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?

2111
1231
11121311
3112111321
13211231131211
1113122112132113111221
3113112221121113122113312211
13211321322112311311222123112221
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Look and say

Read string out loud
2111  “one two, three ones”  1231
1231  “one one, one two, one three, one one”  11121311
... etc.

Invented by John Conway
– paper: The Weird and Wonderful Chemistry of Audioactive 

Decay, 1987
– also invented Life and surreal numbers

So what happens?
– asymptotics of string length
– random looking?  patterns in strings?
– answered by the Cosmological Theorem ...
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“Cosmological Theorem”

Characterizes how strings evolve
– split strings into elements
– elements decay into other elements
– classify all elements surviving in arbitrarily late strings

Proofs:
– J. H. Conway and friends, 1987 (by hand, lost)
– D. Zeilberger, 1997 (Maple)
– Litherland, 2003 (C)
– Watkins, 2006 (Haskell)

All proofs by exhaustion of cases
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What is a proof?

Are these proofs?
– hand proof:  case left out?  too much paper?
– computer proof:  buggy code?  cosmic ray?

My strategy
– semantics of Haskell is my deductive system
– proof correct by construction!
– most code needn’t be checked!
– key technique:  Haskell lazy data as abstract interpretation

Vs deductive engine (e.g. Coq, HOL Light)
– their pros:  correctness entirely formally verified
– my pros:  much less effort;  easy to experiment in Haskell 

interpreter
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Other proofs with similar structure

In general, must:
– enumerate cases
– verify a property for each case

Examples:
– Four color theorem (Appel et al., 1976)
– Kepler’s conjecture (Hales, 1998)

My method:
– oracle strategy simplifies showing sufficiency of 

enumeration
– abstract interpretation via laziness simplifies verifying 

property of each case
– This talk will illustrate both aspects
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My contributions

New proof presentation strategy
– i.e. oracle strategy and abstract interpretation via laziness 

from previous slide
– may apply to similar proofs in other domains

Verify Conway’s result
– Simple code: presented and justified in its entirety in my 

technical report
– Code written in a language with a simple semantics

Simplify prior proofs of Conway’s result
– via my marked sequences (see technical report)
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Talk outline
● Introduction
● Overview of Cosmological Theorem
● About Haskell and laziness
● Applying my method
● Conclusions
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Cosmological Theorem

Recall:

Characterizes how strings evolve
– split strings into elements
– elements decay into other elements
– classify all elements surviving in arbitrarily late strings
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Split strings into elements

Split string into parts that evolve independently
Formally:

– let xsn be nth string in evolution

– xs splits into ys . zs if and only if:
xsn = ysn ++ zsn for all n ≥ 0

– (++) means append strings

Element: string that doesn’t split into smaller ones
– Theorem (Conway, easy): every string splits into finitely 

many elements in unique way

Decision procedure for splitting?
– I’ll tell you in a few minutes ...
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Split strings into elements

Split up strings into parts that evolve independently
2111
1231
11121311
3112111321
13211231131211
1113122112132113111221
3113112221121113122113312211
13211321322112311311222123112221
... etc.
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Split strings into elements

Split up strings into parts that evolve independently
2 . 111
12 . 31
1112 . 1311
3112 . 111321
132112 . 31131211
1113122112 . 132113111221
311311222112 . 1113122113312211
13211321322112 . 311311222123112221
... etc.
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Split strings into elements

Example:
– 2111 splits into 2 . 111 which are elements
– first step: 2111  1231, and 2 . 111  12 . 31.  OK!
– I claim happens for nth step, all n ≥ 0 (proof later!)

Counterexample:
– 111 does not split into 1 . 11:
– 111  31, but 1 . 11  11 . 21.  BAD!

