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Abstract

We study the problem of active learning in a stream-based setting, allowing the
distribution of the examples to change over time. We prove upper bounds on
the number of prediction mistakes and number of label requests for established
disagreement-based active learning algorithms, both in the realizable case and
under Tsybakov noise. We further prove minimax lower boundsfor this problem.

1 Introduction
Most existing analyses of active learning are based on an i.i.d. assumption on the data. In this work,
we assume the data are independent, but we allow the distribution from which the data are drawn to
shift over time, while the target concept remains fixed. We consider this problem in a stream-based
selective sampling model, and are interested in two quantities: the number of mistakes the algorithm
makes on the firstT examples in the stream, and the number of label requests among the firstT
examples in the stream.

In particular, we study scenarios in which the distributionmay drift within a fixed totally bounded
family of distributions. Unlike previous models of distribution drift [Bar92, CMEDV10], the mini-
max number of mistakes (or excess number of mistakes, in the noisy case) can besublinearin the
number of samples.

We specifically study the classic CAL active learning strategy [CAL94] in this context, and bound
the number of mistakes and label requests the algorithm makes in the realizable case, under condi-
tions on the concept space and the family of possible distributions. We also exhibit lower bounds
on these quantities that match our upper bounds in certain cases. We further study a noise-robust
variant of CAL, and analyze its number of mistakes and numberof label requests in noisy scenarios
where the noise distribution remains fixed over time but the marginal distribution onX may shift.
In particular, we upper bound these quantities under Tsybakov’s noise conditions [MT99]. We also
prove minimax lower bounds under these same conditions, though there is a gap between our upper
and lower bounds.

2 Definition and Notations
As in the usual statistical learning problem, there is a standard Borel spaceX , called the instance
space, and a setC of measurable classifiersh : X → {−1,+1}, called the concept space. We
additionally have a spaceD of distributions onX , called the distribution space. Throughout, we
suppose that the VC dimension ofC, denotedd below, is finite.

For anyµ1, µ2 ∈ D, let‖µ1−µ2‖ = supA µ1(A)−µ2(A) denote the total variation pseudo-distance
betweenµ1 andµ2, where the setA in the sup ranges over all measurable subsets ofX . For any
ǫ > 0, let Dǫ denote a minimalǫ-cover ofD, meaning thatDǫ ⊆ D and∀µ1 ∈ D, ∃µ2 ∈ Dǫ s.t.
‖µ1−µ2‖ < ǫ, and thatDǫ has minimal possible size|Dǫ| among all subsets ofD with this property.

In the learning problem, there is an unobservable sequence of distributionsD1,D2, . . ., with each
Dt ∈ D, and an unobservable time-independent regular conditional distribution, which we represent
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by a functionη : X → [0, 1]. Based on these quantities, we letZ = {(Xt, Yt)}∞t=1 denote an infinite
sequence of independent random variables, such that∀t,Xt ∼ Dt, and the conditional distribution
of Yt givenXt satisfies∀x ∈ X ,P(Yt = +1|Xt = x) = η(x). Thus, the joint distribution of
(Xt, Yt) is specified by the pair(Dt, η), and the distribution ofZ is specified by the collection
{Dt}∞t=1 along with η. We also denote byZt = {(X1, Y1), (X2, Y2), . . . , (Xt, Yt)} the first t
such labeled examples. Note that theη conditional distribution is time-independent, since we are
restricting ourselves to discussing drifting marginal distributions onX , rather than drifting concepts.
Concept drift is an important and interesting topic, but is beyond the scope of our present discussion.

In the active learning protocol, at each timet, the algorithm is presented with the valueXt, and
is required to predict a label̂Yt ∈ {−1,+1}; then after making this prediction, it may optionally
request to observe the true label valueYt; as a means of book-keeping, if the algorithm requests a
labelYt on roundt, we defineQt = 1, and otherwiseQt = 0.

We are primarily interested in two quantities. The first,M̂T =
∑T

t=1 I

[

Ŷt 6= Yt

]

, is the cumulative

number of mistakes up to timeT . The second quantity of interest,̂QT =
∑T

t=1 Qt, is the total
number of labels requested up to timeT . In particular, we will study the expectations of these

quantities:M̄T = E

[

M̂T

]

andQ̄T = E

[

Q̂T

]

. We are particularly interested in the asymptotic

dependence of̄QT andM̄T − M̄∗
T onT , whereM̄∗

T = infh∈C E

[

∑T
t=1 I [h(Xt) 6= Yt]

]

. We refer

to Q̄T as the expected number of label requests, and toM̄T − M̄∗
T as the expected excess number

of mistakes. For any distributionP onX , we defineerP (h) = EX∼P [η(X)I[h(X) = −1] + (1 −
η(X))I[h(X) = +1]], the probability ofh making a mistake forX ∼ P andY with conditional
probability of being+1 equalη(X). Note that, abbreviatingert(h) = erDt

(h) = P(h(Xt) 6= Yt),
we haveM̄∗

T = infh∈C

∑T
t=1 ert(h).

Scenarios in which both̄MT − M̄∗
T andQ̄T areo(T ) (i.e., sublinear) are considered desirable, as

these represent cases in which we do “learn” the proper way topredict labels, while asymptoti-
cally using far fewer labels than passive learning. Once establishing conditions under which this is
possible, we may then further explore the trade-off betweenthese two quantities.

We will additionally make use of the following notions. ForV ⊆ C, let diamt(V ) =

suph,g∈V Dt({x : h(x) 6= g(x)}). For h : X → {−1,+1}, ērs:t(h) = 1
t−s+1

∑t
u=s eru(h),

and for finiteS ⊆ X × {−1,+1}, êr(h;S) = 1
|S|

∑

(x,y)∈S I[h(x) 6= y]. Also letC[S] = {h ∈ C :

êr(h;S) = 0}. Finally, for a distributionP onX andr > 0, defineBP (h, r) = {g ∈ C : P (x :
h(x) 6= g(x)) ≤ r}.

2.1 Assumptions
In addition to the assumption of independence of theXt variables and thatd < ∞, each result
below is stated under various additional assumptions. The weakest such assumption is thatD is
totally bounded, in the following sense. For eachǫ > 0, let Dǫ denote a minimal subset ofD such
that∀D ∈ D, ∃D′ ∈ Dǫ s.t.‖D − D′‖ < ǫ: that is, a minimalǫ-cover ofD. We say thatD is totally
bounded if it satisfies the following assumption.
Assumption1. ∀ǫ > 0, |Dǫ| <∞.

In some of the results below, we will be interested in deriving specific rates of convergence. Doing so
requires us to make stronger assumptions aboutD than mere total boundedness. We will specifically
consider the following condition, in whichc,m ∈ [0,∞) are constants.
Assumption2. ∀ǫ > 0, |Dǫ| < c · ǫ−m.

