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Abstract. The paper describes an abstract interpretation technique based
on lazy functional programming, and applies it to the proof of Conway’s Lost
Cosmological Theorem, a combinatorial proposition analogous to the four color
theorem or Kepler’s conjecture, which essentially states that a certain predicate
holds of all lists of integers from 1 to 4. The technique makes use of the
semantics of Haskell in the following way: evaluating a predicate on a partial
lazy list to True proves that the predicate would evaluate to True on any list
extending the partial list. In this way proving a property of all lists can be
reduced to evaluating the property on sufficiently many partial lists, which
cover the set of all lists. The proof is completed by proving the correctness
of the code implementing the predicate by hand. The oracle that chooses a
covering set of partial lists need not be verified. In this way the amount of
program code which must be verified by hand in order to complete the proof
is reduced, increasing confidence in the result.

1. Introduction

This paper is about how to use the programming language Haskell’s lazy se-
mantics as a kind of abstract interpretation, and how this idea can yield a proof
of Conway’s Lost Cosmological Theorem [Con87]. The Theorem was proved by
hand, by Conway and others before 1987, but the proof was lost, hence the Lost
Cosmological Theorem. It was re-proved by Zeilberger and his computer Ekhad
in 1997 [EZ97], and another computerized proof with tighter bounds was given by
Litherland in 2003 [Lit03b].

I was unable to completely verify Zeilberger’s and Litherland’s proofs to myself,
because the computer programs they used were not given in the text of their papers,
and the high-level descriptions they provided of their algorithms were not closely
related enough to the code for me to be convinced of the programs’ correctness.
Perhaps a reader cleverer or more persistent than I was could have seen why their
code was correct. But it seemed to me that a convincing proof should be presented
as a simple program whose invariants would be easy to understand. The program
should be small enough to include in a paper in full.

While Zeilberger’s and Litherland’s programs were given in Maple and C, re-
spectively, my considerations led me to Haskell because its well defined semantics
supports simple equational reasoning principles that Maple and C do not. It was
after some initial work on the proof in Haskell that I discovered the abstract in-
terpretation technique based on laziness that I will describe. Other well defined
functional languages such as ML or Scheme might have been used instead; it is
possible to define lazy primitives in the latter two languages equivalent to Haskell’s,
if a bit more cumbersome. The proof and the abstract interpretation technique do
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not make any sophisticated use of these languages’ higher-order computation capa-
bilities, or of their powerful type systems. This suggests that the popular phrase
HOT (Higher-Order Typed) used to refer to these languages is leaving out a key
benefit of their designs: namely, that they support simple reasoning principles.

Briefly, the abstract interpretation technique relies on Haskell’s lazy evaluation to
check properties of infinitely many sequences in finite time. This is possible because
evaluating a predicate p (1 : 2 : 3 :⊥) = True, say, on a partial list proves that the
predicate would evaluate to True on any finite list extending the partial list (e.g.
[1,2,3], [1,2,3,1], [1,2,3,7,7,7], etc.), by the monotonicity of p’s denotation. (Here
⊥ is Haskell’s expression undefined, the bottom element of Haskell’s denotational
semantics.)

In order to prove a property of all finite sequences (or all those in an interesting
subset of the finite sequences), it is necessary to select a finite set of approximants
like 1 : 2 : 3 :⊥ which together cover all the finite sequences of interest. The approx-
imants must be carefully selected so that evaluating the predicate p of interest will
complete rather than yielding p (1 : 2 : 3 :⊥) = ⊥. So in general the selection of the
approximants can involve rather complicated code.

If it were necessary to verify all this code by hand, the proof would be hard to
understand and hard to trust. Fortunately, it is possible to define, once and for all,
a function cover which selects an appropriate covering set of approximants. The
function cover invokes an oracle to decide how far to refine the set of approximants,
but in such a way as to make it easy to show that the approximants form a covering
set, no matter what the oracle does. This makes it unnecessary to verify any
property of the code implementing the oracle.

This paper walks through the theory of Conway’s “audioactive decay”, showing
how some key results in Conway’s theory can be proved by the abstract interpreta-
tion technique: the Starting Theorem, the correctness of a parsimonious splitting
function, and the Cosmological Theorem. For the most part the development is
self-contained, although proofs are not given for some results proved directly in
Conway’s article.

All of the code in this paper is presented in the language Haskell 98 [Jon03].
The study of this elegant language is highly recommended, and it will be assumed
that the reader has a basic familiarity with it. The code is shown piecemeal as each
part is discussed. The source file for this paper, available from the author’s web
site, is a literate Haskell program and can be input directly to a Haskell compiler.
The paper thus uses the notational conventions, e.g. ∈ for ‘elem‘, of the lhs2TeX
package by Andres Loeh and Ralf Hinze.

2. Conway’s theory of audioactive decay

Conway’s Cosmological Theorem concerns a mathematical recreation, invented
by him, called “audioactive decay” [Con87]. (The pun on “radioactive decay”
will be made clear later.) Conway proposes the following transformation on finite
sequences (lists) of positive integers: given a sequence, read it aloud, and record
as the transformed sequence what you say. For example, if the input sequence
were 33114555, you would say “two threes, two ones, one four, three fives”, and
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the output sequence would be 23211435.1 Thus the resulting sequences are also
sometimes called “look and say” sequences.

The Haskell code will represent these sequences as lists of type [Int ] all of the
members of which are positive.2 (In this paper, the elements of a list will be
called “members” to avoid confusion with a different notion of “element” introduced
below.) The code performing the look and say transformation can be written as
follows.

say :: [Int ]→ [Int ]
say = concat ◦map code ◦ runs

The transformation is the composition of three stages. In the first stage, the input
list is separated into maximal runs of repeated integers.

runs :: [Int ]→ [[Int ]]
runs [ ] = [ ]
runs (x : xs) = (x : ys) : runs zs

where (ys, zs) = span (== x ) xs

The second stage replaces each run with its verbalization, by mapping the following
function over the list of runs.

code :: [Int ]→ [Int ]
code xs = [ length xs, head xs ]

Finally, the verbalizations are catenated.
It is assumed that the reader has experience with the algebraic calculations

needed to establish the correctness of functions like say . A good introduction to
this mode of reasoning is Bird and de Moor’s excellent book [BdM96]. As these
manipulations are straightforward for many of the functions presented in this paper,
like say , they are left to the reader.

Conway investigates the behaviour of these sequences as the function say is
iterated. We write:

iterate :: (a → a)→ (a → [a ])
iterate f x = x : iterate f (f x )

isay = iterate say

and now we have, for instance,

? take 10 (isay [2])
[[2],
[1, 2],
[1, 1, 1, 2],
[3, 1, 1, 2],
[1, 3, 2, 1, 1, 2],
[1, 1, 1, 3, 1, 2, 2, 1, 1, 2],
[3, 1, 1, 3, 1, 1, 2, 2, 2, 1, 1, 2],
[1, 3, 2, 1, 1, 3, 2, 1, 3, 2, 2, 1, 1, 2],

1The sequences we will be dealing with will contain only small integers, so they will be run
together without punctuation in the text.

