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Fig. 1. Left: using an elasticity-based prior for shape interpolation provides natural deformation, but can also yield severe self-intersection. Right: we develop a
shape space where tasks like interpolation, extrapolation, and averaging are naturally intersection-free. Here we show geodesic barycentric interpolation of
poses x1, x2, x3. Note that no rig nor additional information is needed—only the three poses, given as three sets of vertex coordinates on a common mesh.

This paper develops a shape space framework for collision-aware geomet-
ric modeling, where basic geometric operations automatically avoid inter-
penetration. Shape spaces are a powerful tool for surface modeling, shape
analysis, nonrigid motion planning, and animation, but past formulations
permit nonphysical intersections. Our framework augments an existing
shape space using a repulsive energy such that collision avoidance becomes
a first-class property, encoded in the Riemannian metric itself. In turn, tasks
like intersection-free shape interpolation or motion extrapolation amount
to simply computing geodesic paths via standard numerical algorithms. To
make optimization practical, we develop an adaptive collision penalty that
prevents mesh self-intersection, and converges to a meaningful limit energy
under refinement. The final algorithms apply to any category of shape, and
do not require a dataset of examples, training, rigging, nor any other prior
information. For instance, to interpolate between two shapes we need only
a single pair of meshes with the same connectivity. We evaluate our method
on a variety of challenging examples from modeling and animation.
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1 INTRODUCTION
“An ounce of prevention is worth a pound of cure.”

—Benjamin Franklin

The status quo in geometric computing is a bit odd: even though
solid objects cannot pass through themselves, nor easily change
global topology, decades of algorithms build on shape representa-
tions that permit self-intersection (e.g., Bézier curves or triangle
meshes) or freely allow topological changes (e.g., level set [Osher and
Fedkiw 2005] or density-based encodings [Mildenhall et al. 2021]).
The rationale, of course, is that computation is much cheaper if one
need not detect or resolve intersections. Yet using such represen-
tations for shape synthesis or analysis is bound to yield unsatis-
factory results—and misleading conclusions. This paper provides a
repulsion-based framework for ensuring that basic geometric oper-
ations are automatically intersection-free.
Collisions are of course well-studied in physical simulation, but

these techniques address only one specific class of problems: detec-
tion and resolution of collisions in direct response to local contact.
In broader geometric computing there are other problems where
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one must actively avoid the influence of self-intersecting states. For
instance, when studying statistics of nonrigid shapes (e.g., in com-
putational anatomy [Miller et al. 1997]), one would like a notion
of “average” that yields valid, non-intersecting configurations (Fig-
ure 1). Likewise, when planning motion trajectories for deformable
bodies (e.g., in soft robotics [Fairchild et al. 2021]), one might aim
to proactively deform a surface in anticipation of obstacles (Fig-
ure 4), rather than reactively slamming on the breaks at the moment
of impact. The shape space perspective [Younes 2010], provides a
principled starting point for these broader tasks.
In this paper we specifically develop a Riemannian shape space

where each point corresponds to an intersection-free embedded
surface. To our knowledge, all past work instead considers spaces of

graph
manifold

original
shape
space

Fig. 2. Cartoon of our basic
approach: by “graphing” a re-
pulsive potential Φ over an ex-
isting shape space ℳ, we get
a graph manifold ℳΦ where
shape trajectories are auto-
matically collision-free.

immersions, which permit intersec-
tions. The basic idea is to augment
an existing shape space with a repul-
sive potential that penalizes configu-
rations in near-contact. A critical ob-
servation is that we cannot merely add
this repulsive penalty to the path en-
ergies used for optimization—which
yields undesirable behavior (Figure 3).
Instead, we form what we call a graph
manifold over the original space (Fig-
ure 2), yielding more natural trajecto-
ries (Figure 15). To ensure good numer-
ical behavior, we also develop spatially
adaptive quadrature for our repulsive
potential that both prevents collisions
on coarse meshes, and converges to a
meaningful continuous potential un-
der spatial refinement (Section 5).

1.1 Outline
We begin in Section 2 with a simple “toy” model—a space of repul-
sive points—which helps illustrate our approach, unencumbered by
details about the surface case. We then define surface energies in
Section 3, and introduce the full-blown space of repulsive shells
in Section 4. Section 5 develops our novel adaptive TPE potential,
Section 6 describes numerical optimization, and Section 7 presents
a variety of results. Finally, in Section 8, we discuss limitations of
our approach and opportunities for future improvement.

1.2 Related Work
1.2.1 Nonrigid Registration, Motion Planning, and Modeling. From
an application perspective our method connects to a large body
of work from robotics, animation, and computational anatomy
on, e.g., nonrigid registration, interpolation, modeling, and motion
planning—far too vast to cover in detail. In general, there are two
basic strategies for incorporating collision avoidance into such tasks.
One is to apply a globally injective (or more properly, diffeo-

morphic) deformation to all of space, precluding new intersections
between embedded submanifolds. This class includes methods that
apply an elastic barrier to a bulk medium [Ball 1981], and those that
directly discretize the space of diffeomorphisms [Beg et al. 2005]. A

start end

Fig. 3. Simply penalizing the total repulsive potential over a time-varying
trajectory yields undesirable deformation: between the fixed start/end con-
figurations, the surface “explodes” away from itself to reduce potential.

corresponding volumetric discretization must have sufficient resolu-
tion to capture surface-surface interactions, which can come at the
cost of expensive dynamic re-meshing [Müller et al. 2015; Jiang et al.
2017], or lead to corruption of embedded geometry (see Figure 19).
Most importantly, although this approach formally precludes inter-
sections (purely by virtue of preserving global topology), it provides
no mechanism for proactively avoiding contact—nor using proxim-
ity to drive motion planning or shape modeling.

A second class of methods adapts numerical integrators for colli-
sion detection and response to broader planning and motion syn-
thesis tasks. For instance, elastodynamic models have been used
to guide classic (e.g., tree-based) planning algorithms [Gayle et al.
2005b], to drive optimal control frameworks [Wojtan et al. 2006; Bar-
bič et al. 2009; Coros et al. 2012; Du et al. 2021; Li et al. 2022], to apply
collision detection and response during shape modeling [Harmon
et al. 2011; Fang et al. 2021], and to find collision-free displacements
along a predetermined trajectory [Gayle et al. 2005a; Rodriguez et al.
2006; Bergou et al. 2007; Moss et al. 2008]. Since these methods are
rooted in dynamics and forward time integration, collision avoid-
ance is largely reactive rather than proactive, i.e., forces are localized
in space and time around points of (near-)collision. Tasks like shape
interpolation are difficult to handle in a symmetric way, due to the
irreversible dynamics. More broadly, this class of methods does not
address the richer tools provided by shape spaces, such as averaging
multiple shapes, or performing deformation/motion transfer.

1.2.2 Shape Spaces. Our primary focus is on extending the shape
space machinery to incorporate collision avoidance via a graph man-
ifold construction (Figure 5). Surprisingly little work treats collision
avoidance in the shape space context—especially for deformable
geometry. Geometric and computational mechanics largely consider
contact, modeled via differential inclusions [Blagodatskikh and Filip-
pov 1985; Fetecau 2003] or normal cones [Moreau 1988; Kaufman
et al. 2005]—neither of which provide a “nice” (i.e., globally differen-
tiable) Riemannian picture. Some work considers collision-avoiding
points on finite-dimensional manifolds, akin to our didactic example
in Section 2.1. For example, both [Assif et al. 2018, Section III] and
[Klein et al. 2023] integrate a total repulsive energy over time—but
as seen in Figures 3 and 7, this approach yields undesirable strong
artificial expansion, motivating the graph manifold approach.

For triangle meshes, shape spaces were first studied by Kilian et al.
[2007]; our work builds specifically on the space of discrete shells
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Fig. 4. In contrast to forward dynamical simulation, where shapes deform
in response to impact, geodesics in our shape space preemptively deform
geometry to avoid collisions. Here for instance, a spherical shell “folds up”
in anticipation of squeezing through a narrow tube.

defined by Heeren et al. [2012, 2014]. Again, however, these spaces
consider only immersed rather than embedded surfaces. Closer
to our approach, Herzog and Loayza-Romero [2022] define a met-
ric on the space of planar triangular meshes, but do not consider
physics-based functionals suitable for shape/motion interpolation,
and treat only intersections at the boundary of a planar mesh—not
easily generalized to curved surfaces. Finally, Zhu et al. [2017] use
a no-overlap constraint to achieve intersection-free interpolation of
planar shapes, with similar limitations.

1.2.3 Repulsive Potentials. Though our graph manifold construc-
tion can adopt any repulsive potential, we found it essential to model
long-range repulsion, rather than just local collision response (de-
tailed below). Long-range forces help to globally steer geometry
away from contact, rather than locally deforming it only near the
place and time of collision. Numerically, we found it important to
use a potential that both prevents intersections on coarse meshes
(Figure 12), and converges to a well-defined potential under refine-
ment (Figure 20). Convergence is especially helpful for ensuring
that coarse solutions are predictive of fine results (Section 6.4).

Collision Potentials. Potentials designed for collision response
have produced impressive results in recent years—especially in
close-contact scenarios [Li et al. 2020, 2021; Lan et al. 2021]. Fun-
damentally, such potentials are a numerical device for enforcing
inequality constraints that characterize non-intersecting states—
akin to log barrier methods [Boyd and Vandenberghe 2004, Section
11.2]. In practice, unfortunately, potentials like incremental potential
contact (IPC) are unsatisfactory for shape space tasks, as they do not
provide sufficient long-range guidance (Section 7.2.2). Moreover, in
the continuous setting, a log barrier integrated over surface patches
can remain finite even as they are pushed toward one another.

Long-Range Potentials. Long-range repulsive potentials for em-
bedded curves and surfaces have a long history in geometric topol-
ogy, prompted by questions from knot theory [Fukuhara 1988;
O’Hara 1991; Buck and Orloff 1995; Kusner and Sullivan 1998].
The basic idea is to mimic the Coulomb potential between electro-
statically charged particles 𝑥 and 𝑦, i.e., 1/|𝑥 − 𝑦 |𝛼 for some falloff
parameter 𝛼 > 0. However, integrating this kernel over all pairs of
points 𝑥,𝑦 on an 𝑛-manifold𝑀 does not yield a useful energy: the
integral is not well-defined (infinite) for 𝛼 ≥ 𝑛, and yet too weak

to prevent intersections (i.e., finite) for 𝛼 ≤ 2𝑛. Naïvely repelling
all pairs of mesh vertices hence yields awful numerical behavior, as
seen in [Yu et al. 2021a, Figure 2]. In response, several “desingular-
ized” energies have been developed—for a brief history, see Yu et al.
[2021b, Section 3.1] and Yu et al. [2021a, Section 1]. We specifically
use the tangent-point energy (TPE) [Buck and Orloff 1995; Gonzalez
and Maddocks 1999; Banavar et al. 2003; Strzelecki and von der
Mosel 2013; Bartels et al. 2022], defined in Section 3.2.1 for surfaces.

Discretization. In the continuous setting, TPE provides an infi-
nite barrier against self-intersection (for surfaces without boundary).
However, this behavior does not automatically carry over to meshes,
where a careless discretization can “miss” important singularities
in the integrand. We hence develop a novel adaptive TPE scheme
(Section 5) which closely approximates the continuous energy. To
our knowledge, this scheme is the first to both (i) reliably prevent
collisions on coarse meshes and (ii) converge to a meaningful energy
under spatial refinement. For instance, the midpoint TPE scheme
of Yu et al. can miss key singularities [Yu et al. 2021a, Section 10],
whereas IPC does not correspond to a continuous potential. How-
ever, we stress emphatically that we do not offer any rigorous no-
intersection guarantee in the discrete case—a question of detailed
analysis left to future work.

Finally, a common misconception is that an all-pairs potential like
TPE must be significantly slower to evaluate than a local potential
like IPC. However, this turns out not to be true in practice. By
applying the fast multipole method (Section 5), which itself incurs
little overhead, the cost of using TPE is dominated by a small number
of near-field interactions. For instance, in a typical scenario far-field
interactions account for only about 5% of overall cost—and in many
examples TPE is even cheaper to evaluate than IPC (Figure 16).