For an example of a classD satisfying the total boundedness assumption, considerX = [0, 1]n, and
let D be the collection of distributions that have uniformly continuous density function with respect
to the Lebesgue measure onX , with modulus of continuity at most some valueω(ǫ) for each value
of ǫ > 0, whereω(ǫ) is a fixed real-valued function withlimǫ→0 ω(ǫ) = 0.

As a more concrete example, whenω(ǫ) = Lǫ for someL ∈ (0,∞), this corresponds to the family
of Lipschitz continuous density functions with Lipschitz constant at mostL. In this case, we have
|Dǫ| ≤ O (ǫ−n), satisfying Assumption 2.
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3 Related Work
We discuss active learning under distribution drift, with fixed target concept. There are several
branches of the literature that are highly relevant to this,including domain adaptation [MMR09,
MMR08], online learning [Lit88], learning with concept drift, and empirical processes for indepen-
dent but not identically distributed data [vdG00].

Streamed-based Active Learning with a Fixed Distribution [DKM09] show that a certain mod-
ified perceptron-like active learning algorithm can achieve a mistake boundO(d log(T )) and query
boundÕ(d log(T )), when learning a linear separator under a uniform distribution on the unit sphere,
in the realizable case. [DGS10] also analyze the problem of learning linear separators under a uni-

form distribution, but allowing Tsybakov noise. They find that withQ̄T = Õ
(

d
2α

α+2T
2

α+2

)

queries,

it is possible to achieve an expected excess number of mistakesM̄T −M∗
T = Õ

(

d
α+1
α+2 · T 1

α+2

)

.

At this time, we know of no work studying the number of mistakes and queries achievable by active
learning in a stream-based setting where the distribution may change over time.

Stream-based Passive Learning with a Drifting Distribution There has been work on learning
with a drifting distribution and fixed target, in the contextof passive learning. [Bar92, BL97] study
the problem of learning a subset of a domain from randomly chosen examples when the probability
distribution of the examples changes slowly but continually throughout the learning process; they
give upper and lower bounds on the best achievable probability of misclassification after a given
number of examples. They consider learning problems in which a changing environment is modeled
by a slowly changing distribution on the product space. The allowable drift is restricted by ensuring
that consecutive probability distributions are close in total variation distance. However, this assump-
tion allows for certain malicious choices of distribution sequences, which shift the probability mass
into smaller and smaller regions where the algorithm is uncertain of the target’s behavior, so that
the number of mistakes grows linearly in the number of samples in the worst case. More recently,
[FM97] have investigated learning when the distribution changes as a linear function of time. They
present algorithms that estimate the error of functions, using knowledge of this linear drift.

4 Active Learning in the Realizable Case
Throughout this section, supposeC is a fixed concept space andh∗ ∈ C is a fixed target function:
that is,ert(h∗) = 0. The family of scenarios in which this is true are often collectively referred
to as therealizable case. We begin our analysis by studying this realizable case because it greatly
simplifies the analysis, laying bare the core ideas in plain form. We will discuss more general
scenarios, in whichert(h∗) ≥ 0, in later sections, where we find that essentially the same principles
apply there as in this initial realizable-case analysis.

We will be particularly interested in the performance of thefollowing simple algorithm, due to
[CAL94], typically referred to as CAL after its discoverers. The version presented here is specified in
terms of a passive learning subroutineA (mapping any sequence of labeled examples to a classifier).
In it, we use the notationDIS(V ) = {x ∈ X : ∃h, g ∈ V s.t.h(x) 6= g(x)}, also used below.

CAL
1. t← 0,Q0 ← ∅, and let̂h0 = A(∅)
2. Do
3. t← t+ 1
4. PredictŶt = ĥt−1(Xt)
5. If max

y∈{−1,+1}
min
h∈C

êr(h;Qt−1 ∪ {(Xt, y)}) = 0

6. RequestYt, letQt = Qt−1 ∪ {(Xt, Yt)}
7. Else letY ′

t = argmin
y∈{−1,+1}

min
h∈C

êr(h;Qt−1 ∪ {(Xt, y)}), and letQt ← Qt−1 ∪ {(Xt, Y
′
t )}

8. Let ĥt = A(Qt)

Below, we letA1IG denote the one-inclusion graph prediction strategy of [HLW94]. Specifically,
the passive learning algorithmA1IG is specified as follows. For a sequence of data pointsU ∈ X t+1,
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the one-inclusion graph is a graph, where each vertex represents a distinct labeling ofU that can be
realized by some classifier inC, and two vertices are adjacent if and only if their corresponding
labelings forU differ by exactly one label. We use the one-inclusion graph to define a classifier
based ont training points as follows. Givent labeled data pointsL = {(x1, y1), . . . , (xt, yt)}, and
one test pointxt+1 we are asked to predict a label for, we first construct the one-inclusion graph
onU = {x1, . . . , xt+1}; we then orient the graph (give each edge a unique direction)in a way that
minimizes the maximum out-degree, and breaks ties in a way that is invariant to permutations of the
order of points inU ; after orienting the graph in this way, we examine the subsetof vertices whose
corresponding labeling ofU is consistent withL; if there is only one such vertex, then we predict for
xt+1 the corresponding label from that vertex; otherwise, if there are two such vertices, then they are
adjacent in the one-inclusion graph, and we choose the one toward which the edge is directed and
use the label forxt+1 in the corresponding labeling ofU as our prediction for the label ofxt+1. See
[HLW94] and subsequent work for detailed studies of the one-inclusion graph prediction strategy.

4.1 Learning with a Fixed Distribution
We begin the discussion with the simplest case: namely, when|D| = 1.

Definition 1. [Han07, Han11] Define the disagreement coefficient ofh∗ under a distributionP as

θP (ǫ) = sup
r>ǫ

P (DIS(BP (h
∗, r))) /r.

Theorem 1. For any distribution P on X , if D = {P}, then running CAL withA =
A1IG achieves expected mistake bound̄MT = O (d log(T )) and expected query bound̄QT =
O
(

θP (ǫT )d log
2(T )

)

, for ǫT = d log(T )/T .

For completeness, the proof is included in the supplementalmaterials.

4.2 Learning with a Drifting Distribution
We now generalize the above results to any sequence of distributions from a totally bounded space
D. Throughout this section, letθD(ǫ) = supP∈D θP (ǫ).

First, we prove a basic result stating that CAL can achieve a sublinear number of mistakes, and
under conditions on the disagreement coefficient, also a sublinear number of queries.