2The reader may easily verify that the proofs that follow are not materially affected by the
restriction to integers within the representable range of Int .
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[1, 1, 1, 3, 1, 2, 2, 1, 1, 3, 1, 2, 1, 1, 1, 3, 2, 2, 2, 1, 1, 2],
[3, 1, 1, 3, 1, 1, 2, 2, 2, 1, 1, 3, 1, 1, 1, 2, 3, 1, 1, 3, 3, 2, 2, 1, 1, 2]]

(In this paper, expressions one might type into a Haskell interpreter are flagged by
?, followed on the next line by the interpreter’s response.)

The members of isay xs are called descendants of xs. A particular descendant
can be picked out with Haskell’s list indexing operator (!!); for example, isay xs !! 5
is the fifth descendant of xs, and xs is its own zeroth descendant.3 We also call any
sequence of the form isay xs !! n for some xs “n days old.” An n-days-old sequence
is thus also m-days-old for any 0 6 m 6 n.

2.1. Overview of the Cosmological Theorem. Now immediately questions
arise about the behavior of sequences under isay . Do they generally get longer,
or shorter? What is the asymptotic length of a sequence at the nth step, as n
goes to infinity? Do the sequences have a simple structure, or are they essentially
random? Conway proves the Cosmological Theorem in order to answer all these
questions, in a way which will be described once the theorem itself has been proved.

The following is an overview of the proof, given in order to provide a framework
for understanding the results which will be presented in the rest of the paper.

The overall structure of the theorem proceeds in three stages:
(1) Split sequences into parts (elements) that evolve independently under isay .
(2) Investigate how elements evolve into (decay into) combinations of other

elements.
(3) Classify the elements that appear in n-day-old sequences for arbitrarily

large n.
The first stage relies on the idea of splitting a sequence into parts which evolve

independently. We say a sequence xs splits into ys . zs if

isay xs = zipWith (++) (isay ys) (isay zs)

For example, 2111 splits into 2 . 111 (although we don’t yet have the tools to prove
this):

2 . 111
12 . 31
1112 . 1311
3112 . 111321
132112 . 31131211
...

Looking at the table above, each line is both the nth iterate of say on 2111, 0 6
n 6 4, and the catenation of the nth iterate of say on 2 and on 111. Assuming for
the moment that this pattern continues for all n > 0, we have that 2111 splits into
2 and 111. On the other hand, 111 does not split further into 1 and 11, because
say [1, 1, 1] = [3, 1] while say [1] ++ say [1, 1] = [1, 1, 2, 1].

A major part of the setup for the Cosmological Theorem is the derivation of
a decision procedure for splitting. Conway then defines an element as a sequence
that is irreducible with respect to splitting, which is to say, it does not split into
shorter sequences. Conway shows that any sequence splits into a unique finite

3In Haskell, operators like (!!) bind more weakly than function application.
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sequence of elements. The decision procedure for splitting extends to an algorithm
for computing these factorizations into elements.

The second stage of the development leading to the Cosmological Theorem is to
characterize the way elements decay into other elements. If xs is an element, we
say xs decays into the elements constituting the splitting for say xs. The elements
in say xs then further decay into combinations of elements in say (say xs), and so
forth.

Finally, Conway isolates 92 special elements, which he calls the common ele-
ments, and 2 infinite families of elements, which he calls the transuranic elements.
We can now preview the statement of the Cosmological Theorem: every sequence
decays eventually into a compound of common and transuranic elements. It so hap-
pens that there is a uniform bound on the number of steps required for this to
happen: namely, a sequence has always decayed into common and transuranic ele-
ments after 24 iterations of say . Like Zeilberger, we will not attempt to prove the
tight bound, but it can be established by a straightforward, if somewhat tedious,
application of the methods of this paper.

3. Lemmas on sets of sequences

The proof of the Cosmological Theorem relies first on a number of lemmas regard-
ing the structure of one-day-old and two-day-old sequences, stated in this section.

3.1. The One-Day Theorem. The first step in Conway’s analysis is the charac-
terization of one-day-old and two-day-old sequences. The first characterization is
given by the One-Day Theorem, which arises as follows. The definition of the look
and say sequences might at first appear to be ambiguous: rather than reading 55,
say, as “two fives,” we might instead choose to read it as “one five, one five”, so
the resulting sequence would be not 25 but 1515. The definition in Haskell resolves
this ambiguity in favor of decomposing the input sequence into the longest possi-
ble stretches of identical members, or equivalently in favor of the shortest possible
output sequence.

This has the consequence that not every possible sequence of even length is an
output of the look and say transformation; 1515 could only be the output cor-
responding to 55, but we see that 55 becomes 25 instead. So the look and say
transformation is injective but not surjective.

The One-Day Theorem characterizes those sequences which are outputs of say ,
the “one-day-old” sequences. We call x1x3 . . . the odd-indexed subsequence of
x0x1x2x3 . . . (sequences being indexed from zero). Then a one-day-old sequence
is just a sequence of even length such that its odd-indexed subsequence has no
consecutive repeated members.

Theorem 1 (Conway [Con87]). A sequence is one day old iff its length is even and
its odd-indexed subsequence has no consecutive repeated members.

A Haskell predicate recognizing the one-day-old sequences is as follows:

oneday :: [Int ]→ Bool
oneday [ ] = True
oneday [a ] = False
oneday [a, b ] = True
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oneday [a, b, c ] = False
oneday (a : b : c : d : xs) = b 6= d ∧ oneday (c : d : xs)

3.2. The Two-Day Theorem. The criterion given by the One-Day Theorem fur-
ther restricts the possible sequences that can arise on the second day, because a
one-day-old sequence say xs cannot have a run of more than three consecutive iden-
tical members. This in turn means that the even-indexed members of say (say xs)
must be in the range [1 . . 3]. This necessary condition does not fully characterize
two-day-old sequences, but it will be enough for the purposes of this paper. For
a proof of the necessity, and a complete characterization of two-day-old sequences,
see Conway’s paper.

Theorem 2 (Conway [Con87]). The even-indexed members of a two-day-old se-
quence are in the range [1 . . 3].

3.3. The large-integer simulation. We will need an additional observation that
will restrict the set of integers involved in the sequences we consider to the range
[1 . . 4]. The observation applies to two-day-old sequences; namely, that each mem-
ber m > 4 of a two-day-old sequence xs is in a run by itself, because the even-
indexed members of the sequence are all in the range [1 . . 3] by the Two-Day
Theorem. Because of this, each such m will be coded by the function code as a
subsequence of the form 1m in say xs. Since all the members of say xs not arising
in this way will be in the range [1 . . 3] by the One-Day Theorem, there is a corre-
spondence between occurrences of these large integers > 4 in xs and say xs. For
example, the two occurrences of 5 in 22251511 correspond to the two occurrences
of 5 in its descendant 3215111521.

Now the value of any large integer m is irrelevant to the evolution of the rest of
the sequence, because it is simply propagated into the descendant in being coded
1m. For example, 222m1n11 becomes 321m111n21, 1312111m311n1211, and so
forth for any m,n > 4. For this reason, the evolution of an arbitrary two-day-old
sequence can be simulated by the evolution of a similar sequence in which all the
occurrences of large integers are replaced by 4. In the example, the simulating
sequence is 22241411 and its descendants are 3214111421, 1312111431141211, and
so on.