Analogy:  factoring integer into primes?
– Note substring of element can be element
– e.g. 111 is element, and also 1
– so splitting into elements is context dependent
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Cosmological Theorem

Recall:

Characterizes how strings evolve
– split strings into elements
– elements decay into other elements
– classify all elements surviving in arbitrarily late strings
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Audioactive decay

Start with string
– split into elements
– do look and say
– split result into elements
– do look and say
– ... repeat ad infinitum



16

Audioactive decay

2 . 111
12 . 31
1112 . 1311
3112 . 111321
132112 . 31131211
1113122112 . 132113111221
311311222112 . 1113122113312211
1321132 : 1322112 . 311311222 : 12 : 3112221
... etc.
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Cosmological Theorem

Recall:

Characterizes how strings evolve
– split strings into elements
– elements decay into other elements
– classify all elements surviving in arbitrarily late strings

Two special sets of elements:
– 92 common elements
– 2 infinite families of transuranic elements
Cosmological Theorem (Conway, proof lost):  every string 

eventually decays into a compound of common and 
transuranic elements
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Common elements

92 special elements
– Conway assigned them symbols H-U from chemistry
– involve only integers 1, 2, 3

Ubiquity
– Theorem (Conway): every common element eventually 

shows up in the decay of any interesting string (proved in 
technical report, not needed for Cosmological Theorem)

Two special cases
– empty string, 22 just repeat themselves
– call these boring, any other string interesting
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Common elements example

2 . 111
12 . 31
1112 . 1311
3112 . 111321
132112 . 31131211
1113122112 . 132113111221
311311222112 . 1113122113312211
1321132 : 1322112 . 311311222 : 12 : 3112221

“holmium-silicon-erbium-calcium-antinide!”
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Common elements example

2 . 111
Ca . 31
K . 1311
Ar . 111321
Cl . 31131211
S . 132113111221
P . 1113122113312211
Ho : Si . Er : Ca : Sb

“holmium-silicon-erbium-calcium-antinide!”
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Transuranic elements

What about integers other than 1 2 3?
– extra transuranic elements
– nPu = 31221132221222112112322211n
– nNp = 1311222113321132211221121332211n

Cosmological Theorem (Conway, proof lost): Every 
string eventually decays into a compound of 
common and transuranic elements
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Using the Cosmological Theorem

How long do strings get?
– make transition matrix on 92 common elements
– find principal eigenvalue λ = 1.3035772690...
– Theorem (linear algebra, not hard): length of any interesting 

string tends to cλn on nth step, as n  ∞

Can also compute asymptotic relative abundance of 
elements
– abundances of transuranic elements tend to 0
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My proof

First step proving Cosmological Theorem: decision 
procedure for splitting strings into elements

This talk:
– develop correct decision procedure:

● use oracle strategy to enumerate cases
● use abstract interpretation to prove each case correct

See paper for the rest, leading ultimately to the 
proof of the Cosmological Theorem
– two more distinct uses of oracles and abstract 

interpretation
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Splitting into elements

2111 splits into 2 and 111
But 111 doesn’t split into, say, 1 and 11.  Why?

– Split point is in the middle of a run of 1s
– Run 111 coded as 31 in original string
– Pieces 1 and 11 coded as 11 and 21 in split parts
– 31 ≠ 1121

Compare 2 and 111...
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Splitting into elements

Compare 2 and 111...
2 . 111
12 . 31
1112 . 1311
3112 . 111321
132112 . 31131211
1113122112 . 132113111221
... etc.

Split point never lands in the middle of a run
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Splitting into elements

... Split point never lands in the middle of a run

Otherwise said:
– last number of left part ≠ first number of right part, forever
– Theorem (Conway, easy): necessary and sufficient for 

splitting
– note last number of left part never changes

Plan: see what happens to first number of arbitrary 
string
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Talk outline
● Introduction
● Overview of Cosmological Theorem
● About Haskell and laziness
● Applying my method
● Conclusions
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Lists in Haskell

List is either:
– Empty list, written [], read “nil”
– Non-empty list, written (x:xs), read “x cons xs”

● First element x (head)
● List of remaining elements xs (tail)

Other syntax
– Cons associates to right: (1:2:3:[]) = (1:(2:(3:[])))
– Bracket abbreviation: [1,2,3] = (1:(2:(3:[])))
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Haskell programming

Defining functions
– write equations characterizing function
– when function is called:

● match pattern on left side of equation
● result is right hand side of equation

Example: length of list
length [] = 0
length (x:xs) = length xs + 1

This talk: patterns always mutually exclusive
– e.g. [] and (x:xs) never both match an input



30

Haskell reasoning

Reasoning with functions by substitution
– can always replace (instance of) left hand side with right 

hand side, or vice versa
– no state, memory, etc. to screw things up
– relies on convention about mutually exclusive patterns

Example:
length (1:2:xs) = length (2:xs) + 1 = (length xs + 1) + 1 = 

length xs + 2

Derive properties by doing algebra
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Haskell reasoning???

