
Fast GPU Ray Tracing of Dynamic Meshes using Geometry Images

Nathan A. Carr
Adobe Corp

Jared Hoberock, Keenan Crane, John C. Hart
University of Illinois, Urbana-Champaign

Figure 2: The two poses of the character above (a 128K-triangle blendshape model represented with a 2562 geometry image) were rendered
at a resolution of 1272 × 815 using naive ray sampling in about a half a minute each, including the construction of the threaded bounding box
hierarchy.

ABSTRACT

Using the GPU to accelerate ray tracing may seem like a natural
choice due to the highly parallel nature of the problem. However,
determining the most versatile GPU data structure for scene stor-
age and traversal is a challenge. In this paper, we introduce a new
method for quick intersection of triangular meshes on the GPU. The
method uses a threaded bounding volume hierarchy built from a
geometry image, which can be efficiently traversed and constructed
entirely on the GPU. This acceleration scheme is highly competi-
tive with other GPU ray tracing methods, while allowing for both
dynamic geometry and an efficient level of detail scheme at no extra
cost.

Keywords: ray tracing, GPU algorithms, geometry images, mesh
parameterization

1 INTRODUCTION

Ray tracing is often referred to as an “embarrassingly” parallel ap-
plication, but the key to efficient ray tracing is to avoid intersect-
ing every ray with every geometric primitive. The geometric parti-
tioning needed for such optimization can be difficult to implement
efficiently on data-parallel architectures such as the GPU. For in-
stance, a GPU ray tracer accelerated by a uniform grid suffers from
the overhead of state-based programming [12] and a GPU ray tracer
that offloads partitioning to the CPU suffers from a CPU-GPU com-
munication bottleneck [2].

The GPU is becoming a practical high-performance platform for
ray tracing due to increased generality and rapid parallel perfor-
mance growth relative to CPUs. CPU ray tracers have also gained

parallelism due to SSE, distributed processing, and soon multi-core
CPUs [19, 13]. However, visual simulation applications increas-
ingly rely on the CPU for physics, AI, animation, and other tasks
which diminish ray tracing performance. Special purpose hardware
can also support efficient parallel ray tracing [21], but does not en-
joy the same economy of scale as GPUs.

The main contribution of this paper is a new GPU ray tracer ac-
celerated by a threaded bounding box hierarchy stored as a geom-
etry image min-max MIP map. An input mesh is uniformly tessel-
lated and stored as ageometry image[5], where each texel stores
the coordinates of a mesh vertex. We then create a pair of MIP
maps [20], onemin and onemax, whose texels correspond to the
minimum (maximum)x, y andz coordinates of their correspond-
ing vertices in the geometry image, as shown in Figure3.

Traditionally, traversing a bounding box hierarchy makes use of
conditional execution and a stack (though alternate representations
are sometimes possible [17]), both of which are highly inefficient
on current GPUs. We overcome these deficiencies by statically
“threading” the hierarchy, adding two pointers to each node: ahit
pointer leading to the first child and amisspointer leading to the
next sibling (or uncle). This threading scheme allows nodes of the
hierarchy to be efficiently streamed through the GPU pipeline.

In addition, we present a method for quickly building the
threaded hierarchy entirely on the GPU. The cost of construction is
negligible with respect to total frame rendering time, and is done us-
ing geometry resident on the card. By updating the hierarchy every
frame, the method can ray trace dynamic geometry such as skinned
characters or blend shapes (previous GPU ray tracing methods were
limited to static geometry only). A dynamic hierarchy also allows
for dynamic level of detail, which can significantly reduce the cost
of rendering distant or unimportant objects.

Two components of our method were presented in similar con-
texts. Geometry image MIP maps were first used for level of detail
management [7] and collision detection [1]. The threading of a
bounding box hierarchy was applied to GPU ray tracing by Thrane
and Simonsen [18]. However, the combination of hierarchy thread-

Figure 3: The GPU ray tracer described by this paper relies on the
retesselation of a scene into a regular mesh, stored as a geometry
image of its vertices along with a bounding box hierarchy constructed
as a min/max pair of MIP maps.

ing with a geometry image bounding box layout is novel, and leads
to a memory layout that is more economical and cache-coherent
than previous GPU-side ray tracers. We also offer a new algorithm
for maintaining this bounding box hierarchy on dynamic geometry.
This enables effects like dynamic interreflection between a moving
object and its surroundings, lending the method towards real-time
applications.