We define a set Sim of simulating sequences by the following Haskell predicate:

sim :: [Int ]→ Bool
sim [ ] = True
sim [a ] = False
sim [a, b ] = a < 4
sim [a, b, c ] = False
sim (a : b : c : d : xs) = a < 4 ∧ (b > 4 ∨ d > 4 ∨ b 6= d) ∧ sim (c : d : xs)

It is not hard to show that:
(1) every two-day-old sequence is simulated by a sequence in Sim;
(2) runs in a sequence in Sim have length at most 3;
(3) no large integer in a sequence in Sim is adjacent to any other; and
(4) if xs is in Sim then say xs is in Sim.

However, not every sequence in Sim is even a one-day-old sequence: for example,
1414 is in Sim but is only zero days old.
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In the rest of the paper, many analyses will be focused on sequences in Sim. The
results can then be carried over to arbitrary two-day-old sequences by observing
that the results all concern the evolution of sequences under say , and by the above
considerations, any arbitrary two-day-old sequence xs is simulated by a sequence in
Sim (namely, the sequence obtained by replacing each member of xs greater than
3 by 4) under the iteration of say .

4. Abstract interpretation

This section introduces the method of abstract interpretation which is the key-
stone of the proofs presented in this paper. The method is then applied to the
problem of deriving a decision procedure for splitting a sequence.

We begin with some observations about lists in Haskell. Looking at the definition
of isay , we see that the list returned by isay xs is an infinite list. There is another
special kind of list in Haskell, a partial list such as 1 : 1 : 2 : ⊥. The symbol ⊥ is
shorthand for the Haskell expression undefined. Every list is either finite, partial,
or infinite, and no list falls into more than one of these categories. (A list such as
[1, 1, 2,⊥] is just an ordinary finite list with a special member.)

Sometimes a computation will be able to complete without touching the unde-
fined part of a partial list. (This is the essence of laziness.) For example:

? take 2 (say (1 : 1 : 2 :⊥))
[2, 1]

The computational behavior of this example can be described completely by the
equation

say (1 : 1 : 2 :⊥) = 2 : 1 :⊥

as may be proved easily by algebraic methods.
For us, the usefulness of these observations is that the function say , by the

semantics of Haskell [Jon03], is monotone with respect to approximation. That is,
computing say of any finite list extending 1:1:2:⊥ must yield a finite list extending
2 : 1 : ⊥, by the equation, monotonicity, and the observation that say maps finite
lists to finite lists. The idea of this paper is to exploit this behavior as a form of
abstract interpretation [CC77].

4.1. Covering sets. As a first application of the method, let us determine how
just the first (leftmost) part of a given sequence evolves upon iteration of say . We
are going to try to understand what happens at the beginning of the list, ignoring
the details of what happens after a certain point, so the above notion of abstract
interpretation is appropriate.

Our method will be to evaluate say on a finite set C of finite and partial lists,
having the property that every finite list is in C or extends one of the partial lists
in C. In this case we say C covers all the finite lists. We can construct a C with
this property using the following function:

cover :: ([Int ]→ Bool)→ [[Int ]]
cover f = if f [ ] then [⊥]

else [ ] : [x : xs | x ← [1 . . 4], xs ← cover (f B x )]
where f B x = f ◦ (x :)
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Here the function f serves as an oracle, indicating when the approximation has
been sufficiently refined. For this reason we call f a refinement predicate. The
local definition f B x = f ◦ (x :) serves to introduce a function (B) which applies a
number as the head of the lists tested by a predicate, producing a new predicate.
For example, if f is a predicate, then f B 1 is the predicate which, given xs, returns
f (1 : xs).

The following are examples of the use of cover :

cover (== [ ]) = [⊥]
cover ((> 1) ◦ length) = [[ ], 1 :⊥, 2 :⊥, 3 :⊥, 4 :⊥]
cover ((> 2) ◦ length) = [[ ], [1], 1 : 1 :⊥, 1 : 2 :⊥, 1 : 3 :⊥, 2 : 4 :⊥,

[2], 2 : 1 :⊥, 2 : 2 :⊥, 2 : 3 :⊥, 3 : 4 :⊥,

[3], 3 : 1 :⊥, 3 : 2 :⊥, 3 : 3 :⊥, 3 : 4 :⊥,

[4], 4 : 1 :⊥, 4 : 2 :⊥, 4 : 3 :⊥, 4 : 4 :⊥] .

It is not difficult to see that if cover f evaluates to a finite list, then that list
constitutes a covering set C. We show this by induction on the number of steps of
the evaluation. This is the number of steps that a Haskell interpreter will execute
in computing the value True of the finiteness testing function finite (cover f ):

finite :: [a ]→ Bool
finite [ ] = True
finite (x : xs) = finite xs

Theorem 3. If cover f evaluates to a finite list c, then the members of c constitute
a covering set.

Proof. The proof is by induction on the number of steps required to evaluate the
spine of the list c; i.e., the number of steps required to evaluate finite c to True.

If f [ ] evaluates to True then cover f evaluates to [⊥], which is a covering set.
If on the other hand f [ ] evaluates to False, then it must be the case that f B 1,
f B 2, f B 3, and f B 4 evaluate to finite lists C1, C2, C3, and C4, each of which is
a covering set. But then

cover f = [ ] : concat [map (1:) C1,map (2:) C2,map (3:) C3,map (4:) C4 ],

which is a covering set. �

Unfortunately this notion will not yet allow us to investigate the behavior of say
at the beginning of a sequence because of cases such as 1 : 1 : ... : 1 :⊥ in which any
number of members of the input list may need to be examined in order to determine
even the first member of the output list. This makes it impossible to get useful
information out of a covering set for all finite lists of integers in [1 . . 4].

However, if we reduce the space of lists with which we are concerned to just the
ones in Sim, cases like [1, 1, 1, 1] cannot occur, because they are not in Sim. The
easiest way of doing this is to generalize cover to take a selection predicate s, as
follows:

cover :: ([Int ]→ Bool)→ ([Int ]→ Bool)→ [[Int ]]
cover s f = if ¬ (s [ ]) then [ ]

else if f [ ] then [⊥]
else [ ] : [x : xs | x ← [1 . . 4], xs ← cover (s B x ) (f B x )]

where f B x = f ◦ (x :)
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This generalized definition of cover is the version used throughout the rest of the
development.

We say that a selection predicate s is acceptable if it is defined on all finite lists
of integers in [1 . . 4] and if it is prefix closed; that is, if s (xs ++ ys) implies s xs
when xs and ys are finite. A finite set C of finite and partial lists is now said to
cover s when every finite list xs such that s xs = True is in C or extends a partial
list in C. The argument given above now establishes that if s is acceptable and
cover s f evaluates to a finite list, then that list constitutes a covering set for s.

Theorem 4. If s is an acceptable selection predicate, and cover s f , as generalized,
evaluates to a finite list c, then the members of c constitute a covering set for s.

