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Fig. 1. Our flow evolves a given cut toward one that yields lower area distortion when the surface is flattened. Here we start with a cut through the equator
and flow to cuts of three different lengths (visualized as seams on the tennis ball), resulting in progressively easier flattenings into the plane.

This paper develops a global variational approach to cutting curved surfaces
so that they can be flattened into the plane with low metric distortion.
Such cuts are a critical component in a variety of algorithms that seek to
parameterize surfaces over flat domains, or fabricate structures from flat
materials. Rather than evaluate the quality of a cut solely based on properties
of the curve itself (e.g., its length or curvature), we formulate a flow that
directly optimizes the distortion induced by cutting and flattening. Notably,
we do not have to explicitly parameterize the surface in order to evaluate the
cost of a cut, but can instead integrate a simple evolution equation defined
on the cut curve itself. We arrive at this flow via a novel application of
shape derivatives to the Yamabe equation from conformal geometry. We then
develop an Eulerian numerical integrator on triangulated surfaces, which
does not restrict cuts to mesh edges and can incorporate user-defined data
such as importance or occlusion. The resulting cut curves can be used to
drive distortion to arbitrarily low levels, and have a very different character
from cuts obtained via purely discrete formulations. We briefly explore
potential applications to computational design, as well as connections to
space filling curves and the problem of uniform heat distribution.

CCS Concepts: • Computing methodologies → Mesh geometry mod-
els; • Mathematics of computing → Continuous optimization;

Additional Key Words and Phrases: discrete differential geometry, geometry
processing

Authors’ address: Nicholas Sharp; Keenan Crane, Carnegie Mellon University, 5000
Forbes Ave, Pittsburgh, PA, 15213.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
© 2018 Copyright held by the owner/author(s). Publication rights licensed to ACM.
0730-0301/2018/8-ART156 $15.00
https://doi.org/10.1145/3197517.3201356

ACM Reference Format:
Nicholas Sharp and Keenan Crane. 2018. Variational Surface Cutting. ACM
Trans. Graph. 37, 4, Article 156 (August 2018), 13 pages. https://doi.org/10.
1145/3197517.3201356

1 INTRODUCTION
Which cut allows a curved surface to be most easily flattened? In
general, surfaces cannot be flattened without some distortion of
areas or angles—a classic example is maps of the Earth, which in-
variably distort the relative shape or size of land masses. Broader
interest in cutting and flattening curved surfaces arises in a variety
of problems in digital geometry processing, scientific computing,
and computational design, where distortion affects things like signal
quality, numerical accuracy, and material stress during manufac-
turing. The general strategy for reducing distortion is to make cuts
in the surface, much as a designer might accommodate curvature
by incorporating seams into a pattern for a garment. However, the
question of where to place cuts remains an ongoing challenge.

A common idea is to view cutting as an inherently discrete prob-
lem: find the best cut along edges of a triangulation. However, these
edges may have no meaning in a context like physical manufactur-
ing, where the triangulation is merely a proxy for a smooth surface.
In this paper we instead start in the smooth setting, and show that
the distortion of a cut can be minimized by integrating a remarkably
simple flow. In particular, if n is the unit normal of a curve γ , then
we simply need to evolve γ according to the equation

d
dt γ =

(
∂u

∂n

)2
n, (1)

where u is the logarithm of the scale distortion induced by cutting
the surface along γ and applying a conformal (i.e., angle-preserving)
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Fig. 2. A variational formulation of cutting makes it easy to explore low-
distortion design alternatives. Top: By adjusting parameters in our flow, we
obtain designs that look like either classic panelizations for furniture (top
left) or designs more reminiscent of race car seats (top right). Alternatively,
we can explore how the changing geometry of a surface affects the cuts
needed to easily upholster it (bottom).

flattening. The scale factor u can in turn be obtained by solving
the Yamabe equation ∆u = −K , where K is the Gaussian curvature
of the surface (Sec. 3). Since we never require an explicit map to
the plane, this approach avoids many of the difficulties typically
associated with mesh parameterization. We develop a numerical
integrator for several variations of this flow, based on the machinery
of shape optimization (Sec. 5).
The fact that we can apply shape optimization to the cutting

problem is a very special property of working with conformal maps,
rather than other types of surface flattenings. In the conformal set-
ting, one can express a flattening indirectly in terms of the log scale
factor u, rather than directly through a map f : M → R2. The Yam-
abe equation then gives a direct relationship between u and the cut
curve γ , allowing us to formulate the problem of minimal-distortion
cutting as a standard PDE-constrained optimization problem. If one
attempts the same approach for other common flattening energies,
the resulting optimization problem is constrained by yet another
optimization problem (consider for instance defining f as the mini-
mizer of a nonlinear elastic energy).

As stated however, our problem is ill-posed, since distortion can
always be reduced by making longer and longer cuts. We therefore
penalize the length of the cut by adding a simple curvature term to
the flow velocity, à la curve shortening flow (Sec. 3.2.1). By adjusting
the influence of this term, we can trade off between more traditional

cuts yielding small compact regions, and longer winding cuts that
can drive area distortion to arbitrarily low levels (Fig. 3). After con-
sidering several variations of our flow in the smooth setting (Sec. 3)
we develop an implicit Eulerian discretization and accompanying
numerical integrator on triangle meshes (Sec. 5). The resulting al-
gorithm yields cuts of a very different nature than those found in
previous work, as explored in Sec. 7.

2 RELATED WORK
The problem of cutting a curved surface into pieces that can be
easily flattened is as old as the problem of mapmaking itself. More
recently, questions about algorithmically cutting and flattening gen-
eral curved surfaces have received considerable attention.

Topological Cutting. Perhaps the most basic question is how to cut
a given surface into one or more topological disks, without reference
to the distortion of a subsequent flattening. Here, the quality of the
cut can be measured via basic geometric quantities like total length.
Even for this simple problem, finding the optimal cut is intractable:
in particular, Erickson and Har-Peled [2004] show that finding the
shortest collection of edges that cuts a polyhedral surface into a disk
is NP-hard. For this reason, we should not expect that our method
(or any method) will find a globally optimal solution. Restricted
versions of this problem can however be efficiently solved [Erickson
and Whittlesey 2005]. Another starting point, widely used in graph
theory, are Cheeger cuts, which seek the shortest cut that partitions
a domain into two pieces of near-equal size [Gotsman 2003], again
with no consideration of distortion (or even topology).

