
Online Allocation and Pricing with Economies of Scale

Avrim Blum∗ Yishay Mansour† Liu Yang‡

Abstract

Allocating multiple goods to customers in a way that maximizes some desired objective is a fun-
damental part of Algorithmic Mechanism Design. We consider here the problem of offline and online
allocation of goods that have economies of scale, or decreasing marginal cost per item for the seller. In
particular, we analyze the case where customers have unit-demand and arrive one at a time with valu-
ations on items, sampled iid from some unknown underlying distribution over valuations. Our strategy
operates by using an initial sample to learn enough about the distribution to determine how best to allo-
cate to future customers, together with an analysis of structural properties of optimal solutions that allow
for uniform convergence analysis. We show, for instance, if customers have {0, 1} valuations over items,
and the goal of the allocator is to give each customer an item he or she values, we can efficiently produce
such an allocation with cost at most a constant factor greater than the minimum over such allocations in
hindsight, so long as the marginal costs do not decrease too rapidly. We also give a bicriteria approxi-
mation to social welfare for the case of more general valuation functions when the allocator is budget
constrained.

1 Introduction

Imagine it is the Christmas season, and Santa Claus is tasked with allocating toys. There is a sequence
of children coming up with their Christmas lists of toys they want. Santa wants to give each child some
toy from his or her list (all children have been good this year). But of course, even Santa Claus has to be
cost-conscious, so he wants to perform this allocation of toys to children at a near-minimum cost to himself
(call this the Thrifty Santa Problem). Now if it was the case that every toy had a fixed price, this would be
easy: simply allocate to each child the cheapest toy on his or her list and move on to the next child. But
here we are interested in the case where goods have economies of scale. For example, producing a millon
toy cars might be cheaper than a million times the cost of producing one toy car. Thus, even if producing a
single toy car is more expensive than a single Elmo doll, if a much larger number of children want the toy
car than the Elmo doll, the minimum-cost allocation might give toy cars to many children, even if some of
them also have the Elmo doll on their lists.

The problem faced by Santa (or by any allocator that must satisfy a collection of disjunctive constraints
in the presence of economies of scale) makes sense in both offline and online settings. In the offline setting,
in the extreme case of goods such as software where all the cost is in the first copy, this is simply weighted
∗Carnegie Mellon University, Computer Science Department, Email: avrim@cs.cmu.edu. Supported in part by the National

Science Foundation under grants CCF-1101215, CCF-1116892, and IIS-1065251.
†Tel Aviv University, Computer Science Department, Email: mansour@tau.ac.il. Supported in part by a grant from the

Israel Science Foundation, a grant from the United States-Israel Binational Science Foundation (BSF), a grant by Israel Ministry of
Science and Technology and and the Israeli Centers of Research Excellence (I-CORE) program (Center No. 4/11).
‡Carnegie Mellon University, Machine Learning Department, Email: liuy@cs.cmu.edu. Supported in part by NSF grant

IIS-1065251 and a Google Core AI grant.

1

set-cover, admitting a Θ(log n) approximation to the minimum-cost allocation. We will be interested in
the online case where customers are iid from some arbitrary distribution over subsets of item-set I (i.e.,
Christmas lists), where the allocator must make allocation decisions online, and where the marginal cost of
goods does not decrease so sharply. We show that for a range of cost curves, including the case that the
marginal cost of copy t of an item is t−α, for some α ∈ [0, 1), we will be able to get a constant-factor
approximation even online so long as the number of customers is sufficiently large compared to the number
of items.

A basic structural property we show is that, if the marginal costs are non-increasing, the minimum cost
allocation can be compactly described as an ordering of the possible toys, so that as each child comes, Santa
simply gives the child the first toy in the ordering that appears on the child’s list. We also show that if the
marginal costs do not drop too quickly, then if we are given the lists of all the children before determining
the allocation, we can efficiently find an allocation that is within a constant factor of the minimum-cost
allocation, as opposed to the logarithmic factor required for the set-cover problem. Since, however, the
problem we are interested in does not supply the lists before the allocations, but rather requires a decision
for each child in sequence, we use ideas from machine learning, as follows: after processing a small initial
number of children, we take their wish lists as if they were perfectly representative of the future children,
and find an approximately optimal solution based on those, which also will be an ordering over toys. We
then take the ordered list of toys from this solution, and and use it to allocate to future children (allocating
to each child the earliest toy in the ordering that is also on his or her list). We show that, as long as we take
a sufficiently large number of initial children, this procedure will find an ordering that will be near-optimal
for allocating to the remaining children, using the fact that these compact representations allow for uniform
convergence of the cost estimates to the true costs.

More generally, we can imagine the case where, rather than simple lists of items, the lists also provide
valuations for each item, and we are interested in the trade-off between maximizing the total of valuations
for allocated items while minimizing the total cost of the allocation. In this case, we might think of the
allocator as being a large company with many different projects, and each project has some valuations over
different resources (e.g., types of laptops for employees involved in that project), where it could use one or
another resource but prefers some resources over others. One natural quantity to consider in this context
is the social surplus: the difference between the happiness (total of valuations for the allocation) minus
the total cost of the allocation. In this case, it turns out the optimal allocation rule can be described by a
pricing scheme. In another words, whatever the optimal allocation is, there always exist prices such that
if the buyers purchase what they most want at those prices, they will actually produce that allocation. We
note that, algorithmically, this is a harder problem than the list-based problem (which corresponds to binary
valuations).

Aside from social surplus, it is also interesting to consider a variant in which we have a budget constraint,
and are interested in maximizing the total valuation of the allocation, subject to that budget constraint on
the total cost of the allocation. It turns out this latter problem can be reduced to a problem known as the
weighted budget maximum coverage problem. Technically, this problem is originally formulated for the
case in which the marginal cost of a given item drops to zero after the first item of that type is allocated
(as in the set cover reduction mentioned above); however, viewed appropriately, we are able to formulate
this reduction for arbitrary decreasing marginal cost functions. What we can then do is run an algorithm for
the weighted budget maximum coverage problem, and then convert the solution into a pricing. As before,
this strategy will be effective for the offline problem, in which all of the valuations are given ahead of time.
However, we can extend it to the online setting with iid valuation functions by generating a pricing based
on an appropriately-sized initial sample of valuation functions, and then apply that pricing to sequentially

2

generate allocations for the remaining valuations. As long as the marginal costs are not decreasing too
rapidly, we can obtain an allocation strategy for which the sum of valuations of the allocated items will
be within a constant factor of the maximum possible, minus a small additive term, subject to the budget
constraint on the cost.

1.1 Our Results and Techniques

We consider this problem under two, related, natural objectives. In the first (the “thrifty Santa” objective)
we assume customers have binary {0, 1} valuations, and the goal of the seller is to give each customer a toy
of value 1, but in such a way that minimizes the total cost to the seller. We show that so long as the number
of buyers n is large compared to the number of items r, and so long as the marginal costs do not decrease
too rapidly (e.g., a rate 1/tα for some 0 ≤ α < 1), we can efficiently perform this allocation task with cost
at most a constant factor greater than that of the optimal allocation of items in hindsight. Note that if costs
decrease much more rapidly, then even if all customers’ valuations were known up front, we would be faced
with (roughly) a set-cover problem and so one could not hope to achieve cost o(log n) times optimal. The
second objective we consider, which we apply to customers of arbitrary unit-demand valuation, is that of
maximizing total social welfare of customers subject to a cost bound on the seller; for this, we also give a
strategy that is constant-competitive with respect to the optimal allocation in hindsight.

Our algorithms operate by using initial buyers to learn enough about the distribution to determine how
best to allocate to the future buyers. In fact, there are two main technical parts of our work: the sample
complexity and the algorithmic aspects. From the perspective of sample complexity, one key component of
this analysis is examining how complicated the allocation rule needs to be in order to achieve good perfor-
mance, because simpler allocation rules require fewer samples in order to learn. We do this by providing a
characterization of what the optimal strategies look like. For example, for the thrifty Santa Claus version,
we show that the optimal solution can be assumed wlog to have a simple permutation structure. In partic-
ular, so long as the marginal costs are nonincreasing, there is always an optimal strategy in hindsight of
this form: order the items according to some permutation and for each bidder, give it the earliest item of its
desire in the permutation. This characterization is used inside both our sample complexity results and our
algorithmic guarantees. Specifically, we prove that for cost function cost(t) =

∑t
τ=1 1/τα, for α ∈ [0, 1),

running greedy weighted set cover incurs total cost at most 1
1−αOPT. More generally, if the average cost is

within some factor of the marginal cost, we have a greedy algorithm that achieves constant approximation
ratio. To allocate to new buyers, we simply give it the earliest item of its desire in the learnt permutation. For
the case of general valuations, we give a characterization showing that the optimal allocation rule in terms
of social welfare can be described by a pricing scheme. That is, there exists a pricing scheme such that if
buyers purchased their preferred item at these prices, the optimal allocation would result. Algorithmically,
we show that we can reduce to a weighted budgeted maximum coverage problem with single-parameter
demand for which there is a known constant-approximation-ratio algorithm [8].

