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Characterizing Optimal Rates for Lossy Coding
with Finite-Dimensional Metrics

Liu Yang, Steve Hanneke, and Jaime Carbonell

Abstract—We investigate the minimum expected number of coding techniques, it is not as directly helpful if we wish to
bits sufficient to encode a random variable X while still being ynderstand the behavior of the optimal rate itself. That is,
able to recover an approximation of X with expected distance since we do not have an explicit description of the optimal
from X at most D: that is, the optimal rate at distortion D, in . . - . .

guantizer, it may often be difficult to study the behaviortsf i

a one-shot coding setting. We find this quantity is related to the . . . > o
entropy of a Voronoi partition of the values of X based on a rate under various interesting conditions. There exisssita

maximal D-packing. results lower bounding the achievable rates, most notably
Index Terms—Quantization, Lossy Coding, Binary Codes the famous Shannon lower bound [6], which under certain
Bayesian Learning, Active Learning restrictions on the source and the distortion metric, iskmion

be fairly tight in theasymptoticanalysis of source coding [7].
However, there are few general results explicitly and tight
characterizing the (non-asymptotic) optimal rates for-shet

N this work, we study the fundamental complexity of lossgoding. In particular, to our knowledge, only a few speciase
coding. We are particularly interested in identifying a keyalculations of the exact value of this optimal rate havenbee

quantity that characterizes the expected number of bitee(ta explicitly carried out, such as vectors of independent Belin
therate) required to encode a random variable so that we may Gaussian random variables [3].
recover an approximation within expected distatirécalled

thedistortion). This topic is a generalization of the well-known Below, we discuss a particular distortion-constrainedngua
analysis of exact coding by Shannon [1], where it is knowm th?rzer, based on a Voronoi partition induced by a maximal
the optimal expected number of bits is precise_ly cha_ramdri packing. We are interested in themtropy of this quantizer,
by the entropy. There are many problems in which exagt 5 quantity used to characterize the optimal rate for codes
coding is not practical or not possible, so that lossy coding 5 given distortion. While it is clear that this entropy uppe
becomes necessary: particularly for random variables\gakiy o nds the optimal rate, as this is the caseafoy distortion-
values in uncountably infinite spaces. The topic of codetleg ¢onstrained quantizer [2], the novelty of our analysis lies
for lossy coding is interesting, both for its direct applioas pgiing the remarkable fact that the entropy of any quantizer
to compression, and also as a general setting in which twalergonstructed in this way alstower boundsthe optimal rate.
lower bounds for specializations of the setting. In particular, this provides a method for approximately-cal
There is much existing work on lossy binary codes. In thg,jating the optimal rate without the need to optimize over
present work, we are interested in a “one-shot” analysis gfi possible quantizers. Our result is general, in that fiiap
lossy coding [2], in which we wish to encode a single randogg an arbitrary distribution and an arbitrary distortionasere
variable, in contrast to the analysis of “asymptotic” S@rCom a general class of finite-dimensional pseudo-metfibis
coding [3], in which one wishes to simultaneously encoqganerality is noteworthy, as it leads to interesting apiins

a sequence of random variables. Of particular relevance j{osiatistical learning theory, which we describe below.
the one-shot coding problem is the analysisgofantization

methods that balancdistortion with entropy [2], [4], [5].
In particular, it is now well-known that this approach can,
yield codes that respect a distortion contraint while nearj,
minimizing the rate, so that there are near-optimal codes
this type [2]. Thus, we have an alternative way to think o
the optimal rate, in terms of the rate of the best distortio
constrained quantization method. While this is interesting
that it allows us to restrict our focus in the design of efffiext