Proof. The previous argument goes through with the following modifications: We
observe that by the prefix closed property of s, if s [ ] = False, then the covering
set is allowed to be empty, since s xs = False for any xs. We also observe that if
s is prefix closed, s B n is prefix closed as well, so the induction hypothesis can be
applied. �

The predicate sim is not acceptable because, for example, it rejects [1] but
accepts [1, 1]. It can be extended to an acceptable predicate by defining

simacc :: [Int ]→ Bool
simacc [ ] = True
simacc [a ] = a < 4
simacc [a, b ] = a < 4
simacc [a, b, c ] = a < 4 ∧ c < 4
simacc (a : b : c : d : xs) = a < 4 ∧ (b > 4 ∨ d > 4 ∨ b 6= d)

∧ simacc (c : d : xs)

We will only need the following facts concerning simacc: it is acceptable; sim xs
implies simacc xs; and simacc is sufficiently restrictive to reject unwanted sequences
like 1 : 1 : ... : 1 :⊥. We then have that if cover simacc f is a finite list, it covers the
sequences in Sim (as well as some additional sequences).

4.2. The Starting Theorem. We are now in a position to determine the behavior
of say on the beginning part of a sequence. This relies on a trick: “finding the limit
cycles”.

We pick a particular refinement predicate (determined by trial and error) and
form the set

c = cover simacc ((> 12) ◦ length)

covering Sim. The 20th iterates of say on the members of c are

c′ = map ((!!20) ◦ isay) c

and we can look at the possible first parts of these by evaluating nub (map (take 20) c′),
as shown in Figure 1. (Recall that nub removes duplicates from a list.) The pa-
rameters 12 and 20 were determined by experiment.

Now since this list is exhaustive, by the covering property, we see that the 20th
iterate of say on any given list will start in one of the 14 ways given in the figure.
Since the nth iterate for n > 20 is itself the 20th iterate of a sequence (namely, the
(n− 20)-th iterate), it too must start in one of the ways given in the figure.
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?nub (map (take 20) c′)
[[ ],
[3, 1, 1, 3, 1, 1, 2, 2, 2, 1, 1, 3, 1, 1, 1, 2, 3, 1, 1, 3],
[1, 3, 2, 1, 1, 3, 2, 1, 3, 2, 2, 1, 1, 3, 3, 1, 1, 2, 1, 3],
[1, 3, 1, 1, 1, 2, 1, 3, 1, 2, 2, 1, 1, 2, 1, 3, 2, 1, 1, 3],
[3, 1, 2, 3, 2, 1, 1, 2, 3, 1, 1, 3, 2, 1, 3, 2, 2, 1, 1, 2],
[1, 1, 1, 3, 1, 2, 2, 1, 1, 3, 1, 2, 1, 1, 1, 3, 2, 2, 2, 1],
[2, 2],
[2, 2, 1, 3, 2, 1, 1, 3, 2, 1, 3, 2, 2, 1, 1, 3, 3, 1, 1, 2],
[2, 2, 1, 3, 1, 1, 1, 2, 1, 3, 1, 2, 2, 1, 1, 2, 1, 3, 2, 1],
[2, 2, 3, 1, 1, 3, 1, 1, 2, 2, 2, 1, 1, 3, 1, 1, 1, 2, 3, 1],
[2, 2, 3, 1, 2, 3, 2, 1, 1, 2, 3, 1, 1, 3, 2, 1, 3, 2, 2, 1],
[1, 1, 1, 3, 3, 1, 1, 2, 1, 1, 1, 3, 1, 1, 2, 2, 2, 1, 1, 2],
[2, 2, 1, 1, 1, 3, 1, 2, 2, 1, 1, 3, 1, 2, 1, 1, 1, 3, 2, 2],
[2, 2, 1, 1, 1, 3, 3, 1, 1, 2, 1, 1, 1, 3, 1, 1, 2, 2, 2, 1]]

Figure 1. All possible ways a 20 day old sequence can start

So, in particular, supposing that the 20th iterate starts with 11131221131211132221,
as in one of the lines of the figure, we can infer that the 21st iterate starts 311311...,
hence, by inspection, the 21st iterate actually must start with 31131122211311123113,
since that is the only possibility among the lines of the figure. Furthermore,
the 22nd iterate then must start with 13211321322113311213, again by inspecting
the possibilities, and then the 23rd iterate must start with 11131221131211132221
again, and so forth, leading to a cycle of period 3.

By continuing in this way we find that 20-day-old sequences must fall into one
of 6 limit cycles given by the lines of the figure. Three of these are

[ ] =⇒ [ ] =⇒ ...

[1, 1, 1, 3, 1, 2, 2, 1, 1, 3, 1, 2, 1, 1, 1, 3, 2, 2, 2, 1, ...] =⇒
[3, 1, 1, 3, 1, 1, 2, 2, 2, 1, 1, 3, 1, 1, 1, 2, 3, 1, 1, 3, ...] =⇒
[1, 3, 2, 1, 1, 3, 2, 1, 3, 2, 2, 1, 1, 3, 3, 1, 1, 2, 1, 3, ...] =⇒
[1, 1, 1, 3, 1, 2, 2, 1, 1, 3, 1, 2, 1, 1, 1, 3, 2, 2, 2, 1, ...] =⇒ ...

[1, 1, 1, 3, 3, 1, 1, 2, 1, 1, 1, 3, 1, 1, 2, 2, 2, 1, 1, 2, ...] =⇒
[3, 1, 2, 3, 2, 1, 1, 2, 3, 1, 1, 3, 2, 1, 3, 2, 2, 1, 1, 2, ...] =⇒
[1, 3, 1, 1, 1, 2, 1, 3, 1, 2, 2, 1, 1, 2, 1, 3, 2, 1, 1, 3, ...] =⇒
[1, 1, 1, 3, 3, 1, 1, 2, 1, 1, 1, 3, 1, 1, 2, 2, 2, 1, 1, 2, ...] =⇒ ...

and the other 3 cycles are derived from these by prepending [2, 2].
This is essentially the content of Conway’s Starting Theorem [Con87]. We have

proved it by direct calculation, using Haskell’s own lazy semantics as a form of
abstract interpretation. Furthermore, the function say acts as both the abstract
interpreter and as the function being interpreted!
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Theorem 5. Any 20 day old sequence in Sim begins in one of the ways shown in
Figure 1, and its further evolution must consist of sequences that start in such a
way as to match one of the 6 limit cycles described above.

We could prove the similar Ending Theorem concerning the behavior of say at the
end of a sequence by defining a version of say acting on reversed lists; however, it is
not needed in the development, and it will be an easy corollary of the Cosmological
Theorem, below, so it is left to the reader to state and prove it.

4.3. Splitting sequences. As promised, we are now in a position to develop a
decision procedure for splitting a sequence into subsequences which evolve inde-
pendently under say . If

(isay xs !! n) = (isay ys !! n) ++ (isay zs !! n)

for finite lists xs, ys, zs and for all n > 0, then we say that xs splits into ys and zs.
Since (isay xs !! 0) = xs, we have xs = (ys ++ zs).