But can’t you write inconsistent equations?
– e.g. f [] = 1 + f []

Solution:
– every Haskell type has special undefined element , read ⊥

“bottom”
– have:  f [] = ⊥
– therefore:   = 1 + ⊥ ⊥

When running program,  means “infinite loop”⊥
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Laziness: suspending computations

What if:
g [] = 1:(g [])

Cons (:) and plus (+) work differently:
– 1+f [] evals 1 and (f []) then adds
– 1:(g []) created without eval’ing 1 and (g [])

More generally:
– (:) makes data structure, puts suspended computations in 

slots of structure
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Classifying Haskell lists

What happens when you look for [] at end of list?
– finite: terminate
– infinite: get more and more conses forever
– partial: get  after seeing finitely many conses⊥

Examples:
– finite, e.g. (1:(2:(3:[]))) = [1,2,3]
– infinite, e.g. g [] where g [] = 1 : g []
– partial, e.g. (1:(2:(3: )))⊥

Mutually exclusive and exhaustive
– any nonterminating expression = ⊥
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Refinements of data

Every Haskell type has a refinement order:
– read x ≤ y as “y at least as defined as x”

Pictorially ...
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Integer and boolean refinements

⊥

True False

⊥

1 2 3 ...

All elements but ⊥ incomparable
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List refinements
[] and (:) incomparable;  (:) monotone in both args

This talk: restrict lists to 1 2 3; all members defined for lists we 
consider

⊥

1:⊥ 2:⊥ 3:⊥

1:[] 1:1:⊥ 1:2:⊥ 1:3:⊥

[]

... ... ...

... ...
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Talk outline
● Introduction
● Overview of Cosmological Theorem
● About Haskell and laziness
● Applying my method
● Conclusions
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Using monotonicity

Fact: every definable Haskell function is monotone
– xs ≤ ys implies f xs ≤ f ys (in refinement order)
– i.e., as arg gets more defined, result gets more defined

Suppose:
– Given f such that f (1: ) = True⊥

Then:
– f (1:xs) = True for any xs, by monotonicity of f

Don’t need to see code for f!
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Define Haskell function say that does look and say
e.g. say [2,1,1,1] = [1,2,3,1]

Want say to be as lazy as possible
e.g. say (2:1:1:1:3: ) = (1:2:3:1: )⊥ ⊥
e.g. say (2:1: ) = (1:2: )⊥ ⊥
e.g. say (2: ) = ⊥ ⊥
definition from my paper is indeed as lazy as possible

Abstractly interpreting look and say
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Covering all lists

Simulate f on all lists using abstract interpretation
– pick (somehow) set C of partial (or finite) lists
– C must cover every list:  ∀xs  ∃ys ∈ C such that ys ≤ xs
– eval f on every list in C

Will explain how to pick C in a moment

Pictorially ...
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Covering all lists

A fringe in the tree of refinements

⊥

1:⊥ 2:⊥ 3:⊥

1:[] 1:1:⊥ 1:2:⊥ 1:3:⊥

[]

... ... ...

... ...



42

Covering all lists

A more refined cover

⊥

1:⊥ 2:⊥ 3:⊥

1:[] 1:1:⊥ 1:2:⊥ 1:3:⊥

[]

... ... ...

... ...
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Applying the method

Recall:  Splitting 2111...
2 . 111
12 . 31
1112 . 1311
3112 . 111321
132112 . 31131211
1113122112 . 132113111221
... etc.
2 always appears on left; want to show evolution of 

111 always starts with 1 or 3
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Finding the limit cycles

Pick covering set C (will say how later)

Execute the following Haskell code:
nub (map (take 20 · say30) C)

nub removes duplicates from list
Constants 20, 30 chosen by trial and error

We get ...
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Finding the limit cycles

[],
[31131122211311123113],
[13211321322113311213],
[13111213122112132113],
[31232112311321322112],
[11131221131211132221],
[22],

[22132113213221133112],
[22131112131221121321],
[22311311222113111231],
[22312321123113213221],
[11133112111311222112],
[22111312211312111322],
[22111331121113112221]

?  nub (map (take 20 · say30) C)
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Finding the limit cycles

[],
[31131122211311123113],
[13211321322113311213],
[13111213122112132113],
[31232112311321322112],
[11131221131211132221],
[22],