2 PREVIOUS WORK

The long history of high-performance ray tracing on the CPU is
nicely summarized by Wald [19]. While the GPU outperforms
the CPU on streaming kernels such as ray intersection, the CPU
is much more efficient at maintaining and traversing the complex
data structures needed to trace rays efficiently. The recent RPU pa-
per [21] gives a similar overview of ray tracing on special-purpose
hardware. The RPU resembles a GPU with SIMD processing of
four-vector operations, but also includes a stack and separate traver-
sal and shading processors for better load balancing. It can hence
easily outperform a GPU ray tracer, but is currently expensive to
build and commercially unavailable.

The Ray Engine [2] implemented a streaming ray-triangle kernel
on the GPU, fed by buckets of coherent rays and proximate geom-
etry organized by a CPU process. However, this division of labor
required frequent communication of results from the GPU to the
CPU over a narrow bus, negating much of the performance gained
from the GPU kernel.

The performance degradation due to GPU-CPU communication
can be avoided by implementing other components of ray tracing
on the GPU. Purcellet al. [12] decomposed ray tracing into four
separate GPU kernels: traversal, intersection, shading, and spawn-
ing. The performance of this faster state-based approach was nev-
ertheless limited by SIMD scheduling because the GPU fragment
processors had to run identical kernels. As a consequence, some
processors ready for intersection had to wait for others to complete
traversal. This type of delay limited the performance of state-based
ray tracing to 10% of peak GPU efficiency. The method also uti-
lized a uniform 3-D grid partition of scene geometry which was
cache-coherent and accessed in constant-time. Unfortunately, this
scheme resulted in a large number of ray steps through empty space,
further delaying the rest of the fragment processors from reaching
their next state.

State-based GPU ray tracing runs up to 50% faster when the cells
of the uniform grid hold a precomputed distance transform (called
a “proximity cloud”) that allows the traversal kernel to skip large
empty regions of space [8]. Even with proximity clouds, state-
based GPU ray tracing is unable to outperform CPU ray tracers
such asMental Ray, largely due to the latter’s support of a hier-
archical kd-tree spatial partition, able to accommodate the varying

level of geometric detail found in typical scenes [3].
Many hierarchy traversal algorithms rely on a stack, a feature not

well-supported by the GPU (though a small four-element call stack
is available). Foley and Sugerman [4] implemented two variations
on a stackless traversal of a kd-tree: kd-restart, which iterates down
the kd-tree, and kd-backtrack, which finds the parent of the next
traversal node by following parent pointers up the tree, comparing
current traversal progress with per-node bounding boxes. While
this decomposition showed that GPU hierarchy traversal is feasi-
ble, it achieved only 10% of the performance of comparable CPU
implementations, citing the need for further work in load balancing
and data management.

Our GPU ray tracer uses a threaded bounding box hierarchy
which does not rely on conditional execution (another feature
poorly supported by the GPU) to determine the next node in a tra-
versal. This method was developed concurrently with the one pre-
sented in Thrane and Simonsen’s Master’s thesis [18]. The method
“threads” a bounding box hierarchy with a pair of pointers per node,
indicating the next node to consider given that the ray either inter-
sects or misses the node’s bounding box. These threads allow the
GPU to efficiently stream through the hierarchy without maintain-
ing a stack. Because our hierarchy representation is stored in a
structured 2D texture as opposed to a less structured linear stream,
we expect better performance from the GPU’s texture cache which
operates on 2D blocks. Although a dynamic update of the linear
structure may be possible, the structured 2D arrangement yields a
straightforward implementation, again with potentially fewer cache
misses.

3 ALGORITHM DETAILS

While the hierarchy is dynamic, it does rely on two precomputed
data structures: a mesh parameterization and alink hierarchy. Note
that this limits us to meshes of constant topology. The parameteri-
zation is used every frame to build a geometry image and bounding
box hierarchy for a deforming mesh. The link hierarchy (which is
independent of specific geometry) controls the traversal order of a
ray’s walk through the bounding box hierarchy. In this section, we
detail each step of this process.