I. INTRODUCTION

Our analysis is closely related to various notions thatearis
the study ofe-entropy [8], [9], in that we are concerned with
entropy of a Voronoi partition induced by aitover. The
tion of e-entropy has been related to the optimal rates for a
iven distortion (under a slightly different model thandiad
ere) [8], [9]. However, there are some important distis
perhaps the most significant of which is that calculating the
e-entropy requires a prohibitive optimization of the engrop
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[I. DEFINITIONS doubling dimension of space¥ of binary classifiers, in the
We supposet* is an arbitrary (nonempty) set, equippe(‘fomeXt of statistical learning theory.
with a separable pseudo-metgic X'* x X* — [0,00). * We
supposet* is accompanied by its Borel-algebra induced by A. Definition of Packing Entropy

p- There is additionally a (nonempty, measurable)}s€t X*,  our main result concerns the relation between the optimal
and we denote by = X S}uIéXP(hlaM)- Finally, there is rate at a given distortion with the entropy of a certain gizant
1,2

a probability measurer with 7(X) = 1, and anX-valued VW& now turn to defining this latter quantity.
random variableX' with distribution, referred to here as the pefinition 3. For anyD > 0, define) (D) C X as a maximal
“target.” As the distribution is essentially arbitraryethesults p_packing of X. That is, Va1, 20 € Y(D), p(z1,22) > D,
below will hold for any 7. andVz € X\ Y(D), min, cyp) p(z,z’) < D.

A codeis a pair of (measurable) function®,). The ) ) ) )
encoder ¢, maps any element € X to a binary sequence For our purposes, if multiple maximaD-packings are

é(x) € U,{0,1} (the codeword. The decoder 1, maps possible, we can choose to defiéD) arbitrarily from among
any eleméﬁt e J=,{0,1}7 to an element)(c) € X*. For these; the results below hold for any such choice. Recall tha

720 any maximalD-packing of X’ is also aD-cover of X, since

anyq € {0,1,...} andc € {0,1}9, let |¢| = ¢ denote the -
length of ¢. A prefix-freecode is any codée, ) such that Otherwise we would be able to add B(D) the z € X

no z1,29 € X havec) = é(z1) and 2 — () with that escapes the cover. That i&; € X, 3y € Y(D) s.t

V) % ¢ putvi < [eM], ¢ = ¢D: that is, no codeword P(*:¥) <D. .

is a prefix of another (longer) codeword. LBF denote the Next we define a C(_)mplexny measure, a type of entropy,

set of all prefix-free binary codes. which serves as our primary quantity of |ntefe_st in the asialy
Here, we consider a setting where the cdded) may of R(D). !t is specified in terms of a partition induced by

be lossy in the sense that for some values of € X, Y(D), defined as follows.

p(¥(o(x)),z) > 0. Our objective is to design the code taDefinition 4. For anyD > 0, define

have small expected loss (in tiesense), while maintaining

as small of an expected codeword length as possible. Fgrmall o) = {{

we have the following definition, which essentially desesb

a notion of optimality for a lossy code.

x € X:z=argminp(z,y),:2€ YD),
yeY(D)

where we break ties in thergmin arbitrarily but consistently

Definition 1. For any D > 0, define the optimarate at (e.g., based on a predefined preference orderingy@)).

distortion D Definition 5. For any finite (or countable) partitiors of X

R(D) = inf {]E[|¢(X)|] : (¢,9) € PF with into measurable regions (subsets), defineah&opyof S
E[p(v(6(x). X )| <D}, H(S) == > m(5) logy m(S).
Ses
where the random variable in both expectationsXis~ . In particular, we will be interested in the quantity(Q(D))

For our analysis, we will require a notion of dimensionalitj? the analysis below.
for the pseudo-metrigp. For this, we adopt the well-known
doubling dimensior10]. [1l. M AIN RESULT

Our main result can be summarized as follows. Note that,
since we took the distribution to be arbitrary in the above
definitions, this result holds faany given .