1.3 Notation
We use ⟨·, ·⟩ for the standard inner product on R3, and use R B
R≥0 ∪ {∞} for the (positively) extended real numbers. We use
upright d to denote the differential of any function 𝑓 , i.e., d𝑥 𝑓 is
the differential of 𝑓 at position 𝑥 ; in the finite-dimensional case,

Fig. 5. For a fixed domain𝑀 such
as the circle (bottom left), each con-
figuration x : 𝑀 → R𝑛 can be
viewed as a point in a shape space
ℳ (top right). A choice of metric 𝑔
on ℳ defines the cost of moving
from one configuration to another.
Here for example we might define
𝑔 so that ∥𝑢 ∥𝑔 is larger than ∥𝑣 ∥𝑔 .

we sometimes represent the differ-
ential by the Jacobian matrix J𝑓 .
Throughout we use regular letters
(e.g., 𝑥) to indicate spatial coordi-
nates in R𝑛 , and bold letters (e.g.,
x) to indicate points in a configu-
ration space ℳ.

2 SHAPE SPACES
In general, a shape space describes
all the different ways a domain of
fixed topology can be embedded
in R𝑛 , as well as the cost of mov-
ing around in this space. For in-
stance, motions that induce signif-
icant bending or stretching might
be considered more costly than
those that merely translate or ro-
tate an object. More precisely, for a fixed domain𝑀 , a configuration
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manifold ℳ consists of all maps x : 𝑀 → R𝑛 of a certain class, i.e.,
all ways of assigning a specific geometry to 𝑀 . A tangent vector
𝑢 ∈ 𝑇xℳ at a point x then describes an infinitesimal change to the
embedded shape, i.e., a velocity at each point of𝑀 (Figure 5).
A shape space (ℳ, 𝑔) associates a carefully-designed Riemann-

ian metric 𝑔 to ℳ, which defines the cost of small, infinitesimal
deformations. In particular, this metric is a smoothly-varying inner
product 𝑔x : 𝑇xℳ × 𝑇xℳ → R. The quantity ∥𝑢∥𝑔 B

√︁
𝑔x (𝑢,𝑢)

hence assigns a notion of length to any vector 𝑢 ∈ 𝑇xℳ. One can
use this metric to find the shortest interpolating trajectory between
two shapes—or perform a number of other tasks (e.g., extrapola-
tion, averaging, or deformation transfer [Heeren et al. 2014]). For
instance, the overall cost of a trajectory x : [0, 1] → ℳ can be
measured via the path energy

ℰ (x(𝑡)) B
∫ 1

0
𝑔x(𝑡 ) ( ¤x(𝑡), ¤x(𝑡)) d𝑡 . (1)

The path energy bounds the usual length ℒ(x(𝑡)) B
∫ 1
0 ∥ ¤x(𝑡)∥𝑔 d𝑡

from above, i.e., ℒ2 (x(𝑡)) ≤ ℰ (x(𝑡)) for all paths x(𝑡). Critical
points of path energy coincide with geodesics that not only locally
minimize length, but also have constant speed ∥ ¤x(𝑡)∥𝑔 for all 𝑡 .
The geodesic distance dist𝑔 (x, y) gives the globally shortest length
of any path between x and y. More explicitly, if 𝒞 is the set of
continuously differentiable paths x : [0, 1] →ℳ with endpoints
x(0) = x0, x(1) = x1, then

dist𝑔 (x0, x1) := inf
x∈𝒞

ℒ(x(𝑡)) .

Our Approach. Suppose we have an existing shape space, and
want to incorporate collision avoidance. Our basic approach is to
augment the original metric, using a repulsive potential to define a
so-called graph manifold, as detailed in Section 2.3. Encoding colli-
sion avoidance in the metric itself provides a repulsive shape space
on top of which we can build broader geometric computing tasks,
using standard numerical methods from the shape space literature
(e.g., performing motion extrapolation by following the exponential
map, or averaging shapes by computing a Karcher mean).

2.1 Warm-up: Repulsive Points
Consider a collection of𝑚 points in the 2D Euclidean plane. From the
shape space perspective, our domain is then the set𝑀 = {1, . . . ,𝑚},
and our configuration space is the manifold ℳ = (R2)𝑚 . Each
configuration is then a map x : 𝑀 → (R2)𝑚 that assigns 2D coordi-
nates to each of our elements in 𝑀 . We can of course encode this
map as a stacked vector of individual coordinates x = (𝑥1, . . . , 𝑥𝑚).
A trajectory of all points over time is then described by a curve
x(𝑡) : [0, 1] → ℳ, and the velocities of each point at any time
𝑡 ∈ [0, 1] are given by a tangent vector ¤x(𝑡) ∈ 𝑇x(𝑡 )ℳ (again, just
a column vector in (R2)𝑚).
Which trajectories should be considered “good?” If we want to

expend the least effort getting from one configuration to another,
then a natural choice is to penalize anymotion whatsoever by letting
our metric 𝑔 be a simple dot product

𝑔x (𝑢, 𝑣) B
𝑚∑︁
𝑘=1

𝑢𝑘 · 𝑣𝑘 . (2)

startstart

endend

startstart

endend

tim
e

Fig. 6. For points in the plane, simply minimizing path length yields tra-
jectories that collide (left), whereas our graph manifold approach naturally
avoids collision while remaining as straight as possible (right).

For this choice of metric, minimizers of the path energy ℰ (Equa-
tion 1) yield constant-speed straight-line trajectories for each point.
However, these points can come arbitrarily close and might collide
(Figure 6, left), which we must avoid somehow.

2.2 Penalty Formulation
A naïve first attempt at avoiding collision is to add a repulsive
potential to the path energy ℰ , such as the Coulomb potential

Φ(x) B
𝑚∑︁
𝑖=1

𝑚∑︁
𝑗=1

𝑖≠𝑗

1
|𝑥𝑖 − 𝑥 𝑗 |

. (3)

Doing so yields an augmented path energy

ℰ̃Φ (x) B
∫ 1

0
𝑔x(𝑡 ) ( ¤x(𝑡), ¤x(𝑡))d𝑡 + 𝛽

∫ 1

0
Φ(x(𝑡)) d𝑡, (4)

where 𝛽 > 0 is a parameter controlling the strength of repulsion.
However, minimizers of this energy fail to satisfy even some very
basic properties: for instance, if the initial and final configurations
are related by a constant offset 𝑐 ∈ R2, the minimizer will not be a
simple translation, but will rather strongly expand in the middle of
the trajectory (Figure 7, top). This same phenomenon occurs with
the repulsive shell space defined in Section 4 (see especially Figure 3)
where, again, configurations are displaced far more than necessary
in order to reduce the repulsive potential.

2.3 Graph Manifold
A natural alternative, and the key idea behind our formulation,
is to ask that the change in repulsive potential is as small as pos-
sible throughout the trajectory: if points start out close together,
they may remain close together—but should still be prohibited from
colliding. In the Riemannian picture, we use a repulsive potential
Φ : ℳ → R to define an augmented shape space where configu-
rations naturally avoid collision. In particular, we define what we
call a graph manifold by appending the potential value Φ(x) to each
point x ∈ℳ, effectively embedding our original shape space in a
space one dimension higher:

ℳΦ B {(x,Φ(x)) | x ∈ℳ} ⊂ℳ × R.
Intuitively, configurations with collisions now correspond to “infin-
itely tall mountains” that we do not wish to climb (e.g., Figure 8, top).
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Fig. 7. Simply penalizing the total repulsive energy along a trajectory leads to undesirable behavior—here, the point configuration “explodes” in the middle
(top), rather than just translating (bottom).

collision

Fig. 8. The shape space for two repulsive points 𝑥, 𝑦 where 𝑥 = (𝑥0, 𝑥1 ) , and
𝑦 is fixed to the origin (0, 0) . Bottom left: if we penalize only local motions,
collisions can occur. Bottom right: adding a repulsive potential to our cost
function avoids collisions, but can take us far from the ideal trajectory. Top
center: we instead find geodesics on the graph of the repulsive potential,
which yields collision-avoiding motion close to the ideal trajectory. In both
cases we plot trajectories for several values of the strength parameter 𝛽 .

Velocities are in turn vectors tangent to this mountain range—in
particular, the tangent spaces of the graph manifold are given by

𝑇(x,Φ(x) )ℳΦ = {(𝑢, dxΦ(𝑢)) | 𝑢 ∈ 𝑇xℳ} ,

where at each point x ∈ℳ the directional derivative dxΦ(𝑢) de-
scribes the change in potential Φ due to a infinitesimal motion 𝑢
along the original shape space. We define the metric on ℳΦ as

𝑔Φ(x,Φ(x) ) ((𝑢, 𝑠), (𝑣, 𝑡)) B 𝑔x (𝑢, 𝑣) + 𝛽 𝑠 𝑡,

for (𝑢, 𝑠), (𝑣, 𝑡) ∈ 𝑇(x,Φ(x) )ℳΦ where 𝛽 controls the strength of
repulsion (as in Equation 4). We can also express this metric with
respect to the original configuration space ℳ, namely

𝑔Φx (𝑢, 𝑣) B 𝑔x (𝑢, 𝑣) + 𝛽 dxΦ(𝑢) dxΦ(𝑣) . (5)

Importantly, by expressing the metric onℳ, we avoid working with
a submanifold ℳΦ of ℳ × R, and need only solve unconstrained
optimization problems.

The final metric 𝑔Φ captures the same cost as in the original shape
space, plus the cost of increasing—or decreasing—the repulsive po-
tential Φ. Geodesic paths in ℳΦ hence try to maintain a roughly
constant repulsive potential, while still keeping as straight as possi-
ble with respect to the original metric𝑔. Importantly,𝑔Φ (Equation 5)
is well-defined only in regions ofℳwhere Φ is finite—but as shown
below, these are the only regions we ever need to consider.

The path energy on our graph manifold is now just the usual path
energy ℰ (Equation 1), but with the original metric 𝑔 replaced by the
graph metric 𝑔Φ. For our toy example, minimizers of path energy
now exhibit the expected behavior, like translational invariance
(Figure 7, bottom). The parameter 𝛽 controls the relative importance
of collision avoidance (Figure 8, top center). Most importantly, the
fact that a potential Φ tends toward infinity for self-intersecting
configurations carries over to our distance function dist𝑔Φ : To move
any point x ∈ℳ of finite potential Φ(x) < ∞ to a point y∗ on the
boundary of the feasible region (i.e., to a point where Φ = ∞), one
must travel an infinite distance, i.e., dist𝑔Φ (x, y) → ∞ as y→ y∗.
To see this, denote by 𝒞 the set of continuously differentiable

curves 𝑐 : [0, 1] →ℳ satisfying 𝑐 (0) = 𝑥 and 𝑐 (1) = 𝑦. We use the
definition of the Riemannian distance and see

distΦ (𝑥,𝑦) B inf
𝑐∈𝒞

∫ 1

0

√︃
𝑔( ¤𝑐 (𝑡), ¤𝑐 (𝑡)) + (d𝑐 (𝑡 )Φ ¤𝑐 (𝑡))2d𝑡

≥ inf
𝑐∈𝒞

∫ 1

0

√︃
(d𝑐 (𝑡 )Φ ¤𝑐 (𝑡))2d𝑡

= inf
𝑐∈𝒞

∫ 1

0
|d𝑐 (𝑡 )Φ ¤𝑐 (𝑡) |d𝑡 ≥ |Φ(𝑦) − Φ(𝑥) |.

From the last estimate, it immediately follows that dist𝑔Φ (𝑥,𝑦) = ∞
if Φ(𝑦) = ∞. In other words, beyond merely ensuring that invalid
states x have infinite energy, we have made certain that geodesic
paths in our repulsive shape space cannot reach invalid states in
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Fig. 9. The change in shape over time is discretized by a sequence of points
x0, . . . , x𝑛 ∈ℳ. Interpolation is achieved by holding the endpoints fixed
and minimizing path energy (left), whereas extrapolation is achieved by
solving for the next point that continues a geodesic (right).

finite time. Since the proof does not depend on the particular po-
tential Φ, it will remain true for the repulsive shell space defined in
Section 4.