1.2 Related Work

In this work we focus on the case of decreasing marginal cost. There have been a large body of research
devoted to unlimited supply, which is implicitly constant marginal cost (e.g., [10] Chapter 13), where the
goal is to achieve a constant competitive ratio in both offline and online models. The case of increasing
marginal cost was studied in [2] where constant competitive ratio was given.

We analyze an online setting where buyers arrive one at a time, sampled iid from some unknown un-
derlying distribution over valuations. Other related online problems with stochastic inputs such as matching

3

problems have been studied in ad auctions [5,9]. Algorithmically, our work is related to the online set cover
body of work where [1] gave the first O(logm log n) competitive algorithm (here n is the number of ele-
ments in the ground set and m is size of a family of subsets of the ground set). The problems we study are
also related to online matching problems [3, 4, 7] in the iid setting; however our problem is more like the
“opposite” of online matching in that the cumulative cost curve for us is concave rather than convex.

2 Model, Definitions, and Notation

We have a set I of r items. We have a set N = {1, . . . , n} indexing n unit demand buyers. Our setting can
then generally be formalized in the following terms.

2.1 Utility Functions

Each buyer j ∈ N has a weight uj,i for each item i ∈ I. We suppose the vectors uj,· are sampled i.i.d.
according to a fixed (but arbitrary and unknown) distribution. In the online setting we are interested in, the
buyers’ weight vectors uj,· are observed in sequence, and for each one (before observing the next) we are
required to allocate a set of items Tj ⊆ I to that buyer. The utility of buyer j for this allocation is then
defined as uj(Tj) = maxi∈Tj uj,i. A few of our results consider a slight variant of this model, in which we
are only required to begin allocating goods after some initial o(n) number of customers has been observed
(to whom we may allocate items retroactively).

This general setting is referred to as the weighted unit demand setting. We will also be interested in
certain special cases of this problem. In particular, many of our results are for the uniform unit demand
setting, in which every j ∈ N and i ∈ I have uj,i ∈ {0, 1}. In this case, we may refer to the set Sj = {i ∈
I : uj,i = 1} as the list of items buyer j wants (one of).

2.2 Production cost

We suppose there are cumulative cost functions costi : N → [0,∞] for each item i ∈ I, where for t ∈ N,
the value of costi(t) represents the cost of producing t copies of item i. We suppose each costi(·) is
nondecreasing.

We would like to consider the case of decreasing marginal cost, where t 7→ costi(t + 1) − costi(t) is
nonincreasing for each i ∈ I.

A natural class of decreasing marginal costs we will be especially interested in are of the form t−α for
α ∈ [0, 1). That is, costi(t) = c0

∑t
τ=1 τ

−α.

2.3 Allocation problems

After processing the n buyers, we will have allocated some set of items T , consisting ofmi(T) =
∑

j∈N ITj (i)
copies of each item i ∈ I. We are then interested in two quantities in this setting: the total (production) cost
cost(T) =

∑
i∈I costi(mi(T)) and the social welfare SW (T) =

∑
j∈N uj(Tj).

We are interested in several different objectives within this setting, each of which is some variant repre-
senting the trade-off between reducing total production cost while increasing social welfare.

In the allocate all problem, we have to allocate to each buyer j ∈ N one item i ∈ Sj (in the uniform
demand setting): that is, SW (T) = n. The goal is to minimize the total cost cost(T), subject to this
constraint.

4

The allocate with budget problem requires our total cost to never exceed a given limit b (i.e., cost(T) ≤
b). Subject to this constraint, our objective is to maximize the social welfare SW (T). For instance, in the
uniform demand setting, this corresponds to maximizing the number of satisfied buyers (that get an item
from their set Sj).

The objective in the maximize social surplus problem is to maximize the difference of the social welfare
and the total cost (i.e., SW (T)− cost(T)).

3 Structural Results and Allocation Policies

We now present several results about the structure of optimal (and non-optimal but “reasonable”) solutions
to allocation problems in the setting of decreasing marginal costs. These will be important in our sample-
complexity analysis because they allow us to focus on allocation policies that have inherent complexity that
depends only on the number of items and not on the number of customers, allowing for the use of uniform
convergence bounds. That is, a small random sample of customers will be sufficient to uniformly estimate
the performance of these policies over the full set of customers.

3.1 Permutation and pricing policies

A permutation policy has a permutation π over I and is applicable in the case of uniform unit demand.
Given buyer j arriving, we allocate to him the minimal (first) demanded item in the permutation, i.e.,
arg mini∈Sj π(i). A pricing policy assigns a price pricei to each item i and is applicable to general quasi-
linear utility functions. Given buyer j arriving, we allocate to him whatever he wishes to purchase at those
prices, i.e., arg maxTj uj(Tj)−

∑
i∈Tj pricei.1

We will see below that for uniform unit demand buyers, there always exists a permutation policy that is
optimal for the allocate-all task, and for general quasilinear utilities there always exists a pricing policy that
is optimal for the task of maximizing social surplus. We will also see that for weighted unit demand buyers,
there always exists a pricing policy that is optimal for the allocate-with-budget task; moreover, for any even
non-optimal solution (e.g., that might be produced by a polynomial-time algorithm) there exists a pricing
policy that sells the same number of copies each item and has social welfare at least as high (and can be
computed in polynomial time given the initial solution).

3.2 Structural results

Theorem 3.1. For general quasilinear utilities, any allocation that maximizes social surplus can be pro-
duced by a pricing policy. That is, if T = {T1, . . . , Tn} is an allocation maximizing SW (T)−cost(T) then
there exist prices price1, . . . ,pricer such that buyers purchasing their most-demanded bundle recovers T ,
assuming that the marginal cost function is strictly decreasing.2

Proof. Consider the optimal allocation OPT. Define pricei to be the marginal cost of the next copy of item
i under OPT, i.e., pricei = costi(#i(OPT) + 1). Suppose some buyer j is assigned set Tj in OPT but

1When more that one subset is applicable, we assume we have the freedom to select any such set. Note that such policies are
incentive-compatible.

2If the marginal cost function is only non-increasing, we can have the same result, assuming we can select between the utility
maximizing bundles.

5

prefers set T ′j under these prices. Then,

uj(T ′j)−
∑
i∈T ′j

pricei ≥ uj(Tj)−
∑
i∈Tj

pricei,

which implies
uj(T ′j)− uj(Tj) +

∑
i∈Tj\T ′j

pricei −
∑

i∈T ′j\Tj

pricei ≥ 0. (1)

Now, consider modifying OPT by replacing Tj with T ′j . This increases buyer j’s utility by uj(T ′j)−uj(Tj),
incurs an extra purchase cost exactly

∑
i∈T ′j\Tj

pricei and a savings of strictly more than
∑

i∈Tj\T ′j
pricei

(because marginal costs are decreasing). Thus, by (1) this would be a strictly preferable allocation, contra-
dicting the optimality of OPT.

Corollary 3.2. For uniform unit demand buyers there exists an optimal allocation that is a permutation
policy, for the allocate all task.

Proof. Imagine each buyer j had valuation vmax on items in Sj where vmax is greater than the maximum
cost of any single item. The allocation OPT that maximizes social surplus would then minimize cost
subject to allocating exactly one item to each buyer and therefore would be optimal for the allocate-all task.
Consider the pricing associated to this allocation given by Theorem 3.1. Since each buyer j is uniform unit
demand, he will simply purchase the cheapest item in Sj . Therefore, the permutation π that orders items
according to increasing price according to the prices of Theorem 3.1 will produce the same allocation.

We now present a structural statement that will be useful for the allocate-with-budget task.

Theorem 3.3. For weighted unit-demand buyers, for any allocation T there exists a pricing policy that
allocates the same multiset of items T (or a subset of T) and has social welfare at least as large as T .
Moreover, this pricing can be computed efficiently from T and the buyers’ valuations.