Definition 2. Define thedoubling dimensionl as the smallest
value d such that, for anyr € X, and anye > 0, the size
of the minimale/2-cover of thee-radius ball aroundz is at

most2. , Theorem 1.1If d < oo and p < oo, then there is a constant
That s, for anyr € X ande > 0, there exists a sdftr;}7—, ¢ = O(d) such thatvD € (0, 5/2),

of 2¢ elements oft such that
H(Q (Dlogy(p/D))) — ¢ < R(D) < H(Q (D)) + 1.
2d

(' € X:p(a',x) <e} C | J{o/ € X:p(a/ i) < e/2). It should not be surprising that entropy terms play a key
=1 role in this result, as the entropy is essential to the aisabfs
Note that, as defined herd, is a constant (i.e., has noeXaCt coqllr_lg [4]. Fur_thermoreR(D) Is tightly character_|zed
L -~ . by the minimum achievable entropy among all quantizers of
dependence on the or € in its definition). In the analysis . : .
. . . distortion at mosD [2]. The interesting aspect of Theorem 1
below, we will always assumé < co. The doubling dimen- .

sion has been studied for a variety of spaces, originally IS that we can explicitly describe a particular quantizethwi

Gupta, Krauthgamer, & Lee [10], and subsequently by mar?éar-optlmal rate, and its entropy can be explicitly calted

r a variety of scenariogX i
; ' . ,p, 7). As for the behavior of
others. In particular, Bshouty, Li, & Long [11] discuss th?%(D) within the range between the upper and lower bounds of

1The setX’* will not play any significant role in the analysis, except toTheorem 1, We should expect the gpper bound to b_e tight when
allow for improper learning scenarios to be a special caseunketting. high-probability subsets of the regions@(D) are point-wise
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H(P(D))
154

Qp(X)isatmostH(Qp(X))+1 (in fact, is equalH(Qp (X))

-- Nop when the probabilities are powers 2f [3], [12], and each
P possible value of)p(X) is assigned a unique codeword so
o X that we can perfectly recovepp (X) (and thus alsd’p (X))
L based on¢(X). In particular, definey(¢(X)) = Yp(X).

g - Bea29 Finally, recall that any maximaD-packing is also aD-
cover Thus, since every element of the s@p(X) has
Yp(X) as its closest representative J(D), we must have
\ s \ L 1D (X, ¥(6(X))) = p(X,Yp(X)) < D. In fact, as this proof
never relies orp < oo, this establishes the upper bound even
Fig. 1. Plots ofH(Q(D)) as a function ofl /D, for various distributionsr in the casep = oo. . .
onX =R. The proof of the lower bound is somewhat more involved,

though the overall idea is simple enough. Essentially, the
lower bound would be straightforward if the regions of

well-separated, whilek(D) may be much smaller (perhaps@(P log2(p/D)) were separated by som’e_distanc_e, since we
closer to the lower bound) when this is violated to a larggPuld make an argument based on Fano’s inequality to say that
degree, for reasons described in the proof below. since anyX = ¢(¢(X)) is “close” to at most one region, the

Although this result is stated for bounded psuedo-metri€¥Pected distance from¥ is at least as large as half this inter-
p, it also has implications for unbounded In particular, region distance times a quantity proportional to the caooll
the proof of the upper bound holds as-is for unboundéﬁ‘trOpyH(QD(X)|¢(X))’ so thatH(¢(X)) can be related to
p. Furthermore, we can always use this lower bound {§(@p(X)). ) )
construct a lower bound for unboundgdsimply restricting  However, the general case is not always so simple, as
to a bounded subset ot with constant probability and the regions can generally be quite close to each other (even
calculating the lower bound for that region. For instance, &djacent), so that it is possible fdf to be close to multiple
get a lower bound forr as a Gaussian distribution dR, regions. Thus, _the proof will first “color” the regio_ns of
we might note thatr(|—1/2,1/2]) times the expected loss (D 1log,(p/D)) in a way that guarantees no two regions of
under theconditional(-|[—1/2,1/2]) lower bounds the total the same color are within distan£elog, (p/D) of each other.
expected loss. Thus, calculating the lower bound of Thedrenfhen we apply the above simple argument for each color
under the conditionat (-|[—1/2,1/2]) while replacingD with separately (i.e., on\_/er bou_ndlng the expected distancen fro
D/m([-1/2,1/2]) provides a lower bound oR(D). X under the conditional given the color 6fp 1og, (5/p)(X)

To get a feel for the behavior 61 (Q (D)), we have plotted by a function of the conditional entropy under the cond@ign
it as a function ofl /D for several distributions, in Figure 1. @nd average over the colors to get a global lower bound. The
details follow.