Cutting for Flattening. Amore challenging question is how to find
cuts that yield low parametric distortion. A basic first question is:
what kinds of cuts should one even consider? One idea is to partition
the surface into many small compact regions, for example by greedy
region growing or iterative clustering [Sander et al. 2001; Lévy et al.
2002; Sorkine et al. 2002; Zhou et al. 2004; Julius et al. 2005; Yamauchi
et al. 2005]. Another way is to partition into strips with long winding
boundaries, either by user-guided or automatic methods [Mitani and
Suzuki 2004; Tang et al. 2016]. A third approach is to first identify a
special set of vertices akin to the “darts” used in tailoring, then find
a Steiner tree-like cut that connects these points [Sheffer and Hart
2002]—an important special case are cone singularities [Kharevych
et al. 2006], which concentrate all the curvature into the special
points rather than anywhere along the cut [Ben-Chen et al. 2008;

Fig. 3. Without penalizing length, a cut that seeks to minimize distortion
will evolve into a curve reminiscent of space filling curves. Surface coloring
indicates area distortion (here we explicitly enforce icosahedral symmetry).
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Springborn et al. 2008; Soliman et al. 2018]. Each type of cut comes
with its own advantages and disadvantages: compact regions are
easy to pack into an atlas, but may not be optimal in terms of
area distortion. Conversely, long winding cuts may yield lower
distortion and lend themselves to easy fabrication [Schüller et al.
2017], at the cost of less compact layouts in the plane. Finally, cone
singularities pave the way to globally seamless parameterizations
with low average distortion, at the cost of extremely high distortion
near cone points (which can be problematic for fabrication). We
do not advocate for any one of these strategies, but rather observe
that our flow naturally yields all three types of cuts depending on
initial conditions. In particular: a network of patches will evolve
into small compact regions; a single closed curve will evolve into
long winding strips, and, interestingly enough, cone-like features
will automatically emerge in situations where they are beneficial
(see for example Fig. 2 and 16).

Cutting Algorithms. Algorithmically, how can one find cuts of
low distortion? The type of cuts considered has motivated past
approaches. Early algorithms used basic proxies for parameteric dis-
tortion, such as the total curvature of a patch [Yamauchi et al. 2005],
later methods focused more directly on measuring developability,
e.g., by fitting primitives like cones [Julius et al. 2005] or considering
the Gauss image [Decaudin et al. 2006]. Like our method, recent
work by Poranne et al. [2017] directly uses the distortion of the flat-
tening to guide optimization of the cut. In our case we completely
subvert the need to work with an explicit parameterization, avoiding
ensuing difficulties such as noninjectivity. Instead, the configuration
space of our problem consists purely of the cut curve itself, from
which the distortion can be directly determined.

Since our method can take any initial cut as input (including those
generated by all previous work), we can always find cuts of smaller
distortion (or a better distortion/length trade off) by simply running
our flow for some amount of time. Moreover, most existing methods
are inherently discrete, making the solution highly dependent on the
input tessellation—which in a context like digital manufacturing is a
superficial feature of discretization. In contrast, our cut flow depends
primarily on the geometry of the underlying smooth surface, can be
augmented to incorporate physically relevant terms, and generally
produces cuts of a very different nature from traditional surface cuts
(consider, for example, Fig. 1 and 6). These features open the door to
a wide variety of possibilities beyond classic problems like texture
atlas generation: it is unclear, for instance, what it would even mean
to apply standard cutting algorithms to problems like Fig. 13, 14,
or 18. Overall, the variational approach to cutting appears to be a
powerful tool that both complements and broadens the scope of the
existing surface cutting toolbox.

3 SMOOTH FORMULATION
In contrast to all previous work on cut optimization, which con-
siders discrete paths along edges, we formulate our problem in the
smooth setting, where we have a richer space of candidate solutions.
Our starting point is a variational problem that penalizes distortion
while trying to keep the cut length short. To solve this problem, we
apply the machinery of shape derivatives (Sec. 3.3) to an optimization

Fig. 4. We optimize a curve γ on a surface M to reduce the distortion of a
conformal map f : M \ γ → R2 while keeping length short. The key task is
computing the evolution speed σ in the normal direction n.

problem constrained by the Yamabe equation from conformal geom-
etry (Sec. 3.2). Using the Dirichlet energy to measure area distortion
leads to a particularly simple formulation (Sec. 3.4), though other
energies can easily be incorporated into our framework (Sec. 3.5).
An implicit formulation (Sec. 4) then leads naturally to our discrete
algorithm (Sec. 5).
The flows we obtain naturally relate to existing work on geo-

metric PDEs. Perhaps the most classic example is curve shortening
flow [Gage and Hamilton 1986; Grayson 1987], which we effectively
use as a regularizer. The tension between length and distortion is
reminiscent of the classic isoperimetric problem, i.e., finding the
largest area enclosed by a curve of fixed length. More recently there
has been a fair bit of work on nonlocal isoperimetric problems (e.g.,
[Alberti et al. 2009]); our flow provides an interesting link between
such problems and the task of conformal flattening.

3.1 Background and Notation
Our main object is a surfaceM which is cut by a network of curves
γ into one or more disk-like pieces, which constitute the cut sur-
face Mγ (Fig. 4). Any such surface admits a conformal flattening
f : Mγ → R

2, i.e., an angle-preserving map to the Euclidean plane.
Although angles are exactly preserved, lengths and areas may be sig-
nificantly distorted. This distortion can be quantified via a function
u : Mγ → R called the log conformal scale factor (defined below);
for a map with no distortion, u ≡ 0. Our goal is therefore to find an
evolution of the cut γ that drives u toward zero.
More formally, let д be a Riemannian metric on a surface M of

any topology, with or without boundary, and let γ be a network
of curves cutting M into a collection of topological disks Mγ :=
M \ γ . A differentiable map f : Mγ → R

2 is conformal if at all
points p ∈ Mγ and for all tangent vectors X ,Y ∈ TpMγ , we have
dfp (X ) ·dfp (Y ) = e2u (p )дp (X ,Y ) for some functionu : Mγ → R, i.e.,
if the inner product changes only by some positive scale factor e2u
that varies across the domain. In many situations, working directly
with the logarithm u is more natural, since scaling is multiplicative.
Throughout we use κ and K to denote the geodesic curvature of
a curve and the Gaussian curvature of a surface (resp.). We use
∆ to denote the positive semidefinite Laplace-Beltrami operator,
and ∆a := −∇ · a∇ to denote an inhomogeneous Laplacian, where
a : M → R is a positive function.
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3.2 Dirichlet Distortion Energy
How should one measure total area distortion? One natural ap-
proach is the Dirichlet energy of the conformal factor, which mea-
sures the overall variation in scaling across the domain:

ED :=
∫
Mγ

|∇u |2dA. (2)

If ED is zero, it means scaling is constant, i.e., up to a global scale
there is no area distortion. Springborn et al. [Springborn et al. 2008,
Appendix E] show that for a fixed cut γ , ED is minimized by any
conformal map with uniform boundary scaling—in particular, we
will assume that u |∂M = 0, corresponding to isometry (i.e., no
change in length). Crucially, this optimal scale factor can be obtained
without explicitly computing the flattening f , but by instead solving
the Yamabe equation

∆u = −K on Mγ
u = 0 on ∂Mγ

(3)

(see Aubin [2013, Chapter 5]). From a practical point of view, the fact
that we do not have to explicitly compute the map f avoids many
of the challenges typically associated with computing a conformal
flattening with prescribed boundary scaling. Importantly, since the
solution to Eqn. 3 already minimizes distortion for a fixed cut, the
only way to further reduce ED is to optimize the cut curve γ .