Proof. Let T be the multiset of items allocated by T . Weighted unit-demand valuations satisfy the gross-
substitutes property, so by the Second Welfare Theorem (e.g., see [10] Theorem 11.15) there exists a Wal-
rasian equilibrium: a set of prices for the items in T that clears the market. Moreover, these prices can be
computed efficiently from demand queries (e.g., [10], Theorem 11.24), which can be evaluated efficiently
for weighted unit-demand buyers. Furthermore, these prices must assign all copies of the same item in T the
same price (else the pricing would not be an equilibrium) so it corresponds to a legal pricing policy. Thus,
we have a legal pricing such that if all buyers were shown only the items represented in T , at these prices,
then the market would clear perfectly (breaking any ties in our favor). We can address the fact that there
may be items not represented in T (i.e., they had zero copies sold) by simply setting their price to infinity.
Finally, by the First Welfare Theorem (e.g., [10] Theorem 11.13), this pricing maximizes social welfare over
all allocations of T , and therefore achieves social welfare at least as large as T , as desired.

The above structural results will allow us to use the following sketch of an online algorithm. First sample
an initial set of ` buyers. Then, for the allocate-all problem, compute the best (or approximately best)
permutation policy according to the empirical frequencies given by the sample. Or, for the allocate-with
budget task, compute the best (or approximately best) allocation according to these empirical frequencies
and convert it into a pricing policy. Then run this permutation or pricing policy on the remainder of the
customers. Finally, using the fact that these policies have low complexity (they are lists or vectors in a space

6

that depends only on the number of items and not on the number of buyers) compute the size of initial sample
needed to ensure that the estimated performance is close to true performance uniformly over all policies in
the class.

4 Uniform Unit Demand and the Allocate-All problem

Here we consider the allocate-all problem for the setting of uniform unit demand. We begin by considering
the following natural class of decreasing marginal cost curves such as 1/

√
t.

Definition 4.1. We say the cost function cost(t) is α-poly if the marginal cost of item t is 1/tα for α ∈ [0, 1).
That is, cost(t) =

∑t
τ=1 1/τα.

Theorem 4.2. If each cost function is α-poly, then there exists an efficient offline algorithm that given a set
X of buyers produces a permutation policy that incurs total cost at most 1

1−αOPT.

Proof. We run the greedy set-cover algorithm. Specifically, we choose the item desired by the most buyers
and put it at the top of the permutation π. We then choose the item desired by the most buyers who did not
receive the first item and put it next, and so on. For notational convenience assume π is the identity, and
let Bi denote the set of buyers that receive item i, For any set B ⊆ X , let OPT(B) denote the cost of the
optimal solution to the subproblem B (i.e., the problem in which we are only required to cover buyers in
B). Clearly OPT(Br) = cost(|Br|) =

∑|Br|
τ=1 1/τα ≥

∑|Br|
t=1

∫ |Bt|
1 x−αdx = 1

1−α |Br|
1−α − 1, since any

solution using more than one set to cover the elements of Br has at least as large a cost.
Now, for the purpose of induction, suppose that some k ∈ {2, . . . , r} has OPT(

⋃r
t=k Bt) ≥

∑r
t=k |Bt|1−α.

Then, since Bk−1 was chosen to be the largest subset of
⋃r
t=k−1 Bt that can be covered by a single item, it

must be that the sets used by any allocation for the
⋃r
t=k−1 Bt subproblem achieving OPT(

⋃r
t=k−1 Bt) have

size at most |Bk−1|, and thus the marginal costs for each of the elements of Bk−1 in the OPT(
⋃r
t=k−1 Bt)

solution is at least 1/|Bk−1|α.
This implies OPT(

⋃r
t=k−1 Bt) ≥ OPT(

⋃r
t=k Bt)+

∑
x∈Bk−1

1/|Bk−1|α = OPT(
⋃r
t=k Bt)+|Bk−1|1−α.

By the inductive hypothesis, this latter expression is at least as large as
∑r

t=k−1 |Bt|1−α. By induction, this
implies OPT(X) = OPT(

⋃r
t=1 Bt) ≥

∑r
t=1 |Bt|1−α. On the other hand, the total cost incurred by the

greedy algorithm is
∑r

t=1

∑|Br|
τ=1 1/τα ≤

∑r
t=1

∫ |Bt|
0 x−αdx = 1

1−α
∑r

t=1 |Bt|1−α. By the above argument,
this is at most 1

1−αOPT(X).

More general cost curves We can generalize the above result to a broader class of smoothly decreasing
cost curves. Define the average cost of item i given to set Bi of buyers as AvgC(i, |Bi|) = cost(|Bi|)

|Bi| . Define
the marginal cost MarC(i, t) = costi(t)− costi(t− 1). Here is a greedy algorithm.

Algorithm: GreedyGeneralCost(B)
0. i = arg minAvgC(i, |Bi|), where Bi = {j ∈ B : i ∈ Sj}
1. Call GreedyGeneralCost(B − Bi)

We make the following assumption:

Assumption 4.3. ∀i, t, AvgC(i, t) ≤ βMarC(i, t), for some β > 0.

For example, for the case of an α-poly cost, we have: MarC(t) = 1
tα andAvgC = 1

t

∑t
τ=1

1
τα ≈

t−α

1−α ;
so, therefore we have β = 1

1−α .

7

Theorem 4.4. The algorithm GreedyGeneralCost achieves approximation ratio β.

Proof. Order the elements in the order that GreedyGeneralCost allocates them. Let Ni be the set of con-
sumers that receive item i, and N = ∪Ni in GreedyGeneralCost. For consumer j let itemopt(j) be the item
that OPT allocates to consumer j. Let `opt(i) be the number of consumers that are allocated item i. By
Assumption 4.3 we have MarC(i, l) ≤ AvgC(i, l) ≤ βMarC(i, l) (the first inequality is due to having
decreasing marginal cost).

We would like to consider the influence of the consumers in N1 on the cost of OPT . Let

OPT(N)−OPT(N −N1) ≥
∑

j∈N1
MarC(itemopt(j), `opt(itemopt(j)))

≥
∑

j∈N1

1
βAvgC(itemopt(j), `opt(itemopt(j)))

≥ 1
β |N1|AvgC(1, |N1|) = 1

βGreedyCost(N1)

The first inequality follows since taking the final marginal cost can only reduce the cost (decreasing marginal
cost). The second inequality follows from Assumption 4.3. The third inequality follows since GreedyGen-
eralCost selects the lowest average cost of any allocated item .

We can now continue inductively. Let T0 = N , T1 = N − N1, and Tj = Tj−1 − Nj . We can show
similarly that,

OPT(Tj−1)−OPT(Tj) ≥
1
β
GreedyCost(Nj)

Summing over all j we have

OPT (T)−OPT (∅) =
∑
j

OPT(Tj−1)−OPT(Tj) ≥
1
β

∑
j

GreedyCost(Nj) =
1
β
GreedyCost(N)

Additionally, a property of β-nice cost functions we will need to use later is the following.

Lemma 4.5. For cost satisfying Assumption 4.3, ∀x ∈ N, ∀ε ∈ (0, 1), ∀i ≤ r, costi(εx) ≤ εlog2(1+ 1
2β

)costi(x).

Proof. By the fact that marginal costs are non-negative, AvgC(2εx) ≥ costi(εx)/(2εx). Therefore, by
Assumption 4.3, MarC(2εx) ≥ costi(εx)/(2εxβ). By the decreasing marginal cost property, we have

costi(2εx) ≥ costi(εx) + εxMarC(2εx) ≥ costi(εx) + costi(εx)/(2β) = (1 +
1

2β
)costi(εx).

Applying this argument log2(1/ε) times, we have costi(x) ≥ (1+ 1
2β)log2(1/ε)costi(εx) = (1

ε)
log2(1+ 1

2β
)costi(εx).

Multiplying both sides by εlog2(1+ 1
2β

) completes the proof.

4.1 Generalization Result

Say n is the total number of customers; ` is the size of subsample we do our estimate on; r is the total
number of items; α ∈ (0, 1] is some constant, and the cost is α-poly, so that cost(t) =

∑t
τ=1 1/τα ' t1−α

1−α .
We now show the following uniform convergence over permutation policies, which will justify the use of
a near optimal policy for a sample on the larger population; the formal proof of this result is included in
Appendix C.

8

Theorem 4.6. Suppose n ≥ ` and the cost function is α-poly. With probability at least 1 − δ(`), for all
permutations Π,

cost(Π, `)(1 + ε)−2
(n
`

)1−α
≤ cost(Π, n) ≤ cost(Π, `)(1 + ε)2(1−α)

(n
`

)1−α
,

where δ(`) = r2r(δ1 + δ2 + δ3) and δ1 = exp{−ε2
(
ε
r

) 1
1−α n/3}, δ2 = exp{−ε2`

(
ε
r

) 1
1−α /3}, δ3 =

exp{−
(
ε
r

) 1
1−α nε2/2}. Equivalently, for any given δ, this occurs with probability 1 − δ so long as ` �

(1
ε2

)(rε)
1

1−α ln(2r/δ).

Proof. See Appendix C.