Theorem 2. If D is totally bounded (Assumption 1), then CAL (withA any empirical risk minimiza-
tion algorithm) achieves an expected mistake boundM̄T = o(T ), and ifθD(ǫ) = o(1/ǫ), then CAL
makes an expected number of queriesQ̄T = o(T ).

Proof. As mentioned, given thaterQt−1
(h∗) = 0, we have thatY ′

t in Step 7 must equalh∗(Xt),
so that the invarianterQt

(h∗) = 0 is maintained for allt by induction. In particular, this implies
Qt = Zt for all t.

Fix anyǫ > 0, and enumerate the elements ofDǫ so thatDǫ = {P1, P2, . . . , P|Dǫ|}. For eacht ∈ N,
let k(t) = argmink≤|Dǫ| ‖Pk −Dt‖, breaking ties arbitrarily. Let

L(ǫ) =

⌈

8√
ǫ

(

d ln

(

24√
ǫ

)

+ ln

(

4√
ǫ

))⌉

.

For eachi ≤ |Dǫ|, if k(t) = i for infinitely manyt ∈ N, then letTi denote the smallest value ofT
such that|{t ≤ T : k(t) = i}| = L(ǫ). If k(t) = i only finitely many times, then letTi denote the
largest indext for whichk(t) = i, orTi = 1 if no such indext exists.

Let Tǫ = maxi≤|Dǫ| Ti andVǫ = C[ZTǫ
]. We have that∀t > Tǫ, diamt(Vǫ) ≤ diamk(t)(Vǫ) + ǫ.

For eachi, letLi be a sequence ofL(ǫ) i.i.d. pairs(X,Y ) with X ∼ Pi andY = h∗(X), and let
Vi = C[Li]. Then∀t > Tǫ,

E
[

diamk(t)(Vǫ)
]

≤ E
[

diamk(t)(Vk(t))
]

+
∑

s≤Ti:k(s)=k(t)

‖Ds−Pk(s)‖ ≤ E
[

diamk(t)(Vk(t))
]

+L(ǫ)ǫ.

By classic results in the theory of PAC learning [AB99, Vap82] and our choice ofL(ǫ), ∀t >
Tǫ,E

[

diamk(t)(Vk(t))
]

≤ √ǫ.
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Combining the above arguments,

E

[

T
∑

t=1

diamt(C[Zt−1])

]

≤ Tǫ +

T
∑

t=Tǫ+1

E [diamt(Vǫ)] ≤ Tǫ + ǫT +

T
∑

t=Tǫ+1

E
[

diamk(t)(Vǫ)
]

≤ Tǫ + ǫT + L(ǫ)ǫT +

T
∑

t=Tǫ+1

E
[

diamk(t)(Vk(t))
]

≤ Tǫ + ǫT + L(ǫ)ǫT +
√
ǫT.

Let ǫT be any nonincreasing sequence in(0, 1) such that1 ≪ TǫT ≪ T . Since|Dǫ| < ∞ for all
ǫ > 0, we must haveǫT → 0. Thus, noting thatlimǫ→0 L(ǫ)ǫ = 0, we have

E

[

T
∑

t=1

diamt(C[Zt−1])

]

≤ TǫT + ǫTT + L(ǫT )ǫTT +
√
ǫTT ≪ T. (1)

The result onM̄T now follows by noting that for anŷht−1 ∈ C[Zt−1] has ert(ĥt−1) ≤
diamt(C[Zt−1]), so

M̄T = E

[

T
∑

t=1

ert

(

ĥt−1

)

]

≤ E

[

T
∑

t=1

diamt(C[Zt−1])

]

≪ T.

Similarly, for r > 0, we have

P(RequestYt) = E [P(Xt ∈ DIS(C[Zt−1])|Zt−1)] ≤ E [P(Xt ∈ DIS(C[Zt−1] ∪ BDt
(h∗, r)))]

≤ E [θD(r) ·max {diamt(C[Zt−1]), r}] ≤ θD(r) · r + θD(r) · E [diamt(C[Zt−1])] .

Letting rT = T−1
E

[

∑T
t=1 diamt(C[Zt−1])

]

, we see thatrT → 0 by (1), and sinceθD(ǫ) =

o(1/ǫ), we also haveθD(rT )rT → 0, so thatθD(rT )rTT ≪ T . Therefore,Q̄T equals

T
∑

t=1

P(RequestYt) ≤ θD(rT )·rT ·T+θD(rT )·E
[

T
∑

t=1

diamt(C[Zt−1])

]

= 2θD(rT )·rT ·T ≪ T.

We can also state a more specific result in the case when we havesome more detailed information
on the sizes of the finite covers ofD.

Theorem 3. If Assumption 2 is satisfied, then CAL (withA any empirical risk minimization algo-
rithm) achieves an expected mistake boundM̄T and expected number of queriesQ̄T such thatM̄T =

O
(

T
m

m+1 d
1

m+1 log2 T
)

andQ̄T = O
(

θD (ǫT )T
m

m+1 d
1

m+1 log2 T
)

, whereǫT = (d/T )
1

m+1 .

Proof. Fix ǫ > 0, enumerateDǫ = {P1, P2, . . . , P|Dǫ|}, and for eacht ∈ N, let k(t) =
argmin1≤k≤|Dǫ| ‖Dt − Pk‖. Let {X ′

t}∞t=1 be a sequence of independent samples, withX ′
t ∼ Pk(t),

andZ ′
t = {(X ′

1, h
∗(X ′

1)), . . . , (X
′
t, h

∗(X ′
t)}. Then

E

[

T
∑

t=1

diamt(C[Zt−1])

]

≤ E

[

T
∑

t=1

diamt(C[Z ′
t−1])

]

+

T
∑

t=1

‖Dt − Pk(t)‖

≤ E

[

T
∑

t=1

diamt(C[Z ′
t−1])

]

+ ǫT ≤
T
∑

t=1

E
[

diamPk(t)
(C[Z ′

t−1])
]

+ 2ǫT.

The classic convergence rates results from PAC learning [AB99, Vap82] imply

T
∑

t=1

E
[

diamPk(t)
(C[Z ′

t−1])
]

=
T
∑

t=1

O
(

d log t
|{i≤t:k(i)=k(t)}|

)

≤ O(d log T ) ·
T
∑

t=1

1
|{i≤t:k(i)=k(t)}| ≤ O(d log T ) · |Dǫ| ·

⌈T/|Dǫ|⌉
∑

u=1

1
u ≤ O

(

d|Dǫ| log2(T )
)

.
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Thus,
∑T

t=1 E [diamt(C[Zt−1])] ≤ O
(

d|Dǫ| log2(T ) + ǫT
)

≤ O
(

d · ǫ−m log2(T ) + ǫT
)

.