2.4 Discrete Geodesics
We can approximate a path in shape space by a sequence of points
in the configuration space ℳ. For instance, in the case of repulsive
points, our path is encoded by configurations x0, . . . , x𝑛 ∈ (R2)𝑚 .
Here and throughout superscripts index time. Our basic computa-
tional task is then to find paths that approximate geodesics with
respect to 𝑔Φ. In particular, we can either interpolate between two
given poses (Section 2.4.2), or extrapolate an initial velocity to get a
longer motion (Section 2.4.3). For operations beyond basic geodesic
interpolation and extrapolation (such as shape averaging or spline
interpolation), our repulsive shape space is compatible with the com-
putational machinery found in past work on shape spaces [Heeren
et al. 2014, 2016, 2018; von Tycowicz et al. 2015; Sassen et al. 2020b].

2.4.1 Discrete Path Energy. To perform either task, we must first
discretize the path energy from Equation 1. Here we follow the gen-
eral approach from Rumpf and Wirth [2015], and, for any sequence
of points x0, . . . , x𝑛 , consider a piecewise geodesic x : [0, 1] →ℳ
interpolating the points x𝑘 at regular intervals, i.e., x(𝑘𝜏) = x𝑘 ,
where 𝜏 B 1/𝑛. Each segment then has constant absolute speed
𝑐𝑘 B dist(x𝑘−1, x𝑘 )/𝜏 , and the overall path energy is∫ 1

0
∥ ¤x(𝑡)∥2

𝑔Φ
𝑑𝑡 =

𝑛∑︁
𝑘=1

𝜏 |𝑐𝑘 |2 =

𝑛∑︁
𝑘=1

dist2
Φ (x

𝑘−1, x𝑘 )/𝜏 .

Since 𝜏 = 1/𝑛, we hence define the discrete path energy as

ℰ̂ (x) B 𝑛

𝑛∑︁
𝑘=1

dist2
Φ (x

𝑘−1, x𝑘 ) . (6)

In the case of repulsive points, the geodesic distance is easy to ap-
proximate: the usual Euclidean distance provides the exact distance
along the original configuration space ℳ, and a simple squared
difference of potential values (resulting from the combination of
midpoint quadrature and difference quotients) provides a lower
bound on the additional “vertical” distance along the graph mani-
fold. Overall, then, we approximate dist2

Φ (x, y) by

𝐷2
Φ (x, y) B |x − y|

2 + (Φ(x) − Φ(y))2 . (7)

Fig. 10. The exponential map in our repulsive shape space is obtained by
following a constant-speed geodesic on the graph manifold ℳΦ, then pro-
jecting this geodesic back to the original configuration spaceℳ. Here we
show trajectories for a pair of repulsive points, where one point is fixed to
the origin. Notice in particular that it takes infinite time to reach a collision
(bottom left), which is equivalent to climbing an infinitely tall peak (top left).

For shells (Section 3), though we can no longer explicitly evaluate
configuration space distance, it remains easy to approximate—see
Section 4.2.1.
Note that consistency of the discrete and continuous path en-

ergies follows from the general theory of time-discrete geodesic
calculus developed by Rumpf and Wirth [2015]. In fact, under mild
conditions on the metric 𝑔 fulfilled for the models in this paper,
minimizers of the discrete energy are guaranteed to converge to
continuous geodesics. Here, the crucial step is to show that the
Hessian d2

y𝐷
2
Φ (x, y) |y=x coincides with the metric 𝑔Φx . This amounts

to a calculation very similar to the computation of the path energy’s
Hessian in Section 6.1.

2.4.2 Geodesic Interpolation. To interpolate between two shape
configurations, we can minimize the discrete path energy while
holding the endpoints x0 and x𝑛 fixed. Examples for repulsive points
are shown in Figure 6, right and Figure 7, bottom. In contrast to
the naïve penalty formulation from Section 2.2, geodesics on the
graph manifold roughly preserve the closeness exhibited at the
endpoints, typically leading to more natural interpolation (compare
also Figures 3 and 15).

2.4.3 Geodesic Extrapolation. Suppose that instead we are given an
initial configuration x0 ∈ℳ and velocity 𝑢 ∈ 𝑇x0ℳ, and wish to
extrapolate this motion forward in time. In the discrete case, the first
step can be approximated by just taking a small step of size 𝜏 > 0,
yielding a configuration x1 B x0+𝜏 𝑢. To get the next configuration,
consider any three consecutive points x𝑘−1, x𝑘 , x𝑘+1 along a discrete
geodesic. Then, the middle point x𝑘 minimizes the discrete path
energy 2(dist2

Φ (x
𝑘−1, x𝑘 ) + dist2

Φ (x
𝑘 , x𝑘+1)) (Equation 6). Hence, x𝑘

satisfies the optimality condition

dx𝑘 (dist2
Φ (x

𝑘−1, x𝑘 ) + dist2
Φ (x

𝑘 , x𝑘+1)) = 0. (8)
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Now, given x𝑘−1 and x𝑘 , we can then solve Equation 8 for the next,
unknown configuration x𝑘+1. Iterating this process defines a discrete
exponential map expx0 (𝑡𝑢) stepwise building up a discrete geodesic.
Following Rumpf and Wirth [2015, Theorem 5.9], this discrete ex-
ponential map converges to the continuous one on (ℳ, 𝑔Φ).

In the specific case of repulsive points, Equation 8 becomes

(x𝑘−1 − 2x𝑘 + x𝑘+1) + (Φ(x𝑘−1) − 2Φ(x𝑘 ) + Φ(x𝑘+1)) dx𝑘Φ = 0.

This equation is nonlinear in the unknown point x𝑘+1, and can
be solved using a root-finding method such as Newton’s method.
Figure 10 shows several examples for a pair of points; see Figure 27
for an example using elastic shells. Unlike interpolating geodesics,
which try to roughly preserve the value of the repulsive potential
Φ, the exponential map will increase, decrease, or maintain Φ along
the trajectory expx0 (𝑡𝑢), depending on the initial change in Φ.

3 SURFACE ENERGIES
We next define the elastic energy (Section 3.1), and the repulsive
energy (Section 3.2) that will be used to construct our shape space
of repulsive shells in Section 4. To develop algorithms well-behaved
with respect to tessellation and mesh refinement, we start with a
smooth formulation, then develop a principled discretization. Al-
though we make here a specific choice of elastic energy and repul-
sive potential, our basic framework of the graph manifold is largely
agnostic to these choices—see Section 7.2.2 for further discussion.

𝑐t2

𝑥v

𝑐t1
eeeeeeeeeeeeeeeee

ẽ̃ẽẽẽẽẽẽẽẽẽẽẽẽẽẽẽe

𝑎e

ℓẽ

𝑛t1\e\e\e\e\e\e\e\e\e\e\e\e\e\e\e\e\e
𝑛t2

Notation. In the smooth case, we consider
a surface 𝑀 , whose geometry is given by an
embedding x : 𝑀 → R3. We use n to denote
the corresponding unit normals, and 𝑑𝐴 for
the area element of the embedded surface. In
the discrete case, we have a triangle mesh
M = (V, E, T) with manifold connectivity. Its
geometry is given by vertex coordinates 𝑥v ∈ R3 for each v ∈ V.
For each triangle t ∈ T we use 𝑎t, 𝑛t, and 𝑐t to denote the area, unit
normal, and barycenter respectively. For each edge e ∈ E we use
ℓe for the edge length. For each interior edge e ∈ Eint ⊆ E, with
adjacent triangles t1, t2, we let \e be the dihedral angle, i.e., the angle
between triangle normals 𝑛t1 and 𝑛t2 , and define an associated edge
area 𝑎e B (𝑎t1 + 𝑎t2 )/3.

3.1 Shell Energy
We begin with introducing the elastic shell energy—in principle
following Heeren et al. [2012]. A thin shell is, roughly speaking, a
solid object with very small thickness 𝛿 > 0, dominated by elastic
behavior: it always tries to restore a deformed shape to some fixed
reference configuration. Our embedding x describes the reference
configuration of the midsurface and another embedding x̃ describes
the deformed configuration (on a mesh, just a second set of vertex
coordinates 𝑥v ∈ R3). The deviation of the deformed configuration
from the reference is then quantified by the elastic potential energy

𝒲 (x, x̃) B 𝒲membrane (x, x̃) +𝒲bending (x, x̃),

given as a sum of membrane (Section 3.1.1) and bending terms
(Section 3.1.2). We use 𝒲 for the corresponding discrete energy.

3.1.1 Membrane Energy.

Smooth. A membrane energy accounts for tangential stretching
and shearing of the surface, and in our case is given by

𝒲membrane (x, x̃) B 𝛿

∫
𝑀

𝑊 (I−1 Ĩ) 𝑑𝐴, (9)

where I B JT𝑥 J𝑥 is the metric or first fundamental form induced by x
(and likewise for Ĩ). The quantity I−1 Ĩ is called the Cauchy–Green
strain tensor, and encodes the change of metric due to the defor-
mation. The function𝑊 describes the stress-strain response of the
material—we use the neo-Hookean energy density

𝑊 (𝐴) B `
2 tr𝐴 + _

4 det𝐴 −
(
`
2 +

_
4

)
log(det𝐴) − ` − _

4 . (10)

Here _ and ` are positive material constants (called the first and
second Lamé parameters, resp.).

𝑥𝑖

𝑥 𝑗

𝑥 𝑗

𝑥𝑘

t̃𝑡

𝑠

𝑥𝑖

t
𝑥𝑘𝑥t

Discrete. A triangle t ∈ T with vertices
𝑖, 𝑗, 𝑘 ∈ V is embedded in R3 via the map
𝑥t (𝑠, 𝑡) B 𝑥𝑖 +𝑠 (𝑥 𝑗 −𝑥𝑖 ) +𝑡 (𝑥𝑘 −𝑥𝑖 ) on the
standard triangle {(𝑠, 𝑡) ∈ R2

≥0 |𝑠 + 𝑡 ≤ 1}
(see inset). Hence, the metric is constant in
each triangle, given by It B JTt Jt, with

Jt B
[
𝑥 𝑗 − 𝑥𝑖 𝑥𝑘 − 𝑥𝑖

]
∈ R3×2,

and likewise for J̃t (where each 𝑥𝑖 ∈ R3 is viewed as a column
vector). The energy in Equation 9 can then be discretized via the
sum

𝒲membrane (x, x̃) = 𝛿
∑︁
t∈T

𝑎t𝑊 (I−1
t Ĩt). (11)

The logarithmic term in𝑊 (Equation 10) ensures that each triangle
remains locally embedded, i.e., the three vertices can never become
collinear. However, it does not guarantee the mesh will remain
globally embedded—a global repulsive energy (à la Section 3.2)
is needed to keep non-adjacent triangles away from intersecting
configurations. In practice, this energy can be implemented using
simple expressions in terms of just the areas and edge lengths—see,
for example, [Sassen et al. 2020a, Appendix B].

3.1.2 Bending Energy.

Smooth. A bending energy accounts for bending of the surface in
the normal direction. We use the energy

𝒲bending (x, x̃) B 𝛿3
∫
𝑀

∥ ĨI − II∥2𝐹 𝑑𝐴, (12)

where ∥ · ∥𝐹 is the Frobenius norm, and II is the second fundamental
form, given by II(𝑋,𝑌 ) B ⟨dx(𝑋 ), dn(𝑌 )⟩ for all tangent vectors
𝑋,𝑌 (and likewise for ĨI). Intuitively, this energy penalizes a change
in curvature along any direction.

Discrete. For a triangle mesh, we use the discrete bending energy

𝒲bending (x, x̃) = 𝛿3
∑︁
e∈Eint

(2 tan(\̃e/2) − 2 tan(\e/2))2ℓ2
e /𝑎e,

where we have applied a standard discretization of normal curva-
ture [Crane and Wardetzky 2017]. Similar to the logarithm in the
membrane energy, the use of the tan function prevents foldovers (i.e.,
\e = 𝜋 ). In practice, most dihedral angles are small, and we find it
works just as well to use a simpler penalty (\̃e−\e)2, corresponding
to the discrete bending energy from Grinspun et al. [2003].
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3.2 Repulsive Energy
At the most basic level, a repulsive energy is an energy that is finite
only if a surface is non-intersecting (i.e., embedded). Below we recall
the smooth definition of the tangent-point energy (Section 3.2.1) from
Strzelecki and von der Mosel [2013] and recap a simple midpoint
discretization (Section 3.2.2); a more reliable adaptive discretization
is introduced in Section 5.