We can translate splitting into a Haskell predicate näıvely as follows:

splits :: [Int ]→ [Int ]→ Bool
splits ys zs = isay (ys ++ zs) == zipWith (++) (isay ys) (isay zs)

This is a semi-decision procedure; if ys and zs are not a splitting, then splits ys zs =
False. But if ys and zs do constitute a splitting, it is not hard to show that
splits ys zs = ⊥. An example is splits [2] [1, 1, 1], which runs forever when
evaluated.

A sequence is called an element if it is non-empty and it does not split into
non-empty subsequences. Elements are thus analogous to primes in the theory of
numbers. Every sequence splits in a unique way into finitely many elements [Con87].
However, unlike in number theory, where no prime divides any other prime, it is
possible for an element to appear as a subsequence of another element. For example,
1 and 11 are both elements, because splits [1] [1] = False. For this reason it is not
true that every sequence is the catenation of finitely many elements in a unique
way, because not every catenation of elements is a splitting of elements.

Our goal will be to investigate the elements. Our first task will be to develop
a decision procedure for splitting. Conway’s observation [Con87] is that xs and ys
are a splitting just when the last member of isay xs !! n is distinct from the first
member of isay ys !! n for all n > 0. Using this observation, the splitting test can
be simplified to

splits ys zs = null ys ∨ null zs ∨
and (zipWith (6=) (map last (isay ys))

(map head (isay zs)))

which is slightly more defined but is still not a decision procedure.
But by equational reasoning, for non-empty ys, last (say ys) = last ys and so

map last (isay ys) = repeat (last ys). So splits can be simplified further to

splits ys zs = null ys ∨ null zs ∨ ¬ (last ys ∈ map head (isay zs))

Finally, using the Starting Theorem, the members of map head (isay zs) are exactly
the members of take 25 (map head (isay zs)) because by the 22nd day, zs will have
reached one of the limit cycles, and the limit cycles have periods at most 3. Thus,
we can rewrite splits into a decision procedure:
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splits ys zs = null ys ∨ null zs ∨
¬ (last ys ∈ take 25 (map head (isay zs)))

It is an easy consequence of this version of splits that a two-day-old sequence and
its simulating sequence in Sim split into elements in the same way.

This version of splits, however, may examine much more of the list zs than is
actually needed to determine the answer. In what follows it will be necessary to
evaluate splits on covering sets of partial lists, and for the covering sets to have a
feasible size, it is important that splits be as parsimonious as possible. Accordingly,
I will exhibit another, more parsimonious function splits ′ (constructed by trial and
error) and prove by abstract interpretation that it coincides with splits on sequences
in Sim.

First we need to massage splits into a form amenable to abstract interpretation:

splits :: [Int ]→ [Int ]→ Bool
splits ys zs = null ys ∨ null zs ∨ spl (last ys : zs)
spl :: [Int ]→ Bool
spl (y : zs) = ¬ (y ∈ take 25 (map head (isay zs)))

Now splits ′ is introduced by

splits ′ :: [Int ]→ [Int ]→ Bool
splits ′ ys zs = null ys ∨ null zs ∨ spl ′ (last ys : zs)

where spl ′ :: [Int ]→ Bool is defined in Appendix A. However, it is unnecessary to
look at the definition of spl ′ because we are about to prove by direct calculation
that it is correct.

In what follows we consider only suffixes of sequences in Sim. Now to show that
splits and splits ′ coincide it suffices to show that spl and spl ′ coincide on finite lists
of length l > 2, or equivalently that

f [ ] = True
f [x ] = True
f xs = spl xs == spl ′ xs

is True on all finite lists. We will establish this by an abstract interpretation.
Here the selection predicate simsuf accepts suffixes of sequences in Sim (and a few
additional sequences):

simsuf :: [Int ]→ Bool
simsuf xs = simacc xs ∨ simacc (tail xs)

The abstract interpretation then proceeds as follows:

? all f (cover simsuf ((> 14) ◦ length ◦ say))
True

The refinement predicate ((> 14) ◦ length ◦ say) was chosen by trial and error to
make the interpretation complete in a reasonable amount of time.

Using splits ′ we can introduce a parsimonious function to split a sequence in Sim
into its elements:

elements :: [Int ]→ [[Int ]]
elements [ ] = [ ]
elements (x : xs) = (x : ys) : yss
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where ys : yss
| spl ′ (x : xs) = [ ] : elements xs
| otherwise = elements xs

The binding of ys : yss is only evaluated when either ys or yss is demanded by sub-
sequent computations. This in turn means that spl ′ (x : xs) is only evaluated when
ys or yss is needed. This makes elements more parsimonious than the alternative
elements ′ below in which the second case is defined in what might at first seem a
more natural way:

elements ′ (x : xs)
| spl ′ (x : xs) = [x ] : elements ′ xs
| otherwise = (x : ys) : yss
where ys : yss = elements ′ xs

4.4. The Chemical Theorem. Conway’s development next proves an interesting
result called the Chemical Theorem. This characterizes a certain special set of
elements that are guaranteed to show up in any sufficiently late descendant of an
arbitrary sequence other than the two “boring” sequences [ ] and [2, 2]. This result
is easily established in Haskell as follows.

First, we observe that by the Starting Theorem (Theorem 5) any non-boring
sequence ends up in an limit cycle involving one of the following four kinds of
sequences:

[3, 1, 2, 3, 2, 1, 1, 2, 3, 1, 1, 3, 2, 1, 3, 2, 2, 1, 1, 2, ...]
[2, 2, 3, 1, 2, 3, 2, 1, 1, 2, 3, 1, 1, 3, 2, 1, 3, 2, 2, 1, 1, 2, ...]
[1, 3, 2, 1, 1, 3, 2, 1, 3, 2, 2, 1, 1, 3, 3, 1, 1, 2, 1, 3, ...]
[2, 2, 1, 3, 2, 1, 1, 3, 2, 1, 3, 2, 2, 1, 1, 3, 3, 1, 1, 2, 1, 3, ...]

In the first case, since

head (elements (3 : 1 : 2 : 3 : 2 : 1 :⊥)) = [3, 1, 2]

we see that some descendant of the sequence involves the element [3, 1, 2]. In the
second case, we have

take 2 (elements (2 : 2 : 3 : 1 : 2 : 3 : 2 : 1 :⊥)) = [[2, 2], [3, 1, 2]]

and so [3, 1, 2] again must occur. By

head (elements (1 : 3 : 2 : 1 : 1 : 3 : 2 : 1 : 3 : 2 :⊥)) = [1, 3, 2, 1, 1, 3, 2]
take 2 (elements (2 : 2 : 1 : 3 : 2 : 1 : 1 : 3 : 2 : 1 : 3 : 2 :⊥))

= [[2, 2], [1, 3, 2, 1, 1, 3, 2]]

the element [1, 3, 2, 1, 1, 3, 2] must occur in the third and fourth cases.
So any non-boring sequence must have a descendant containing 312 or 1321132

as an element. Because of the period 3 of the limit cycles involved, the element 312
or 1321132 must actually recur in every third descendant once it appears.