Takingǫ = (T/d)−
1

m+1 , this isO
(

d
1

m+1 · T m
m+1 log2(T )

)

. We therefore have

M̄T ≤ E

[

T
∑

t=1

sup
h∈C[Zt−1]

ert(h)

]

≤ E

[

T
∑

t=1

diamt(C[Zt−1])

]

≤ O
(

d
1

m+1 · T m
m+1 log2(T )

)

.

Similarly, lettingǫT = (d/T )
1

m+1 , Q̄T is at most

E

[

T
∑

t=1

Dt(DIS(C[Zt−1]))

]

≤ E

[

T
∑

t=1

Dt (DIS (BDt
(h∗,max {diamt(C[Zt−1]), ǫT })))

]

≤ E

[

T
∑

t=1

θD (ǫT ) ·max {diamt(C[Zt−1]), ǫT }
]

≤ E

[

T
∑

t=1

θD (ǫT ) · diamt(C[Zt−1])

]

+ θD (ǫT )TǫT ≤ O
(

θD (ǫT ) · d
1

m+1 · T m
m+1 log2(T )

)

.

We can additionally construct a lower bound for this scenario, as follows. SupposeC contains a full
infinite binary tree for which all classifiers in the tree agree on some point. That is, there is a set of
points{xb : b ∈ {0, 1}k, k ∈ N} such that, forb1 = 0 and∀b2, b3, . . . ∈ {0, 1}, ∃h ∈ C such that
h(x(b1,...,bj−1)) = bj for j ≥ 2. For instance, this is the case for linear separators (and most other
natural “geometric” concept spaces).

Theorem 4. For anyC as above, for any active learning algorithm,∃ a setD satsifying Assump-
tion 2, a target functionh∗ ∈ C, and a sequence of distributions{Dt}Tt=1 in D such that the achieved
M̄T andQ̄T satisfyM̄T = Ω

(

T
m

m+1
)

, andM̄T = O
(

T
m

m+1
)

=⇒ Q̄T = Ω
(

T
m

m+1
)

.

The proof is analogous to that of Theorem 9 below, and is therefore omitted for brevity.

5 Learning with Noise
In this section, we extend the above analysis to allow for various types of noise conditions commonly
studied in the literature. For this, we will need to study a noise-robust variant of CAL, below
referred to as Agnostic CAL (or ACAL). We prove upper bounds achieved by ACAL, as well as
(non-matching) minimax lower bounds.

5.1 Noise Conditions
The following assumption may be referred to as astrictly benign noisecondition, which essentially
says the model is specified correctly in thath∗ ∈ C, and though the labels may be stochastic, they
are not completely random, but rather each is slightly biased toward theh∗ label.
Assumption3. h∗ = sign(η − 1/2) ∈ C and∀x, η(x) 6= 1/2.

A particularly interesting special case of Assumption 3 is given by Tsybakov’s noise conditions,
which essentially control how common it is to haveη values close to1/2. Formally:
Assumption4. η satisfies Assumption 3 and for somec > 0 andα ≥ 0,
∀t > 0, P (|η(x)− 1/2| < t) < c · tα.

In the setting of shifting distributions, we will be interested in conditions for which the above as-
sumptions are satisifed simultaneously for all distributions inD. We formalize this in the following.
Assumption5. Assumption 4 is satisfied for allD ∈ D, with the samec andα values.

5.2 Agnostic CAL
The following algorithm is essentially taken from [DHM07, Han11], adapted here for this stream-
based setting. It is based on a subroutine: LEARN(L,Q) = argmin

h∈C:êr(h;L)=0

êr(h;Q) if min
h∈C

êr(h;L) =

0, and otherwise LEARN(L,Q) = ∅.
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ACAL
1. t← 0, Lt ← ∅,Qt ← ∅, let ĥt be any element ofC
2. Do
3. t← t+ 1
4. PredictŶt = ĥt−1(Xt)
5. For eachy ∈ {−1,+1}, leth(y) = LEARN(Lt−1,Qt−1)
6. If eithery hash(−y) = ∅ or

êr(h(−y);Lt−1 ∪ Qt−1)− êr(h(y);Lt−1 ∪ Qt−1) > Êt−1(Lt−1,Qt−1)
7. Lt ← Lt−1 ∪ {(Xt, y)},Qt ← Qt−1

8. Else RequestYt, and letLt ← Lt−1,Qt ← Qt−1 ∪ {(Xt, Yt)}
9. Let ĥt = LEARN(Lt,Qt)
10. If t is a power of2
11. Lt ← ∅,Qt ← ∅

The algorithm is expressed in terms of a functionÊt(L,Q), defined as follows. Letδi be
a nonincreasing sequence of values in(0, 1). Let ξ1, ξ2, . . . denote a sequence of indepen-
dent Uniform({−1,+1}) random variables, also independent from the data. ForV ⊆ C,
let R̂t(V ) = suph1,h2∈V

1
t−2⌊log2(t−1)⌋

∑t
m=2⌊log2(t−1)⌋+1 ξm · (h1(Xm) − h2(Xm)), D̂t(V ) =

suph1,h2∈V
1

t−2⌊log2(t−1)⌋

∑t
m=2⌊log2(t−1)⌋+1 |h1(Xm) − h2(Xm)|, Ût(V, δ) = 12R̂t(V ) +

34
√

D̂t(V ) ln(32t
2/δ)

t + 752 ln(32t2/δ)
t . Also, for any finite setsL,Q ⊆ X × Y, let C[L] = {h ∈

C : êr(h;L) = 0}, Ĉ(ǫ;L,Q) = {h ∈ C[L] : êr(h;L ∪ Q) −ming∈C[L] êr(g;L ∪ Q) ≤ ǫ}. Then

defineÛt(ǫ, δ;L,Q) = Ût(Ĉt(ǫ;L,Q), δ), and (lettingZǫ = {j ∈ Z : 2j ≥ ǫ})

Êt(L,Q) = inf

{

ǫ > 0 : ∀j ∈ Zǫ,min
m∈N

Ût(ǫ, δ⌊log(t)⌋;L,Q) ≤ 2j−4

}

.

5.3 Learning with a Fixed Distribution
The following results essentially follow from [Han11], adapted to this stream-based setting.

Theorem 5. For any strictly benign(P, η), if 2−2i ≪ δi ≪ 2−i/i, ACAL achieves an expected
excess number of mistakes̄MT − M∗

T = o(T ), and if θP (ǫ) = o(1/ǫ), then ACAL makes an
expected number of queries̄QT = o(T ).
Theorem 6. For any (P, η) satisfying Assumption 4, ifD = {P}, ACAL achieves an expected

excess number of mistakes̄MT −M∗
T = Õ

(

d
1

α+2 · T α+1
α+2 log

(

1
δ⌊log(T )⌋

)

+
∑⌊log(T )⌋

i=0 δi2
i
)

. and

an expected number of queries̄QT = Õ
(

θP (ǫT ) · d
2

α+2 · T α
α+2 log

(

1
δ⌊log(T )⌋

)

+
∑⌊log(T )⌋

i=0 δi2
i
)

.

whereǫT = T− α
α+2 .