3.2.1 Length Regularization. As stated, the problem of finding
the cut that minimizes parametric distortion is ill-defined (i.e., has
no minimizer), since one can always drive the distortion closer to
zero by making longer and longer cuts. We therefore regularize this
problem by penalizing the total cut length

EL (γ ) :=
1
2

∫
γ
ds, (4)

where ds is the usual measure of arc length along the cut. Together,
the parametric distortion and length regularization terms yield a
combined energy that characterizes desirable cuts:

E (γ ) := ED (γ ) + αLEL (γ ). (5)

The coefficient αL > 0 determines the relative strength of length reg-
ularization, providing a trade off between the amount of distortion
and the complexity of the cut.

3.3 Shape Optimization
To flow towards an optimal cut, we need an expression for the
gradient of the energy with respect to variations of the cut. We first

t = 0 t = 5 t = 150
(converged)

Fig. 5. Minimizing distortion evolves a given curve (left) toward a longer
cut through regions of high curvature (right).

give a brief overview of general shape derivatives before applying
this machinery to our particular problem.

3.3.1 Shape Derivatives. Consider a shape modeled as a subdo-
main Ω′ of a larger domain Ω (Fig. 4). The shape derivative Dσ
evaluates how a given objective changes with respect to the velocity
σ : ∂Ω′ → R along a canonical direction n normal to the boundary.
(In the case of cutting, γ = ∂Ω′.)

Fixed Functions. Consider first the total area of a region Ω′ or the
total length of its boundary; in this case, the shape derivatives with
respect to a normal perturbation σ are (resp.)

Dσ

∫
Ω′
dA =

∫
∂Ω′

σ ds,

Dσ

∫
∂Ω′

ds =

∫
∂Ω′

κσ ds . (6)

The former reflects the fact that the area grows in proportion to the
boundary velocity σ ; the latter reflects the well-known fact that the
rate of length variation is proportional to geodesic curvatureκ. More
generally, consider a functionψ : Ω → R which is independent of
Ω′. Then

Dσ

∫
Ω′
ψ dA =

∫
∂Ω′

ψσ ds, (7)

and
Dσ

∫
∂Ω′

ψ dA =

∫
∂Ω′

(
∂ψ

∂n
+ κψ

)
σ ds . (8)

The additional term ∂ψ/∂n in the second expression accounts for
the fact that the value along the boundary is changing.

Céa’s method. The rules above cannot be directly applied to a func-
tionψ that depends on the shape of Ω′ itself. In particular, taking
the shape derivative becomes more challenging ifψ depends on the
solution to a PDE over Ω′ (such as the Yamabe equation). For such
objectives, Céa [1986] provides a general framework for deriving
the shape derivative, via the method of Lagrange multipliers.

In general, consider an objective of the form

J (Ω′) :=
∫
Ω′

j (u) dA, (9)

where u is the solution to a Poisson equation on Ω′, and j is a
function that depends pointwise on u (and possibly its derivatives).
More precisely, u solves the Poisson equation

∆u = f on Ω′ ⊂ Ω
u = 0 on ∂Ω′

(10)

for a fixed real-valued function f defined over all of Ω. The associ-
ated Lagrangian is

ℒΩ′ (u,p, λ) :=
∫
Ω′

j (u) dA+

∫
Ω′
p (∆u − f ) dA+

∫
∂Ω′

λu ds, (11)

where p : Ω′ → R and λ : ∂Ω′ → R are Lagrange multipliers. The
key observation of Céa’s method (which we will not justify here) is
that the shape derivative of J can be obtained by taking the shape
derivative of ℒ at a critical point. The latter is easier to evaluate,
since we can just apply the ordinary rules from Equations 7 and 8. To
do so, one must first find a critical point by solving for the Lagrange
multipliers—the adjoint problems that characterize this critical point
depend on the particular choice of integrand j (u).
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Once u, p, and λ have been determined, applying Equations 7
and 8 to ℒ yields a general form for the shape derivative of J :

Dσ J (Ω
′) = Dσℒ(Ω′) =

∫
∂Ω′

(
j (u) + λ

∂u

∂n

)
σ ds . (12)

Different energies will of course yield different shape derivatives—
the only real change is the form of the adjoint problems, which can
be obtained by taking variations of the Lagrangian with respect
to u, p, and λ (and simplifying via Stokes’ theorem). Plugging the
solutions to these problems into Eqn. 12 yields a final expression
for the shape derivative Dσ (Table 1 gives several examples).

3.3.2 Shape Derivative of Dirichlet Energy. For the energy J =
ED , several important simplifications occur. First, the adjoint prob-
lem for λ amounts to just λ = 0, i.e., at a critical point the Lagrange
multiplier for the constraint u |∂Ω′ = 0 is not active, in agreement
with the observation by Springborn et al. that constant scaling along
the boundary yields minimal Dirichlet energy. As a result, the sec-
ond term in Eqn. 12 vanishes, and one does not have to solve an
adjoint problem for p. Moreover, along ∂Ω′ = γ we have

j (u) = |∇u |2 =

(
∂u

∂n

)2
+

(
∂u

∂n⊥

)2
,

where n⊥ denotes the direction tangent to the boundary. But since
u is constant along the boundary, Eqn. 12 reduces to just

Dσ ED (γ ) =

∫
γ

(
∂u

∂n

)2
σ ds . (13)

3.4 Gradient Flow
For an arbitrary perturbation σ , Eqn. 6 and Eqn. 13 provide direc-
tional derivatives for the length and distortion terms, resp., of the
combined energy E (γ ) from Eqn. 5. Since we want to minimize
distortion on both sides of the cut, the overall derivative is

Dσ E (γ ) =

∫
γ

( (
∂u+
∂n

)2
︸   ︷︷   ︸

σD+

−

(
∂u−
∂n

)2
︸   ︷︷   ︸

σD−

+ αLκγ︸︷︷︸
σL

)
σ ds, (14)

where u+ and u− denote scale factors on either side of γ . The per-
turbation corresponding to the gradient of E is then

σ ∗ = σD+ − σD− + σL , (15)

where the terms σD± and σL account for area distortion and cut
length, resp. The cut is hence improved by integrating the flow

d
dt γ = −σ

∗n. (16)

3.5 Other Distortion Energies
We briefly consider several alternatives of the Dirichlet distortion
energy which can be useful in applications; adjoint problems and
shape derivatives for all energies are summarized in Table 1.