4.2 Online Performance Guarantees

We define GreedyGeneralCost(`, n) as follows. For the first ` customers it allocates arbitrary items they
desire, and observed their desired sets. Give the sets of the first ` customers, it runs GreedyGeneralCost
and computes a permutation Π̂ of the items. For the remaining customers it allocates using permutation Π̂.
Namely, each customer is allocated the first item in the permutation Π̂ that is in its desired set. The following
theorem bounds the performance of GreedyGeneralCost(`, n) for α-poly cost functions; the formal proof
of this result is included in Appendix C.

Theorem 4.7. With probability 1− δ(`) (for δ(`) as in Theorem 4.6) The cost of GreedyGeneralCost(`, n)
is at most

`+
(1 + ε)4−2α

1− α
OPT

Proof. See Appendix C.

Corollary 4.8. For any fixed constant δ ∈ (0, 1), for any ` ≥ 3
ε2

(
r
ε

) 1
1−α ln

(
3r2r

δ

)
, and n ≥

(
`
ε

) 1
1−α , with

probability at least 1− δ, GreedyGeneralCost(n, `) is at most
(

(1+ε)4−2α

1−α + ε
)

OPT

4.3 Generalization for β-nice costs

We now consider the case of β-nice costs in the online setting. We begin with a helper lemma.

Lemma 4.9. For any cost cost satisfying Assumption 4.3 with a given β, for any k ≥ 1, the cost cost′ with
cost′i(x) = costi(kx) also satisfies Assumption 4.3 with the same β.

Proof. See Appendix.

Now the strategy is to run GreedyGeneralCost with the rescaled cost function cost′i(x) = costi(n` x).
This provides a β-approximation guarantee for the rescaled problem, which, moreover is a permutation pol-
icy. The following shows we have uniform convergence of estimates to true costs for permutation policies.

Theorem 4.10. Suppose n ≥ ` and the cost function satisfies Assumption 4.3, and that ∀i, costi(1) ∈ [1, B],
where B ≥ 1 is constant. Let cost′i(x) = costi(n` x). With probability at least 1− δ(`), for any permutations
Π,

cost′(Π, `)
1− ε

1 + 2ε− ε2
≤ cost(Π, n) ≤ cost′(Π, `)

(1 + ε)2

1− ε
,

where δ(`) = r22r+1(δ1+δ2) and δ1 = exp{− ε3

3rB(1+ε)n
log2(1+ 1

2β
)}, δ2 = exp{−` ε3

rB(1+ε)n
log2(1+ 1

2β
)−1

/3}.

9

Proof. See Appendix.

Using the above uniform convergence result, we find that if we run GreedyGeneralCost on the sample
of ` = o(n) initial buyers and apply it to the entire population, we achieve near optimal cost.

Theorem 4.11. If cost satisfies Assumption 4.3, and has costj(1) ∈ [1, B] for every j ≤ r, with probability
at least 1− δ, the cost of applying the policy found by GreedyGeneralCost({1, . . . , `}) to all n customers
is at most

β
(1 + ε)2(1 + 2ε− ε2)

(1− ε)2
OPT(n),

where ` =
⌈
n

1−log2(1+ 1
2β

) 3rB(1+ε)
ε3

ln
(
r22r+2

δ

)⌉
= o(n).

Proof. By Theorem 4.4, Lemma 4.9, and Theorem 4.10, with probability at least 1− δ, the cost of applying
the policy Π̂ found by GreedyGeneralCost({1, . . . , `}) to customers 1, . . . , n is at most

cost′(Π̂, `)
(1 + ε)2

1− ε
≤ βmin

Π
cost′(Π, `)

(1 + ε)2

1− ε

≤ βmin
Π

cost(Π, n)
(1 + ε)2(1 + 2ε− ε2)

(1− ε)2

= β
(1 + ε)2(1 + 2ε− ε2)

(1− ε)2
OPT(n).

Note that Theorem 4.11 assumes the initial ` = o(n) buyers can be “previewed” before allocations are
made and need not themselves be allocated online.

5 General Unit Demand Utilities

In this section we show how to give a constant approximation for the case of general unit demand buyers
in the offline setting in the case when we have a budget B to bound the cost we incur and we would like to
maximize the buyers social welfare given this budget constraint. The main tool would be a reduction of our
problem to the budgeted maximum coverage problem.

Definition 5.1. An instance of the budgeted maximum coverage problem has a universe X of m elements
where each xi ∈ X has an associated weight wi; there is a collection of m sets B such that each sets
Sj ∈ B has a cost cj; and there is a budget L. A feasible solution is a collection of sets B′ ⊂ B such that∑

Sj∈B′ cj ≤ L. The goal is to maximize the weight of the elements in B′, i.e., w(B′) =
∑

xi∈∪S∈B′S
wi.

While the budgeted maximum coverage problem is NP-complete there is a (1 − 1/e) approximation
algorithm [8]. Their algorithm is a variation of the greedy algorithm, where on the one hand it computes the
greedy allocation, where each time a set which maximizes the ratio between weight of the elements covered
and the cost of the set is added, as long as the budget constraint is not violated. On the other hand the single
best set is computed. The output is the best of the two alternative (either the single best set of the greedy
allocation).

Before we show the reduction from a general unit demand utility to the budgeted maximum coverage
problem, we show a simpler case where for each buyer j has a value vj such that of any item i either
vj = uj,i or uj,i = 0, which we call buyer-uniform unit demand.

10

Lemma 5.2. There is a reduction from the budgeted buyer-uniform unit demand buyers problem to the
budgeted maximum coverage problem. In addition the greedy algorithm can be computed in polynomial
time on the resulting instance.

Proof. For each buyer j we create an element xj with weight vj . For each item k and any subsets of buyers
S we create a set TS,k = {xj : j ∈ S} and has cost costk(|S|). The budget is set to be L = B. Clearly
any feasible allocation of the budgeted maximum coverage problem TS1,k1 , . . . TSr,kr can be translated to a
solution of the budgeted buyer-uniform unit demand buyers by simply producing item ki for all the buyers
in TSi,ki . The welfare is the sum of the weight of the elements covered which is the social welfare, and the
cost is exactly the production cost.

Note that the reduction generates an exponential number of sets, if we do it explicitly. However,we
can run the Greedy algorithm easily, without generating the sets explicitly. Assume we have m′ remaining
buyers. For each item i and any ` ∈ [1,m′] we compute the cost costi(`)/gaini(`), where gaini(`) is the
weight of the ` buyers with highest valuation for item i. Greedy select the item i and number of buyers
` which have the highest ratio and adding this set still satisfies the budget constraint. Note that given that
greedy selects TS,k where |S| = ` then its cost is costk(`) and its weigh is w(TS,k) ≤ gaink(`), and hence
Greedy will always select one of the sets we are considering.

In the above reduction we used very heavily the fact that each buyer j has a single valuation vj regardless
of which desired item it gets. In the following we show a slightly more involved reduction which handles
the general unit demand buyers.

Lemma 5.3. There is a reduction from the budgeted general unit demand buyers problem to the budgeted
maximum coverage problem. In addition the greedy algorithm can be computed in polynomial time on the
resulting instance.

Proof. For each buyer j we sort its valuations uj,i1 ≤ · · · ≤ uj,im . We set vj,i1 = uj,i1 and vj,ir =
uj,ir − uj,ir−1 . Note that

∑r
s=1 vj,is = uj,ir . For each buyer j we create m elements xj,r, 1 ≤ r ≤ m. For

a buyer j and item k let Xj,k be all the elements that represent lower valuation than uj,k, i.e., Xj,k = {xj,r :
uj,ir ≤ uj,k}. For each item k and any subsets of buyers S we create a set TS,k = ∪j∈SXj,k and has cost
costk(|S|). The budget is set to be L = B.

Any feasible allocation of the budgeted maximum coverage problem TS1,k1 , . . . TSl,kr can be translated
to a solution of the budgeted general unit demand buyers producing item ki for all the buyers in TSi,ki .
We call buyer j as winner if there exists some b such that xj,b ∈ ∪ri=1TSi,ki . Let Winners we the set of
all winner buyers. For any winner buyer j ∈ Winner let item(j) = s such that s = max{b : xj,b ∈
∪ri=1TSi,ki}.

The cost of our allocation is by definition at most L = B. The social welfare is∑
xj,b∈∪ri=1TSi,ki

vj,b =
∑

j∈Winner

uj,item(j)

Again, note that the reduction generates an exponential number of sets, if we do it explicitly. However,
we can run the Greedy algorithm easily, without generating the sets explicitly. For each item i and any
` ∈ [1,m] we compute the cost costi(`)/gaini(`), where gaini(`) is the weight of the ` buyers with highest
valuation for item i. Greedy selects the item i and number of buyers ` which have the highest ratio which
still satisfies the budget constraint. Note that given that greedy selects TS,k where |S| = ` then its production
cost is costk(`) and its weight is w(TS,k) ≤ gaink(`), and hence Greedy will always select one of the sets
we are considering. Once the Greedy selects a set TS,k we need to update the utility of any buyer j ∈ S

11

for any other item i, by setting uj,i = max{uj,i − uj,k, 0}, which is the residual valuation buyer j has for
getting item i in addition to item k.