𝑅

Σ

n(𝑥) 𝑦
𝑥

3.2.1 Tangent-Point Energy (Smooth). Let Σ B
x(𝑀) ⊂ R3 denote the embedded surface. For any
two points 𝑥 ,𝑦 ∈ Σ the tangent-point radius 𝑅(𝑥,𝑦)
is defined as the radius of the smallest sphere
through 𝑥 and 𝑦 that is tangent to Σ at 𝑥 . This
radius can be expressed as

𝑅(𝑥,𝑦) B |𝑥 − 𝑦 |2
2 |⟨n(𝑥), 𝑥 − 𝑦⟩| ,

where n(𝑥) is the unit normal at 𝑥 . The tangent-point energy is then

Φ(x) B
∫
Σ

∫
Σ

|⟨n(𝑥), 𝑥 − 𝑦⟩|𝛼

|𝑥 − 𝑦 |2𝛼
d𝑥d𝑦, (13)

where 𝛼 ≥ 1 is a parameter that controls the strength of repulsion.
For surfaces without boundary, this energy is finite if and only

if (i) the surface has no self-intersections, and (ii) x is sufficiently
regular [Strzelecki and von der Mosel 2013; Blatt 2013]. In particular,
polyhedral surfaces (which are only 𝐶0) will have infinite energy:
normals do not become parallel as points approach opposite sides of
an edge. Hence, the numerator does not approach zero, as it would
for a smoother surface. We must hence be careful when defining our
adaptive quadrature scheme in Section 5; we first revisit a simpler
quadrature rule that provides the basis for this scheme.

Although we define the tangent-point energy for surfaces in R3,
it can be more generally defined for any sufficiently regular, closed,
𝑛-dimensional, embedded submanifold 𝑀 ⊂ R𝑚—and in fact, for
even more general sets. For further discussion and precise regularity
conditions, see [Strzelecki and von der Mosel 2013] and [Blatt 2013].

3.2.2 Tangent-Point Energy (Discrete). Yu et al. [2021a] discretize
tangent-point energy by applying midpoint quadrature to Equa-
tion 13 for each triangle pair, yielding the expression

Φ̂(x) B
∑︁
t1∈T

∑︁
t2∈T

t1≠t2

𝑎t1𝑎t2𝐾 (𝑐t1 , 𝑐t2 , 𝑛t1 ), (14)

where 𝑘 is the discrete tangent-point kernel

𝐾 (𝑥,𝑦, 𝑛) B |⟨𝑛, 𝑥 − 𝑦⟩|
𝛼

|𝑥 − 𝑦 |2𝛼
. (15)

𝑐t1
𝑐t2

𝑛t1

Omitting the summand for t1 = t2
(which would be undefined) is consistent
with the fact that every planar piece of
a surface has zero tangent-point energy.
Moreover, since we evaluate the integrand
only at midpoints—and not near edges—
the fact that the surface is only 𝐶0 does not cause the energy to
blow up in this case. Consistency of this discretization has been
verified experimentally by Yu et al. [2021a, Section 8.1]. However,
several challenges remain, as will be discussed in Section 5.

4 REPULSIVE SHELLS
With the basic pieces in place, we can finally define our collision-
aware shape space for surfaces. At a high level, we apply the same
graphmanifold construction as in Section 2.3, but adopt the shell and
repulsion energies from Section 3. For configurations far from self-
intersection, our shape space resembles the well-studied space of
elastic shells (Section 4.1). However, when approaching contact, our
metric is dominated by the repulsive term (Section 4.2), preventing
self-intersection. As in the case of repulsive points, merely adding
repulsion to the path energy yields undesirable results (Figure 3).
Our graph manifold construction instead remains faithful to the
appearance of the original shape (Figure 15, bottom).

4.1 Shape Space of Elastic Shells
less

expensive
more

expensive
The elastic energy 𝒲 assigns a cost to
a single displacement, but not a con-
tinuous trajectory. To penalize motions
that unnaturally stretch or bend the
surface, we adopt the viscous dissipa-
tion model previously used to develop
a shape space for elastic shells [Wirth
et al. 2011; Heeren et al. 2012, 2014]. The
basic idea of viscosity is that material dissipates energy due to in-
ternal friction when deformed. In contrast to elastic energy, which
depends purely on strain (i.e., displacement), viscous dissipation is
determined at each point of a trajectory by the strain rate, i.e., the
change in displacement per unit time. Hence, unlike elastic energy,
total dissipation is path-dependent: sudden stretching and bending
costs more than gradual deformation, even if we end up at the same
final configuration (see inset).

From a geometric perspective, strain rates correspond to tangent
vectors𝑢 ∈ 𝑇xℳ. To penalize dissipation we hence define the elastic
metric 𝑔 as

𝑔x (𝑢, 𝑣) B 1
2 d2

y𝒲 (x, y)
���
y=x
(𝑢, 𝑣), (16)

since the Hessian d2
𝑦𝒲 provides a local quadratic model of the en-

ergy𝒲 . Moreover, since 𝑦 = 𝑥 is always a minimizer of this energy,
the Hessian at this point is positive semidefinite. Indeed, because𝒲
is rigid body motion invariant its Hessian is positive definite up to
infinitesimal rigid motions and thus 𝑔 is a valid Riemannian metric
when modding out rigid motions. Geodesics with respect to this
metric are obtained exactly as described in Section 2.4; a variety of
examples (without repulsion) are shown in Heeren et al. [2012].

4.2 Shape Space of Repulsive Shells
As with repulsive points, merely adding tangent-point energy Φ to
the integrand of the elastic path energy ℰ will yield undesirable be-
havior. Instead, we define our repulsive shape space as the manifold
(ℳ, 𝑔Φ) where
• the configuration spaceℳ is the collection of𝐶2 embeddings
x : 𝑀 →ℳ of a surface𝑀 ,
• the metric 𝑔 on ℳ is the shell metric from Equation 16, and
• the potential Φ used to construct the graph manifold is the
tangent-point energy given in Equation 13.
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start (given) end (given)interpolated

Fig. 11. Geodesics in the space of repulsive shells correspond to intersection-free trajectories that exhibit natural deformation behavior. Here, for instance,
we change the way the fingers of two hands are interleaved by interpolating between two given poses (far left and right), avoiding any intersection even at
moments of near-contact. Note also the natural bending of the fingers and wrist to avoid collision, despite the lack of any skeletal rig.

We otherwise follow the exact same construction as in Section 2.3.
Note that since both the elastic energy𝒲 and the tangent-point en-
ergy Φ are rigid-motion invariant, the path energy on this manifold
will ignore any rigid translation or rotation along the trajectory. We
discuss how to account for rigid motion in Section 7.4.3.

4.2.1 Discrete Path Energy. To discretize the path energy, we follow
the treatment from Section 2.4, with only one modification. Namely,
we take advantage of analysis done by Rumpf and Wirth [2015],
who show that the elastic energy itself approximates the geodesic
distance in shell space up to third order. Hence, we can approximate
the squared geodesic distance on (ℳ, 𝑔Φ) in time and space by

𝐷2
Φ (x, y) := 𝒲 (x, y) + (Φ̂(x) − Φ̂(y))2, (17)

where 𝒲 is the discrete shell energy from Section 3.1, and Φ̂ is a
discretization of tangent-point energy (ultimately, the adaptive one
defined in Section 5). Notice that we do not directly discretize the
metric from Equation 16 by evaluating the Hessian of the discrete
elastic energy—in which case we would need 3rd-order derivatives
to minimize path energy.

5 ADAPTIVE QUADRATURE

intersection

Fig. 12. Without adaptive quad-
rature, surfaces can exhibit self-
intersection. Here: interpolated
configurations near start/end pose
from Figure 11.

In the continuous setting, tangent-
point energy is guaranteed to
prevent self-intersections for sur-
faces without boundary [Strz-
elecki and von der Mosel 2013].
However, the discrete TPE from
Section 3.2.2 still allows self-
intersections, since only face cen-
ters repel each other (Figure 12).
Uniformly refining the mesh ev-
erywhere is not practical: even
with very large meshes, one may
still not capture important singularities in the integrand (Figure 17).
Our adaptive TPE scheme instead distributes quadrature points ex-
actly (and only) where needed to resolve repulsive forces.

Our basic idea is to apply a hierarchical fast multipole method in a
lazy fashion to an (implicit) infinite spatial subdivision of the mesh.
Unlike Yu et al. [2021a], who use multipole to coarsen interactions
between distant elements, we also use it to refine interactions be-
tween nearby elements. The energy value obtained in this fashion
is equal to the continuous tangent-point energy of the (continuous)
piecewise linear surface, up to an additive user-specified error toler-
ance. Hence, if the continuous TPE approaches an infinite barrier,
so too must the multipole approximation.

A subtlety is that TPE is always infinite for surfaces that are only
𝐶0. To keep it finite we omit neighboring element pairs from the
adaptive scheme, relying instead on the discrete elastic energy from
Section 3.1 to prevent local intersections. However, since the tangent-
point kernel is, by construction, nonsingular within small geodesic
neighborhoods, these pairs make a vanishingly small contribution
to the overall energy (Yu et al. [2021b, Figure 9] provide a nice
illustration). In turn, as the mesh is refined towards a sufficiently
regular continuous surface, the numerical approximation converges
to the continuous energy—as observed experimentally by Yu et al.
[2021a, Section 8.1]. We again stress that we provide no formal
guarantee that intersections absolutely cannot occur with adaptive
TPE, but make a fairly compelling argument in Section 5.3.1, and
observe zero failure cases in practice.
The use of ordinary multipole also reduces the overall cost of

energy and derivative evaluation from 𝑂 ( |T|2) to 𝑂 ( |T| log( |T|)).
The final adaptive scheme amounts to a simple subroutine executed
only for a small number of interacting elements, usually incurring
very little computational overhead (Figure 17).

5.1 Acceptance Criterion
In any 𝑛-body problem, collections of distant particles are well-
approximated by a single, more massive particle located at their
centroid (Beatson and Greengard [1997] provide a nice tutorial).
Likewise, the basic strategy for accelerating tangent-point inter-
actions is to approximate the energetic interactions of geometric
patches via hierarchical clustering [Yu et al. 2021a,b]. A key question
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is how to decide when elements should be replaced by a proxy, and
how much error this approximation incurs. Here we relate geomet-
ric approximation error to error in approximation of the repulsive
energy—this analysis guides our adaptive scheme in Section 5.3.

MAC for TPE. Suppose our smooth surface Σ ⊂ R3 is twice-
differentiable (𝐶2). Our multipole acceptance criterion (MAC) for
TPE considers whether two surface patches 𝑈1,𝑈2 ⊂ Σ are small
relative to the distance between them. In particular, if diam(𝑈 ) is
the greatest distance between any two points in 𝑈 and conv(𝑈 ) is
its convex hull, then our MAC is

max {diam(𝑈1), diam(𝑈2)} ≤ \ dist (conv(𝑈1), conv(𝑈2)) , (18)

where dist(𝐴, 𝐵) is the smallest distance between any two points
𝑎 ∈ 𝐴,𝑏 ∈ 𝐵. The parameter \ > 0 controls how aggressively we
replace exact patch interactions with a simpler proxy—and hence
the accuracy of our approximation. In particular, if we replace each
patch𝑈 with its center of mass 𝑐 (𝑈 ) and average normal 𝑛(𝑈 ), then
we get a multipole approximation of the TPE restricted to these
surfaces patches Φ(𝑈1,𝑈2) with error of order 𝑂 (\2):

Φ(𝑈1,𝑈2) = area(𝑈1) area(𝑈2)
|⟨𝑛(𝑈1), 𝑐 (𝑈1) − 𝑐 (𝑈2)⟩|𝛼
|𝑐 (𝑈1) − 𝑐 (𝑈2) |2𝛼

+𝑂 (\2).
(19)

In practice, we cannot
evaluate the multipole ap-
proximation directly, be-
cause we have only a tri-
angulation and not the
smooth surface Σ. Suppose,
however, that Σℎ is a closely
inscribed triangle mesh (in
the sense of Morvan and
Thibert [2002]) with max-
imum edge length ℎ. Consider then two triangles t1, t2 in Σℎ , and
the two corresponding surface patches 𝑈1,𝑈2 ⊂ R3 obtained by
closest-point projection onto Σ (see inset). Since the triangle normal
𝑛t1 approximates 𝑛(𝑈1) up to 𝑂 (ℎ) [Morvan and Thibert 2002], we
get

Φ(𝑈1,𝑈2) = 𝑎t1𝑎t2
|⟨𝑛t1 , 𝑐t1 − 𝑐t2 ⟩|𝛼

|𝑐t1 − 𝑐t2 |2𝛼
+𝑂 (ℎ + \2) . (20)

Hence, as long as we pick \2 ∈ 𝑂 (ℎ) and satisfy the MAC for this \
value, our discrete energy Φ̂(Σℎ) will approximate the continuous
energy Φ(Σ) up to an additive error of size at most linear in ℎ. This
calculation agrees with experiments by Yu et al. [2021a, Section 8.1].