Fix anyD € (0, 5/2), and for brevity leto = D log, (/D).
_ We suppose ¢, ¢) is some prefix-free binary code.

We f|r§t stgte a Iemma,_due to Gupta, Krauthgamer, & Lee pefine a functionk - Q(a) — N such thatvQ:,Q, €
[10], which will be useful in the proof of Theorem 1. Q(a),

IV. PROOF OFTHEOREM 1

Lemma 1. [10] For any v € (0,00), 6 € [y,00), andz € X,

K(Q1) = K(Q2) = p(r1,22) > o, (1)

inf
d z1€Q1,72€Q2
@ Y0 oty <o < (2)
v and supposé&C has minimumH(K(Q.(X))) subject to (1).

In particular, note that this lemma implies that the minimurdve will refer to K(Q) as thecolor of Q.

of p(x,y) overy € Y(D) is alwaysachievedin Definition 4, Now we are ready to bound the expected distance from
so thatQ(D) is well-defined. X. Let X = ¢(¢(X)), and letQ.(X;K) denote the set
We are now ready for the proof of Theorem 1. Q € 9Q(a) having £(Q) = K with smallestinf,cq p(z, X)

Proof of Theorem 1: Throughout the proof, we will (breaking ties arbitrarily). We know
consider a set-valued random quant®n(X) with value
equal to the set iQ(D) containingX, and a corresponding- E[p(X,X)] =E [E[p(X, X)K(Qa(X))]] - )
valued random quantity (X) with value equal the sole point

in @p(X) N Y(D): that is, the target’s nearest representative ) ) ] .
in the D-packing. Note that, by Lemma 1Y(D)| < oo Furthermore, by (1) and a triangle inequality, we knowXio

for all D € (0,1). We will also adopt the usual notationcan be closer than/2 to more than on€) € Q(a) of a given
for entropy (e.g./4(Qp(X))) and conditional entropy (e.g., €0lor- Therefore,
H(Qp(X)|2)) [3], both in base 2. R
To establish the upper bound, we simply takeas the  E[p(X,X)|K(Qqa(X))]
(0%
2

Huffman code for the random quantityp(X) [3], [12]. It P(QQ(X;IC(QQ(X))) £ Qu(X)K(Qu(X))). (3)

>
is well-known that the expected length of a Huffman code for —
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By Fano’s inequality, we have V. APPLICATION TO BAYESIAN ACTIVE LEARNING
o As an example, in the special case of the problem of
E [P(QQ(X’K(QQ(X))) 7 Qa(X)IK(Qa (X)) learning a binary classifier, as studied by [13] and [14],is
> H(Qa(X)[o(X), K(Qa(X))) — 1 (4) the set of all measurable classifirs Z — {—1,+1}, X is
- log, |V(a)] ’ called the “concept spaceX is called the “target function,”

and p(X1, X2) = P(X1(2) # X2(Z)), whereZ is someZ-
valued random variable. In particular(X;, X) is called the
“error rate” of X;.

We may then discuss laarning protocolbased on binary-
valued queries. That is, we suppose some learning machine

s able to pose yes/no questions to an oracle, and based on
also ana-cover, we have that any);,Q2 € Q(a) with P y d

. the responses it proposeshgpothesisX. We may ask how
Mtelnng plar, x2) < o havep(Yo(1), Ya(z2)) < 3a (DY many such yes/no questions must the learning machine pose
a triangle inequality). Therefore, Lemma 1 implies that, fqin expectation) before being able to produce a hypothesis
any given@, € Q(a), there are at most2? setsQ; € Q(a) X e x* with E[p(X, X)] < ¢, known as theuery complexity
with xleQilnieQzP(ﬂ?h@) < a. We therefore know there |f the |earning machine is allowed to poaebitrary binary-
exists a function’ - Q(a) — N satisfying (1) such that valued queries, then this setting is precisely a specia¢ cas
Qrengf( K'(Q) < 12 (i.e., we need at most2¢ colors to Of the general lossy coding problem studied above. That is,