Corollary 1. For any (P, η) satisfying Assumption 4, ifD = {P} and δi = 2−i in ACAL, the
algorithm achieves an expected number of mistakesM̄T and expected number of queriesQ̄T such

that, forǫT = T− α
α+2 , M̄T −M∗

T = Õ
(

d
1

α+2 · T α+1
α+2

)

, andQ̄T = Õ
(

θP (ǫT ) · d
2

α+2 · T α
α+2

)

.

5.4 Learning with a Drifting Distribution
We can now state our results concerning ACAL, which are analogous to Theorems 2 and 3 proved
earlier for CAL in the realizable case.
Theorem 7. If D is totally bounded (Assumption 1) andη satisfies Assumption 3, then ACAL with
δi = 2−i achieves an excess expected mistake boundM̄T − M∗

T = o(T ), and if additionally
θD(ǫ) = o(1/ǫ), then ACAL makes an expected number of queriesQ̄T = o(T ).

The proof of Theorem 7 essentially follows from a combination of the reasoning for Theorem 2 and
Theorem 8 below. Its proof is omitted.
Theorem 8. If Assumptions 2 and 5 are satisfied, then ACAL achieves an expected excess num-

ber of mistakesM̄T −M∗
T = Õ

(

T
(α+2)m+1

(α+2)(m+1) log
(

1
δ⌊log(T )⌋

)

+
∑⌊log(T )⌋

i=0 δi2
i
)

, and an expected

number of queries̄QT = Õ
(

θD(ǫT )T
(α+2)(m+1)−α
(α+2)(m+1) log

(

1
δ⌊log(T )⌋

)

+
∑⌊log(T )⌋

i=0 δi2
i
)

, whereǫT =

T− α
(α+2)(m+1) .
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The proof of this result is in many ways similar to that given above for the realizable case, and is
included among the supplemental materials.

We immediately have the following corollary for a specificδi sequence.

Corollary 2. With δi = 2−i in ACAL, the algorithm achieves expected number of mistakesM̄ and
expected number of queries̄QT such that, forǫT = T− α

(α+2)(m+1) ,

M̄T −M∗
T = Õ

(

T
(α+2)m+1

(α+2)(m+1)

)

andQ̄T = Õ
(

θD(ǫT ) · T
(α+2)(m+1)−α
(α+2)(m+1)

)

.

Just as in the realizable case, we can also state a minimax lower bound for this noisy setting.

Theorem 9. For anyC as in Theorem 4, for any active learning algorithm,∃ a setD satisfying
Assumption 2, a conditional distributionη, such that Assumption 5 is satisfied, and a sequence of
distributions{Dt}Tt=1 in D such that theM̄T and Q̄T achieved by the learning algorithm satisfy

M̄T −M∗
T = Ω

(

T
1+mα

α+2+mα

)

andM̄T −M∗
T = O

(

T
1+mα

α+2+mα

)

=⇒ Q̄T = Ω
(

T
2+mα

α+2+mα

)

.

The proof is included in the supplemental material.

6 Querying before Predicting

One interesting alternative to the above framework is to allow the learner to make a label request
beforemaking its label predictions. From a practical perspective, this may be more desirable and
in many cases quite realistic. From a theoretical perspective, analysis of this alternative framework
essentially separates out the mistakes due to over-confidence from the mistakes due to recognized
uncertainty. In some sense, this is related to the KWIK model of learning of [LLW08].

Analyzing the above procedures in this alternative model yields several interesting details. Specif-
ically, consider the following natural modifications to theabove procedures. We refer to the algo-
rithm LAC as the same sequence of steps as CAL, except with Step 4 removed, and an additional
step added after Step 8 as follows. In the case that we requested the labelYt, we predictYt, and oth-
erwise we predict̂ht(Xt). Similarly, we define the algorithm ALAC as having the same sequence of
steps as ACAL, except with Step 4 removed, and an additional step added after Step 11 as follows.
In the case that we requested the labelYt, we predictYt, and otherwise we predict̂ht(Xt).

The analysis of the number of queries made by LAC in this setting remains essentially unchanged.
However, if we consider running LAC in the realizable case, then the total number of mistakes in the
entire sequence will bezero. As above, for any example for which LAC does not request the label,
every classifier in the version space agrees with the target function’s label, and therefore the inferred
label will be correct. For any example that LAC requests the label of, in the setting where queries
are madebeforepredictions, we simply use the label itself as our prediction, so that LAC certainly
does not make a mistake in this case.

On the other hand, the the analysis of ALAC in this alternative setting when we have noisy labels
can be far more subtle. In particular, because the version space is only guaranteed to contain the best
classifierwith high confidence, there is still a small probability of making a prediction that disagrees
with the best classifierh∗ on each round that we do not request a label. So controlling the number of
mistakes in this setting comes down to controlling the probability of removingh∗ from the version
space. However, this confidence parameter appears in the analysis of the number of queries, so that
we have a natural trade-off between the number of mistakes and the number of label requests.

Formally, for any given nonincreasing sequenceδi in (0, 1), under Assumptions 2 and 5, ALAC
achieves an expected excess number of mistakesM̄T − M∗

T ≤
∑⌊log(T )⌋

i=1 δi2
i, and an expected

number of queriesQ̄T = Õ
(

θD(ǫT ) · T
(α+2)(m+1)−α
(α+2)(m+1) log

(

1
δ⌊log(T )⌋

)

+
∑⌊log(T )⌋

i=0 δi2
i
)

, where

ǫT = T− α
(α+2)(m+1) . In particular, given any nondecreasing sequenceMT , we can set thisδi se-

quence to maintain̄MT −M∗
T ≤MT for all T .
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7 Discussion

What is not implied by the results above is any sort oftrade-off between the number of mistakes
and the number of queries. Intuitively, such a trade-off should exist; however, as CAL lacks any
parameter to adjust the behavior with respect to this trade-off, it seems we need a different approach
to address that question. In the batch setting, the analogous question is the trade-off between the
number of label requests and the number of unlabeled examples needed. In the realizable case,
that trade-off is tightly characterized by Dasgupta’ssplitting indexanalysis [Das05]. It would be
interesting to determine whether the splitting index tightly characterizes the mistakes-vs-queries
trade-off in this stream-based setting as well.