5.2 Multipole Approximation
We apply the MAC from Section 5.1 to accelerate evaluation of
the tangent-point energy and its derivatives. Like Yu et al. [2021a],
this approximation dramatically speeds up evaluation of distant
interactions (with very little approximation error), but unlike Yu et
al.we use a 0th-order fast multipole scheme, rather than Barnes-Hut.
In doing so, we get about an order of magnitude speedup over Yu
et al. [2021a]—e.g., for the four examples in Figure 16, our scheme is
roughly 7, 6, 9, and 10–20 times faster, respectively.

5.2.1 Energy Approximation.

Bounding volume hierarchy. We start by building a standard bound-
ing volume hierarchy (BVH) for the mesh, i.e., a binary tree where
triangles of Σℎ are hierarchically clustered into axis-aligned bound-
ing boxes (AABBs) [Yu et al. 2021a, Section 4]. We will use𝑈1,𝑈2 to
denote the two children of any BVH node 𝑈 . Each node also stores
the total area 𝑎𝑈 , center of mass 𝑐𝑈 , and area-weighted average
normal 𝑛𝑈 of all the triangles it contains. In particular, for each
node𝑈 we compute

𝑎𝑈 = 𝑎𝑈1 + 𝑎𝑈2 , 𝑐𝑈 =
𝑎𝑈1𝑐𝑈1 + 𝑎𝑈2𝑐𝑈2

𝑎𝑈
, 𝑛𝑈 =

𝑎𝑈1𝑛𝑈1 + 𝑎𝑈2𝑛𝑈2

𝑎𝑈
.

(21)
For efficiency reasons, we store 𝑘 > 1 triangles in each leaf node (in
practice, 𝑘 = 2), taking totals/averages of these quantities.

Block cluster tree. The BVH in turn defines a block cluster tree
(BCT) that can be used to approximate the energy and its differential.
In particular, each node of the BCT is a pair (𝑈 ,𝑉 ) of nodes from
the BVH, with children (𝑈1,𝑉1), (𝑈1,𝑉2), (𝑈2,𝑉1), (𝑈2,𝑉2), starting
with the root node (Σℎ, Σℎ).

Energy evaluation. To evaluate the energy of any node, we check
if the AABBs of 𝑈 and 𝑉 satisfy the MAC (Equation 18). If so, we
evaluate the multipole approximation (Equation 19), using the ag-
gregate area/center/normal data and the minimum box-box distance.
Otherwise, we sum up the contributions of all four children. If these
children are individual triangles, we apply the adaptive scheme from
Section 5.3. Applying this algorithm to the root node of the BCT
yields the overall energy approximation. Recall that for two trian-
gles sharing a vertex or edge, we do not apply adaptive multipole,
but instead just use the standard midpoint scheme to avoid infinite
energy contribution.

Approximation error. The error of energy approximation is of
order 𝑂 (\2). Cost of course increases as \ → 0; in our experiments
\ = 1

4 was already sufficient to approximate the energy with a
relative error around 0.1%.

Derivative Approximation. Note that since the set of admissible
leaves in the BCT can change as the surface deforms, the multipole
approximation of Φ̂ is not itself differentiable. Instead, as in Yu et al.
[2021b, Appendix B.1], we approximate the derivative of the discrete
energy, rather than try to take the derivative of the approximation.
In particular, for any admissible pair (𝑈 ,𝑉 ) used in the energy
approximation we compute the differential of Φ̂(𝑈 ,𝑉 ) with respect
to the cluster centers 𝑐𝑈 , 𝑐𝑉 , areas 𝑎𝑈 , 𝑎𝑉 , and normals 𝑛𝑈 , 𝑛𝑉 , and
propagate these derivatives down the BVH toward the leaves (via
the chain rule), ultimately yielding derivatives of the discrete energy
with respect to the vertex locations. In particular, at interior nodes,
we differentiate the relationships given in Equation 21.

5.3 Adaptive Subdivision
Next, we detail our adaptive strategy to alleviate the issue of the
midpoint discretization “missing” singularities in Φ and thus not
preventing intersections. To this end, we consider a lazy evaluation
of the multipole method on an infinite subdivision of the mesh.

Consider in particular a triangle pair (t1, t2), which we can view
as the root node of a block cluster tree. The children of any node
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Fig. 13. When two triangles t1, t2 are in near-contact, it may be insufficient
to approximate the repulsive energy using just their centers. Instead, we
pretend that each triangle has been subdivided hierarchically into infinitely
many pieces, and continue running the usual multipole approximation
algorithm. Here we show the sub-trees implicitly used for approximation;
each block corresponds to an energy term in our sum. Note however that
we do not explicitly build these trees.

(t′1, t
′
2) in this tree (including the root) are defined as the sixteen

triangle pairs obtained by splitting both t′1 and t′2 into four along
edge midpoints (Figure 13). Note, then, that the tree has no leaves:
implicitly, we have an infinite BCT defined by repeated subdivision.
Even though we do not have an explicit representation of the

tree, we can still apply a multipole algorithm via lazy evaluation.
In particular, we push the root node onto a stack. Until the stack
is empty, we check if the top element satisfies the MAC. If so, we
add the multipole approximation to our total energy; if not we split
each triangle into four and push the sixteen corresponding triangle
pairs back onto the stack. To evaluate the MAC for a triangle pair
we no longer use the AABB approximation, which is unnecessarily
conservative. Instead, we use the exact triangle diameter (equal to
the longest edge length) and the exact triangle-triangle distance.
Algorithm 3 (found in the supplement) provides pseudocode for
a simple stack-based implementation. In practice we use a much
faster stack-free implementation that implicitly encodes the vertex
coordinates, rather than allocating them in memory.

Derivatives. We also adaptively approximate the energy differ-
ential. For optimization, we need only derivatives with respect to
original mesh vertices. Hence, rather than propagate information
“down” from coarse nodes to vertices in leaves of the tree, we propa-
gate information “up” from subdivisions of a triangle pair toward

the original triangles. This computation is made easy by the fact that
(i) all subdivided triangles share normals with their coarse ancestor,
(ii) the subdivided area at depth 𝑘 is simply (1/4)𝑘 times the original
area 𝑘 , and (iii) the center of a subdivided triangle is a barycentric
linear combination of the three original vertices. This procedure is
made explicit in Algorithm 3 (found in the supplement).

5.3.1 No-intersection Property. Though we do not provide a rig-
orous proof, we can at least sketch a fairly compelling argument
for why our adaptive scheme should approach infinite energy for
surface trajectories that approach self-contact. There are two basic
cases to consider: adjacent and non-adjacent elements. Intersections
between adjacent elements, which are not included in the discrete
adaptive tangent-point energy, are prevented by the infinite barriers
in the discrete membrane and bending energy (due to the logarithm
and tangent functions—see Section 3.1). Other schemes such as IPC
use elastic penalties in the same way: to prevent local collisions and
fold-overs not accounted for by repulsion [Li et al. 2020, Sections
2 and 4.4]. For non-adjacent elements, suppose we do not truncate
the tree to any fixed depth. The resulting approximation error then
depends purely on the MAC parameter \ (Equation 18). Recall in
particular that multipole makes an additive error of size 𝑂 (ℎ + \2)
(Equation 20). Hence, no matter how large the (unknown) constant
𝐶 in this approximation error, there will always be a separation
distance 𝑅 between the two closest points of contact such that the
approximation error is below any tolerance Y. Hence, one could
ensure that no intersections occur by, e.g., applying backtracking
line search to the total energy (elastic plus adaptive TPE).

In practice, since we aim primarily to obtain descent directions for
optimization, we do not need a particularly accurate approximation
of TPE. We hence use a larger \ parameter for adaptive subdivision
than for the global BCT (\ = 10 in all our experiments). Adaptive
refinement is of course more expensive than the midpoint scheme,
but in most scenarios it is active for only a small number of triangle
pairs in near-contact (or not at all). See further experiments and
discussion in Sections 7.2.1 and Section 8.

6 NUMERICAL OPTIMIZATION
Computing both interpolating and extrapolating geodesics leads to
spacetime optimization problems. Here we describe how to solve
these problems efficiently.

6.1 Interpolation
To find a geodesic x0, . . . , x𝑛 ∈ (R3) |V | interpolating given configu-
rations x0, x𝑛 we use a trust-region method to minimize the discrete
path energy Equation 6, following [Nocedal and Wright 2006, Alg.
4.1]. Each step of this method minimizes a local quadratic model
of the energy over a limited-size ball around the current guess. In
our case, the “current guess” means the current trajectory, viewed
as a point in (R3 |V | )𝑛−1 corresponding to the degrees of freedom
x1, . . . , x𝑛−1. In the case of repulsive shells, our discrete path energy
ℰ̂ (x) is the sum of an elastic term

ℰ̂𝒲 (x) B 𝑛

𝑛∑︁
𝑘=1

𝒲 (x𝑘−1, x𝑘 )
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Fig. 14. Passing a camel through the eye of a needle. The initial mesh (far left) is first progressively compressed into a cylinder (far right); we then find a
geodesic between initial and compressed states (left to right). Bottom: close-up of compressed geometry from left/right sides; inset shows occluded piece.

plus a repulsive term

ℰ̂Φ (x) B 𝑛

𝑛∑︁
𝑘=1
(Φ̂(x𝑘−1) − Φ̂(x𝑘 ))2,

where the latter can be viewed as a nonlinear least squares energy.
Hence, to define our local quadratic model we use the Hessian of
ℰ̂𝒲 (x), plus the Gauß-Newton approximation of the Hessian of
ℰ̂Φ (x).

For this approximation, we consider the vector

𝒱 (x) =
(
Φ̂(x0) − Φ̂(x1), . . . , Φ̂(x𝑛−1) − Φ̂(x𝑛)

)
∈ R𝑛

and express the repulsive term as ℰ̂Φ (x) = 𝑛𝒱 (x)𝑇𝒱 (x). Its first and
second derivatives are then

dxℰ̂Φ = 2𝑛 (dx𝒱)𝑇𝒱 (x),
d2
xℰ̂Φ = 2𝑛 (dx𝒱)𝑇 dx𝒱 + 2𝑛 (d2

x𝒱 (x))𝑇𝒱 (x),

respectively. Near a minimizer 𝒱 (x) is small, and hence the Hessian
is well-captured by the Gauß-Newton approximation

𝐻GN B 2𝑛 dx𝒱𝑇 dx𝒱 ∈ R3(𝑛−1) |V |×3(𝑛−1) |V | .

This matrix is symmetric and block-tridiagonal, with layout

𝐻GN =


𝐴1 𝐵1

𝐵𝑇1
. . .

. . .