3.1 Offline Precomputation

We parameterize our input geometry offline using standard tech-
niques. Each surface is cut into a number of charts and mapped to
rectangular regions of a square texture. Our implementation em-
ploys the area-preservingL2 geometric stretch metric proposed by
Sanderet al. [16] and iteratively relaxes an initial linear solution
into a local minimum of distortion. Chart packing was done by
hand, but can also be done using automated packing tools.

miss link map

hit link map

Figure 4: Link map hierarchy.

Link Hierarchy Creation To stream bounding volume traversal,
we require a static set of traversal links for our rays which we call
a link hierarchy (Figure 4). At each traversal step we have two
primary states to consider. (1) A ray misses the bounding volume
of a given tree noden. In such a case, the ray follows themiss
link to find the next bounding volume in the tree to test against.
Miss links point to either a sibling or uncle ofn. (2) A ray hits the
bounding volume of noden. In such a case, the ray follows the
node’shit link to a child node ofn. A zero-valued link indicates
an overall miss (termination), and a negative-valued link signals a
leaf node requiring triangle intersection (see Figure5), pointing to
a texel corner in the geometry image. By following precomputed
hit or miss links, a ray streams through the tree without the need for
state or complex branching.

The final link in the link map
points to a texel corner in the
geometry image.

The four marked texels describe
two adjacent triangles from the
mesh.

 We determine which side of the
shared edge the ray is on and
intersect the ray with only that
triangle.

Figure 5: Intersecting triangles from a geometry image.

3.2 Online Ray Tracing

Ray tracing is a three step process that involves rasterizing an ob-
ject’s current geometry image, building its bounding box hierarchy,
and traversing the hierarchy to determine ray-mesh intersections.

Geometry Image Rasterization If a mesh has undergone defor-
mation, we must update its geometry image in order to maintain
a correct bounding volume hierarchy. To do this, we rasterize the
parameter-space of the mesh into a texture, using world-space po-
sitions as vertex colors. This gives us a texture in which adjacent
texels represent nearby points on the mesh surface. These points
will be used during ray tracing to construct triangles which also lie
on the surface. Additionally, we render the corresponding normal
map at this time.

Bounding Volume Hierarchy Construction After geometry im-
age rasterization, we construct a hierarchy of axis-aligned bounding
boxes. The process is conceptually similar to MIP map construc-
tion. We start by creating two textures which represent the finest
level of amin image pyramid and amax image pyramid, and re-
cursively build the coarser levels. Thergb channels of this pyra-
mid store the minimum and maximum extents of an axis aligned
bounding volume around the four corresponding texels in the level
below. AABBs in the bottom level of the pyramid bound the four
corresponding texels from the geometry image. A bounding box is
placed around every quad in the geometry image, so the resolution
of the lowest level of the pyramid is equal to the resolution of the
geometry image minus one.

Rather than using MIP maps for storage, we pack the entire hi-
erarchy into a single texture, since MIP map texture reads currently
fail to produce correct results under divergent conditions1. The lay-
out of the bounding box hierarchy mirrors the layout of the link
map hierarchy (Sec.3.1), so a singleuv coordinate can be used to

1The GL NV vertexprogram3 TXL instruction returns texels from the
same MIP level for2 × 2 fragment blocks instead of allowing a different
level for each fragment (this is a known issue).

reference the hit link, miss link, and bounding box information for
a given node in the tree.

Ray Traversal During traversal, we maintain a link location spec-
ifying where we are in the tree. Initially, this link location is theuv
location of the root of the tree. We enter the traversal loop and in-
tersect the ray against the bounding box at the current link location.
Depending on the outcome of the intersection, the link location is
updated by following either the miss link or hit link. Upon comple-
tion of the shader, we return theuv value of the closest hit location
in the geometry image. We return a negativeuv value when the ray
misses the geometry entirely.