Combining our reduction with approximation algorithm of [8] we have the following theorem.

Theorem 5.4. There exists a poly-time algorithm for the budgeted general unit demand buyers problem
which achieves social welfare at least (1− 1/e)OPT.

5.1 Generalization

To extend these results to the online setting, we will use Theorem 3.3 to represent allocations by pricing
policies, and then use the results from above to learn a good pricing policy based on an initial sample.

Theorem 5.5. Suppose every uj,i ∈ [0, C]. With ` = O((1/ε2)(r3 log(rC/ε)+log(1/δ))) random samples,
with probability at least 1 − δ, the empirical per-customer social welfare is within ±ε of the expected per-
customer social welfare, uniformly over all price vectors in [0, C]r.

Proof. We will show that, for any distribution P and value ε > 0, there exist N = 2O(r3 log(rC/ε)) functions
f1, . . . , fN such that, for every price vector price ∈ [0, C]r, the function g(x) = xarg maxi≤r xi−pricei has
mink≤N

∫
|fk − g|dP ≤ ε. This value N is known as the uniform ε-covering number. The result then

follows from standard uniform convergence bounds (see e.g., [6]).
First, note that if we suppose the valuations and price vectors are augmented by one dimension, setting

pricer+1 = uj,r+1 = 0 for all price vectors and all customers j, then we can represent the per-customer
social welfare as x 7→ sw(x; price) = xarg maxi(xi−pricei)

.
The function x 7→ xi − pricei is a hyperplane with slope 1 in coordinate i and slope 0 in all other

coordinates. So the subgraph (i.e., the set of (r + 2)-dimensional points (x, y) for which maxi≤r+1 xi −
pricei ≥ y is a union of r halfspaces in r + 2 dimensions. The space of unions of r + 1 halfspaces in r + 2
dimensions has VC dimension (r + 1)(r + 3), so this upper bounds the pseudo-dimension of the space of
functions maxi≤r+1 xi − pricei, parametrized by the price vector price. Therefore, the uniform ε-covering
number of this class is 2O(r2 log(C/ε)).

For each i ≤ r+1, the set of vectors x ∈ [0, C]r+1 such that i = arg maxk xk−pricek is an intersection
of r + 1 halfspaces in r + 1 dimensions. Thus, the function x 7→ pricearg maxi xi−pricei

is contained in the
family of linear combinations of r + 1 disjoint intersections of r + 1 halfspaces. The VC dimension of an
intersection of r + 1 halfspaces in r + 1 dimensions is (r + 1)(r + 2). So assuming the prices are bounded
in a range [0, C], the uniform ε-covering number for linear combinations (with weights in [0, C]) of r + 1
disjoint intersections of r + 1 halfspaces is 2O(r3 log(rC/ε)). To prove this, we can take an ε/(2(r + 1)C)
cover (of {0, 1}-valued functions) of intersections of r + 1 halfspaces, which has size ((r + 1)C/ε)O(r2),
and then take an ε/(2(r + 1)) grid in [0, C] and multiply each function in the cover by each of these values
to get a space of real-valued functions; there are ((r + 1)C/ε)O(r2) total functions in this cover, and for
each term in the linear combination of r + 1 disjoint intersections of r + 1 halfspaces, at least one of these
real-valued functions will be within ε/(r+ 1) of it. Thus, taking the set of sums of r+ 1 functions from this
cover forms an ε-cover of the space of linear combinations of r+1 disjoint intersections of r+1 halfspaces,
with size ((r + 1)C/ε)O(r3).

Now note that xarg maxi(xi−pricei)
= maxi(xi − pricei) + priceargmaxi(xi−pricei)

. So the uniform ε-
covering number for the space of possible functions xarg maxi(xi−pricei)

is at most the product of the uniform
(ε/2)-covering number for the space of functions x 7→ maxi(xi − pricei) and the uniform (ε/2)-covering
number for the space of functions x 7→ pricearg maxi(xi−pricei)

; by the above, this product is 2O(r3 log(rC/ε)).

12

We also make use of the following result.

Theorem 5.6. With ` ≥ O((1/ε2)(r2 + log(1/δ))) random samples, with probability at least 1 − δ, the
empirical probability of a customer buying item j is within ±ε of the actual probability, uniformly over all
price vectors and all j.

Proof. For a given price vector, the region of customers j purchasing item i is delineated by at most r
hyperplanes (corresponding to i tying with another index for maximizing uj,i−pricei, or else uj,i−pricei =
0 and all the other indices make it at most 0). Thus it is an intersection of r hyperplanes in r dimensions.
The VC dimension of this is class is r(r + 1), so the VC dimension of the collection of sets of customers
buying item i as we vary price is at most r(r + 1). So by the standard uniform convergence results for
convergence of frequencies to probabilities, O((1/ε2)(r2 + log(r/δ)) samples suffice so that the empirical
probability of getting a customer that buys item i is within ±ε of the actual probability, uniformly over all
price vectors, with probability at least 1 − δ/r. A union bound implies this holds simultaneously for all i
with probability at least 1 − δ. Noting that (1/ε2)(r2 + log(r/δ)) = O((1/ε2)(r2 + log(1/δ))) completes
the proof.

Consider an algorithm that does not allocate anything to the first ` = O((C2/ε2)(r3 log(rC/ε) +
log(1/δ))) customers, then finds a (1 − 1/e)-approximate solution to the offline budgeted general unit
demand problem on these ` customers, with budget B, and cost functions cost′i(x) = costi(x · ((n− `)/`)),
via the reduction to the budgeted maximum coverage problem. The algorithm then finds a pricing policy
price providing at least as good of a social welfare on these ` customers, within this budget B. Let `i denote
the number of copies of item i this pricing policy allocates among the ` customers. The algorithm then pro-
ceeds to allocate to the remaining stream of n− ` customers using this pricing policy, but if at any time the
item i this pricing policy determines should be allocated to the next customer has already had `i((n− `)/`)
copies allocated to customers in the past, then the algorithm does not allocate any item to that customer
and simply moves on to the next customer. (As stated, this is not incentive-compatible: we are assuming
that if a buyer enters the store and finds his most-desired item is sold-out, he just leaves rather than buying
some other item; however, we rectify this in Corollary 5.8 below.) We have the following result on the
performance of this algorithm.

Theorem 5.7. The allocation given by the above algorithm does not exceed the budget B, and if n ≥
O((1/ε)`), with probability at least 1− 4δ, achieves a social welfare at least

(1− 1/e)OPT− (2(2− 1/e)(1 + Cr) + C)εn.

Proof. See Appendix D.

To make the above procedure incentive-compatible, if at any time the pricing policy attempts to allocate
more than `i((n− `)/`) copies of item i, then for that customer j we can just allocate the item i′ that has the
next-highest uj,i′−pricei′ among those i′ for which the number of copies of item i′ this policy has attempted
to allocate previously is less than `i′((n− `)/`) (or nothing, if all remaining i′ have uj,i′ − pricei′ < 0). A
simple modification of the above proof yields the following result on the performance of this algorithm.

Corollary 5.8. The allocation given by the above algorithm does not exceed the budget B, and if n ≥
O((1/ε)`), with probability at least 1− 4δ, the allocation achieves a social welfare at least

(1− 1/e)OPT−O(Cr2εn).

13

Proof Sketch. The full details of this proof are provided in Appendix D; here, we present a brief sketch.
As above, on the (1 − 4δ)-probability event of Theorem 5.7, we also have that for each i, ni ≤ `i

n−`
` +

2ε(n − `) ≤ `i
n−`
` + 2εn. Let us now define Ti to be the time at which item i runs out; i.e., the index

of the buyer who purchases copy `i n−`` of that item (or ∞ if the item never runs out) and wlog assume
T1 ≤ T2 ≤ · · · ≤ Tr. We now argue that there are at most 2εn(i − 1) buyers who were given item i in
the procedure of Theorem 5.7 but receive some different item now. Specifically, consider one such buyer.
The copy of item i that this buyer originally received must have been purchased by some other buyer whose
preferred item was some i′ ≤ i (because items of index greater than i still remain). This buyer, under the
procedure of Theorem 5.7 either received item i′ or nothing. If it received item i′ we continue back up the
chain, examining the buyer who took that copy of item i′ and must have a preferred item i′′ ≤ i′, and so
on until we reach a buyer who received nothing under the procedure of Theorem 5.7. Because each buyer
only purchases one item, these chains cannot merge, and so the total number of buyers who were given item
i in the procedure of Theorem 5.7 but receive some different item now, is at most the number of possible
endpoints of such chains, which is 2εn(i− 1). Summing this over all r items yields the claimed bound.