Now as these elements evolve, their descendants end up involving many more
elements, which themselves must therefore occur in some descendant of every non-
boring sequence. For example, starting from 312 we have the first evolution shown
in Figure 2, and starting from 1321132 we have the second evolution shown in the
figure, where the dots indicate how the sequences split into elements.
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312
131112
11133112
312 . 32112
131112 . 13122112
11133112 . 111311222112
312 . 32112 . 31132 . 1322112
131112 . 13122112 . 13211312 . 1113222112
11133112 . 111311222112 . 11131221131112 . 3113322112
312 . 32112 . 31132 . 1322112 . 3113112221133112 . 132 . 123222112
...

1321132
111312211312
3113112221131112
1321132 . 13221133112
111312211312 . 1113222 . 12 . 32112
3113112221131112 . 311332 . 1112 . 13122112
1321132 . 13221133112 . 132 . 12 . 312 . 3112 . 111311222112

...

Figure 2. Audioactive decay starting from 312 and 1321132

Given an element, its descendant will split into some number of elements, their
descendants will split further, and so on. In this way a directed graph is determined
on all the elements. Defining

fix :: Eq a ⇒ (a → a)→ (a → a)
fix f x = if x == y then x else fix f y

where y = f x

we can compute a fixpoint over this process starting with a given element:

fixelt :: [Int ]→ [[Int ]]
fixelt xs = fix f [xs ]

where f = sort ◦ nub ◦ concat ◦map (elements ◦ say)

We then verify in a Haskell interpreter the following:

?fixelt [3, 1, 2] == fixelt [1, 3, 2, 1, 1, 3, 2]
True

? length (fixelt [3, 1, 2])
92

This establishes that the part of the graph reachable from 312 or from 1321132
consists of the same 92 elements. Conway calls these 92 elements the common ele-
ments, and assigns them symbols based on the symbols of the 92 chemical elements
H–U.
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commonelts :: [ [Int ]]
commonelts = fixelt [3, 1, 2]

common :: [Int ]→ Bool
common = (∈ commonelts)

Since as observed above 312 and 1321132 occur in some descendant of any given
interesting sequence, every common element occurs in some descendant of the se-
quence. As a corollary, the graph of all the common elements but 22 is strongly
connected.

This observation can be strengthened by computing the following infinite list:

? [[3, 1, 2] ∈ elements xs | xs ← isay [3, 1, 2]]
[True,False,False,True,False,False,True,False,False,

True,False,False,True,False,False,True,True,False,

True,True,False,True,True,True,True,True,True, ...

At first, 312 occurs only every third day, because of the period of its limit cycle.
However, 312 can be reached in multiple ways through the graph of common ele-
ments; one of these ways is a cycle with period 16, and another is a cycle of period
23, as can be deduced by inspecting the data above. This means that once 312
occurs, it eventually ends up occurring every day. But then every common element
also ends up occurring every day. This establishes the Chemical Theorem:

Theorem 6. Every common element occurs in every sufficiently late descendant
of any given interesting sequence.

4.5. The transuranic elements. We would like to show that additionally, all
sufficiently late descendants of a sequence involve only the common elements. How-
ever, this is obviously false, for example because every descendant of [4] must itself
end with 4, but only the integers [1 . . 3] appear in the common elements.

Examining the evolution starting from [4] shown in Figure 3 (which suppresses
commas), we may conjecture that eventually the last element involved in a descen-
dant of [n ] for n > 4 must be one of the two so-called transuranic elements:

nPu = 31221132221222112112322211n
nNp = 1311222113321132211221121332211n

The pairs of transuranic elements for each distinct n are called, of course, isotopes.
As with the Ending Theorem, this conjecture can be established easily once the
Cosmological Theorem has been proved.

The following Haskell predicate tests for the transuranic elements:

transuranic :: [Int ]→ Bool
transuranic xs = last xs > 4 ∧ init xs ∈

[[3, 1, 2, 2, 1, 1, 3, 2, 2, 2, 1, 2, 2, 2, 1, 1, 2, 1, 1, 2, 3, 2, 2, 2, 1, 1],
[1, 3, 1, 1, 2, 2, 2, 1, 1, 3, 3, 2, 1, 1, 3, 2, 2, 1, 1, 2, 2, 1, 1, 2, 1, 3, 3, 2, 2, 1, 1]]

Note that a two-day-old sequence is a transuranic element if and only if the sequence
in Sim that simulates it is transuranic.

5. The Cosmological Theorem

The final illustration of the abstract interpretation method will be the proof of a
counterpart to the Chemical Theorem, namely, Conway’s Cosmological Theorem.
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?map (last ◦ elements) (isay [4])
[[4],
[14],
[1114],
[3114],
[132114],
[1113122114],
[311311222114],
[1322114],
[1113222114],
[3113322114],
[123222114],
[111213322114],
[31121123222114],
[132112211213322114],
[111312212221121123222114],
[3113112211322112211213322114],
[1321132122211322212221121123222114],
[111312211312113221133211322112211213322114],
[312211322212221121123222114],
[13112221133211322112211213322114],
[312211322212221121123222114],
[13112221133211322112211213322114],

...

Figure 3. Evolution of [4], showing only the last element at each step

It states that every sufficiently late descendant of every sequence involves only
common and transuranic elements. We say that every sequence eventually decays
into a compound of common and transuranic elements.

The theorem was originally proved by Conway and Richard Parker on the ba-
sis of extensive hand calculations enumerating the cases. Mike Guy also found a
simpler proof involving hand enumeration of cases, leading to the tight bound 24
on the number of days before an arbitrary sequence is guaranteed to have fully
decayed. Both these proofs were said to have occupied many pages—Conway calls
the theorem “ASTONISHINGLY hard to prove”—which were subsequently lost.

The proof given here will establish a weaker bound, but it can be improved to
recreate the tight bound by improving the selection predicates, at some cost in
perspicuity.

The overall concept for the proof of the Cosmological Theorem is to use abstract
interpretation to calculate all the elements that might occur in sufficiently late
descendants of an arbitrary sequence. Since the calculation has to involve only
finitely many approximations, three different forms of abstraction are used to reduce
the space of possible sequences to be considered.

The first form of abstraction reduces the space by restricting the members of the
sequences to just the integers [1 . . 4] using the large-integer simulation described
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in Section 3.3. The evolution of an arbitrary two-day-old sequence can be related
to the evolution of the corresponding sequence in Sim with all the members m > 4
replaced by 4.

The second form of abstraction allows the content of the sequence beyond (to the
right of) a point of interest to be ignored; this is implemented by the laziness-based
abstraction of the kind we have seen already. The sequence beyond a certain point
is represented by Haskell’s ⊥.

Finally, the third form of abstraction allows the content of a sequence before
(to the left of) a point of interest to be ignored. This is achieved by annotating
a sequence with marks that are propagated to the sequence’s descendants by a
generalized version of say . This section introduces the theory of marks and explains
how they can be used to abstract away the initial part of a sequence. Marks are an
original contribution of the present paper.

5.1. Marked sequences. A marked sequence is a finite sequence of positive inte-
gers each of which is either annotated with a mark or left unmarked, and satisfying
a certain condition. For simplicity, the Haskell development will represent un-
marked members by positive integers and marked members by the corresponding
negative integers. When presenting the sequences in condensed format in the text,
an overbar n is used.