3.5.1 Rescaled Dirichlet Energy. The Dirichlet energy ED (γ )
penalizes distortion uniformly over the surface; a more general
spatially-varying penalty is provided by the energy

ED′ (γ ) :=
∫
M
a |∇u |2dA, (17)

Fig. 6. Left: under a conformal cut flow, curves develop more oscillations
in regions of high curvature, where the surface is hard to flatten. Right:
since long cuts almost completely eliminate area distortion, the surface
can be well-approximated by cutting the flattened shape from a sheet of
inextensiblematerial. To get a sense of approximation error, we here compute
a 3D embedding with edge lengths that closely match the flattened mesh.

where the function a : M → R>0 describes the rescaling at each
point. The resulting gradient flow is then identical to Eqn. 16, except
that the distortion terms on each side of the cut become

σ̃D± = −a

(
∂u±
∂n

)2
−
∂u±
∂n

∂p±
∂n
, (18)

and we must solve a separate adjoint problem forp (given in Table 1).

Curvature Based Rescaling. Without rescaling, the flow described
by Eqn. 16 evolves much more quickly in regions of high curva-
ture. Rescaling the energy by a local feature size r : M → R>0
helps to reduce the time step restriction for surfaces with highly
variable curvature. In practice, we use the intrinsic feature size
r := 1/(

√
|K | + r−1ε ), with a small numerical constant rε > 0. This

feature size is small in tightly curved regions and large in flat re-
gions. Rescaling by a = r3 then yields a flow that is locally scale
invariant, as revealed by a simple dimensional analysis.

3.5.2 Pointwise Energy. An alternative is to consider the inte-
grand b (u), where b : R→ R is any function that depends pointwise
on the value of u (but not its derivatives). We can again apply Céa’s
method to arrive at a shape derivative for this energy, as shown in
the final row of Table 1.

Hencky Energy. An important special case is b (u) = u2, yielding
the energy

EH (γ ) :=
∫
M
u2dA. (19)

Up to material constants, this energy corresponds to the true strain
or Hencky strain [Hencky 1928] from mechanics (this formulation
is equivalent to the more traditional formulation of Hencky strain
where u encodes the scaling from the flat reference domain to the
curved surface—consider in particular that ∆ = e−2u∆R2 .) This
energy is useful for physical fabrication, as discussed in Sec. 7.2.
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Table 1. Shape derivatives for the energies considered in this paper. In all cases the adjoint problem for p is subject to zero Dirichlet boundary conditions.

Energy Adjoint p Boundary adjoint λ Gradient Comments

Dirichlet
∫
Ω′
|∇u |2dA ∆p = −2∆u λ = 0

(
∂u

∂n

)2
problem is self-adjoint

Scaled Dirichlet
∫
Ω′

a |∇u |2dA ∆p = −2∆au λ = −
∂p

∂n
− 2a
∂u

∂n
−a

(
∂u

∂n

)2
−
∂u

∂n

∂p

∂n
∆a := −∇ · a∇

Pointwise
∫
Ω′
b (u)dA ∆p = −b ′(u) λ = −

∂p

∂n
b (u) −

∂u

∂n

∂p

∂n

b ′ denotes the ordinary
pointwise derivative

4 LEVEL SET FORMULATION
The cut flow from Sec. 3 could be directly evaluated on an explicit
curve, but here we instead reformulate the evolution on an implicit
signed distance function representation, as is common in shape
optimization [Allaire et al. 2004]. Although this formulation cannot
represent open curves, it enables easy changes in the topology of γ ,
as well as stable implicit integration. For simplicity, we here consider
a single closed curve; multiple regions are discussed in App. A.

4.1 Cut Evolution
Any closed curve γ ⊂ M can be represented as the zero level set of
its signed distance function ϕ : M → R; by convention, we assume
that the gradient of ϕ points in the direction n of the outward unit
normal of the curve, i.e., ∇ϕ = n. In general, the advection equation
for a scalar function ϕ in a velocity field X can be expressed as

d
dt ϕ = −X · ∇ϕ . (20)

Along γ in our flow, this velocity is given by the shape gradient
−σ ∗n (Eqn. 16), yielding an evolution

d
dt ϕ = −X · n = σ

∗n · n = σ ∗. (21)

Away from γ , it is difficult to explicitly express the change in the
signed distance ϕ induced by the motion of γ . However, to track
the evolution of γ , we only need to accurately integrate ϕ in the
immediate vicinity of γ . We therefore harmonically interpolate the
scalar velocitydϕ/dt (Eqn. 21) over the interior by solving a standard
Laplace equation using σ ∗ as Dirichlet boundary conditions; after
integration, ϕ is projected back onto a signed distance function
(see Sec. 6.4). An attractive feature of this formulation is that it
involves only ordinary scalar functions; we entirely avoid the need
to represent tangent vector fields, as well as the curve normal n.

4.2 Length Regularization
For a signed distance function (|∇ϕ | = 1), the curve shortening
component of the flow is easily expressed via the well-known re-
lationship ∆ϕ = −κϕ , where κϕ : M → R denotes the curvature of
the level sets of ϕ. Applying the advection equation (Eqn. 20) to the
velocity field X = −κϕn then yields the evolution

d
dt ϕ = −∆ϕ, (22)

which is modulated by the length regularization parameter αL . This
formulation easily leads to stable implicit integration (Sec. 6.3).

5 DISCRETE FORMULATION
In principle one can use any numerical technique to discretize the cut
flow; we consider an Eulerian discretization on triangle meshes us-
ing standard techniques from discrete differential geometry [Crane
et al. 2013], as outlined below. For simplicity we first consider the
case where γ is a single closed curve; the more general case of multi-
ple regions is detailed in App. A. The final algorithm is summarized
in Fig. 9.

Note that at no point do we explicitly compute a map to the plane,
avoiding many of the usual pitfalls of mesh parameterization (such
as concerns about local injectivity). Flattenings shown in figures are
purely for visualization; any conformal flattening algorithm that
guarantees minimal area distortion (such as CETM [Springborn et al.
2008] or BFF [Sawhney and Crane 2017]) could be used to produce
these results from the given cut.

5.1 Discrete Surfaces
We discretize the surfaceM as a mani-
fold triangle mesh M = (V, E, F), possi-
bly with boundary. We will use B ⊂ V
to denote the set of boundary vertices,
and I := V\B for the interior vertices. A
sequence of k indices specifies a (k−1)-
simplex; for instance, ijk ∈ F is a tri-
angle with vertices i , j, and k . An im-
portant convention is that indices ap-
pearing on both sides of an equality implicitly restrict the terms
in a sum; for instance, ai =

∑
i jk bi jk denotes a sum over triangles

containing vertex i . We use ℓi j ∈ R>0 to denote the length of edge
ij ∈ E, and 𝒜i jk ∈ R>0 to denote the area of triangle ijk . For any
vertex i , the area of the associated barycentric dual cell is one-third
the area of all incident triangles: 𝒜i := 1

3
∑
i jk 𝒜i jk , and for three

consecutive boundary vertices i, j,k ∈ B, the barycentric dual length
at j is ℓj := 1

2 (ℓi j + ℓjk ) (see inset figure). Finally, we will use θ
jk
i

to denote the interior angle at vertex i of triangle ijk .

