known as the mass matrix

and stiffness matrix, respectively. There are many possible choices for these two matrices,

and significant work has gone into developing discretizations that yield an accurate solution.

In practice, a very simple discretization can actually work quite well—especially on fine

triangulations with “nice” elements (e.g., those that satisfy the so-called Delaunay condition). L >
For instance, a reasonable choice for the mass matrix M is a diagonal matrix where M;;

equals one-third the area of all incident triangles. A standard choice for the stiffness matrix i

L is to use the 2-dimensional cotangent formula

(Lu); := %Z(Cotzxij + Cot/%l-]-)(u]- —uj).
ij

In other words: the Laplacian of the function u at vertex i is obtained by summing up the difference across
all edges ij incident on i, weighted by the sum of the cotangents of the two interior angles a;;, 8;; opposite ij.

The cotangent formula can be derived in many different ways, and has been re-discovered many times
over the years. The earliest known reference is MacNeal [1949, Section 3.2], where the formula is used to
determine resistances in an electrical network whose voltages approximate the solution to a Laplace equation.
Despite the age of this reference, it provides a rather clear description of the cotangent formula—including
boundary conditions that are not described even by much later references. A footnote on page 68 credits Dr.



Stanley Frankel for the actual cotan construction, suggesting that the formula was likely known even prior
to MacNeal’s thesis. (Courant and others also discuss the use of triangulations to solve partial differential
equations [Courant, 1943], but never appear to give the cotangent formula itself.) Duffin [1959] revisits the
cotangent formula in the context of electrical networks, making again an explicit connection to the Dirichlet
problem. Pinkall and Polthier [1993] apply the formula to the construction of discrete minimal surfaces,
i.e., “soap films” interpolating a given boundary curve; Desbrun et al. [1999] derive the formula in the
context of discrete mean curvature flow; it also shows up in discrete exterior calculus [Desbrun et al., 2008] as a
discretization of the Hodge star operator on differential 1-forms. Meyer et al. [2003] discuss 3-manifolds
embedded in n dimensions, but omits a critical length term. Chao et al. [2010] and Jacobson [2013] give the
correct 3-dimensional formula in the context of elasticity and function interpolation, respectively. Given
the long history of the cotangent formula, it is quite possible that the n-dimensional version given here also
appears somewhere in the literature—though it is difficult to track down such a formula in a concise and
easily-implementable form. Formulas derived via linear finite element theory are typically expressed via the
Jacobian of a mapping to some reference element; generic formulas provided via discrete exterior calculus
are given abstractly in terms of primal-dual volume ratios, which must still somehow be evaluated.

In this note we take the following approach to obtain an n-dimensional cotangent formula. The first order
variation of the volume of an immersed n-dimensional hypersurface f : M — R"*! is equal to the mean
curvature H = x; + - - - + k,, times the surface normal N (where «; are the principal curvatures). We also
have (in any dimension) the relationship Af = HN. Therefore, we can use the discrete volume variation to
obtain a “mimetic” expression for the discrete Laplacian, in the sense of discrete differential geometry [Crane
and Wardetzky, 2017]. We first derive an expression for the gradient of the volume of a single n-simplex;
the cotangent formula for the discrete Laplace-Beltrami operator is then obtained by summing these values
over appropriate simplices. Although the calculation is extrinsic, the resulting formula is valid in the purely
intrinsic setting (e.g., when one has edge lengths but not vertex coordinates).

2 Volume gradient

2.1 3-dimensional case

We first consider the 3-dimensional case, since the argument easily generalizes to n dimensions (whereas
the 2-dimensional argument is a bit too elementary to illustrate the general idea). Consider a tetrahedron
ijkl with vertex coordinates f;, f;, fx, fi in Euclidean 3-space E3. Then the volume of the tetrahedron can be
expressed as

1
V=-Ah
3 7



where A is the area of any base triangle—say, jkl—and h is the corresponding height, i.e., the length of the
altitude passing through i. Since moving i parallel to the base does not change the volume, and a motion
along the altitude changes only the height, the gradient with respect to the position of vertex i is given by

1

where N is the inward unit normal at the base. If p is the foot of the altitude through i, then we can express
this normal as

N= (i fy)

The foot splits the base into three smaller triangles—letting U;, Uy, and U, be the areas of triangles pkl,
plj, and pjk, respectively, we can express the location of p in barycentric coordinates

U; U u
_ Y k I
fr= ij"’jfk‘szl-

Noting that A = U; + Uy + U, we then get

3Vf,~v = A(fz’ —fp)
(Uj+ U+ Uy) fi — U f; — Ui fr — U f1)
= FR-H+EE—f)+5Si-f).