Traversal Algorithm

link = location of root node
t = infinity; // par. distance along ray
while(1) {

BV = boundingVolume[link]
if rayHitsBoundingVolume(ray,BV,t)

link = hitLink[link]
else

link = missLink[link]
if(link == 0)

break; // we’re done so exit
if(link < 0)

// we’re at a leaf
// intersect ray with geometry image
...
link = missLink[link]

}

Figure 6: Pseudo-code for GPU bounding volume hierarchy traversal.

3.3 GPU Ray-Intersection

The traversal kernel handles ray intersection for both axis-aligned
bounding volumes and triangles. The slabs method is used to in-
tersect against axis-aligned bounding boxes [9]. This method com-
putes the distancet′ between the ray’s entry point into the bounding
box and the ray origin. By maintaining the distancet to the cur-
rently known closest hit, we are able to avoid traversal into subtrees
that are beyond this intersection point (i.e.t < t′).

Our ray-triangle intersection routine is based on that of Möller
and Trumbore[11]. This routine is enhanced using the knowledge
that triangles will always be intersected in pairs. Assuming back-
face culling, the key observation is that a ray may intersect at most
one of two triangles sharing an edge (except in the rare degenerate
case). We first determine on which side of the shared edge the ray
passes, and then compute the intersection with the appropriate tri-
angle. As a result, intersection is accelerated by a factor of nearly
two. Assuming no texture fetch latency, an NVIDIA G70 GPU can
execute this code in twenty cycles achieving in excess of 1 billion
ray-triangle intersection tests per second2.

4 RESULTS

Our implementation used OpenGL version 1.5 and Cg version 1.4.
Dynamic branching in the traversal shader required the use of
Shader Model 3.0. Data was stored in half-precision (16-bit per

2Performance as measured by NVIDIA NVshaderPerf

30M

842

eye ray
blend shapes
depth of field
glossy reflection

16 32 64 128 256 512

20M

10M

ra
ys

 /
se

c.

geometry image resolution

multiple objects

Figure 7: Performance (in millions of rays per second) versus geom-
etry image resolution for four ray tracing test applications. A 5122

geometry image corresponds to 524,288 triangles.

LOD Tris. Eye Blend DOF Glossy Mult.
2 8 28.2 26.5
4 32 29.4 15.1 23.3
8 128 10.1 9.31 12.5

16 512 6.25 5.71 9.56
32 2K 3.70 3.30 6.56
64 8K 2.25 2.23 1.97 4.32 4.35

128 32K 1.37 1.35 1.21 2.80 2.85
256 128K 0.818 0.802 0.706 1.78 1.83
512 512K 0.462 0.453 0.348 1.14 1.08

Table 1: Performance rates (in millions of rays per second) for eye
rays, the animated blendshape, depth of field, glossy reflection, and
eye rays for multiple objects measured per level of detail (in geometry
image resolution).

component) textures, with a separate texture for each of geome-
try image, min map, max map, link map, ray origins, and ray di-
rections. Results were rendered via an FBO into a half-precision
deferred shading buffer. Performance was measured on a single
NVIDIA G70 (GeForce 7800 GTX) GPU running at 430 MHz core
clock and 1.2 GHz memory clock with release 80 drivers on a Win-
dows XP system with an AMD Athlon 3500+ 2.2 GHz CPU. We
did not do extensive tuning of shader parameters such as loop un-
rolling.

Eye rays Our first test shoots rays from the eye through a mesh,
computing only local illumination at the intersection. Eye rays
are not a particularly interesting application of ray tracing, but
are needed to compare performance directly against other methods
which use similar tests [19, 4]. (Rasterization generally provides
a more efficient way to compute the first hit.) This test also gives
us an idea of peak performance, since eye rays are highly spatially
coherent (and therefore highly cache coherent). Figure7 plots ray
intersection performance versus geometry image resolution.

Dynamic Geometry Our next test shoots eye rays at a mesh ani-
mated with blend shapes. Figure 1 shows different expressions of
our model. Figure7 confirms that performance is not substantially
worse for dynamic geometry (render times differed by 2 percent on
average).