. . .
. . . 𝐵𝑛−2
𝐵𝑇
𝑛−2 𝐴𝑛−1


,
𝐴𝑘 := 4𝑛 dx𝑘 Φ̂ dx𝑘 Φ̂𝑇 ,
𝐵𝑘 := −2𝑛 dx𝑘 Φ̂ dx𝑘+1 Φ̂𝑇 ,

where all blocks have size 3|𝑉 | × 3|𝑉 |. Overall, our quadratic model
has the matrix representation 1

2x
𝑇𝐵x + 𝑐𝑇 x, where

𝐵 := d2
xℰ̂𝒲 + 𝐻GN ∈ R3(𝑛−1) |V |×3(𝑛−1) |V |

and 𝑐 ∈ R3(𝑛−1) |V |×3(𝑛−1) |V | is the differential of the path energy
ℰ̂ (x) with respect to x, computed à la Section 5 (see Supplement,
Appendix B for details).

To avoid assembling the dense blocks of the Gauß-Newton approx-
imation, we use an iterative solver for the trust region subproblem.
In particular, we use Steihaug’s conjugate gradient (CG) method [No-
cedal and Wright 2006, Alg. 7.2], which extends conventional CG to
indefinite problems with constraints on the norm of the solution.
As with any CG method, we must apply a preconditioner to

achieve fast convergence. We use the block-diagonal matrix 𝑃 ∈
R3(𝑛−1) |V |×3(𝑛−1) |V | with blocks 𝑃𝑘 = d2

y𝒲 (x𝑘 , y) |y=x𝑘 for each
time step 𝑘 = 1, . . . , 𝑛 − 1. In other words, we take the Hessian
of the elastic energy with respect to the second configuration y,
assuming the first configuration is fixed at x𝑘 , then evaluate this
Hessian at y = x𝑘 . This preconditioner behaves like a Newton
preconditioner for the elastic energy in space, and like the identity
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(or 𝐿2) preconditioner in time. Since the Euler-Lagrange equations
for the path energy look like a 1D Laplace equation in time, it might
also be helpful to use an𝐻1 preconditioner in time (i.e., take the 2nd-
order centered difference of consecutive configurations). However,
the 𝐿2-in-time scheme is easier to assemble and cheaper to invert,
as we can easily exploit its block structure.

6.1.1 Initialization. In order to optimize geodesics, we must begin
in a feasible state. This means that each of the individual time steps
x0, . . . , x𝑛 must be intersection free—however, we are not required
to provide a time-continuous initial trajectory that is intersection-
free. This setup gives us a fair bit of flexibility in initializing the
solver. In many situations (e.g., Figure 4), it is sufficient to start with
a piecewise continuous trajectory where x𝑘 is initialized to either
x0 or x𝑛 depending on whether 𝑘 is greater or less than 𝑛/2.

midsurface

For more difficult examples, one may need to be
more intelligent about initialization. For instance,
in Figure 11, we use a middle configuration x𝑛/2
where the hands have been placed far apart—but
still use a piecewise constant initialization (now
with three pieces). Other examples likewise use a
single additional middle configuration, computed
in a problem-specific way—see Section 7 for more details. In general
this approach provides one reasonable initialization strategy: a user
need only specify a very small number of “hints” about where a
collision-free trajectory might need to travel, and optimization takes
care of the rest. One could also supply a continuous initial trajectory
and “tighten” it to a geodesic, but we did not find it necessary to
provide nearly this much information for any of our examples.

6.2 Extrapolation
To extrapolate a pair of given surface configurations x𝑘−1, x𝑘 to
the next configuration x𝑘+1, we solve Equation 8, but now use
Equation 17 to approximate dist2

Φ (Figure 27 shows an example).
In particular, if we let 𝑓 : R3 |V | → R3 |V | be the function mapping
x𝑘+1 to the left-hand side of Equation 8, then we seek to solve the
nonlinear equation 𝑓 (x𝑘+1) = 0. Since this equation is nonlinear, we
use Newton’s method with step size 𝜏 chosen via Armijo line search.
In particular, each step of Newton’s method computes x𝑘+1 ←
x𝑘+1 − 𝜏 (dx𝑘+1 𝑓 )−1 𝑓 (x𝑘+1). Hence, we have to invert the Jacobian
dx𝑘+1 𝑓 in each iteration. The Jacobian itself is given by

dx𝑘+1 𝑓 = 𝐻𝑀 (x𝑘 , x𝑘+1) − 2 dx𝑘Φ̂ ⊗ dx𝑘+1̂Φ, (22)

where 𝐻𝑀 B d2
x𝑘 ,x𝑘+1𝒲 ∈ R3 |V |×3 |V | is the mixed Hessian of the

elastic energy, i.e., the partial derivative of each of the 3|V| equations
in the system dx𝑘𝒲 (x𝑘 , x𝑘+1) = 0, with respect to each of the 3|V|
coordinates of x𝑘+1. Since the remaining term is just a rank-one
update of this mixed Hessian, we can apply the Sherman–Morrison
formula to get

(dx𝑘+1 𝑓 )−1 = 𝐻−1
𝑀 −

2𝐻−1
𝑀
(dx𝑘 Φ̂) (dx𝑘+1 Φ̂)𝑇𝐻−1

𝑀

1 + 2 (dx𝑘+1 Φ̂)𝑇 𝐻−1
𝑀
(dx𝑘 Φ̂)

. (23)

To efficiently invert the Jacobian, we can hence prefactor𝐻𝑀 (x𝑘 , x𝑘+1)
and perform backsubstitutions. Our initial guess for x𝑘+1 is always
just the previous step x𝑘 . Though it is tempting to, e.g., perform
linear extrapolation, using the previous step ensures that we do

not introduce self-intersections—moreover, as in the elastic case, a
linear extrapolation can in some cases lead to a much worse initial
guess (e.g., in situations of tight pinching).

6.3 Weighted Averages
How do you average a given set of data points? In a vector space
(e.g., given points in the plane), one can simply take the arithmetic
mean. But this elementary definition no longer applies to data that
lives on a manifold, such as rotations, which live in SO(3)—or con-
figurations of an elastic shell, which belong to a shape space (ℳ, 𝑔).
Here, a variational definition is more natural: given data points
x1, . . . , x𝑘 and fixed weights _1, . . . , _𝑘 ∈ [0, 1] that sum to one, find
a configuration

x(_) := arg min
x

𝑘∑︁
𝑖=1

_𝑖 dist𝑔 (x, x𝑖 )𝑝 . (24)

For 𝑝 = 2, any such minimizer is called a (weighted) Karcher
mean [Karcher 2014], and coincides with the usual arithmetic mean
for ℳ = R𝑛 and _𝑖 ≡ 1/𝑘 .
For repulsive shells, we can approximate Equation 24 via the

distance formula given in Equation 17, yielding a natural notion
of intersection-free (weighted) averages between shapes in very
different configurations. Figure 1 shows one example, where the
repulsive component of our metric is crucial for avoiding large
intersections that otherwise occur in the elastic shape space. More
accurate averages might be achieved by, e.g., replacing the geodesic
distance with the path energy and simultaneously optimizing 𝑘
geodesics—though we do not pursue that approach here.

6.4 Upsampling
A nice benefit of using an adaptive discretization (Section 5), as
well as a consistent discretization in space (Section 3) and time (Sec-
tion 2.4) is that, in our experiments, coarse trajectories are usually
predictive of fine scale behavior. We can hence upsample in space
or time to get higher-fidelity results with less computational cost.

6.4.1 Temporal Upsampling. For all of our interpolation examples,
we use a simple upsampling scheme to achieve temporal resolution
suitable for animation (60fps). Starting with a coarse solution, we in-
sert a new configuration x𝑘+1/2 = x𝑘 between any two consecutive
configurations x𝑘 , x𝑘+1, then minimize the path energy of this finer
trajectory. Similar to the initialization scheme from Section 6.1.1,
this strategy gives a piecewise constant trajectory that is guaranteed
to be free of intersections. In practice we typically start with only
eight samples in time, subdividing to as many as 512 samples for
final animations. Figure 30 shows one example indicating that the
coarse preview is highly predictive of the final result—making this
approach quite attractive for iterating on a design.

6.4.2 Spatial Upsampling. We also explored a simple strategy for
spatial upsampling. In addition to accelerating computation, this
strategy enables one to de-couple the simulation mesh from the
mesh used for final output or visualization—preserving the original
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connectivity if needed. As a precompu-
tation, we compute correspondence be-
tween a fine mesh Mfine used for visual-
ization and a coarse meshMcoarse used
for computation. (We generated coarse
meshes via remeshing and smoothing
from OpenFlipper [Möbius and Kobbelt
2012].) More explicitly, for each vertex
𝑖 of Mfine we find the closest point on
Mcoarse. If this point is on a triangle, we store its barycentric coordi-
nates and the (signed) normal offset. If the closest point is instead on
a vertex 𝑖∗ ofMcoarse, we express the offset as a linear combination of
the normals𝑛1, . . . , 𝑛𝑑 around coarse vertex 𝑖∗, where𝑑 is the degree
of 𝑖∗. In particular, we use QR decomposition to find the smallest-
norm solution of the linear system [𝑛1 · · ·𝑛𝑑 ]𝑐 = 𝑥fine

𝑖
− 𝑥coarse

𝑖∗ ,
where 𝑐 ∈ R𝑑 . For each configuration x𝑘 , we can then trivially
compute offsets from the coarse mesh to recover a fine upsampling.
This simple scheme could of course be improved in a number of
ways—for instance, we do not perform any further optimization
after spatial upsampling, which can leave small intersections in
regions of very close contact (e.g., Figure 21), though we did not find
it affects overall qualitative appearance (and it has no impact on op-
timization). Intersection-free upsampling is an interesting question
for future work.

7 EVALUATION AND EXAMPLES
We evaluated our method on a variety of challenging examples. To
gauge the effectiveness of the elastic + TPE energy, we first consider
basic minimization tasks (Section 7.3), subject to various constraints.
We then explore how this energy facilitates collision-avoiding inter-
polation and extrapolation (Section 7.4). We also provide numerical
evaluation and comparison with several alternatives (Section 7.2.2).

Note that although we consider here only interpolation, extrapo-
lation, and averaging, the metric (and optimization framework)
we have developed fits squarely into the standard shape space
framework—and could hence bemore broadly applied to task such as
parallel transport for detail transfer [Heeren et al. 2014] or nonlinear
statistics of shapes [Fletcher et al. 2004; Heeren et al. 2018].

7.1 Implementation
We implemented our method in C++ using the OpenMesh [Botsch
et al. 2002] library for mesh data structures, Eigen [Guennebaud
et al. 2010] for numerical linear algebra, SuiteSparse [Davis 2006]
for direct linear solvers, the GOAST [Heeren and Sassen 2020] for
optimization and variational problems (including the discrete elastic
energy), and the Repulsor [Schumacher 2023] library for the tangent-
point energy. Most experiments were run on a Intel i7 1260p laptop
with 4 performance cores and 32GB RAM; to generate final 60fps
frame rate animation we used a single workstation with two 32-
core AMD EPYC 7601 processors with 1TB RAM. Evaluation of the
surface energies and their derivatives were trivially parallelized
over time steps (using OpenMP); further parallelization could easily
be achieved in a variety of ways (e.g., by solving linear systems
in parallel, or porting to the GPU). We found in practice the most
expensive step is most often computing the initial coarse trajectory.

Subsequent refinement in time is progressively cheaper, since here
we already have a good initialization, and need to perform relatively
few optimization steps. For instance, Figures 11 and 15 each took
first 10 minutes to find a coarse trajectory, then 5 and 2-3 minutes,
respectively, to refine. Some of the more involved examples require
a stepwise minimization with changing parameters to obtain the
final results (see e.g., Section 7.4.2). The runtime for such examples is
typically much higher, i.e., they can take multiple hours for detailed
meshes. Our simulation meshes in Figures 1, 4, 11, 14, 18, 21, 22, 23,
26, 27, 28, 29 have 3995, 5120, 6766, 11534, 4996, 5996, 9992, 5400,
8152/8344/6204, 5966, 10192, 5498 triangles, respectively.