All that remains is to evaluate the ratio of the small triangle areas to the height h. Consider for instance
triangle pkl, and let g be the foot of the altitude through p. The area of this triangle can be expressed as

1
U= 5£kl|fp — fal,

where (i = |f; — fi| is the length of edge kI (i.e., just one half base times height). Then since |f, — f;| and
h = |fi — fp| are the legs of a right triangle, we get

U 1, Ifp—fal _ 1

7] = Eﬂlk% = 5l cot O,
where 0y, is the interior dihedral angle at edge kI. Repeating this calculation for the other two triangles we
obtain a cotangent formula for the volume gradient of a tetrahedron:

|
[l S|
—

Ny

VﬁV = % (gkl COtQk[(fl‘ - f]) + él] COtgl]'(fl‘ - fk) + g]k COtg]‘k(fi — f])) .




2.2 n-dimensional case

The argument in the n-dimensional case is essentially identical, only the notation becomes more annoying.
In particular, consider an n-simplex ¢ with vertices

fo,. . .,fn € E".
Its volume can be expressed as
1
V = —~Voho,
n

where V) denotes the volume of the n — 1 simplex 0y C ¢ which omits vertex, and /iy denotes the height of
the corresponding altitude. The gradient with respect to fj is then

1
ViV = . VoNo,
where N is the inward unit normal of ¢y. The foot p of the altitude splits oy into n simplices, each of degree

n — 1; we will use U, to denote the volume of the n — 1 simplex that omits vertices 0 and r, but contains the
foot p and all other vertices of o. The location of p can be expressed in barycentric coordinates as

fp = Z *fr
r=1 VO
Noting that
n
VO - Z urr
r=1

we can write the volume gradient as

WV = Wi f)
= E(CLUfi-TL Uf)
= T - ).

The volume U, can be expressed as

1
Vo,

_ LT
(n—1) fo—1a .
where Vp, is the volume of the (1 — 1)-simplex that omits 0 and  but contains all other vertices of ¢, and f;
is the location of the foot of this volume relative to the altitude passing through p. Just as in the tetrahedral
case, then, the numerator |f, — f7| and denominator hy = |f; — f,| are legs of a right triangle, and we get

u 1 - f; 1
- = VO,r |fP fq| = Vo,r cot 90,7/

h  (n—1) ho (n—1)

where 0, is the dihedral angle found at the face of ¢ that omits vertices 0 and r. All together, then, we have

1

vaV - m rzzl VO,T cot 90[7 (f[) - fy) (1)

In other words, to get the volume gradient of a simplex ¢ with respect to the position of any vertex i, we
take a weighted sum of edge vectors ij, where the weight is equal to the dihedral angle at the simplex ¢ ;
complementary to ij in o, times the volume of 0; ; (along with the leading coefficient, which accounts for
dimension). One can check that the units work out properly: the change in volume with respect to a linear
motion should have units of length” !, the volume of the complementary simplex has units of length” 2,
the difference of vertex positions has units of length, and the dihedral angle is unitless.



One can also verify that this construction agrees with the 3-dimensional case: here, the volume Vj,
corresponds to the length of the edge opposite 0r, and ) , is the dihedral angle of that edge. Likewise, in the
2-dimensional case the volume V}y, is the volume of the 0-simplex obtained by omitting two of the triangle
vertices; by convention, the volume of every 0-simplex is 1 and we are left with just the angle times the
difference of f values, i.e., the ordinary cotangent formula. In the 1-dimensional case the complementary
simplex is the empty set. Though it is possible to give an interpretation to Eqn. 1 in this case, it is perhaps
simpler to just note that the gradient of the length /;; of a segment ij with respect to the position of one of its
vertices is a unit vector parallel to the segment:

1
Vilij = Z‘j(fi - fj)-

In this case, the “cotan” weight is just the reciprocal of the edge length.

