
Designing extensible, domain-specific
languages for mathematical diagrams

Katherine Ye Keenan Crane Jonathan Aldrich Joshua Sunshine
Carnegie Mellon University

{kqy, kmcrane, jonathan.aldrich, sunshine}@cs.cmu.edu

1. Motivation for the PENROSE system
In science, a well-chosen illustration can turn bafflement into
enlightenment. Yet technical exposition remains largely tex-
tual, due to the tremendous expertise required to produce
high-quality figures. For example, of the fifty newest mathe-
matical papers submitted to arXiv at the time of this writing,
only one-third of them had figures.

To illustrate books and talks, professionals often turn to
a diagram language that integrates with TEX. However, lan-
guages such as TikZ and Asymptote require manipulating
graphical primitives at a low level, often by specifying coor-
dinates, styles, and labels of objects. The alternative, using
GUI-based software, requires a painfully manual workflow.
To draw a simple torus mesh with shading and a normal vec-
tor, illustrators must build a 3D model, hand-trace it in vector
graphics software, and hand-shade and label it. They must
redo that process for even substantially similar diagrams.

For the domain of mathematical diagrams, a high-level,
declarative language already exists to describe what users
desire to illustrate: the language of mathematical notation.
Users ought to be able to create and manipulate their dia-
grams at this level. Thus, we propose to create PENROSE,1 a
system to automatically generate professional-quality math-
ematical illustrations from high-level, purely semantic de-
scriptions of mathematical objects. (Our team possesses do-
main expertise, as one of the authors is an expert in illus-
trating mathematics.) Unlike low-level tools such as Adobe
Illustrator, where diagrams are specified via graphical primi-
tives, a mathematically-inclined user should not require any
graphic design skill to create beautiful diagrams.

PENROSE comprises two extensible domain-specific lan-
guages (DSLs): SUBSTANCE, which diagrammers use to
specify mathematical objects and relationships, and STYLE,
which implementers use to encode various ways of realizing
these relationships visually, akin to the separation of content
and style in modern HTML/CSS. To compile diagrams, we
are developing a sophisticated constraint solver incorporat-
ing techniques from optimization and computer graphics.

1 ...after Sir Roger Penrose, who, in addition to possessing a euphonious
name, is known for his Escher-inspired illustrations of impossible objects.

Set A, B, C
Point p
p 2 A \ B \ C

Figure 1. A SUBSTANCE program specifying that a point
lies in the intersection of three sets, and two algorithmically-
generated PENROSE visualizations of this program.

2. Three examples
Set theory. In Figure 1, we give a SUBSTANCE program in
a “sub-DSL” for set theory. This program mimics the declar-
ative notation that would appear in a textbook. How should
PENROSE illustrate it? One approach is to view the program
as a system of constraints. The system samples primitives
until they satisfy these constraints, then picks good final dia-
grams by minimizing an energy function. Intelligently sam-
pling diagrams unearths interesting corner cases of a specifi-
cation, akin to fuzzing mathematics. Users would likely not
think first of cases where one set is contained in another.

Extending set theory with group theory. A group is
often introduced as a set closed under a binary, associative
operation, where the set contains an identity element with
an inverse. More intuitively, a group can also be seen as a
collection of actions, where every action is reversible and
every sequence of actions is also an action [1]. Twisting a
Rubik’s cube forms a group; so does just rotating a rectangle.

It is natural for mathematical exposition to mention
groups and sets in the same breath. Here is a description of
a particular group from Wikipedia: “The Klein four-group is
defined by the group presentation V = 〈a, b | a2 = b2 =
(ab)2 = 1〉... Another numerical construction of the Klein
four-group is the set {1, 3, 5, 7}, with the operation being
multiplication modulo 8. Here a is 3, b is 5, and c = ab is
3 · 5 = 15 ≡ 7 mod 8.” Thus, to design SUBSTANCE, we
take note: mathematicians often introduce similar objects at
different levels of abstraction. A group may be described
with a given name (the Klein 4-group, or K4), a popular no-



Group k4 = FromPresentation(<r, b | r^2 = b^2 = (rb)^2 = e>)

k4.set({e = 1, r = 3, b = 5, rb = 7})

k4.op(\x y -> x * y ‘mod‘ 8)

AbstractDiagram k4set = Venn(k4.set, name = "K4")

AbstractDiagram k4cayley = Cayley(k4)

CompositeDiagram linked = link(k4set, k4cayley,

name = "multiplication mod 8")

linked.layout = left_to_right -- not specifying coordinates!

k4set.e.style = Circle {r = 10, color = green} -- the identity

linked.e.style = dotted

Figure 2. Linking two views of the Klein 4-group.