5.2 Discrete Curvature
Gaussian curvature K is most typically discretized as the deviation
of the vertex angle sum Θi :=

∑
i jk θ

jk
i from the Euclidean angle

sum of 2π , which corresponds to the integral of K over the vertex
neighborhood. Dividing by the vertex area 𝒜i then gives us the

ACM Trans. Graph., Vol. 37, No. 4, Article 156. Publication date: August 2018.



Variational Surface Cutting • 156:7

Fig. 7. If we discretize Gaussian curvature as a value Θi per vertex (left), it
always belongs entirely to one side of the cut γ . We therefore define a Gauss-
ian curvature Θi jk per face (right), which can be distributed proportionally
to regions on both sides of the cut.

pointwise Gaussian curvature

Ki := (2π − Θi )/𝒜i . (23)

For our flow, this discretization causes undesirable artifacts: if cur-
vature is concentrated at vertices, the curvature in a region will
suddenly “jump” when the cut curve passes across a vertex. We
therefore associate Gaussian curvature with triangles, in the spirit
of Knöppel et al. [2013, Equation 13]. In particular, let

θ̃
jk
i := 2πθ jki /Θi ,

so that the augmented angles θ̃ sum to 2π around each vertex,
effectively pushing all curvature into faces (see Fig. 7, right). The
total curvature of a face ijk ∈ F is then just the deviation from the
angle sum for a Euclidean triangle:

Θi jk := π − θ̃ jki − θ̃
ki
j − θ̃

i j
k . (24)

Dividing by area gives the pointwise value Ki jk := Θi jk/𝒜i jk . The
total curvature of a partial face (obtained by multiplying Ki jk by the
partial area) then varies continuously with respect to variations of
the cut curve, helping to prevent numerical artifacts when solving
the discrete Yamabe equation (Sec. 5.5).

5.3 Discrete Poisson Equation
We discretize the Laplace-Beltrami operator ∆ via the usual postive-
semidefinite cotan matrix L ∈ R |V |× |V | with nonzero entries

Li j =



− 1
2
∑
i jk cotθ

i j
k , i , j,

−
∑
p,i Lpi , i = j .

(25)

For an inhomogeneous Laplacian ∆a with vertex scale factors a :
V → R, we simply multiply the cotans by (ai + aj )/2 to yield a
matrix La (diagonal entries are again given by row sums).

We consider two different mass matrices: a diagonal vertex mass
matrix WV ∈ R

|V |× |V | with nonzero entries (WV)ii = 𝒜i , and a
rectangular face mass matrix WF ∈ R

|V |× |F | with nonzero entries
(WF)i,i jk := 𝒜i jk/3 for each face ijk containing a vertex i . These
matrices map piecewise constant functions on dual cells and primal
triangles (resp.) to their integrated values on dual cells.
To formulate boundary conditions, we partition matrices into

blocks corresponding to interior vertices I and boundary vertices
B. (On the cut mesh defined below, B includes both vertices on the
cut and vertices along the domain boundary.) A Poisson equation

∆u = f with Neumann data ∂u/∂n = v along ∂M can then be
expressed as [

LII LIB
LTIB LBB

] [
uI
uB

]
+

[
0
v

]
=Wf, (26)

where for each boundary vertex i ∈ B the values vi ∈ R represent
the integral of v over the corresponding dual boundary edge. The
mass matrix W on the right-hand side will be either or WV or WF,
depending on whether the source term is encoded by a column
vector f ∈ R |V | of values on vertices, or f ∈ R |F | of values on faces.

5.3.1 Discrete Harmonic Interpolation. Any quantity defined at
boundary vertices can be interpolated to interior vertices via har-
monic interpolation, i.e., by solving a discrete Laplace equation with
Dirichlet boundary conditions. Explicitly, if uB ∈ R |B | are the bound-
ary values, then the interior values uI ∈ R |I | are obtained via

LIIuI = −LIBuB. (27)

5.4 Cut Mesh
Our discrete cut curve is represented implicitly via a piecewise
linear signed distance function ϕ interpolating values ϕi ∈ R at
vertices i ∈ V. The zero set γ of this function is a piecewise linear
curve, which is easily extracted by identifying zeros on the edges
of each triangle (see App. A.2 for discussion of multiple regions).
Explicitly cutting alongγ and triangulating the resulting faces yields
two submeshes M+ andM− corresponding to the regions where ϕ
is nonnegative and nonpositive, resp.; both submeshes include all
vertices inserted along the cut. Since each vertex of the original mesh
is contained in eitherM+ orM−, values computed on either submesh
can be easily copied back to M. Steps (2)–(5) of the algorithm (as
enumerated in Fig. 9) are evaluated on bothM+ andM−; all other
steps can be evaluated on the original mesh M.
Note that γ does not necessarily cut the surface into disk-like

regions—in general, one might also have nonsimply connected re-
gions with holes or handles. To obtain the final flattening, such
regions can be further cut into disks at the conclusion of the flow
(e.g., using the method of Erickson and Whittlesey [2005]).

5.5 Discrete Yamabe Equation
To discretize the distortion-minimizing term in our flow, we need the
boundary derivatives ∂u/∂n of the solution to the Yamabe equation
(Eqn. 3). Remembering that we have zero-Dirichlet boundary condi-
tions (uB = 0), we can use the discrete Poisson equation (Eqn. 26) to
obtain a linear system for the unknown values of uI ∈ R |I | on the
interior, and unknown normal derivatives v ∈ R |B | on the boundary:

[
LII 0
LTIB I

] [
uI
v

]
=WFK. (28)

Here I is the |B| × |B| identity matrix, and K ∈ R |F | contains the
per-face Gaussian curvature values defined following Eqn. 24. Since
LII is invertible, we can first solve a smaller, positive-definite system
for uI, and then simply evaluate v using the known values of uI.

5.6 Discrete Adjoint Equation
Except when using the Dirichlet energy, we also need the boundary
derivatives ∂p/∂n, which can be obtained by solving an equation
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(1) Extract cut and submeshes from level set

Harmonically extend
flow velocity

(2) Compute scale factor and adjoint Compute flow velocity along 
curve on each side

Integrate distortion
term of flow

Integrate length
 term of flow

(7) Redistance implicit function

(3)

(4)(5)(6)

Fig. 8. Overview of the steps to evaluate our flow.