In the batch setting, in which unlabeled examples are considered free, and performance is only mea-
sured as a function of the number of label requests, [BHV10] have found that there is an important
distinction between theverifiablelabel complexity and theunverifiablelabel complexity. In partic-
ular, while the former is sometimes no better than passive learning, the latter can always provide
improvements for VC classes. Is there such a thing as unverifiable performance measures in the
stream-based setting? To be concrete, we have the followingopen problem. Is there a method for
every VC class that achievesO(log(T )) mistakes ando(T ) queries in the realizable case?

References

[AB99] M. Anthony and P. L. Bartlett.Neural Network Learning: Theoretical Foundations. Cambridge
University Press, 1999.

[Bar92] P. L. Bartlett. Learning with a slowly changing distribution. InProceedings of the fifth annual
workshop on Computational learning theory, COLT ’92, pages 243–252, 1992.

[BEHW89] A. Blumer, A. Ehrenfeucht, D. Haussler, and M. Warmuth.Learnability and the vapnik-
chervonenkis dimension.Journal of the Association for Computing Machinery, 36(4):929–965,
1989.

[BHV10] M.-F. Balcan, S. Hanneke, and J. Wortman Vaughan. The true sample complexity of active
learning.Machine Learning, 80(2–3):111–139, September 2010.

[BL97] R. D. Barve and P. M. Long. On the complexity of learning from drifting distributions. Inf.
Comput., 138(2):170–193, 1997.

[CAL94] D. Cohn, L. Atlas, and R. Ladner. Improving generalization with active learning. Machine
Learning, 15(2):201–221, 1994.

[CMEDV10] K. Crammer, Y. Mansour, E. Even-Dar, and J. WortmanVaughan. Regret minimization with
concept drift. InCOLT, pages 168–180, 2010.

[Das05] S. Dasgupta. Coarse sample complexity bounds for active learning. In Advances in Neural
Information Processing Systems 18, 2005.

[DGS10] O. Dekel, C. Gentile, and K. Sridharam. Robust selective sampling from single and multiple
teachers. InConference on Learning Theory, 2010.

[DHM07] S. Dasgupta, D. Hsu, and C. Monteleoni. A general agnostic active learning algorithm. Tech-
nical Report CS2007-0898, Department of Computer Science and Engineering, University of
California, San Diego, 2007.

[DKM09] S. Dasgupta, A. Kalai, and C. Monteleoni. Analysis of perceptron-based active learning.Journal
of Machine Learning Research, 10:281–299, 2009.

[FM97] Y. Freund and Y. Mansour. Learning under persistent drift.In Proceedings of the Third European
Conference on Computational Learning Theory, EuroCOLT ’97, pages 109–118, 1997.

[Han07] S. Hanneke. A bound on the label complexity of agnostic activelearning. InProceedings of the
24th International Conference on Machine Learning, 2007.

[Han11] S. Hanneke. Rates of convergence in active learning.The Annals of Statistics, 39(1):333–361,
2011.

[HLW94] D. Haussler, N. Littlestone, and M. Warmuth. Predicting{0, 1}-functions on randomly drawn
points. Information and Computation, 115:248–292, 1994.

[Kol06] V. Koltchinskii. Local rademacher complexities and oracle inequalities in risk minimization.The
Annals of Statistics, 34(6):2593–2656, 2006.

[Lit88] N. Littlestone. Learning quickly when irrelevant attributes abound:A new linear-threshold al-
gorithm. Machine Learning, 2:285–318, 1988.

9



[LLW08] L. Li, M. L. Littman, and T. J. Walsh. Knows what it knows: A framework for self-aware
learning. InInternational Conference on Machine Learning, 2008.

[MMR08] Y. Mansour, M. Mohri, and A. Rostamizadeh. Domain adaptation with multiple sources. InIn
Advances in Neural Information Processing Systems (NIPS), pages 1041–1048, 2008.

[MMR09] Y. Mansour, M. Mohri, and A. Rostamizadeh. Domain adaptation: Learning bounds and algo-
rithms. InCOLT, 2009.

[MT99] E. Mammen and A.B. Tsybakov. Smooth discrimination analysis.The Annals of Statistics,
27:1808–1829, 1999.

[Vap82] V. Vapnik. Estimation of Dependencies Based on Empirical Data. Springer-Verlag, New York,
1982.

[vdG00] S. van de Geer.Empirical Processes in M-Estimation (Cambridge Series in Statistical and Prob-
abilistic Mathematics). Cambridge University Press, 2000.

A Proof of Theorem 1

Proof of Theorem 1.First note that, by the assumption that∀t, ert(h∗) = 0, with probability1 we
have that∀t,Qt = Zt. Thus, since the stated bound on̄MT for the one-inclusion graph algorithm
has been established when using the true sequence of labeledexamplesZT [HLW94], it must hold
here as well.

The remainder of the proof focuses on the bound onQ̄T . This proof is essentially based on a related
proof of [Han11], but reformulated for this stream-based model.

Let Vt denote the set of classifiersh ∈ C with êr(h;Qt) = 0 (with V0 = C). Classic results from
statistical learning theory [Vap82, BEHW89] imply that fort > d, with probability at least1− δ,

diamt(Vt−1) ≤ cd
log(2e(t− 1)/d) + log(4/δ)

t− 1
, (2)

for some universal constantc ∈ (1,∞).

In particular, ford < t ≤ T , since the probability CAL requests the labelYt isP (Xt ∈ DIS(Vt−1)),
(2) implies that this probability satisfies

P (Xt ∈ DIS(Vt−1)) ≤ P

(

Xt ∈ DIS

(

BP

(

h∗, cd
log(2e(t− 1)/d) + log(4/δ)

t− 1

)))

+ δ

≤ θP (d log(T )/T ) cd
log(2e(t− 1)/d) + log(4/δ)

t− 1
+ δ.

Takingδ = d/(t− 1), this implies

P (Xt ∈ DIS(Vt−1)) ≤ θP (d log(T )/T ) 2cd
log(8e(t− 1)/d)

t− 1
.

Thus, forT > d,

Q̄T =

T
∑

t=1

P (Xt ∈ DIS(Vt−1)) ≤ d+ 1 +

T−1
∑

t=d+1

θP (d log(T )/T ) 2cd
log(8et/d)

t

≤ d+ 1 + θP (d log(T )/T ) 2cd log(8eT/d)

∫ T

d

1

t
dt

= d+ 1 + θP (d log(T )/T ) 2cd log(8eT/d) log(T/d).