Perfect Specular Reflection Figure 9, top shows three Utah
Teapots exhibiting specular reflection. Ray traced reflections pro-
duce sharp detail and self-reflection, which are difficult to achieve

Figure 8: A 598× 634 image of an animated character rendered with
depth of field using a 2562 (131, 072 effective triangles) geometry
image. 97, 057, 792 rays were evaluated in under 2 minutes.

with environment maps. Although secondary rays are potentially
less coherent than eye rays, this did not seem to have an effect on
performance for this particular scene. Note that the first hit was
computed via rasterization for all applications involving secondary
rays.

Monte Carlo Ray Tracing Effects such as glossy reflections,
depth of field, and motion blur are robustly handled by Monte Carlo
ray tracing, which takes a sparse set of samples over a large domain.
Depth of field in figure8 and glossy reflections in figures [1]9,left
are generated by shooting uncorrelated random rays into the scene,
examining performance under poorer cache coherence and worse
divergent branching than for eye or perfect specular rays. (How-
ever, many of these rays may miss the geometry, traversing only
the coarsest levels of the hierarchy.) Figure7 shows performance
similar to eye rays for our test scenes.

Multiple Objects The scene in Figure9 tests the “teapot in a sta-
dium” scenario by placing three Utah Teapots at the center of rela-
tively large, sparse geometry. This type of scene demonstrates the
ability of our algorithm to handle scenes with geometry at widely
varying scales. We have observed that packing multiple objects into
a single parameterization incurs no appreciable degradation in per-
formance, as indicated by the average eye-ray performance for this
scene shown in Figure7.

Visual Error Finally, we analyze the image space error result-
ing from the geometry image representation. Error is calculated by
computing the average per pixel difference of a ray traced image
versus a rasterized reference. Figure11 plots average pixel error
versus resolution and illustrates decreasing visual error as geome-
try image resolution increases. Incongruous silhouettes contribute
significantly to error at lower resolutions.

Figure 9: Left. Ray traced scene with multiple charts and heterogenous detail exhibiting both glossy and specular reflection. Center. Closeup of
teapots exhibiting self- and inter-object reflection. Right. Closeup of teapot handle showing crisp, curved reflection of distant trees.

5 DISCUSSION

In this section we analyze performance of our method for com-
mon ray tracing applications. Direct, exact comparison of various
GPU implementations is difficult due to a large number of depen-
dent variables among hardware generations and vendors. We aim to
identify and discuss overall benefits and tradeoffs versus other ray
tracing alternatives.

5.1 Intersection Performance

A common test of performance shoots eye rays at the 70K trian-
gle Stanford Bunny to generate a5122 image. For this test, BVH
takes 257 ms (GeForce 6800 Ultra) [18], uniform grid 357 ms, kd-
backtrack 690 ms, and kd-tree restart 701 ms (X800 XT PE) [4].
We achieve between 180 ms for a1282 geometry image and 675
ms at2562 (GeForce 6800 Ultra). As indicated in Figure10, our
approach does as well as a uniform grid on a uniform mesh (and
should outperform it otherwise), but is not quite as optimized as
BVH, which also threads a bounding volume hierarchy.

BVH 70,000 257
uniform grid 70,000 357
kd-tree 70,000 701

70,000 690
geom. image 32768 180
geom. image 131000 675

uniform grid
BVH

kd-tree geom. image

geom. image

0

200

400

600

800

0 32,768 65,536 98,304 131,072
Tris.

Ti
m

e
(m

s)

Figure 10: Comparison of GPU ray tracers on the Stanford bunny.
Note that hardware used has slightly different performance charac-
teristics (GeForce 6800 Ultra vs. X800 XT PE).

We were unable to test the Cornell box or the BART Robots
scene [10] because our implementation does not yet handle sharp
edges, which could be implemented through an extension [15]. We
instead constructed a test scene with a similar non-uniform distrib-
ution of geometry, shown in Figure9.

Table1, Mult. gives eye-ray performance for the Teapot Island
test. The BART Robots scene contains 71708 triangles. The orig-
inal Teapot Island scene contains 36032 triangles, but requires a
geometry image resolution between2562 and5122 geometry im-
age or 128K to 512K effective triangles to render accurately due to
poor parameterization (teapot geometry is not instanced and conse-
quently the island is not given much texture area). Performance was

between 1.1 and 1.8 million rays/sec on average, though far fewer
rays descend the hierarchy than in the BART Robots. For the BART
Robots, Foley & Sugerman report performance equivalent to about
0.5 million rays/sec for both kd-restart and kd-backtrack. Thrane
& Simonsen report performance equivalent to about 0.7 million
rays/sec with a BVH implementation for the same scene. Perfor-
mance of our algorithm is generally competitive; more importantly,
it compares well to its own performance for uniform geometry.