7.2 Numerical Tests
7.2.1 Adaptive Quadrature. The cost of adaptive subdivision (Sec-
tion 5.3) depends on the number of triangle pairs that violate the
MAC, and hence on the dimension of the contact region. In the worst
case, this contact will occur over dense two-dimensional regions—
for instance, in the synthetic case of two parallel plates separated by
a tiny distance 𝛿 > 0 we would have to refine everywhere. To exam-
ine behavior on a more representative example, we consider a pair
of hand models meeting at fingertips (0-dimensional contact), along
fingers (1-dimensional contact), and across palms (2-dimensional
contact), as shown in Figure 17. Here we plot both the evaluation
cost and our approximation of the tangent-point energy Φ, as a
function of the separation distance 𝛿 > 0 and the mesh resolution.
Examining the energy plots, we observe that non-adaptive quad-
rature significantly under-estimates the energy in regions of close
contact (even at very highmesh resolutions), whereas adaptive quad-
rature captures a contribution with the expected asymptotic growth
of 𝑂 (1/𝛿𝛼 ), where recall that 𝛼 is the integrability parameter of
Φ from Section 3.2. Simultaneously, the growth in evaluation cost
is quite small—not even quite as large as the linear and quadratic
growth one might expect from 1- and 2-dimensional contact (resp.),
and also quite small in absolute terms. We have observed this be-
havior consistently across all examples: unless nearby surfaces have
identical curvature, there will invariably be point-like peaks which
minimize the surface-surface distance (like knuckles on the palms),
and hence dominate the energy (growing as 1/𝛿𝛼 with distance).

7.2.2 Alternative Formulations. As noted in Section 3, nothing about
our graph manifold construction depends on the specific form of
the tangent-point energy Φ—one could try replacing it with any
other repulsive potential. To this end, we did several experiments
using the incremental potential contact (IPC) energy in place of TPE,
using the authors’ own reference implementation for energy and
derivative evaluation [Li et al. 2020].
Despite the all-pairs nature of TPE, we found that in practice

the hierarchical evaluation provided by the multipole scheme ac-
tually tends to yield a lower evaluation cost than the IPC penalty
(Figure 16), except in regions of very tight near-contact, such as
the scrunched-up camel (Figure 16, right). The fact that the IPC
penalty and TPE have a similar cost should come as no surprise:
both methods use a spatial acceleration data structure to prune
down all𝑂 (𝑛2) element pairs into a dramatically smaller evaluation
set. In particular, the IPC implementation uses a spatial partitioning
strategy, via a regular grid with 𝑂 (1/𝑑3) elements; TPE uses an
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skeletal rig elastic shell repulsive shell (ours)

start end

intersection

Fig. 15. Interpolation between far-left and far-right poses, using a skeletal rig (top), a geodesic in the space of elastic shells (center), and a geodesic in our
repulsive shell space (bottom). Notice that the repulsive metric does not merely resolve local intersections near moments of contact—rather, it alters the overall
motion plan, yielding different global poses that proactively avoid intersection.
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Fig. 16. Timings of energy evaluations. We show the time it takes to evaluate TPE and the IPC barrier energy without parallelization on an AMD EPYC 7601
along various geodesics. These are, from left to right, the geodesics from Figures 11, 15, 20 (initialization), and 14.

object partitioning strategy, via a bounding volume hierarchy (BVH)
with 𝑂 (𝑛 log𝑛) elements. Moreover, since our TPE scheme uses a
fast multipole scheme, we get accurate energy evaluation without
omitting distant interactions (which account for only about 5% of
total evaluation cost for the examples in Figure 16).

We also found that a collision potential like the IPC penalty yields
less than satisfactory behavior for shape space optimization, often
yielding sudden “jumps” in the configuration (Figure 20)—even
with extensive tuning of the IPC target distance 𝑑 and the repulsion
strength 𝛽 . We speculate that the compact support of the IPC penalty
means that it does not provide useful guiding forces far from contact,
with more localized peaks in the energy landscape than for TPE.
This behavior is reflected in Figure 18, where we compare TPE-
and IPC penalty-based formulations in our trust-region framework
without applying continuous collision detection (CCD) to prevent
self-intersection—instead, we rely solely on the strength of the actual
forces (i.e., energy gradients) provided by the TPE and IPC potentials.

CCD could perhaps be helpful in our numerical framework as well,
but these experiments suggest it would likely be invoked less often
(incurring lower cost). On the whole, we found that TPE works
best for our shape space problems, though further exploration (e.g.,
using a convergent variant of IPC [Li et al. 2023] or an integrated
barrier approach using a short-range repulsive energy) may yield
interesting alternatives.
A completely different alternative is to use a method that tries

to diffeomorphically deform the ambient space. For instance, Eisen-
berger and Cremers [2020] restrict deformation velocities to a fixed
basis of low-frequency divergence-free fields. In case of detailed
surfaces, the deformations arising from the low-frequency field are
not capable to resolve these details leading to significant artifacts in
regions of close local contact (Figure 19). The use of a Lagrangian
surface mesh, combined with our adaptive quadrature scheme, en-
sures that we can resolve both geometric and energetic features at
the appropriate level of detail.
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Fig. 17. To gauge the cost and accuracy of our adaptive energy evaluation strategy, we consider situations with regions of 0-, 1-, and 2-dimensional near-contact,
separated by a decreasing distance 𝛿 > 0 (top row). Our adaptive strategy captures the correct rate of energy growth, whereas a fixed midpoint scheme
(dashed lines) fails to approach infinity even under substantial refinement (middle row). Meanwhile, the adaptive scheme is not significantly more expensive,
even for higher-dimensional near contact (bottom row).

adaptive TPE
(ours)

IPC
[Li et al 2020]

intersection

Fig. 18. IPC provides a logarithmic collision barrier and relies on continuous
collision detection (CCD) as a failsafe due to the only weak repulsive forces.
Left: without CCD, using the IPC penalty as Φ in Equation 25 can yield large
self-intersections. Right: here our adaptive tangent-point energy still nicely
prevents collision, even without expensive checks.

7.3 Energy Minimization
The combination of elastic and tangent-point energy is useful for
applications beyond the shape space framework—in principle, one
could use the repulsive energy as a regularizer in any scenario where
an elastic energy is already used [Bartels et al. 2022]. Here, we will
specifically consider the variational problem

min
x

𝒲 (x0, x) + 𝛽 Φ(x), (25)

where x0 is a given reference configuration as a basic minimization
task before moving on to interpolation and extrapolation. We will
add further terms to Equation 25 for each application.

7.3.1 Nonrigid Packing. To pack nonrigid objects into tight spaces
(as might be useful for, e.g., 3D printing), we can add a barrier term

start endrepulsive shells (ours)
[Eisenberger & Cremers 2020]

Fig. 19. Methods based on injectively deforming the space around an object
can struggle with shapes in near-contact due to insufficient spatial resolu-
tion. Here we compare shape interpolation via our method (top) versus a
method based on divergence-free volumetric flows (bottom).

to Equation 25 that forces the surface to stay inside a given domain
Ω ⊂ R3. In general, if 𝜙 (𝑥) is the signed distance to the domain
boundary 𝜕Ω, we use a barrier 1/𝜙2 (𝑥). For instance, in Figure 21
we use a barrier

ℰbox (x) B
∑︁
v∈V

3∑︁
𝑖=1
(𝑙𝑖 − xv,𝑖 )−2 + (xv,𝑖 − 𝑢𝑖 )−2

representing a rectangular box, where 𝑙, 𝑢 ∈ R3 are the lower and
upper bounds of the box, resp. In Figure 22 we instead use a spherical
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jump

IPC (d=0.001, β=1)IPC (d=0.001, β=1) IPC (d=0.001, β=2)IPC (d=0.001, β=2)

tangent-point energy tangent-point energy (no jumps)

Fig. 20. When using the IPC barrier as potential energy in our framework,
we struggle to find geodesics without sudden “jumps” (more obvious in
supplementary video), even with good initialization (top left). Here using
the IPC barrier energy for repulsion fails to yield a smooth surface eversion,
even after extensive parameter tuning (bottom three rows). A TPE-based
formulation easily finds smooth trajectories without jumps (top right).

front backcollision-based

Fig. 21. Progressively packing an octopus (top left) into a small box (bottom
right) with a long-range repulsive potential yields a well-separated packing
that nicely preserves local geometric features. The result is qualitatively dif-
ferent from a collision-based packing (inset, using reference IDP code), which
prevents interpenetration but may not yield a nice global arrangement.

barrier

ℰsphere (x) B
∑︁
v∈V

1
(𝑟 − |xv |)2

.

In both cases we then reduce the size of the bounding domain
step-by-step and thus get a tight packing of the shapes into suc-
cessively smaller regions. Unlike Yu et al. [2021a], which “forgets”
all surface detail from the original domain, this strategy nicely pre-
serves surface detail. Moreover, in contrast to a surface packing
via artificial time integration of physical dynamics, which merely
forbids collisions, a global repulsive energy seeks to maximize sepa-
ration distance between all points—uniformly distributing gap sizes
throughout the domain. Compare for instance Figure 21, bottom
left, computed via the code from interactive deformation processing
(IDP) [Fang et al. 2021], versus our results in the same figure. Elastic

above below

(cross sections)

Fig. 22. Progressively packing two bunnies into a smaller and smaller sphere
(top) yields surfaces that are not only intersection-free, but also nicely
distributed throughout the volume (bottom).

isometric
embedding

(ours)

isometric immersion
[Chern et al 2018]

Poincaré
disk

C1 isometric
embedding
[Borrelli et al 2023]

(intersections)

Fig. 23. We can use our framework to faithfully visualize abstract metrics.
Here we isometrically embed a large piece of the hyperbolic plane 𝐻 2,
obtaining an surface that is both intersection-free and more regular than
previous embeddings.

surface packing with large inter-surface “padding” may be partic-
ularly interesting for digital fabrication, e.g., printing pre-stressed
deformable objects in a silicone mold [Alderighi et al. 2018].

7.3.2 Isometric Embeddings. Many phenomena occurring in na-
ture experience internal growth that leads to an external change in
shape—consider for instance a growing leaf, where local division
and growth of cells induces buckling and rippling in the observed
geometry. Here, embeddings of so-called hyperbolic metrics can
help explain growth patterns of “frilly” plants in nature [Yamamoto
et al. 2021]. More generally, the question of how an abstract surface
with an intrinsic notion of length can be faithfully embedded in
space is a fundamental challenge in natural sciences, engineering,
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elastic shell repulsive shells
larger
radius

conformal fla�ening

smaller
radius

intersection

Fig. 24. Without the repulsive term, attempts at hyperbolic embedding
yield large self-intersections (left). Long-range repulsive forces also help to
encourage global symmetry (center, right). A conformal flattening of the final
embedded mesh helps verify that the embedding is indeed nearly isometric
(bottom right).

and design [Van Rees et al. 2017]—as well as a variety of computer
graphics and geometry processing algorithms [Chern et al. 2018].
Formally, given an abstract surface 𝑀 with a Riemannian metric 𝑔,
we seek an embedding x : 𝑀 → R3 that exhibits the same metric,
i.e., 𝑔𝑝 (𝑢, 𝑣) = ⟨d𝑝x(𝑢), d𝑝x(𝑣)⟩ for all tangent vectors 𝑢, 𝑣 ∈ 𝑇𝑝𝑀
at all points 𝑝 .

A number of algorithms have been developed to solve the isomet-
ric embedding problem. For instance, inspired by the Nash–Kuiper
theorem [Nash 1954; Kuiper 1955], Borrelli et al. [2012] developed an
algorithm based on convex integration, producing beautiful images
of isometric embeddings, including the hyperbolic plane [Borrelli
et al. 2023]. However, these surfaces are only𝐶1, achieved bymaking
infinitely-fine corrugations (see Figure 23, (bottom right)). Chern
et al. [2018] consider smoother isometric immersions, i.e., maps
𝑥 : 𝑀 → R3 that locally induce the right metric, but can exhibit
significant self-intersections. The combination of a repulsive and
elastic energy enables us to obtain maps that are embedded and also
much smoother than just 𝐶1. Like Chern et al. [2018], we make no
claim that such maps can always be found.