References

[1] N. Alon, B. Awerbuch, Y. Azar, N. Buchbinder, and J. Naor. The online set cover problem. SIAM
Journal on Computing, 39(2):361–370, 2009.

[2] A. Blum, A. Gupta, Y. Mansour, and A. Sharma. Welfare and profit maximization with production
costs. In FOCS, pages 77–86, 2011.

[3] N. R. Devanur and T. P. Hayes. The adwords problem: Online keyword matching with budgeted
bidders under random permutations. In Proc. ACM EC, EC ’09, pages 71–78, 2009.

[4] N. R. Devanur and K. Jain. Online matching with concave returns. In Proc. STOC, pages 137–144,
2012.

[5] G. Goel and A. Mehta. Online budgeted matching in random input models with applications to ad-
words. In Proc. SODA, pages 982–991, 2008.

[6] D. Haussler. Decision theoretic generalizations of the PAC model for neural net and other learning
applications. Information and Computation, 100:78–150, 1992.

[7] R. M. Karp, U. V. Vazirani, and V. V. Vazirani. An optimal algorithm for on-line bipartite matching.
In Proc. STOC, pages 352–358, 1990.

[8] S. Khuller, A. Moss, and J. Naor. The budgeted maximum coverage problem. Inf. Process. Lett.,
70(1):39–45, 1999.

[9] A. Mehta, A. Saberi, U. Vazirani, and V. Vazirani. Adwords and generalized online matching. J. ACM,
54(5), 2007.

[10] N. Nisan, T. Roughgarden, E. Tardos, and V. V. Vazirani. Algorithmic Game Theory. Cambridge
University Press, 2007.

14

A Properties of β-nice cost

Let cost(n) be a β-nice cost function. We show a few properties of it.

Lemma 4.9. For any cost cost satisfying Assumption 4.3 with a given β, for any k ≥ 1, the cost cost′ with
cost′i(x) = costi(kx) also satisfies Assumption 4.3 with the same β.

Proof.
costi(kx)

x
= k

costi(kx)
kx

≤ βk(costi(kx)− costi(kx− 1)).

Also, the property of nonincreasing marginal costs implies ∀t ∈ {1, . . . , k},

costi(kx)− costi(kx− 1) ≤ costi(kx− (t− 1))− costi(kx− t),

so that

k(costi(kx)− costi(kx− 1)) ≤
k∑
t=1

(costi(kx− (t− 1))− costi(kx− t)) = costi(kx)− costi(k(x− 1)).

Therefore,
costi(kx)

x
≤ β(costi(kx)− costi(k(x− 1))).

Claim A.1.
cost(2n) ≥ cost(n)

(
1 +

1
2β

)
Proof. Let a = cost(n)/n be the average cost of the first n items. Then the cost of the first 2n items is at
least an, and has an average cost of at least a/2. The marginal cost of item 2n is at least a/(2β). Therefore
the cost of the items n+ 1 to 2n is at least an/(2β).

We can get a better bound by a more refine analysis.

Claim A.2. Let an = cost(n)/n be the average cost of the first n items. Then,

an+1 ≥ an
n

n+ 1

(
1 +

1
β(n+ 1)

)
and

an ≥ a1
1
n

n∏
t=1

(
1 +

1
β(t+ 1)

)
≥ e1/β2 · a1n

−1+(1/β)

Proof. The marginal cost of item n+ 1 is at least an/β. Therefore the cost of the first items n+ 1 is at least
nan + an/(β), which gives the first expression.

15

We get the expression of an as a function of a1 by repeatedly using the recursion. The approximation
follows from,

ln(an) ≥ ln(a1)− ln(n) +
n∑
t=1

ln(1 +
1

β(n+ 1)
)

≥ ln(a1)− ln(n) +
n∑
t=1

1
β(t+ 1)

− 1
(β(t+ 1))2

≥ ln(a1)− ln(n) +
1
β

ln(n)− 1
β2

where we used the identity x− x2 ≤ ln(1 + x).

B Additional Proofs

Theorem 4.10. Suppose n ≥ ` and the cost function satisfies Assumption 4.3, and that ∀i, costi(1) ∈ [1, B],
where B ≥ 1 is constant. Let cost′i(x) = costi(n` x). With probability at least 1− δ(`), for any permutations
Π,

cost′(Π, `)
1− ε

1 + 2ε− ε2
≤ cost(Π, n) ≤ cost′(Π, `)

(1 + ε)2

1− ε
,

where δ(`) = r22r+1(δ1 + δ2) and δ1 = exp{−ε3nlog2(1+ 1
2β

)
/(3rB(1 + ε))}, δ2 =

exp{−ε2` ε
rB(1+ε)n

log2(1+ 1
2β

)−1
/3}.

Proof. Fix a permutation Π. Let πj denote the event that a customer buys item Πj and not covered by items
Π1 through Πj−1. Namely, the probability that the consumer set of desired items include j and none of the
items 1, . . . , j − 1. Let qj denote Pr[πj], and let q̂j denote the fraction of Πj on the initial `-sample.

Let q∗ = ε
rB(1+ε)n

c−1, where c = log2(1 + 1
2β). Item j is a “Low probability item” if qj < q∗, and is

called a “High probability item” if qj ≥ q∗. Let the set “Low” include all “Low probability items”; and the
set “High” include all “High probability items”.

First we address the case of item j of low probability. By a Chernoff bound, the quantity of item j
that we will sell when applying Π to n customers is at most q∗n(1 + ε), with probability at least 1 −
exp{−ε2q∗n/3} = 1 − δ1. By a union bound, this holds for all low probability items j with probability at
least 1− |Low|δ1.

Next, suppose j has high probability. In this case, the quantity of item j we will sell when applying Π
to n customers is at most qjn(1 + ε), with probability at least 1− exp{−ε2qjn/3} ≥ 1− δ1. Again, a union
bound implies this holds for all high probability j with probability at least 1− |High|δ1.

We have that (by Chernoff bounds), with probability at least 1 − exp{−ε2`qj/3} ≥ 1 − δ2, we have
qj/q̂j ≤ (1 + ε). A union bound implies this holds for all high probability j with probability 1− rδ2.

Furthermore, noting that qjn(1 + ε) = q̂jn(1 + ε) qjq̂j , and upper bounding qj
q̂j

by 1 + ε, we get that

16

qjn(1 + ε) ≤ (1 + ε)2q̂jn, with probability at least 1− δ2. Thus, with probability at least 1− rδ1 − rδ2,

cost(Π, n) ≤ cost(Low) + cost(High)

≤
∑
j∈Low

costj (q∗n(1 + ε)) +
∑
j∈High

costj
(
(1 + ε)2q̂jn

)
≤ rBq∗n(1 + ε) + (1 + ε)2

∑
j∈High

costj (q̂jn)

= rBq∗n(1 + ε) + (1 + ε)2
∑
j∈High

cost′j(Π, `).

Note that Lemma 4.5 (with ε = 1/x) implies that on n customers,

OPT ≥ min
j

costj(n) ≥ nlog2(1+ 1
2β

) min
j

costj(1) ≥ nlog2(1+ 1
2β

) = nc,

where the third inequality is by the assumption on the range of costi(1). Thus, rBq∗n(1 + ε) = εnc ≤
εOPT.
We showed that

cost(Π, n) ≤ εOPT + (1 + ε)2
∑
j∈High

cost′j(Π, `)

≤ εcost(Π, n) + (1 + ε)2
∑
j∈High

cost′j(Π, `).

Therefore,

cost(Π, n) ≤ (1 + ε)2

1− ε
∑
j∈High

cost′j(Π, `)

≤ (1 + ε)2

1− ε
cost′(Π, `).

The lower bound is basically similar. For j ∈ Low, a Chernoff bound implies we have q̂j < q∗(1 + ε)
with probability at least 1− exp{−ε2q∗`/3} ≥ 1− δ2. So we have∑

j∈Low

costj(q̂jn) ≤
∑
j∈Low

costj(q∗(1 + ε)n)

≤ rB(1 + ε)q∗n
= εnc

≤ εOPT
≤ εcost(Π, n).

For j ∈ High, again by a Chernoff bound, we have q̂j/qj ≤ (1 + ε) with probability at least 1 −
exp{−ε2qj`/3} ≥ 1− δ2. Thus, by a union bound, with probability at least 1− rδ2,

cost′(Π, `) =
∑
j∈Low

costj(q̂jn) +
∑
j∈High

costj(q̂jn)

≤ εcost(Π, n) +
∑
j∈High

costj(qjn(1 + ε)).