Input: A manifold triangle mesh M = (V, E, F) and a function
ϕ0 : V→ R whose zero set specifies the initial cut.
Output: A locally optimal cut γ ∗ as a piecewise linear path onM.
• (Optional:) Remesh to desired output resolution (Sec. 6.1).
• Until convergence:
(1) Extract cut γ t and submeshes M+,M− from ϕt−1 (Sec. 5.4).
(2) Compute values of v, q along γ t (Sections 5.5, 5.6).
(3) Evaluate σD (Sec. 6.2).
(4) Harmonically extend σD (Sec. 5.3.1).
(5) Integrate distortion term: ϕ̃t ← ϕ̃t + τσD (Sec. 6.2).
(6) Integrate length term: (WV + ταLL)ϕt =WVϕ̃

t (Sec. 6.3).
(7) Redistance ϕt with respect to γ t+1 (Sec. 6.4).
• Extract cut γ ∗ from ϕt (Sec. 5.4).

Fig. 9. The key steps used to integrate our conformal cut flow. Steps (2)–(5)
are performed for both M+ and M−; all other steps are performed on M.

nearly identical to Eqn. 28. In particular, we replace uI with a vector
pI ∈ R

|I | representing interior values of p; v with a vector q ∈
R |B | representing (integrated) normal derivatives ∂p/∂n; and use a
different source term, which depends on the choice of energy.

Source Term. For a pointwise energy b (u), we get the source term
by just evaluating b ′(ui ) at each vertex i ∈ V. For the rescaled
Dirichlet energy, one easily obtains the right hand side

−2WV

(
Lau +

[
0
y

])
,

where y ∈ R |B | has entries yi = aivi , and ai = r3i (as discussed in
Sec. 3.5.1). To obtain a local feature size ri at each vertex, we let

r0i := 1/
√
|Ki | + r−1ε ,

where Ki is the curvature at vertex i (Eqn. 23), and the term rε >
0 avoids degeneracy in flat regions. Since pointwise estimates of

curvature are typically quite noisy (even for nice triangulations),
we smooth r0 using a single step of heat flow via backward Euler:(

WV + cL
)
r =WVr0.

This system is positive definite, and the parameter c > 0 controls
the amount of smoothing (we use c = 0.02 in all experiments).

6 ALGORITHM
To advect the signed distance function ϕ we adopt a standard op-
erator splitting approach where the length term σL and distortion
terms σD (Eqn. 15) are separately integrated using an explicit and
implicit strategy (resp.); the signed distance constraint |∇ϕ | = 1 is
enforced via projection. We use a fixed time step τ > 0, though
since the flow minimizes an energy (Eqn. 5) one could easily apply
a more sophisticated line search strategy.

6.1 Preprocessing
In an Eulerian discretization, the output resolution of the cut is of
course limited by resolution of the mesh—one can therefore option-
ally remesh the input surface M. For highly oscillatory cuts, we
adapt the edge length to the magnitude |K | of the Gaussian curva-
ture, since we expect more oscillations in highly curved regions
(Fig. 6). Any standard remeshing strategy can be used here (e.g.,
[Dunyach et al. 2013]); we simply perform local subdivision until
the curvature Ki jk in each face falls below a user-specified bound.

6.2 Distortion Minimization
To integrate the distortion term σD , we first compute the normal
derivatives v and (possibly) q for each submesh M+,M− (as de-
scribed in Sections 5.6 and 5.5). These derivatives can be used to
evaluate any of the distortion gradients in Table 1—for example, in
the case of Dirichlet energy we compute values (σ±D )i = (v±i /ℓi )

2 at
each vertex i for both sides of the cut. Division by the dual bound-
ary length ℓi is needed to convert the integrated values of vi to
pointwise values (and likewise for qi ). The overall distortion term
is then given by (σD )i = (σ+D )i − (σ−D )i .
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Fig. 10. Although our flow finds only local minima, different initializations
can still lead to very similar results. Herewe initialize using normal clustering
(top), level sets of mean curvature (middle), and random values (bottom).
In each case, the initial cut is driven to a much shorter, low-distortion cut.
Plots show rescaled Dirichlet distortion energy and total cut length.

Tomitigate discretization artifacts, we apply 1D Laplacian smooth-
ing at vertices of small sliver triangles (aspect ratio less than a fixed
constant ρ0 := 5); values at other vertices remain unchanged. The
smoothed function is then harmonically interpolated, à la Sec. 5.6.
Finally, to perform advection, we take a single explicit Euler step

ϕt+1i = ϕti + τ (σD )i .

6.3 Length Regularization
One way to numerically integrate the length term σL would be to nu-
merically estimate the curvature κ of the cut curve and add this term
to the overall flow velocity—however, this strategy is notoriously
unstable [Wu and Tai 2010]. We instead apply the uncondition-
ally stable backward Euler scheme to Eqn. 22, yielding the implicit
update

(I + ταLL)ϕ
t+1 =WVϕ

t . (29)

6.4 Redistancing
Following advection (Sections 6.3 and 6.2), ϕ may no longer be a
signed distance function. We therefore update ϕ by computing the
distance to the new cut curve. The distance at vertices adjacent to the
cut (i.e., connected by an edge) is not updated to avoid introducing
a numerical drift of the curve; at all other vertices one can apply
any numerical method for computing geodesic distance—we used
the fast marching method [Kimmel and Sethian 1998].

7 EXTENSIONS AND APPLICATIONS
To demonstrate the robustness and utility of our flow, we consider
several aspirational examples and possible extension from geometry
processing and computational design. We implemented the flow
in C++, using SuiteSparse [Chen et al. 2008] for numerical linear
algebra. Computational cost is dominated by solving a small number
of linear systems; since many factorizations can be re-used and
the submeshes partition the domain, the total cost per time step is
roughly the same as factoring a single |V|× |V| Laplace matrix. Fig. 1,
3, 5, 6, 12, 13, 17 and 18, used the standard Dirichlet energy; Figures

Fig. 11. Adding a penalty in visible regions causes the flow to automatically
hide the cut as much as possible, while avoiding excessive distortion. Left:
no penalty. Right: with penalty.

10, 11 and 16 used the rescaled Dirichlet energy to handle more
variable curvature, and Figures 2, 14 and 15 used the Hencky energy,
which is better suited to fabrication. Fig. 10 shows the flow has little
dependence on initialization; for all other multi-region examples, we
initialized the cut via greedy clustering of vertex normals. In Fig. 3
and Fig. 2 we imposed explicit symmetry constraints by constraining
symmetric vertices to identical values of ϕ; for meshes that do not
exhibit per-vertex symmetry, one could likewise use a functional
notion of symmetry [Ovsjanikov et al. 2013].

7.1 Penalty Functions
In addition to penalizing length and distortion, we can use any
user-defined penalty function η : M → R≥0 to drive the cut toward
or away from application-relevant regions (e.g., in regions where
seams might reduce structural stability). To do so, we add a term

Eη (γ ) :=
∫
γ
η(x ) ds (30)

to the overall objective E (Eqn. 5). Since this energy is effectively a
reweighted version of the curve length (Eqn. 4), its shape derivative
is just ηκ. Hence, we need only replace the constant length penalty
αL with the variable weight αL + η, i.e., in Eqn. 29 we replace αL
with a diagonal matrix with nonzeros Dii := αL + ηi .