5.2 Acceleration Structures

The bounding volume hierarchies constructed by Thrane & Si-
monsen and Foley & Sugerman are more efficient than ours due
to extensive optimization. However, the optimzation process is
a lengthy, heuristic-based approach [6], and there is currently no
known mapping of such a method to the GPU. Dynamic geometry
may still be possible within Thrane & Simonsen’s framework by
applying a reduction operation on vertex positions to determine up-
dated bounding box extents, though an analogous approach is not
apparent for a kd-tree. Note that with any of the approaches updat-
ing node extents may reduce the optimality of the hierarchy.

A regular grid requires no optimization, and could be quickly
constructed every frame (by rasterizing mesh triangles into every
grid slice, for example). However, the inability to deal with geom-
etry at a wide range of scales makes this structure unappealing.

Thrane & Simonsen use a linear array of data for their BVH
implementation versus our 2D memory layout. This results in both
smaller link addresses as well as a simpler way to compute thehit
address, but does not take advantage of the GPU’s ability to cache
blocksof texture as in a 2D layout - the overall tradeoff is not clear.
However, the true performance deficit in both implementations is
the inability to sort traversal order: nodes are always traversed in
the same order, often resulting in a huge number of unnecessary
intersections.

5.3 Storage

Per-node storage, storage for intermediate state, and per-triangle
storage is given for several hierarchy schemes in Table2. For inter-
nal nodes, our implementation uses three floats for each of AABB
min andmaxand two floats for each ofhit andmisslink pointers,
all at 16-bit precision. One link pointer might be avoided by in-
stead computing the address from the current link node and level in
the hierarchy. Note that neither BVH implementation requires any
intermediate state since traversal is done in a single pass. In addi-
tion to saving memory, eschewing state avoids the need to re-load
state on every pass. Neither Karlsson & Ljungstedt nor Thrane &

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

512256128643216842

av
er

ag
e

pe
r p

ix
el

 e
rr

or
 re

la
tiv

e
to

 5
12

2 g
eo

m
et

ry
 im

ag
e

geometry image resolution

Reference512x512256x256128x12864x6432x32

Figure 11: Image space error decreases with increasing geometry image resolution.

Method Node State Triangle
Karlsson proximity cloud 64∗ 64∗ 320∗

Foley backtrack 64 128 320
Foley extended split 320 128 320
Thrane uniform Grid 32∗ 256∗ 320∗

Thrane kd restart 128∗ 128∗ 320∗

Thrane kd backtrack 384∗ 128∗ 320∗

Thrane BVH 128∗ (none) 320∗

BVH w/ GI (our method) 160 (none) 24

Table 2: Storage requirements for each hierarchy element, for inter-
mediate state, and for each triangle in bits for various methods (∗

assuming 32-bit floats).

Simonsen use vertex-sharing for triangles (i.e., three independent
vertices are stored for every triangle), whereas a geometry image
naturally shares each vertex among six triangles (i.e., less than one
vertex is stored per triangle). However, our algorithm requires a
deeper tree and may require more triangles to represent the same
mesh. A lower bandwidth fixed-point representation may improve
efficiency, though past attempts have met with limited success [2].

5.4 Implementation

All of the algorithms mentioned are relatively straightforward to
implement, but each requires some complexity in order to build a
good hierarchy: Thrane & Simonsen’s BVH and Foley & Suger-
man’s kd-tree require extensive balancing, while our method re-
quires careful parameterization. Regular grids are simple to imple-
ment in all respects, but again are not a general-purpose solution.

6 CONCLUSION AND FUTURE WORK

We have described a general-purpose GPU ray tracer accelerated by
a bounding box hierarchy stored in a geometry image. Performance
is comparable to other high-performance ray tracers, with the addi-
tional benefit of dynamic geometry. The hierarchy can be built on
the GPU and is compatible with the GPU’s streaming architecture.