Figure 3. A mockup of a possible PENROSE visualization.

tation (its group presentation2 〈a, b|a2 = b2 = (ab)2 = 1〉),
or a set and an operation on it (({1, 3, 5, 7}, · mod 8)).

To make the Wikipedia explanation more concrete, we
visualize the connection between the Klein four-group as a
set with an operation and as exploratory actions. We give
a combined SUBSTANCE and STYLE program in Figure 2.
The first three lines instantiate the abstract group k4 with
a concrete set and operation. The next three lines introduce
two different views of the group: as a Venn diagram, from the
Set sub-DSL, and as a Cayley diagram3 depicting actions in
the group, from the Group sub-DSL. A view bridges content
and style by specifying the abstract structure of how an
object is displayed, but not its on-screen attributes.

Geometry. We will extend PENROSE to handle issues of
connectivity and geometry arising in domains such as graph
theory and topology, as in Figure 4. Rendering 3D geometry
as high-quality vector graphics raises new challenges at the
intersection of computer-aided design and 2D illustration.

3. System and language design questions
Modeling mathematics. Users want to diagram their own
exotic domains. Thus, STYLE and SUBSTANCE should be
extensible with sub-DSLs with user-defined semantics and
graphics. Users will want to illustrate relationships between
objects in different domains, as in theorems and proofs, or
maps from one domain to another. How can we enable these
sub-DSLs to be productively used together? Additionally,

2 It gives the group generators (here, a and b) and relates the generators to
each other and the identity so that the group is “uniquely determined.”
3 Cayley diagrams are widely used to create almost-cartographic maps
of groups. Starting from the identity, one combines a generator with an
element of the group, using the group operation, to reach another element.
The action is shown as an edge, and the result is shown as a state.

S := Sphere(2)

T := Torus(2)

I := [0,1] subset Reals

f := T -> S

gamma := I -> S

gamma(0) = gamma(1)

curve1 := Image(gamma)

curve2 := PreImage(curve1, f)

Homotopic(curve2, 0) = FALSE

p := Point in curve2

Figure 4. A map from a torus to a sphere in SUBSTANCE.

most domains of mathematics are highly connected, often
hierarchically. Lie groups are both groups and manifolds:
should we model them with subtyping or typeclasses?

DSL implementers vs. end-users. PENROSE users might
want to build their own sub-DSL, or just program in an exist-
ing one. Thus, we divide the system into two phases, SETUP
and DIAGRAM. In SETUP, an implementer may build a sub-
DSL from scratch by providing its grammar, syntax, and li-
braries. PENROSE provides an environment in a high-level
host language in which the implementer can embed their
sub-DSL, and it will check the sub-DSL at compile-time.
In DIAGRAM, an end-user writes programs in this sub-DSL,
which are again typechecked at compile-time. Existing work
in quasiquoting [3] addresses the problem of type-checking
an embedded DSL and a program in that DSL at compile-
time. We could, say, embed PENROSE in Template Haskell
and implement our compilers as Haskell code generators.

Designing STYLE. How should we represent styles at
different levels of abstraction? In the group theory example
discussed in Section 2, users may want to import styles from
some standard library. Some styles are specific to K4; other
styles are generic over all groups; yet others are generic
over all domains of math. Also, should diagram styles be
specified declaratively, as in CSS, or algorithmically, since
an object may demand a specialized drawing algorithm?

Interaction. Using SUBSTANCE seems to require giv-
ing up granular control over layout. In TikZ, users can-
not edit diagrams by directly manipulating the diagram, as
is natural–they must reverse-engineer the desired changes
in the program. However, we plan to build on the “prodi-
rect” paradigm [2] to combine the strengths of program-
matic and direct manipulation. Users might make low-level
tweaks not at the program level, but by dragging a node in
a GUI. How should PENROSE infer the corresponding pro-
gram changes? Also, generating diagrams programmatically
opens the door to generating interactive diagrams, such as
parametrized ones. To visualize a cycle graph of n vertices,
the user could “scrub” the parameter n over concrete values.

References
[1] N. Carter. Visual group theory. MAA, 2009.

[2] R. Chugh, B. Hempel, M. Spradlin, and J. Albers. Program-
matic and direct manipulation, together at last. In PLDI ’16.

[3] G. Mainland. Quasiquoting for Haskell. In Haskell ’07.


	Motivation for the Penrose system
	Three examples
	System and language design questions