As one concrete example, we can discourage cuts from appearing
where they are easily visible. In particular, we let ηi := νini ·Ei ; here
ν : V→ [0, 1] is a smoothed binary function indicating visibility, ni
is the vertex normal, and Ei is the unit vector from vertex i toward
the camera location. Fig. 11 shows one example.

7.2 Computational Design
The fact that our cuts are highly regular and induce extremely low
area distortion makes them useful for designing patterns that will be
cut from flat, nearly inextensible materials such as cloth, sheet metal,
paper, or plywood, which are then sewn, welded, or otherwise joined
together. During this process, the residual area distortion roughly
predicts the strain experienced by a slightly extensible material
(such as leather), or alternatively, the approximation error exhibited
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Fig. 13. Our flow can be used in conjunction with other design tools, or to
optimize existing designs. Here we use a classic volleyball pattern (left) to
define our initial cut, and flow to a new design (right) that has both smaller
scale distortion (hence more uniformmaterial stress) and smaller cut length.

by a perfectly inextensible material (such as paper). Optionally, we
can exchange the Dirichlet energy ED (Eqn. 2) for the more physi-
cally meaningful Hencky energy, as discussed in Sec. 3.5.2. Unlike
Dirichlet energy, no rescaling is needed since Hencky energy has
consistent flow rates even on surfaces of highly varying curvature.

Fig. 12. A symmetric cut on an
inconvenient tennis ball.

Here we briefly explore the ap-
plication of our method to compu-
tational design problems that de-
mand judicious placement of cuts.
First, we consider examples from
the world of sports, where seam
placement and mechanical stress
play an important role in game
dynamics [Hong and Asai 2014].
Fig. 1 shows how the standard
design for a tennis ball naturally
emerges from our flow. Here we
initialize with a circle around the
equator and do not explicitly en-
force symmetry; weakening the
length penalty yields alternative designs with lower distortion.
Fig. 12 shows a similar result where explicit constraints are used to
enforce icosahedral symmetry. Fig. 13 illustrates how our flow can
be used to improve an existing design, initializing with the standard
pattern for a volleyball and flowing to a pattern with both lower
distortion and shorter cut length. In Fig. 2 we use Hencky distortion
and a bilateral symmetry constraint to design low-distortion panels
for leather chairs. Finally, we can minimize distortion on just one
side of the cut to optimize the shape of a patch on a surface—for in-
stance, in Fig. 14 we design bandages custom tailored to a particular
patient physiology, which reduces stretching and helps dressings
remain on the body [Fletcher 2005]. Here, a small patch is initialized
around a wound; an additional area term encourages it to grow out-
ward. Such patches could be readily cut from a flat sheet of bandage
material.

Developable Approximation. Rather than viewing scale distortion
as the strain in a pliable material such as rubber, we can view it
as the geometric approximation error induced by fabrication via

Fig. 14. To design a small patch on the surface, we can simply penalize
distortion on only one side of the cut. Here for instance, we design bandages
adapted to a particular patient or wound (bottom), mimicking real medical
dressings adapted to particular body parts (top, courtesy of [Fletcher 2005]).

Fig. 15. To verify that we obtain near-isometric flattenings, we reconstruct
a surface using the edge lengths from the 2D domain. Wrinkling and crum-
pling indicate excessive scale distortion (left); similar behavior will occur
if such a piece is fabricated from developable material. Even a moderate
reduction in distortion can significantly improve manufacturability (right).

inextensible material such as sheet metal. Such piecewise developable
designs are typically obtained via user interaction [Tang et al. 2016;
Rabinovich et al. 2018] or deformation of the input geometry it-
self [Wang and Tang 2004; Kilian et al. 2008]; we instead simply run
our flow until the resulting flattening is near-isometric. Fig. 15, right
verifies that even fairly short cuts can yield developable patches that
nicely approximate the original shape. (To produce this visualization
we simply minimize the deviation of the 3D edge lengths from the
flattened 2D edge lengths to obtain a near-isometric embedding; a
small bending term avoids severe crumpling.) Fig. 6, right shows
a nearly perfect developable approximation obtained via a long
winding cut.
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Fig. 16. Though not the primary focus of this work, our flow yields a low-
distortion texture atlas when strong length regularization is used. Top:
uniform checkerboards indicate near-isometric flattening. Bottom: flattened
patches. All three examples used identical parameters; feature alignment
emerges naturally, even without an explicit alignment term. (Orange indi-
cates cuts added as a post-process, in order to obtain disk topology.)

7.3 Texture Mapping
The problem of cutting a surface into patches for texture mapping
has been extensively studied, with many highly specialized algo-
rithms (see Sec. 2). Though our main interest is exploring cutting
problems beyond traditional texture mapping, we can nonetheless
generate a low-distortion texture atlas by running our flow with
strong length regularization (Fig. 16). Our method could also be
used to optimize the length/distortion trade off in any existing at-
las. One interesting feature of our flow is that it can develop small
loops that resemble cone singularities (e.g., the fingertips in Fig. 16,
middle); this behavior is atypical of traditional methods, which look
for either a cut or for cones, but not both in conjunction.

7.4 Space-Filling Curves

Fig. 17. A decorative space-
filling curve on a ceramic vase.

As the length penalty goes to zero,
our flow tends toward space filling
curves. The general problem of find-
ing space-filling curves or ropes (i.e.,
curves of finite thickness) on surfaces
has been analyzed for simple geome-
tries like the sphere [Gerlach and
von der Mosel 2011], and investigated
via manual design [Delp and Thurston
2011], but few computational algo-
rithms are known. Existing methods
are mainly targeted at tasks like er-
ror diffusion [Alexa and Kyprianidis
2015] or generating coherent memory
layouts [Vo et al. 2012; Isenburg and
Lindstrom 2005], which do not require
geometric regularity or even global
continuity. Pedersen and Singh [2006]
generate smooth space-filling curves via regularized Brownian mo-
tion, though it is not clear how to incorporate nonlocal terms (such

as distortion) into such a framework. Some simple modifications
to our flow yield smooth space-filling curves with user-specified
density, or which incorporate nonlocal terms.

Uniform Density Curves. In our flow, recall that the scale distor-
tion u is governed by the Yamabe Equation ∆u = −K (Eqn. 3); the
density of cuts will hence be roughly proportional to |K |. Replacing
K with any fixed constant instead yields curves of uniform density,
which are still adapted to the shape since ∆ depends on the original
metric. In Fig. 17, we initialize γ with a small circle, then gradually
decrease the length penalty as the curve evolves. To avoid spurious
topological merging/splitting events (as discussed in Sec. 8), we
pick a time step that ensures the cut never moves by more than a
constant factor of the smallest edge length.