The condition on the marks is that in any run of consecutive identical members,
at most one of them is to be marked. So for example, 12233 is a properly marked
sequence, but 12233 is not.

We can define a function unmark taking a marked sequence to its corresponding
unmarked one:

unmark :: [Int ]→ [Int ]
unmark = map abs

The generalized version of say is a function gsay . It is a refinement of say in the
sense that if gsay xs = ys then say (unmark xs) = unmark ys. In the original say ,
a run of consecutive identical members such as 555 is read “three fives” and encoded
35 in the output sequence. For gsay , this is how an unmarked run is coded, and a
marked run such as 555 is coded by 35, propagating the mark onto the odd-indexed
member of the output sequence.

gsay :: [Int ]→ [Int ]
gsay = concat ◦map gcode ◦ gruns

gcode :: [Int ]→ [Int ]
gcode xs = if ismarked xs then [ length xs,−(abs (head xs))]

else [ length xs, head xs ]

ismarked :: [Int ]→ Bool
ismarked = any (<0)

The helper function gruns differs from runs in order to be more parsimonious.
It takes advantage of the observations about Sim in Section 3.3 to avoid looking
unnecessarily far for the end of a run of consecutive identical members. This does
no harm because gsay will only be used on sequences in Sim.

gruns :: [Int ]→ [[Int ]]
gruns (a : b : xs) = if abs a 6= abs b then [a ] : gruns (b : xs)
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else case xs of
c : ys → if abs b 6= abs c then [a, b ] : gruns xs

else [a, b, c ] : gruns ys
[ ]→ [[a, b ]]

gruns [a ] = [[a ]]
gruns [ ] = [ ]

An example evolution of a marked sequence is:

131
111311
311321
1321131211
1113122113111221
311311222113312211
. . .

It can be shown that the result of gsay on a marked sequence in Sim is a properly
marked sequence; in particular, each run of consecutive identical elements again has
at most one mark. It is also not difficult to see that the number of marks remains
constant throughout the evolution. By relating corresponding marked members of
a sequence and its descendants, a sort of coordinate system for the parts of the
sequence can be maintained throughout the evolution. This allows the common
features of evolutions starting from different sequences to be abstracted.

For example, the above evolution for 131 may be compared to the evolution
beginning with 331:

131
111311
311321
1321131211
1113122113111221
311311222113312211
. . .

331
2311
121321
111211131211
31123113111221
132112132113312211
. . .

While the corresponding descendants from the two evolutions differ, their suffixes
starting with the member 3 coincide. This phenomenon allows the part of a se-
quence to the left of a point of interest to be abstracted away.

Accordingly, we have the Mark Abstraction Theorem:

Theorem 7. If xs and ys have a common suffix zs the first member of which is
marked, then gsay xs and gsay ys again have a common suffix zs ′ the first member
of which is marked, and the number of marked members of zs and zs ′ is the same.

Proof. If we establish the special case when ys = zs, then the theorem in full gen-
erality follows easily. In order to prove the special case, we take zs ′ = tail (gsay zs)
and observe that the marks of zs and of gsay zs are in correspondence by the
behavior of gsay , and that the head of gsay zs is not marked. �

It will also be convenient to have a function transforming an unmarked sequence
in Sim into a canonically marked one:
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mark :: [Int ]→ [Int ]
mark [ ] = [ ]
mark (x : xs) = x : mark ′ xs
mark ′ [ ] = [ ]
mark ′ (x : xs) = (−x ) : mark xs

This sequence is properly marked because all the marked members come from the
odd-indexed subsequence, hence if two marks were to belong to a run, they would
have to look like 111, 222, 333, or 444, all of which are impossible for sequences in
Sim by the remarks in Section 3.3.

5.2. Proof of the Lost Cosmological Theorem. At this point all the tools are
in hand to find a set collect of elements such that every sequence eventually decays
into elements all of which are in collect . Having found it we will then see that
every element in collect decays into common and transuranic elements, proving the
Cosmological Theorem.

Suppose a sequence xs is given. Its two-day-old descendant xs2 = say (say xs)
is simulated by a sequence ys in Sim, which we canonically mark, giving a sequence
zs = mark ys. Now suppose an element occurs in, say, the 10th descendant of
xs. Then it is related by the large-integer simulation to an element in the 8th
generalized descendant ds of zs. This element of ds occurs in a shortest suffix ds ′

of ds starting with a mark, or in ds ′ = ds if there is no mark to the left of it. Thus
the element occurs in the 8th generalized descendant of the corresponding suffix zs ′

of zs, by the Mark Abstraction Theorem, and does so with at most one mark to its
left.

This shows that in order to find every element that can occur in the 10th de-
scendants of an arbitrary sequence, it suffices to find every element occuring in an
8th descendant of a canonically marked sequence in Sim, such that there is at most
one mark to the left of the element’s occurrence.

For example, starting from the sequence 111213 in Sim, we compute its canonical
marking 111213, then proceed with the generalized evolution through eight more
steps (with the splittings into elements indicated):

1112 . 13
3112 . 1113
132112 . 3113
1113122112 . 132113
311311222112 . 1113122113
1321132 . 1322112 . 311311222113
111312211312 . 1113222112 . 1321132 . 1322113
3113112221131112 . 3113322112 . 111312211312 . 1113222113

Now since 111312211312 occurs with two marks to its left, it must also occur in the
evolution of a shorter sequence, namely:
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12 . 13
1112 . 1113
3112 . 3113
132112 . 132113
1113122112 . 1113122113
311311222112 . 311311222113
1321132 . 1322112 . 1321132 . 1322113
111312211312 . 1113222112 . 111312211312 . 1113222113

This evolution looks quite different but it again contains the element 111312211312
in the final descendant, this time with only a single mark to its left.

The Haskell code implementing this abstract interpretation is as follows:

collect :: [ [Int ]]
collect = nub (concat (map gather (cover simacc oracle)))

gather :: [Int ]→ [[Int ]]
gather = takeelts ◦ gsay8 ◦mark

gsay8 :: [Int ]→ [Int ]
gsay8 = gsay ◦ gsay ◦ gsay ◦ gsay ◦ gsay ◦ gsay ◦ gsay ◦ gsay

takeelts xs = case findIndices (<0) xs of
( : n : )→ g (f n)
→ ls

where ls = elements (unmark xs)
f n = find ((> n) ◦ length ◦ concat) (inits ls)
g (Just x ) = x

It turns out that the function oracle selecting the covering set for the abstract
interpretation is rather complex, because it must look ahead to see how long a
partial list is needed in order to ensure that its 8th descendant, also a partial
list, has at least two marks. Fortunately, the code for oracle is irrelevant to the
correctness of the abstract interpretation, as long as it terminates. The code is
therefore given in Appendix B.