[22132113213221133112],
[22131112131221121321],
[22311311222113111231],
[22312321123113213221],
[11133112111311222112],
[22111312211312111322],
[22111331121113112221]

?  nub (map (take 20 · say30) C)
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Finding the limit cycles

[],
[11131221131211132221],
[31131122211311123113],
[13211321322113311213],
[11133112111311222112],
[31232112311321322112],
[13111213122112132113],

[22],
[22111312211312111322],
[22311311222113111231],
[22132113213221133112],
[22111331121113112221],
[22312321123113213221],
[22131112131221121321]

?  nub (map (take 20 · say30) C)  [rearranged]



48

Finding the limit cycles

[],
[11131221131211132221],
[31131122211311123113],
[13211321322113311213],
[11133112111311222112],
[31232112311321322112],
[13111213122112132113],

[22],
[22111312211312111322],
[22311311222113111231],
[22132113213221133112],
[22111331121113112221],
[22312321123113213221],
[22131112131221121321]

?  nub (map (take 20 · say30) C)  [rearranged]

By 30th step we’ve reached a limit cycle!
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Finding the limit cycles

[],
[11131221131211132221],
[31131122211311123113],
[13211321322113311213],
[11133112111311222112],
[31232112311321322112],
[13111213122112132113],

[22],
[22111312211312111322],
[22311311222113111231],
[22132113213221133112],
[22111331121113112221],
[22312321123113213221],
[22131112131221121321]

?  nub (map (take 20 · say30)) C  [rearranged]

By 30th step we’ve reached a limit cycle!

By 32nd step we’ve seen every starting number!
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Decision procedure for splitting

By 30th step we’ve reached a limit cycle!

By 32nd step we’ve seen every starting number!

Define algorithm for starting numbers:
starts xs = [ head (sayn xs) | n  [0..32] ]

Define decision procedure for splitting:
splits xs ys = null xs ∨ null ys ∨ ¬ (last xs ∈ starts ys)

Needed to pick C.  How?
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Picking a covering set

Use oracle predicate p to decide how far to refine
Call (cover p):

cover p = if p [] then [ ] else⊥
 [] :
 [ 1:xs | xs  cover (λys. p (1:ys)) ] ++
 [ 2:xs | xs  cover (λys. p (2:ys)) ] ++
 [ 3:xs | xs  cover (λys. p (3:ys)) ]

Example:
cover ((== 2) · length) = { [], [1], 1:1: , 1:2: , 1:3: , [2], ... }⊥ ⊥ ⊥

Claim: if (cover p) terminates, result is covering set
– Don’t have to look at p!
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Putting it together

Determine appropriate oracle by experiment:
p = ((≥ 12) · length · say)

Generate covering set using oracle:
C = cover p

Find limit cycles using covering set:
?  nub (map (take 20 · say30) C)
[[], [31131122211311123113], ...

Conclude that decision procedure is correct:
starts xs = [ head (sayn xs) | n  [0..32] ]
splits xs ys = null xs ∨ null ys ∨ ¬ (last xs ∈ starts ys)
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About the code

Two more applications of the method
– proving that a lazier version of splits is correct
– finding all decay products of arbitrary strings using splits

Literate Haskell program
– 1311 lines (181 code + 1130 latex)
– 98 LOC verified; 83 LOC in oracles, needn’t be verified

Compare:
– Zeilberger (Maple): 2234 LOC (incl. self-documentation)
– Litherland (C): 1650 LOC (less than half comments)
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Talk outline
● Introduction
● Overview of Cosmological Theorem
● About Haskell and laziness
● Applying my method
● Conclusions
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Proofs my method targets

In general, must:
– enumerate cases
– verify a property for each case

Examples:
– Four color theorem (Appel et al., 1976)
– Kepler’s conjecture (Hales, 1998)

My method:
– oracle strategy simplifies showing sufficiency of 

enumeration
– abstract interpretation via laziness simplifies verifying 

property of each case
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My contributions

New proof presentation strategy
– i.e. oracle strategy and abstract interpretation via laziness 

from previous slide
– may apply to similar proofs in other domains

Verify Conway’s result
– Simple code: presented and justified in its entirety in my 

technical report
– Code written in a language with a simple semantics

Simplify prior proofs of Conway’s result
– via my marked sequences (see technical report)
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Questions?