B Proof of Theorem 8

The following lemma is similar to a result proven by [Han11],based on the work of [Kol06], except
here we have adapted the result to the present setting with changing distributions. The proof is
essentially identical to the proof of the original result of[Han11], and is therefore omitted here.
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Lemma 1. [Han11] Supposeη satisfies Assumption 3. For everyi ∈ N, on an eventEi with
P(Ei) ≥ 1− δi, ∀t ∈ {2i + 1, . . . , 2i+1}, letting t(i) = t− 2i,

• êr(h∗;Lt−1) = 0,

• ∀h ∈ C s.t. êr(h;Lt−1) = 0 and êr(h;Lt−1 ∪ Qt−1)− êr(h∗;Lt−1 ∪ Qt−1) ≤ Êt−1(Lt−1,Qt−1),

we haveēr2i+1:t−1(h)− ēr2i+1:t−1(h
∗) ≤ 2Êt−1(Lt−1,Qt−1),

• if Assumption 5 is satisifed,̂Et−1(Lt−1,Qt−1) ≤ K̃ ·
(

d log(t(i)/δi)

t(i)

)
α+1
α+2

,

for some(c, α)-dependent constant̃K ∈ (1,∞).

We can now prove Theorem 8.

Proof of Theorem 8.Fix anyi ∈ N, and we will focus on bounding the expected excess number of
mistakes and expected number of queries for the valuest ∈ {2i +1, . . . , 2i+1}. The result will then
follow from this simply by summing this over values ofi ≤ log(T ).

The predictions fort ∈ {2i + 1, . . . , 2i+1} are made bŷht−1. Lemma 1 implies that with proba-
bility at least1 − δi, everyt ∈ {2i + 1, . . . , 2i+1} has∀h ∈ C[Lt−1] with êr(h;Lt−1 ∪ Qt−1) −
êr(h∗;Lt−1 ∪ Qt−1) ≤ Êt−1(Lt−1,Qt−1) (and therefore in particular for̂ht−1)

t−1
∑

s=2i+1

ers(h)− ers(h
∗) ≤ K1 · (t− 2i) ·

(

d log((t− 2i)/δi)

t− 2i

)

α+1
α+2

≤ K1 · t
1

α+2 · (d log(t/δi))
α+1
α+2 . (3)

for some finite constantK1.

Fix some valueǫ > 0, and enumerate the elements ofDǫ = {P1, P2, . . . , P|Dǫ|}. Then letDǫ,k =
{P ∈ D : k = argminj≤|Dǫ| ‖Pj − P‖}, breaking ties arbitrarily in theargmin. This induces a
(Voronoi) partition{Dǫ,k : k ≤ |Dǫ|} of D.

Rewriting (3) in terms of this partition, we have

|Dǫ|
∑

k=1

∑

s∈{2i+1,...,t−1}:
Ds∈Dǫ,k

ers(h)− ers(h
∗) ≤ K1 · (t)

1
α+2 · (d log(t/δi)) .

This means that, for anyk ≤ |Dǫ|, we have

(erPk
(h)− erPk

(h∗)) ·
∣

∣

{

s ∈ {2i + 1, . . . , t− 1} : Ds ∈ Dǫ,k

}∣

∣

+
t−1
∑

s=2i+1

(ers(h)− ers(h
∗)) · ID\Dǫ,k

(Ds)

≤ K1 · (t)
1

α+2 · (d log(t/δi)) + 2ǫ
∣

∣

{

s ∈ {2i + 1, . . . , t− 1} : Ds ∈ Dǫ,k

}∣

∣ .

Abbreviating byk(s) the value ofk ≤ |Dǫ| with Ds ∈ Dǫ,k, we have that

ert(h)− ert(h
∗)

≤ 2ǫ+ erPk(t)
(h)− erPk(t)

(h∗)

≤ 2ǫ+
2ǫ
∣

∣

{

s ∈ {2i + 1, . . . , t− 1} : k(s) = k(t)
}∣

∣+K1 · (t)
1

α+2 · (d log(t/δi))
max {1, |{s ∈ {2i + 1, . . . , t− 1} : k(s) = k(t)}|}

≤ 4ǫ+
2K1 · (t)

1
α+2 · (d log(t/δi))

|{s ∈ {2i + 1, . . . , t} : k(s) = k(t)}| . (4)
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Applying (4) simultaneously for allt ∈ {2i + 1, . . . , 2i+1} for h = ĥt−1, we have

M̄T −M∗
T ≤ 4ǫT +

⌊log(T )⌋
∑

i=0

2iδi+

2K1 · T
1

α+2 · log(T )
(

d log(T/δ⌊log(T )⌋)
)

⌊log(T )⌋
∑

i=0

|Dǫ|
∑

k=1

|{t∈{2i+1,...,2i+1}:k(t)=k}|
∑

u=1

1

u

≤ 4ǫT +

⌊log(T )⌋
∑

i=0

2iδi+

2K1 · T
1

α+2 · log(T )
(

d log(T/δ⌊log(T )⌋)
)

log2(2T )|Dǫ|.

= O



ǫT + ǫ−mT
1

α+2 d log3(T ) log(1/δ⌊log(T )⌋) +

⌊log(T )⌋
∑

i=0

2iδi



 .

Takingǫ = T− α+1
(α+2)(m+1) , this shows that

M̄T −M∗
T = O



T
(α+2)m+1

(α+2)(m+1) d log3(T ) log(1/δ⌊log(T )⌋) +

⌊log(T )⌋
∑

i=0

δi2
i



 .

We can boundQ̄T in a similar fashion as follows. Fix anyi ≤ log(T ). Lemma 1 implies
that with probability at least1 − δi, for every t ∈ {2i + 1, . . . , 2i+1}, letting Ēt = 4ǫ +

2K1·t
1

α+2 d log(t/δ⌊log(t)⌋)

|{s∈{2i+1,...,t}:k(s)=k(t)}| , we have

P(requestYt|Lt−1,Qt−1)

≤ P

(

Xt ∈ DIS
(

{h ∈ C[Lt−1] : êr(h;Lt−1 ∪ Qt−1)− êr(h∗;Lt−1 ∪Qt−1) ≤ Êt−1(Lt−1,Qt−1)}
) ∣

∣

∣
Lt−1,Qt−1

)

≤ P
(

Xt ∈ DIS
(

{h ∈ C : ert(h)− ert(h
∗) ≤ Ēt}

))

≤ P

(

Xt ∈ DIS
({

h ∈ C : Pt(x : h(x) 6= h∗(x)) ≤ K2 · Ē
α

α+1

t

}))

≤ θD

(

Ē

α
α+1

t

)

·K3 · Ē
α

α+1

t ,

where the third inequality above is due to Assumption 5.