The first few elements in collect turn out to be the following:

? take 5 collect
[[3, 1, 1, 3, 1, 2],
[1, 1, 1, 3, 1, 2, 2, 1],
[1, 3, 2, 1, 1, 3, 1, 1, 1, 2],
[3, 1, 1, 3, 1, 1, 2, 2, 1, 1],
[1, 3, 2, 1, 1, 3, 2]]

It turns out that there are many non-common elements in collect ; the first is collect !!
10 = [1, 3, 2, 2, 1, 1, 3, 3, 1, 2, 2, 2, 1, 1, 3, 1, 1, 1, 2], which takes 4 further iterations of
say to decay into common elements:

? common (collect !! 10)
False
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?map common (elements (say (say (say (say (collect !! 10))))))
[True,True,True,True,True,True,True,True,True ]

Having collected all the possible elements appearing in 10-day-old sequences, it
remains to test that each of them decays into common and transuranic elements.
We call a sequence in Sim cosmological if it decays into common and transuranic
elements:

cosmological :: [Int ]→ Bool
cosmological = any (all f ◦ elements) ◦ isay

where f xs = common xs ∨ transuranic xs

Of course this is only a semi-decision procedure; cosmological xs is True if xs is
cosmological, but ⊥ otherwise.

Finally, we can establish the Cosmological Theorem simply by testing each of
the elements in collect :

? all cosmological collect
True

Thus we have the following:

Theorem 8. Every sequence eventually decays into a compound of common and
transuranic elements.

By finding the principal eigenvector of the graph of common elements, Conway
then proves that no matter what interesting sequence one starts with, asymptoti-
cally the number of occurrences of the various common and transuranic elements
tend to certain fixed ratios, their elemental abundances. One can also compute the
corresponding eigenvalue, Conway’s constant λ = 1.3035772690 . . . , which is the
asymptotic rate of growth of every interesting sequence.

6. Conclusions

This paper has introduced a new kind of abstract interpretation based on the
denotational semantics of Haskell, and applied it to three different problems that
arise in the theory of Conway’s audioactive decay, leading up to and including the
proof of his Cosmological Theorem.

Audioactive decay is an amusing mathematical recreation, but hopefully there
are other applications of the method. The technique described is applicable to
general datatypes, not just lists, and it could be developed in other languages
besides Haskell.

From a higher level point of view, this work seems to lie in the middle ground
between the use of the computer essentially as a labor-saving calculator and its use
as a machine for creating formal deductions in a logic. The former sort of use is
exemplified by the proofs of the four color theorem by Appel et al. [AHK77] and of
Kepler’s conjecture by Hales [Hal98, Hal02]. These proofs rely on careful checking of
a complex computer program to establish the correctness of the result. The latter
use, on the other hand, is exemplified by Hales’ more recent project to formally
prove the Kepler conjecture in HOL Light [Hal06]. The proof by formal deduction
is certainly ultimately the most convincing, but it can require a significantly higher
expenditure of effort. It might be hoped that techniques such as the one described
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in this paper could provide some additional confidence, by reducing the amount of
code that must be checked, at moderate effort.

As a simple measure of the complexity of the computer proofs of the Cosmological
Theorem, we may consider the number of lines of code involved. The source file of
this technical report is a literate Haskell program containing 181 lines of Haskell
code, of which only 98 lines are in the body of the report; the other 83 lines are
in the appendices, and need not be considered when establishing the correctness of
the code. By comparison, Zeilberger’s Maple proof [EZ97] contains 2234 lines of
code (including some self-documentation), and Litherland’s C proof [Lit03b, Lit03a]
contains 1650 lines of code (including some comments). Even accounting for the
fraction of these totals taken up by documentation, the preceding proofs involve
substantially more code, more complex code, and code written in languages harder
to reason about, than the 98-line proof presented in this report.
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Appendix A. Oracle for splitting into elements

spl ′ :: [Int ]→ Bool
spl ′ (1 : [ ]) = True
spl ′ (1 : 2 : 2 : xs) = spl ′′ xs
spl ′ (2 : xs) = spl ′′ xs
spl ′ (3 : [ ]) = True
spl ′ (3 : 2 : 2 : xs) = spl ′′ xs
spl ′ (4 : 4 : ) = False
spl ′ (4 : ) = True
spl ′ = False

spl ′′ :: [Int ]→ Bool
spl ′′ (1 : 1 : 1 : ) = True
spl ′′ (1 : [ ]) = False
spl ′′ (1 : 1 : ) = False
spl ′′ (1 : 2 : 2 : ) = False
spl ′′ (1 : 3 : 3 : ) = False
spl ′′ (1 : 4 : 4 : ) = False
spl ′′ (2 : ) = False
spl ′′ (3 : 1 : 1 : 1 : ) = False
spl ′′ (3 : 2 : 2 : 2 : ) = False
spl ′′ (3 : 3 : ) = False
spl ′′ (3 : 4 : 4 : 4 : ) = False
spl ′′ (4 : 4 : 4 : ) = True
spl ′′ (4 : 4 : ) = False
spl ′′ = True

Appendix B. Oracle for the Cosmological Theorem

oracle :: [Int ]→ Bool
oracle = enoughelts ◦ tsay8 ◦mark

tsay :: [Int ]→ [Int ]
tsay = concat ◦map gcode ◦ truns

truns :: [Int ]→ [[Int ]]
truns (a : b : xs) = if abs a 6= abs b then [a ] : truns (b : xs)

else case xs of
c : ys → if abs b 6= abs c then [a, b ] : truns xs

else [a, b, c ] : truns ys
[ ]→ [ ]

truns [a ] = [ ]
truns [ ] = [ ]

tsay8 :: [Int ]→ [Int ]
tsay8 = tsay ◦ tsay ◦ tsay ◦ tsay ◦ tsay ◦ tsay ◦ tsay ◦ tsay

enoughelts :: [Int ]→ Bool
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enoughelts xs = case findIndices (<0) xs of
( : n : )→ length (concat (init ls)) > n
→ False

where ls = telements (unmark xs)

telements :: [Int ]→ [[Int ]]
telements [ ] = [[ ]]
telements (x : xs) = (x : ys) : yss

where ys : yss
| tspl ′ (x : xs) = [ ] : telements xs
| otherwise = telements xs

tspl ′ :: [Int ]→ Bool
tspl ′ (1 : 2 : 2 : xs) = tspl ′′ xs
tspl ′ (2 : xs) = tspl ′′ xs
tspl ′ (3 : 2 : 2 : xs) = tspl ′′ xs
tspl ′ [4] = False
tspl ′ (4 : ) = True
tspl ′ = False

tspl ′′ :: [Int ]→ Bool
tspl ′′ (1 : 1 : 1 : ) = True
tspl ′′ [ ] = False
tspl ′′ (1 : [ ]) = False
tspl ′′ (1 : 1 : ) = False
tspl ′′ (1 : 2 : [ ]) = False
tspl ′′ (1 : 2 : 2 : ) = False
tspl ′′ (1 : 3 : [ ]) = False
tspl ′′ (1 : 3 : 3 : ) = False
tspl ′′ (2 : ) = False
tspl ′′ (3 : [ ]) = False
tspl ′′ (3 : 1 : [ ]) = False
tspl ′′ (3 : 1 : 1 : [ ]) = False
tspl ′′ (3 : 1 : 1 : 1 : ) = False
tspl ′′ (3 : 2 : [ ]) = False
tspl ′′ (3 : 2 : 2 : [ ]) = False
tspl ′′ (3 : 2 : 2 : 2 : ) = False
tspl ′′ (3 : 3 : ) = False
tspl ′′ = True