Optimized Link Hierarchies Our current implementation uses a
single precomputed link thread to determine ray traversal. As a
result, traversal order is arbitrarily fixed. We might instead precom-
pute several link hierarchies sorted on the six cardinal directions
and choose the best one at traversal time by hashing on a ray’s di-
rection. This scheme may improve performance as a ray would be
more likely to terminate early. We could also arrange nodes so that
they would be accessed along a Hilbert curve, potentially increasing
cache coherence.

Non-Power of Two Geometry Images Our implementation as-
sumes that geometry images are square powers of two. However,
there is a large jump in mesh quality between successive powers,
and the optimal resolution may lie somewhere in between. Geome-
try images with irregular dimensions could be supported by simply
modifying the hit/miss pointer patterns in the link hierarchy.

Signal Specialization The efficiency of the bounding box hierar-
chy and the quality of the ray traced model depend heavily on the
parameterization used to construct the geometry image. Better pa-
rameterizations could be generated by using surface curvature to
automatically guide selection of cuts on the mesh and distribution
of area in the geometry image.

Adaptive Level of Detail Fast hierarchy construction makes adap-
tive level of detail possible by repartitioning objects’ allocation in
parameter space. Adaptive LOD could also be implemented by in-
tersecting rays with coarser levels of a MIP map pyramid of the
geometry image according to theirt values.

Reparameterization. Our ray tracer supports the rendering of
dynamic objects by rebuilding the bounding box hierarchy using
an unchanging geometry image parameterization on a mesh with
changing 3-D vertex positions. This approach precludes any change
to mesh topology, and is insensitive to changes in the parameteri-
zation distortion caused by the addition or removal of geometric
features. We expect that such distortion could be quickly reduced
by applying a few relaxation steps to the parameterization before
bounding box hierarchy reconstruction.

Instancing Instancing can be supported with an additional BVH
where leaves bound meshes. Leaf nodes in the link map hierarchy
would point to top-level nodes of a mesh in the current BVH.

Out-of-Core Streaming Production scenes are too large to fit into
the core memory of the GPU. However, a fast hierarchy update
makes it possible to quickly stream partial scenes into GPU mem-
ory. A REYES-like renderer can use this ability to ray trace a man-
ageable working set. This scheme is a tradeoff between ideal ray
tracing efficiency and scalability in a rasterization-based pipeline.

Acknowledgments

This research was supported in part by the NSF under the ITR grant
#ACI-0113968 and by NVIDIA Corp. Thanks to Pete Shirley for
advice and to David Gu for the bunny parameterization.

REFERENCES

[1] Beďrich Benĕs and Nestor Goḿez Villanueva. GI-COLLIDE: colli-
sion detection with geometry images. InProc. Spring Conference on
Computer Graphics, pages 95–102, 2005.

[2] Nathan A. Carr, Jesse D. Hall, and John C. Hart. The ray engine. In
Proc. Graphics Hardware 2002, pages 37–46, Sep. 2002.

[3] Martin Christen. Ray tracing on GPU. Master’s thesis, Univ. of Ap-
plied Sciences Basel (FHBB), 2005.

[4] Tim Foley and Jeremy Sugerman. Kd-tree acceleration structures for
a GPU raytracer. InProc. Graphics Hardware, pages 15–22, 2005.

[5] Xianfeng Gu, Steven J. Gortler, and Hugues Hoppe. Geometry im-
ages. InProc. SIGGRAPH, pages 355–361, 2002.

[6] Vlastimil Havran. Heuristic Ray Shooting Algorithms. Ph.d. thesis,
Dept. of CSE, Fac. of EE, Czech Technical University in Prague, Nov.
2000.

[7] Junfeg Ji, Enhua Wu, Sheng Li, and Xuehui Liu. Dynamic LOD on
GPU. Proc. CGI, 2005.

[8] Filip Karlsson and Carl Johan Ljungstedt. Ray tracing fully im-
plemented on programmable graphics hardware. Master’s thesis,
Chalmers Univ. of Technology, 2004.

[9] Timothy L. Kay and James T. Kajiya. Ray tracing complex scenes. In
Proc. SIGGRAPH, pages 269–278, 1986.