Applying this simultaneously to alli ≤ log(T ) and t ∈ {2i + 1, . . . , 2i+1}, we have, for̄ǫT =

ǫ+ T−α+1
α+2 ,

Q̄T ≤
⌊log(T )⌋
∑

i=0

δi2
i + θD

(

ǭ
α

α+1

T

)

K4d log(T/δ⌊log(T )⌋)

⌊log(T )⌋
∑

i=0

|Dǫ|
∑

k=1

|{t∈{2i+1,...,2i+1}:k(t)=k}|
∑

u=1

(

max

{

ǫ, T
1

α+2
1

u

})
α

α+1

≤
⌊log(T )⌋
∑

i=0

δi2
i + θD

(

ǭ
α

α+1

T

)

·K5 · d log(1/δ⌊log(T )⌋) log
2(T ) ·

(

ǫ
α

α+1T + |Dǫ|T
α

(α+2)(α+1)

(

T

|Dǫ|

)
1

α+1

)

= O





⌊log(T )⌋
∑

i=0

δi2
i + θD

(

ǭ
α

α+1

T

)

log(1/δ⌊log(T )⌋) log
2(T ) ·

(

ǫ
α

α+1T + ǫ−m α
α+1T

2
α+2

)



 .

Takingǫ = ǫ
α+1
α

T = T− α+1
(α+2)(m+1) , we have

Q̄T = O





⌊log(T )⌋
∑

i=0

δi2
i + θD (ǫT ) log(1/δ⌊log(T )⌋) log

2(T ) · T
(α+2)(m+1)−α
(α+2)(m+1)



 .
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C Proof of Theorem 9

Proof of Theorem 9.Fix anyT ∈ N, and any particular active learning algorithmA. We construct
a set of distributions tailored for these, as follows. Letκ = (α + 1)/α. Let ǫ = T− κ

2κ−1+m ,

M = T
m

2κ+m−1 = ǫ−m/κ, andK = T
2κ−1

2κ+m−1 = T/M .

Inductively define a sequence{bk}∞k=1 as follows. Letb1 = 0, b2 = 1. For any integerk ≥ 3, given
that values ofb1, b2, . . . , bk−1, η3, . . . , ηk−1, D3, . . . Dk−1, andX1, X2, . . . , X(k−3)K have already
been defined, it is known [Han11] that for any active learningalgorithm (possibly randomized)
there exists a valuebk such that, for the distributionDk with Dk({xb1,b2,...,bk−1

}) = ǫ1/κ = 1 −
Dk({xb1}), there is a label distributionηk(x) = P (Y = 1|X = x) having ηk(xb1) = 1 and
inducingh∗(xb1,b2,...,bk−1

) = bk, which also satisfies Tsybakov noise with parametersc andα

under distributionDk: namely,ηk(xb1,b2,...,bk−1
) = 1

2

(

1 + (2bk − 1)ǫ
κ−1
κ

)

. Furthermore, [Han11]

shows that thisbk can be chosen so that, for someN = Ω
(

ǫ
2
κ−2

)

, after observing any number

fewer thanN random labeled observations(X,Y ) with X = xb1,b2,...,bk−1
, if ĥn is the algorithm’s

hypothesis, thenE[er(ĥn) − er(h∗)] > ǫ, where the error rate is evaluated underηk andDk. In
particular, this means that if the unlabeled samples are distributed according toDk, then with any
fewer thanN label requests, the expected excess error rate will be greater thanǫ. But this also means
that with any fewer thanΩ(ǫ−1/κN) = Ω(ǫ

1
κ−2) = Ω(K) unlabeled examples sampled according

toDk, the expected excess error rate will be greater thanǫ.

Thus, to define the valuebk given the already-defined valuesb1, b2, . . . , bk−1, we consider
X(k−3)K+1, X(k−3)K+2, . . ., X(k−2)K i.i.d. Dk, independent from the otherX1, . . . , X(k−3)K

variables, and consider the values ofbk andηk mentioned above, but defined for the active learn-
ing algorithm that feeds the streamX1, X2, . . . , X(k−3)K intoA before feeding in the samples from
Dk. Thus, in this perspective, theseX1, X2, . . . , X(k−3)K random variables, and their labels (which
A may request), are consideredinternal random variables in this active learning algorithm we have
defined. This completes the inductive definition.

Now for the original learning problem we are interested in, we take as our fixed label distribution
an η with η(xb1) = 1 and∀k ≥ 2, η(xb1,b2,...,bk−1

) = ηk(xb1,b2,...,bk−1
), and defined arbitrariliy

elsewhere. Thus, for anyDk, this satisfies Tsybakov noise with the givenc andα parameters.

We define the familyD of distributions as{D3, , D4, . . . , DM+2} for M = T
m

2κ+m−1 = ǫ−m/κ as
above. Since theseDi are each separated by distance exactlyǫ1/κ, D satisfies the constraint on its
cover sizes.

The sequence of data points will be theX1, X2, . . . , XT sequence defined above, and the corre-
sponding sequence of distributions hasD1 = D2 = · · · = DK = D3, DK+1 = DK+2 = · · · =
D2K = D4, and so on, up toD(M−1)K+1 = D(M−1)K+2 = · · · DT = DM+2.

Now applying the stated result of [Han11] used in the definition of the sequence, for any1 ≤
t ≤ min{ǫ−1/κN,K}, and anyk < M , denoting bŷhkK+t−1 the classifier produced byA after

processingkK + t − 1 examples from this stream,E
[

erDkK+t
(ĥkK+t−1)

]

− erDkK+t
(h∗) > ǫ =

T− κ
2κ+m−1 .

Sincemin{ǫ−1/κN,K} = Ω(K), the expected excess number of mistakes is

M̂T −M∗
T =

M−1
∑

k=0

K
∑

t=1

E

[

erDkK+t
(ĥkK+t−1)

]

− erDkK+t
(h∗)

≥
M−1
∑

k=0

min{ǫ−1/κN,K}
∑

t=1

E

[

erDkK+t
(ĥkK+t−1)

]

− erDkK+t
(h∗) ≥

M−1
∑

k=0

min{ǫ−1/κN,K}
∑

t=1

ǫ

= Ω(M ·K · ǫ) = Ω
(

M · (T/M) · T− κ
2κ+m−1

)

= Ω
(

T
κ+m−1
2κ+m−1

)

.
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Similarly, applying the stated result of [Han11] regardingthe number of samples of labels for the
point xb1,b2,...,bk−1

to achieve excess errorǫ being larger thanN , we see that in order to achieve

this M̂T − M∗
T = O

(

T
κ+m−1
2κ+m−1

)

, we need that at least some constant fraction of theseM seg-

ments receive an expected number of queriesΩ(N), so that we will needQ̂T = Ω(M · N) =

Ω
(

T
2κ+m−2
2κ+m−1

)

.
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