Thermal Element Design. The Poisson equation ∆u = −K relat-
ing scaling and curvature can also of course be interpreted as the
governing equation for a steady-state temperature distribution u.
From this perspective, our method can be used to design a thermal
element which is short but effectively cools or heats a given surface.
Fig. 18 shows a toy example where K is set to a larger value around
the engine block, where more rapid cooling is required. Such an
approach might facilitate computational design of heat pipes for
mechanical and electronic components [Maydanik 2005].

8 LIMITATIONS, FUTURE WORK, AND CONCLUSION
Topological Changes. In the smooth setting

our conformal cut flow will not cause two re-
gions to merge, nor a single region to split
in two: in such situations, the thin “neck” be-
tween regions is easy to flatten isometrically,
hence the velocity ( ∂u∂n )

2 would tend toward
zero during the event. However, since we adopt
an Eulerian discretization, such pinch-offs can
still occur. Though adaptive time stepping can
help mitigate such artifacts (as mentioned in
Sec. 7.4), a Lagrangian formulation might pro-

vide stronger guarantees. On the other hand, even our smooth flow
is currently unaware of potentially desirable changes in the curve
topology, such as adding a new component to the cut that models a
cone singularity not captured by an existing loop. These changes
could be considered via a topological derivative [Sokolowski and
Zochowski 1999; He et al. 2007].

Discretization. In this work we explicitly extract cut meshes on
which we compute necessary quantities using traditional techniques.
However, the extended finite element method could be used to evalu-
ate these quantities on cut domains without an explicit mesh [Suku-
mar et al. 2001]. We are optimistic that such techniques will yield
more efficient and robust numerical integration of the flow.

Optimality. As discussed in Sec. 2, the problem of finding globally
optimal cuts is generally intractable. Accordingly, our approach
yields only locally optimal solutions: the energies we consider are
not convex, and thus the result of our flow is dependent on the
initialization. However, as we have seen (e.g., in Fig. 10) even local
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Fig. 18. We can also find space-filling curves of variable density. Here we
adapt our flow to design a cooling element on the hood of a car, where an
engine block generates 10x more heat than the rest of the hood. Colors
indicate steady-state temperature.

minima can look quite similar for very different initializations. Like-
wise, examples initialized starting with nothing more than a simple
circle, or greedy normal clustering, show that good results can be
achieved without careful initialization.

Looking forward, we are optimistic that the variational viewpoint
will provide new insights into the problem of surface cutting, and
open the door to new applications not previously considered.
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A MULTIPLE REGIONS
For simplicity of exposition we initially described the flow on a
surface partitioned into two regions, but our flow applies to general
configurations of N regions, as seen in Figs. 2, 6, 11, 13 and 16; here
we provide key implementation details. The shape derivative of
the Yamabe equation (Sec. 3.3) applies to the general case without
modification, though one must be careful to maintain a consistent
orientation for the normal n along each segment (and corresponding
choice of sign in Eqn. 16).

To represent more general curve networks via level sets (Sec. 4),
we essentially follow the treatment of Losasso et al. [2006]. Consider
a partition𝒫 := {Ω1, . . . ,ΩN } of the surface into N disjoint regions
(not necessarily simply connected). The curve network γ is then the
union of the region boundaries:

γ =
⋃
k

∂Ωk .

The regions themselves are expressed as a vector-valued function
ϕ⃗ : M → RN , where each ϕ⃗k encodes the signed distance to the
boundary of Ωk ; by convention the sign of ϕ⃗k is negative inside
the region. At any point p ∈ M , the minimum entry of ϕ⃗ (p) is then
the distance to the nearest point on γ , and γ is therefore the set
of points where any component of ϕ⃗ is zero. Since these regions
need not be simply connected, one can represent complex cuts
as the boundary of a small number of regions (consider the map
coloring problem); we find that N = 10 is more than sufficient in
practice. To evaluate the implicit evolution equation (Eqn. 21) one
now simply needs to compute σD on either side of the cut, then
solve a separate interpolation problem for each ϕ⃗k , with Dirichlet
boundary conditions imposed only at points where ϕ⃗k = 0.

A.1 Discretization
In the discrete setting, the signed distance
functions ϕ⃗ are represented via N piecewise
linear functions interpolating values ϕi ∈
RN at vertices i ∈ V. Due to discretization
error, the zero set of ϕ⃗ no longer provides a
reliable definition for the cut network γ : two
components of ϕ⃗ may have zeros at slightly different locations (as
shown in the inset). We instead define γ as the set of points where
ϕ⃗ has more than one component of smallest magnitude. (In the
smooth setting this set coincides with the zero level set, but in the
discrete setting it provides a more robust definition—see [Losasso
et al. 2006, Section 3] for further discussion.) The resulting set γ
is still a network of piecewise linear curves, though possibly with
multiple segments inside a single triangle.

A.2 Cut Mesh Extraction
Consider an edge from vertex a to vertex b, parameterized by a
value t ∈ [0, 1]; let i := argmink ϕ

k
a and j := argmink ϕ

k
b be the

regions associated with the two endpoints. If i , j, then the cut
crosses the edge at the point where the identity of the most negative
entry changes, given by the parameter value

tc =
ϕia − ϕ

j
a

ϕia − ϕ
j
a + ϕ

j
b − ϕ

i
b

∈ [0, 1]. (31)

In this case we insert a new vertex at the location of the crossing.
If all three edges of a triangle contain a crossing, then the triangle
contains a triple point, and we insert a vertex at the centroid of the
crossings. This strategy ensures that there is at most a single cut
through each edge, and a single triple point within each face.

A.3 Numerical Integration
Numerical integration of multiple regions is largely the same as in
the two-region case. Poisson problems are solved independently on
each submesh M̂k . The harmonic extension of the speed function
σD is slightly more involved, as ϕ̇k is known only at the cut seg-
ments that bound M̂k , yet must be interpolated to the entire surface.
In principle this increases the computational cost of each iteration,
requiring N interpolation problems over the entire surface with
a distinct Laplace matrix factorization for each. In practice, how-
ever, these factorizations are not needed: since an accurate implicit
function is needed only in a narrow band around the cut, we find it
sufficient to substitute ϕ̇ j := −ϕ̇k for unknown values of ϕ̇ j along
the boundary of region k , then solve per-submesh interpolation
problems as in the two-region case. With this strategy we need only
one |V| × |V| Laplace factorization per iteration; all multi-region
examples above use this scheme. Length regularization and redis-
tancing are applied independently for each distance function. When
redistancing vertices adjacent to the cut, we use the projection of
Losasso et al. [2006, Section 3.1] to avoid numerical drift and ensure
exactly one entry of ϕ⃗ is negative at each vertex (corresponding to
the region containing that vertex).
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