17

By another application of Chernoff and union bounds, with probability at least 1−
∑

j∈High exp{−ε2qjn/2} ≥
1−rδ1, for every j ∈ High, the number of j we will sell when applying Π to n customers is at least qin(1−ε).
Thus,∑
j∈High

costj(qjn(1 + ε)) =
∑
j∈High

costj(qjn(1− ε)1 + ε

1− ε
) ≤ 1 + ε

1− ε
∑
j∈High

costj(qjn(1− ε)) ≤ 1 + ε

1− ε
cost(Π, n).

Altogether, we have proven that with probability at least 1− r(δ1 + δ2),

cost′(Π, `) ≤
(
ε+

1 + ε

1− ε

)
cost(Π, n)

=
1 + 2ε− ε2

1− ε
cost(Π, n),

which implies
1− ε

1 + 2ε− ε2
cost′(Π, `) ≤ cost(Π, n).

A naive union bound can be done over all the permutations, which will add a factor of r!; we can reduce
the factor to r2r by noticing that we are only interested in events of the type πj , namely a given item (say,
j) is in the set of desired items, and another set (say, {1, . . . , j − 1}) is not in that set. This has only r2r

different events we need to perform the union over. Thus, the above inequalities hold for all permutations
with probability at least 1− r22r+1(δ1 + δ2).

C Proofs of Theorems 4.6 and 4.7

Proof of Theorem 4.6. Fix a permutation Π. Let πj denote the event that a customer buys item Πj and not
covered by items Π1 through Πj−1. Namely, the probability that the consumer set of desired items include
j and none of the items 1, . . . , j− 1. Let qj denote Pr[πj], and let q̂j denote the fraction of Πj on the initial
`-sample.

Item j to is a “Low probability item” if qj <
(
ε
r

) 1
1−α ; and “High probability items” if qj ≥

(
ε
r

) 1
1−α . Let

the set “Low” include all “Low probability items”; and the set “High” include all “High probability items”.
First we address the case of item j of low probability. The quantity of item j that we will sell is at most(

ε
r

) 1
1−α n(1 + ε) (Chernoff bound) with probability at least 1− δ1 with δ1 = exp{−ε2

(
ε
r

) 1
1−α n/3}. By a

union bound, this holds for all low probability item j, with probability at least 1− |Low|δ1.
Next, we suppose j has high probability. In this case, the quantity of item j we will sell is at most

qjn(1 + ε), with probability at least 1− exp{−ε2qjn/3} ≥ 1− δ1. Again, a union bound implies this holds
for all high probability j with probability at least 1− |High|δ1.

We have that (by Chernoff bounds), with probability at least 1 − exp{−ε2`qj/3} ≥ 1 − δ2, we have
qj/q̂j ≤ (1 + ε). A union bound implies this holds for all high probability j with probability 1− rδ2.

Furthermore, noting that qjn(1 + ε) = q̂jn(1 + ε) qjq̂j , and upper bounding qj
q̂j

by 1 + ε, we get that
qjn(1 + ε) ≤ (1 + ε)2q̂jn, with probability 1− δ2. Thus,

cost(Π, n) ≤ cost(Low) + cost(High)

≤ r

((ε
r

) 1
1−α

n(1 + ε)
)1−α

+
∑
j∈High

(
(1 + ε)2q̂jn

)1−α
≤ ε(1 + ε)1−αn1−α + (1 + ε)2(1−α)n1−α

∑
j∈High

(q̂j)
1−α .

18

Note that the total cost of all low probability items is at most ε-fraction of OPT which is at least n
1−α

1−α . Also,

(1 + ε)2(1−α)n1−α
∑
j∈High

(q̂j)
1−α = (1 + ε)2(1−α)

(n
`

)1−α∑
j

(q̂j`)
1−α

= (1 + ε)2(1−α)
(n
`

)1−α
cost(Π, `)

by definition of cost(Π, `).
Therefore we showed,

cost(Π, n) ≤ ε(1 + ε)1−α`1−α
(n
`

)1−α
+ (1 + ε)2(1−α)

(n
`

)1−α
cost(Π, `)

≤ (1 + 5ε)
(n
`

)1−α
cost(Π, `)

The lower bound is basically similar. For j ∈ Low, we have qj <
(
ε
r

) 1
1−α and q̂j <

(
ε
r

) 1
1−α (1 + ε) (by

Chernoff bounds). So we have:

∑
j

(q̂j`)1−α ≤
∑
j

((ε
r

) 1
1−α (1 + ε)`

)1−α

= r
ε

r
(1 + ε)1−α`1−α

= ε(1 + ε)1−αn1−α
(
`

n

)1−α

≤ ε(1 + ε)1−αcost(Π, n)
(
`

n

)1−α

Thus,

cost(Π, `) =
∑

j∈Low
(q̂j`)

1−α +
∑

j∈High
(q̂j`)

1−α

≤ cost(Π, n)ε
(
`

n

)1−α
(1 + ε)1−α +

∑
j∈High

(qjn)1−α
(
`

n

)1−α(q̂j
qj

)1−α

≤ cost(Π, n)ε
(
`

n

)1−α
(1 + ε) +

∑
j∈High

(qjn)1−α
(
`

n

)1−α
(1 + ε)

≤ (1 + ε)2cost(Π, n)
(
`

n

)1−α

with probability at least 1 − exp
{
−qjnε2/2

}
≥ 1 − δ3. For low-probability j, the number of item j sold

is ≥
(
ε
r

) 1
1−α n(1− ε) with probability at least 1− δ3. A union bound extends these to all j with combined

probability 1− rδ3.
Thus we obtain the upper bound: cost(Π, n) ≤ cost(Π, `)(1 + ε)2(1−α)

(
n
`

)1−α and the lower bound:
cost(Π, n) ≥ cost(Π, `)(1 + ε)−2

(
n
`

)1−α, with probability at least 1− r2r(δ1 + δ2 + δ3).

19

A naive union bound can be done over all the permutations, which will add a factor of r!, we can reduce
the factor to r2r by noticing that we are only interested in events of the type πj , namely a given item (say,
j) is in the set of desired items, and another set (say, {1, . . . , j − 1}) is not in that set. This has only r2r

different events we need to perform the union over.

Proof of Theorem 4.7. Let Π̂ be the permutation policy produced by GreedyGeneralCost, after the ` first
customers. By Theorem 4.4,

cost(Π̂, `) ≤ 1
1− α

min
Π

cost(Π, `).

By Theorem 4.6, with probability 1− δ(`),

min
Π

cost(Π, `) ≤ min
Π

cost(Π, n)(1 + ε)2

(
`

n

)1−α
.

Additionally, on this same event,

cost(Π̂, n) ≤ cost(Π̂, `)(1 + ε)2(1−α)
(n
`

)1−α
.

Altogether, this implies

cost(Π̂, n) ≤ (1 + ε)2(1−α)

1− α

(n
`

)1−α
min

Π
cost(Π, n)(1 + ε)2

(
`

n

)1−α

=
(1 + ε)4−2α

1− α
min

Π
cost(Π, n).

D Proof of Theorem 5.7 and Corollary 5.8

Proof of Theorem 5.7. By Theorem 5.6, with probability at least 1− δ, both the price vector price produced
by this method and the price vector price∗ corresponding to the OPT solution have, for every item i, the
probabilities pi and p∗i a random customer purchases item i given prices price adn price∗, respectively,
satisfy |pi − `i/`| ≤ ε and |p∗i − `∗i /`| ≤ ε, where `∗i is the number of customers among 1, . . . , ` that
purchase item i given prices price∗. Furthermore, letting ni and n∗i denote the number of customers among
`+ 1, . . . , n that would purchase item i given the price vectors price and price∗, respectively, Theorem 5.6
also implies that, with probability at least 1−δ, every item i has |pi−ni/(n−`)| ≤ ε and |p∗i−n∗i /(n−`)| ≤
ε. Therefore, by a union bound, with probability at least 1− 2δ,∣∣∣∣`i` − ni

n− `

∣∣∣∣ ≤ 2ε (2)

and ∣∣∣∣`∗i` − n∗i
n− `

∣∣∣∣ ≤ 2ε. (3)

Next, let sw(x, price) and sw(x, price∗) denote the per-customer social welfares for allocating to a
customer with utility vector x using prices price and price∗, respectively. Theorem 5.5 implies that with

20

probability at least 1− δ, ∣∣∣∣∣∣1`
∑̀
j=1

sw(uj,·,price)− E[sw(x,price)|price]

∣∣∣∣∣∣ ≤ ε
and ∣∣∣∣∣∣1`

∑̀
j=1

sw(uj,·, price∗)− E[sw(x, price∗)|price∗]