[10] Jonas Lext, Ulf Assarsson, and Tomas Moller. BART: A bench-
mark for animated ray tracing. Technical Report 00-14, Dept. of CE,
Chalmers U. of Tech., May 2000.

[11] Tomas M̈oller and Ben Trumbore. Fast, minimum storage ray-triangle
intersection.Journal of Graphics Tools, 2(1):21–28, 1997.

[12] Timothy J. Purcell, Ian Buck, William R. Mark, and Pat Hanrahan.
Ray tracing on programmable graphics hardware. InProc. SIG-
GRAPH, 2002.

[13] Alexander Reshetov, Alexei Soupikov, and Jim Hurley. Multi-level
ray tracing algorithm.ACM Trans. Graph., 24(3):1176–1185, 2005.

[14] P. V. Sander, Z. J. Wood, S. J. Gortler, J. Snyder, and H. Hoppe. Multi-
chart geometry images. InProc. Sym. Geom. Proc., pages 146–155,
2003.

[15] Pedro V. Sander, Steven J. Gortler, John Snyder, and Hugues Hoppe.
Signal-specialized parametrization.Proc. Eurographics Rendering
Workshop, pages 87–100, 2002.

[16] Pedro V. Sander, John Snyder, Steven J. Gortler, and Hugues Hoppe.
Texture mapping progressive meshes. InProc. ACM SIGGRAPH
2001, pages 409–416, 2001.

[17] Brian Smits. Efficiency issues for ray tracing.J. Graph. Tools, 3(2):1–
14, 1998.

[18] Niels Thrane and Lars Ole Simonsen. A comparison of acceleration
structures for GPU assisted ray tracing. Master’s thesis, University of
Aarhus, Denmark, 2005.

[19] Ingo Wald.Realtime Ray Tracing and Interactive Global Illumination.
PhD thesis, Computer Graphics Group, Saarland University, 2004.

[20] Lance Williams. Pyramidal parametrics.Computer Graphics (Proc.
SIGGRAPH 83), 17(3):1–11, July 1983.

[21] Sven Woop, J̈org Schmittler, and Philipp Slusallek. RPU: a program-
mable ray processing unit for realtime ray tracing.(Proc. SIGGRAPH)
ACM TOG, 24(3):434–444, 2005.

7 APPENDIX A

Below are a few technical details useful in guiding an implementa-
tion of our algorithm.

Figure 12: Left. Naively generating a geometry image may create
cracks in the ray traced image. Right. Adding an additional border of
texels prevents cracks.

Preventing Cracks Parameterizing a closed surface requires one
or more cuts, resulting in potential cracks in the reconstructed sur-
face. We draw an additional border of texels around chart bound-
aries to ensure that reconstructed boundary vertices are aligned
along the cut [14]. Figure12 demonstrates cracking on the Stan-
ford bunny.

Multiple Objects For a scene with multiple meshes, we parameter-
ize each object separately, then pack all objects into a single atlas.
To avoid spurious triangles at chart boundaries, charts are separated
by a one-pixel “gutter” ofNaNs. NaNs have the special property of
failing all numeric comparisons, and do not interfere with the con-
struction of the bounding box hierarchy or ray-triangle intersection.

Precision In our implementation, all data is stored in a 16-bit
floating-point format, which can sometimes cause tiny triangles to
be rendered incorrectly. Re-scaling the scene is a simple way to
remedy these artifacts.

Loop Counter Limits Current graphics hardware limits the num-
ber of times a loop may iterate. This limitation can result in prema-
ture termination of thewhile loop of figure6, resulting in holes in
the geometry (mainly for resolutions of5122 or larger). We dealt
with this limit by doing more traversal steps per loop iteration, and
could further break up traversal into multiple passes. Nesting the
while in anotherwhile loop prevented holes in some cases by in-
creasing the effective maximum iterations, but produced additional
artifacts as well.

	Introduction
	Previous Work
	Algorithm Details
	Offline Precomputation
	Online Ray Tracing
	GPU Ray-Intersection

	Results
	Discussion
	Intersection Performance
	Acceleration Structures
	Storage
	Implementation

	Conclusion and Future Work
	Appendix A