3 Discrete Laplace operator

To obtain a discrete Laplace operator at any vertex i, we can sum up the area gradients (with respect to f;)
of all n-simplices containing i. This sum gives us an expression for (Lf);, and by substituting the vertex
coordinates f for a generic function u, we get a general expression for the Laplace operator. This operator
will be a weighted graph Laplacian on the 1-skeleton of the triangulation (i.e., the graph of edges). More
explicitly, for an n-dimensional triangulation with vertices |V| and edges |E|, the discrete Laplacian is a
matrix L € RIV*IV| with non-zero entries

Li,j = —wi]-

for each edge ij, where w;; is an edge weight defined below, and
Lii=—) L
ij

for each vertexi € V.

In the 3-dimensional case the weight w;; associated with any edge ij is given by

1 i
w;i ==Y 4 cotd?,
ij 6% kl kI




where the sum is taken over all tetrahedra ijkl containing edge ij, ¢; is the length of edge kI and 9;31 is the
(interior) dihedral angle at edge ij of tetrahedron ijkl.

In the n-dimensional case the edge weights are given by

1
wij = TOEE) @Zij Vs, cotbs, ,
where the sum is taken over all n-simplices ¢ containing edge ij, 7; ; is the (n — 2)-simplex obtained by
removing vertices i and j from ¢, Vg, . is the volume of this simplex, and 0, ; is the dihedral angle found at
this simplex. (Note that for an n-simplex, dihedral angles are made by two faces of degree (n — 1), which
always meet along some (1 — 2)-simplex.) The volume V of any n-simplex ¢ with vertices fo, ..., f, € E"
can be computed via

1
V= det(fi—fo,.-o, fu = fo),
though in practice there may be more stable numerical algorithms.

Finally, the 1-dimensional edge weights are just the reciprocal edge lengths:

3.1 Properties of the n-dimensional cotan Laplacian

As discussed by Wardetzky et al. [2007], not all properties of the smooth Laplace-Beltrami operator A
immediately carry over to the discrete Laplacian L. The n-dimensional cotan Laplacian exhibits all the same
properties as the 2-dimensional version: it is symmetric, has constant vectors in its null space (since, by
construction, all rows sum to zero), exhibits linear precision (owing to the fact that the volume variation of
an interior vertex is zero), and is positive semidefinite. For n = 1 the edge weights are always positive; for
n = 2, the edge weights w;; are positive if and only if the triangulation is Delaunay [Bobenko and Springborn,
2007]. For n > 3 positivity of edge weights is less clear—for instance, if all dihedral angles 6 are acute, then
all angle cotans (and hence edge weights) will be positive. However, acuteness is unnecessarily restrictive,
especially given that acute triangulations are difficult to obtain in practice Zamfirescu [2013], and may not
even exist in higher dimensions Kopczyriski et al. [2012].

The full matrix L corresponds to a Laplace operator with zero-Neumann boundary conditions; removing
the boundary rows/columns yields a discrete Laplace operator with zero-Dirichlet boundary conditions.

3.2 Mass matrices

As noted in Sec. 1, solving, .., a discrete Poisson equation involves not only the stiffness matrix L, but also a
mass matrix M. A simple choice in the n-dimensional case is the diagonal matrix M € RIVI*IV| with entries

1
ZVV/

M":
! 7’1—0—10914

where the sum is taken over all n-simplices ¢ containing vertex i, and V;; denotes the volume of ¢. The factor
1/(n + 1) accounts for the fact that the volume of each n-simplex is evenly shared by its n + 1 vertices. This
mass matrix is simple to implement and always has positive entries, but is not particularly accurate; Mullen
et al. [2011] discuss several possible alternatives.
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