∣∣∣∣∣∣ ≤ ε,
where x is sampled independently from the uj,· according to the same distribution. Furthermore, Theo-
rem 5.5 also implies that with probability at least 1− δ,∣∣∣∣∣∣ 1

n− `

n∑
j=`+1

sw(uj,·,price)− E[sw(x,price)|price]

∣∣∣∣∣∣ ≤ ε
and ∣∣∣∣∣∣ 1

n− `

n∑
j=`+1

sw(uj,·,price∗)− E[sw(x,price∗)|price∗]

∣∣∣∣∣∣ ≤ ε.
Therefore, by a union bound, with probability at least 1− 2δ,∣∣∣∣∣∣1`

∑̀
j=1

sw(uj,·, price)− 1
n− `

n∑
j=`+1

sw(uj,·,price)

∣∣∣∣∣∣ ≤ 2ε (4)

and ∣∣∣∣∣∣1`
∑̀
j=1

sw(uj,·,price∗)− 1
n− `

n∑
j=`+1

sw(uj,·,price∗)

∣∣∣∣∣∣ ≤ 2ε. (5)

Now consider the allocation that allocates item i to the first n∗i
`

n−` customers in 1, . . . , ` that would
purchase item i given prices price∗, and let SW ∗ denote the social welfare achieved by this policy on
these customers. Since the allocation induced by price∗ on the customers ` + 1, . . . , n satisfies the budget
constraint, we know that the above allocation for customers 1, . . . , ` achieving social welfare SW ∗ has total
cost (under cost′) at most

∑
i cost′i

(
n∗i

`
n−`

)
=
∑

i costi(n∗i) ≤ B, so that this allocation respects the

budget on this `-sized problem. In particular, this implies
∑`

j=1 sw(uj,·, price) ≥ (1 − 1/e)SW ∗. By (3),
we have ∀i, n∗i `

n−` ≥ `∗i − 2ε`, so that SW ∗ ≥
∑`

j=1 sw(uj,·, price∗) − 2ε`Cr. Furthermore, (5) implies∑`
j=1 sw(uj,·, price∗) ≥ `

n−`
∑n

j=`+1 sw(uj,·,price∗)− 2ε`. Together, we have

∑̀
j=1

sw(uj,·, price) ≥ (1− 1/e)

 `

n− `

n∑
j=`+1

sw(uj,·,price∗)− 2ε`− 2ε`Cr

 . (6)

Next, consider the allocation used by the algorithm above, which allocates each item i to the first `i n−``
customers in ` + 1, . . . , n that would purchase item i given the prices price, and let SW denote the social
welfare achieved by this policy on these customers. Since the allocation induced by price on the customers

21

1, . . . , ` satisfies the budget constraint under cost′, we know that this allocation for customers ` + 1, . . . , n
achieving social welfare SW has total cost (under cost) at most

∑
i costi

(
`i
n−`
`

)
=
∑

i cost′i(`i) ≤ B,
so that this allocation respects the budget on this (n − `)-sized problem. Also, by (2), we have ∀i,
`i
n−`
` ≥ ni − 2ε(n − `), so that SW ≥

∑n
j=`+1 sw(uj,·, price) − 2ε(n − `)Cr. Furthermore, (4) im-

plies
∑n

j=`+1 sw(uj,·, price) ≥ n−`
`

∑`
j=1 sw(uj,·, price)− 2ε(n− `). Together, we have

SW ≥ n− `
`

∑̀
j=1

sw(uj,·,price)− 2ε(n− `)− 2ε(n− `)Cr.

Combined with (6), this implies

SW ≥ (1− 1/e)
n∑

j=`+1

sw(uj,·,price∗)− 2(2− 1/e)(1 + Cr)ε(n− `)

≥ (1− 1/e)
n∑

j=`+1

sw(uj,·,price∗)− 2(2− 1/e)(1 + Cr)εn.

The result then follows by a union bound (combining the two 1− 2δ probability events) and the fact that

n∑
j=`+1

sw(uj,·, price∗) ≥ OPT− C` ≥ OPT− Cεn.

Proof of Corollary 5.8. As in the proof of Theorem 5.7, on the (1 − 4δ)-probability event of Theorem 5.7,
we also have that for each i, ni ≤ `i

n−`
` + 2ε(n− `) ≤ `i

n−`
` + 2εn. Therefore, the number of customers

j for which i = arg maxi′ uj,i′ − pricei′ and uj,i − pricei ≥ 0, which appear in the sequence of customers
after the initial `i n−`` such customers is at most 2εn.

For each t, let it be the tth item i to reach a number of copies of item i allocated equal
⌊
`i
n−`
`

⌋
.

Consider the following notion of a “chain”. Consider any given customer j for which there exists an item
i = arg maxi′ uj,i′ − pricei′ with uj,i − pricei ≥ 0, and yet the customer j is not allocated item i. Suppose
customer j is the qth customer j′ in the sequence to have i = arg maxi′′ uj′,i′′−pricei′′ and uj′,i−pricei ≥ 0.
If q > `i

n−`
` , then we define the “chain” rooted at customer j to be simply {j}. On the other hand, if q ≤

`i
n−`
` , then denoting by q′i the number of customers j′ in the sequence with i = arg maxi′′ uj′,i′′ − pricei′′

and uj′,i − pricei ≥ 0 who actually do receive a copy of item i in the allocation, and denote by ji,q the
index of the (q − q′)th customer j′ to receive a copy of item i while i 6= arg maxi′′ uj′,i′′ − pricei′′ ;
there must exist such a value ji,q < j, since q ≤ `i

n−`
` , but the number of copies of item i allocated

has reached
⌊
`i
n−`
`

⌋
prior to reaching customer j. Since ji,q < j, and customer ji,q did not receive item

i′′′ = arg maxi′′ uji,q ,i′′ − pricei′′ even though uji,q ,i′′′ − pricei′′′ ≥ 0, we can inductively suppose there is a
chain R rooted at customer ji,q. Then we define the chain rooted at customer j to be {j} ∪R. Furthermore,
note that i = it for some t (since the number of copies of item i allocated reaches

⌊
`i
n−`
`

⌋
prior to reaching

customer j), and in the latter case above we must have that i′′′ = it′ for some t′ < t, since customer
ji,q did not receive item i′′′ (indicating its number of copies had reached

⌊
`i′′′

n−`
`

⌋
), but did receive item i

(indicating its number of samples had not yet reached
⌊
`i
n−`
`

⌋
at that time). Therefore, by induction, each

time we augment a chain in this way, we increase the largest value of t′′ for which one of the customers j′

in the chain has it′′ = arg maxi′′ uj′,i′′ − pricei′′ and uj′,it′′ − priceit′′ ≥ 0; this implies that all chains have

22

length at most r. Thus, we have inductively defined a notion of a “chain” for every customer j that does not
receive the item that would be allocated by the pricing policy price.

Note that, since each customer j′ is allocated at most one item, we can have j′ = ji,q for at most one i
and q in the above construction; this implies that, if R is the chain rooted at j′, at most one customer j /∈ R
has {j} ∪ R as the chain rooted at j. Therefore, any two chains are either disjoint or one is a subset of the
other. Furthermore, note that the union of the maximal chains (the chainsR such that there are no customers
j /∈ R with {j} ∪ R as the chain rooted at j) contains every customer j that does not receive the item that
would be allocated to j by the pricing policy price. Also, each chain contains some customer j for which
the chain rooted at j is {j}, which means that for i = arg maxi′ uj,i′ − pricei′ , if j was the qth customer j′

to have i = arg maxi′ uj′,i′ − pricei′ and uj′,i − pricei ≥ 0, where q > `i
n−`
` . Since the number of such

customers is at most
∑

i′ ni′ −
⌊
`i′

n−`
`

⌋
≤ r(2εn + 1), and since any two maximal chains are disjoint, the

total number of maximal chains is at most r(2εn + 1). Thus, since any maximal chain has size at most r,
the total number of customers j not allocated the item i = arg maxi′ uj,i′ − pricei′ when uj,i − pricei ≥ 0
is at most r2(2εn+ 1).

Thus, the social welfare achieved by this allocation is at least

n∑
j=`+1

sw(uj,·,price)− r2(2εn+ 1)C.

Furthermore, as in the proof of Theorem 5.7, we have

n∑
j=`+1

sw(uj,·, price) ≥ n− `
`

∑̀
j=1

sw(uj,·, price)− 2εn

≥ (1− 1/e)

 n∑
j=`+1

sw(uj,·,price∗)− 2εn− 2εnCr

− 2εn

≥ (1− 1/e) (OPT− Cεn− 2εn− 2εnCr)− 2εn,

and the result follows.

23