Isometric embedding becomes more concrete in the discrete set-
ting: given only mesh connectivityM = (V, E, T) and an assignment
of edge lengths ℓ : E→ R>0 satisfying the usual triangle inequali-
ties, we seek vertex positions 𝑥𝑖 ∈ R3 such that |𝑥𝑖 −𝑥 𝑗 | = ℓ𝑖 𝑗 for all
𝑖 𝑗 ∈ 𝐸. We find embedded surfaces that approximate this condition
by minimizing the sum of tangent-point energy, a small bending
energy which seeks dihedral angles as close as possible to zero,
and a membrane term that tries to match the given edge lengths.
Here we use a much larger membrane weight than usual, to obtain
near-isometric embeddings. The tangent-point energy also serves
as an implicit bending term that provides further regularization.
Figure 23 shows one example where we embed a large disk from
the hyperbolic plane 𝐻2. To aid optimization we start with a small
disk in the plane, and progressively grow the radius 𝑅 (by uniformly
scaling the domain vertices). To verify that the embedding is close
to isometric, we compute a conformal flattening with minimal area
distortion via [Sawhney and Crane 2017], yielding the expected
scale factors over the Poincaré disk (Figure 24).

higher membrane sti�ness
(closer to isometry)

repulsive shells (ours)

[Chern et al 2018] [Borrelli et al 2013]

Fig. 25. Here we compute near-isometric embeddings of a flat metric on the
torus𝑇 2. As we increase membrane stiffness (hence get closer to isometry),
corrugations naturally arise (bottom)—reminiscent of a Nash–Kuiper em-
bedding (top right), and suggesting better agreement with the target metric
than Chern et al. [2018] (top left).

7.4 Interpolation and Extrapolation
We next evaluate our method’s ability to generate natural shape
interpolation and extrapolation, without use of a rig or any other
additional information.

7.4.1 Interpolation. The most basic interpolation task is to find
a geodesic between given configurations x0 and x𝑛 . For instance,
Figure 30 shows an interpolation between two poses of the human
body going from arms behind the back, to arms in front of the
torso. Notice that, unlike purely elastic interpolation or interpola-
tion of rig parameters, our formulation naturally and automatically
finds a global intersection-free motion. Figure 11 shows a similar
example where we find an intersection-free interpolation between
two different interleavings of the hands. Since we maintain a near-
constant level of repulsive energy throughout the trajectory, the
hands remain close to each other, sliding almost tangentially while
still exhibiting natural bending of the fingers. Again, no rig is used.
As noted in Section 6.1.1, we initialize the path with a separated
middle state to provide an initial “hint” to the optimizer. To generate
Figure 14 we first pack the camel into a small tube à la Section 7.3.1;
we then use this packed state as the endpoint x𝑛 of a geodesic from
the original camel x0.

7.4.2 Inversion. A classic challenge in mathematical visualization
is to “turn a surface inside out,” i.e., to construct a continuous, reg-
ular family of surfaces between some given surface, and the same
surface with opposite orientation. The most famous example is the
so-called sphere eversion [Sullivan 1999], where the key trick is to
minimize an energy starting from a symmetricmid-surface. Recently,
Chern et al. [2018] also compute near-isometric eversions, where
the metric is closely preserved. This past work largely considers
families of immersions which permit self-intersections—which in
the spherical case are unavoidable for topological reasons. For this
reason, the problem has remained quite abstract for the general
public, requiring significant exposition to even understand the rules
of the game [Thurston et al. 1994].
Our repulsive shape space enables us to illustrate more broadly

accessible surface eversions, where the surface cannot pass through
itself in a nonphysical way. To do so, we must of course consider
surfaces of different topology, such as disk-like surfaces. A basic
example is shown in Figure 29 where a sphere with a hole is everted
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Fig. 26. Turning laundry right side out. For each article of clothing we compute a geodesic between a mesh with original and reversed dihedral angles. Intricate,
collision-free deformation, like fingertips being inverted as they are pulled through the glove, emerge naturally from the definition of our repulsive metric.

Front Front

Elastic

Fig. 27. Twisting two cylinders via extrapolation starting from the two left-
most pairs. Without repulsive term, extrapolation would move the cylinders
through each other and twist them apart (inset image). However, the repul-
sive shells exponential map twists the surface into tight configurations.

side
view

side view

Fig. 28. A leaf naturally rolls up by extrapolating a tiny bend at the tip (top
left). Since the initial motion from x0 to x1 slightly increases repulsive energy,
the exponential map gradually brings the leaf closer and closer to itself,
approaching self-intersection only at time 𝑡 = ∞. Meanwhile, the elastic
part of the metric preserves surface detail and guides the overall motion.

using both purely an elastic shell geodesic (producing immersions)
and a repulsive shell geodesic (producing intersection-free embed-
dings). Increasing membrane stiffness in our elastic energy drives
this family closer and closer to an isometric eversion. An even more
relatable example is shown in Figure 26, where we use our algorithm
to solve the vexing problem of turning washed laundry outside-in.

Fig. 29. Inversion of cut-open sphere. Top: Discrete geodesic interpolation
without repulsion (green to purple). Bottom: Geodesic interpolation with
repulsion (blue to red). The fixed surface boundary is shown as yellow curve.

For each of these examples, we take a givenmesh x0 and construct
the reversed mesh x𝑛 by flipping the sign of all dihedral angles, and
recovering the corresponding embedding via the method of Wang
et al. [2012]. We then compute a geodesic between x0 and x𝑛 . For
more challenging examples, like the clothing, we also construct a flat
mid-surface x𝑛/2 by minimizing an elastic energy where the target
edge lengths are equal to the initial ones, and all the dihedral angles
are constrained to zero. We then compute a piecewise geodesic from
x0 to x𝑛/2, then to x𝑛 which is coarse in time. This piecewise geo-
desic is then relaxed into a single geodesic minimizing overall path
energy. Finally, by progressively reducing the bending stiffness and
refining in time, we then obtain a smooth, near-isometric motion.

7.4.3 Rigid Motions. As noted in Section 4.2, the repulsive shell
space factors out rigid motions (as do many other shape spaces),
in order to make path energy minimization well-posed. Hence, we
have effectively optimized the shape, but not its motion in R𝑛 . How
to best add rigid motion to given surface dynamics is an interesting
question [Gross et al. 2023]; we here take an elementary approach
that simply penalizes translation and rotation in our path energy.
In particular, we add terms

ℰtrans (x0, . . . , x𝑛) = 𝑛
𝑛∑︁

𝑘=1
∥x̄𝑘 − x̄𝑘−1∥2, (26)
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Fig. 30. Although performing space-time optimization of an all-pairs energy
sounds expensive, a principled hierarchical scheme enables fast, predictive
previews with a smaller number of time steps (second row to bottom) starting
from piecewise constant initializations (first row).

which penalizes movement of the barycenters x̄ and

ℰrot (x0, . . . , x𝑛) = 𝑛
𝑛∑︁
𝑖=1

∑︁
v∈V
(x𝑘v − x𝑘−1

v ) × x𝑘−1
v

2

, (27)

which penalizes the angular momentum of the deformations.
We use this, for example, in Figure 4, where we interpolate be-

tween two translations of a sphere. Furthermore, a barrier with a
hole is placed between them. Here the barrier is incorporated in
the path energy by adding a tangent-point barrier Φbarrier (à la [Yu
et al. 2021a]) to the usual repulsive penalty Φ. As a result, the sphere
avoids contact with both the barrier and itself. Here, we also achieve
different surface behavior by adjusting the elastic material parame-
ters (Figure 31). Although the tangent-point energy also adds some
additional bending-like energy, we did not observe this to have a
noticeable effect on the choice of elastic parameters.

7.4.4 Extrapolation. Finally, we consider shape extrapolation via
the exponential map. Note that extrapolated trajectories in the re-
pulsive shell space are fundamentally different from dynamical
trajectories in physics-based collision simulation: our trajectories
continue to “go straight” no matter what, whereas dynamical elastic
trajectories responding to a collision penalty slow down as the ap-
proach an obstacle and eventually turn around. For instance, if our
initial velocity significantly increases or decreases the repulsive en-
ergy, this same rough rate of increase/decrease will continue along
the entire motion. For instance, in Figure 27 the exponential map
happily twists the surface into a tighter and tighter configuration—
whereas a collision penalty will resist with greater and greater force
as twisting increases. Figure 28 shows another interesting example,
where an artist bends the tip of a leaf, and our repulsive exponen-
tial map naturally curls it into a dormant configuration. Figure 32
verifies that our exponential map is well-behaved even in situations
of close contact—here we simply take two frames from our geodesic
interpolation of hands, and extrapolate them forward in time to
reproduce a close clasping pose.

obstacle geometry

Fig. 31. The optimal trajectory of a surface depends on the interaction
between elastic and repulsive forces—here we show variations of Figure 4
with stronger (top) and weaker (bottom) bending stiffness. The full obstacle
geometry is shown in the inset.

exponential
map

Fig. 32. Modeling intersection-free poses by hand can be challenging. Here
we use extrapolation to get a tighter fit between fingers (blue), starting with
a pair of configurations that are much easier to model (gray).

8 LIMITATIONS AND FUTURE WORK
Our framework provides the foundation for many useful extensions.
For instance, our surface-based repulsion potential could be coupled
with 3D volumetric elasticity (rather than a 2D shell model) to better
model certain kinds of physical behavior. Or, in lieu of the full set of
vertex positions, one could parameterize the shape space by degrees
of freedom from a reduced model—such as the actuators for a soft
robot, parameters in a learned latent space [Sharp et al. 2023], the
parameters of a skeletal rig, or a few sparse handles [Sumner et al.
2005]. There are also a variety of potential improvements to the
mathematical and numerical formulation detailed below.

Surfaces with Boundary. To date, the tangent-point energy has
been shown to be repulsive only for surfaces without boundary
[Strzelecki and von der Mosel 2013]. A pathological example is
two disconnected planar components sharing a common plane. In
practice, we find that both fixed and free boundary conditions tend
to work well in practice (Figures 11, 23, 26, 29, 28). Alternatively, it
may also be sufficient to add TPE of the boundary curve (à la Yu
et al. [2021a]), and perhaps a boundary-surface term, to the energy.

Numerics. The elastic Hessian used in Section 6.1 is much simpler
to implement than the fractional Sobolev inner product of Yu et al.
[2021a], but adding the latter to our preconditioner (times the re-
pulsion strength 𝛽) may improve performance in scenarios of close,
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Fig. 33. Breakdown of computational cost for two examples, showing tim-
ings for different steps of a trust region iteration and their various substeps.
Timings were measured on an Intel i7 1260p laptop with 4 parallel threads.
Notice that the cost of TPE is not much different from a local elastic energy.

high-dimensional contact (see Figure 33, right). For interpolation
problems, initialization may require some care for situations in-
volving nontrivial deformation and/or close contact. As detailed in
Section 6.1.1, however, we found that simple initialization schemes
already work quite well (e.g., providing a single “middle” pose).
Moreover, this challenge is not unique to our shape space: one
runs into similar initialization challenges even with the standard
(non-repulsive) space of elastic shells [Heeren 2017]. More intelli-
gent initialization schemes would hence broadly benefit shape space
methods. Finally, unlike Yu et al. [2021a] we do not perform adaptive
remeshing, which would be helpful in scenarios of large tangential
shearing (e.g., global isotopies à la Yu et al. [2021a, Figure 1]).

Alternative Potentials. The tangent-point energy has known chal-
lenges. For instance, it adds non-local bending regularization that
inhibits formation of sharp bends and wrinkles [Yu et al. 2021b,
Section 3.2]. As mentioned in Section 1, however, there is no reason
why we must use TPE for our shape space. For instance, although
the standard IPC potential appears not to work well for the exam-
ples in this paper (Section 7.2.2), a recent, unpublished extension
of IPC explores a continuous interpretation of IPC [Li et al. 2023].
It remains to be seen whether this energy provides a useful long-
range potential for large values of the cutoff distance 𝑑 . A more
well-established potential is the cosine energy of Kusner and Sulli-
van [1994], which was designed for long-range surface untangling,
and is based on a well-defined continuous Möbius energy [O’Hara
1991]. As explained by Freedman et al. [1994] and illustrated by Yu
et al. [2021b, Figure 3], Möbius energy suffers from a “pull tight”
phenomenon that may make it unsuitable for modeling physical
surfaces—but our elastic term may make Möbius energy useful in
the shape space context.
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