. . . any learning machine that asks a sequence of yes/no question
Sat'Sfy (.1)) Thatis, if we consider coloring the s@i= 9(02 before terminating and returning somfec X* can be thought
sequentially, for any glvtel not yet.colored, there are 1.2 of as a binary decision tree (no = left, yes = right), with
SetsQ; € Q(a) \ {Ql}dw'thm o Of it, S0 there must exist & the return X values stored in the leaf nodes. Transforming
color among1,...,12%} not used by any of them, and we €each root-to-leaf path in the decision tree into a codeword
can choose that de/(Ql) In particular, by our choice of (left = 0, right = 1), we see that the algorithm corresponds

to minimize H(K((a (X)) subject to (1), this implies to a prefix-free binary code. Conversely, given any prefix-

It is generally true that, for a prefix-free binary codeX),
¢(X) is a lossless prefix-free binary code for itself (i.e
with the identity decoder), so that the classic entropy lowe
bound on average code length [1], [3] implig&¢(X)) <
E[|¢(X)]]. Also, recalling thafy(«/) is maximal, and therefore

HK(Qu (X)) < H(K'(Qu(X))) < log,(124) < 4d. free binary code, we can construct an“algori.thm based on
sequentially asking queries of the form “what is the first bit
Thus, in the codewordp(X) for X?", “what is the second bit in
the codewordp(X) for X?”, etc., until we obtain a complete
H(Qa(X)|o(X), K(Qa (X)) codeword, at which point we return the value that codeword
=H(Qa(X),d(X),K(Qua(X))) decodes to. From this perspective, the query complexity is
= H(6(X)) = H(K(Qa(X))[6(X)) preciselyR(c).
This general problem of learning with arbitrary binary-
a(X o ; . . o
H(Qa(X)) = H{G(X)) - H( (@a(X))) valued queries was studied previously by Kulkarni, Mittr,
=z H(QQ(X)) Eflo(X)]) = Tsitsiklis [15], in aminimaxanalysis (studying the worst-case

=H(Q(a)) — Ef|¢(X)]] — 4d. (5) value ofX). In particular, they find that for a given distribution
for Z, the worst-case query complexity is essentially charac-

Thus, combining (2), (3), (4), and (5), we have terized bylog |V (¢)|. The techniques employed are actually far

. aH(Q(a)) —E[|¢(X)]] —4d —1 more general than the classifier-learning problem, anchligtu
Elp(X, X)] 2 5 Tog, [J(0)] apply to any pseudo-metric space. Thus, we can abstractly
a H(Q(a)) — E [|6(X)]] — 4d — 1 think of t_h_e|r work as a minimax an_alyels of _Iossy cedmg.
= dlog,(47/a) ) In addition to be|ng qwte mterest_ln_g in their own righteth
2 results of Kulkarni, Mitter, & Tsitsiklis [15] have played a
where the last inequality follows from Lemma 1. significant role in the recent developments in active leggni
Thus, for any code with with label requestqueries for binary classification [16]-[18],
log, (47/D) in which the learning machine may only ask questions of the
E[lo(X)]] < H(Q(a)) —4d — 1 — 2dM7 form, “What is the valueX(z)?” for certain values: € Z.
logy(p/D) Since label requests can be viewed as a type of binary-valued
we haveE[p(X, X)] > D, which implies guery, the number of label requests necessary for learsing i
ot ) P naturally lower bounded by the number afbitrary binary-
log,(4p/D) valued queries necessary for learning. We therefore always
R(D) 2 H(Qla)) —4d -1 -2d log,(p/D) expect to see some term relatinglég | (¢)| in any minimax

i B B guery complexity results for active learning with labeluegts
Sincelog, (4p/D)/log,(p/D) < 3, we have (though this factor is typically represented by its uppeurizh
R(D) > H(Q(a)) — O(d). x V : l.og(l/e), whereV is the VC dimens_ion).. _

Similarly to how the work of Kulkarni, Mitter, & Tsit-

B siklis [15] can be used to argue thhtg |V(¢)| is a lower
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bound on the minimax query complexity of active learningle] S.Hanneke, “Teaching dimension and the complexity dfadearning,”

with label requests, Theorem 1 can be used to argue that in In Proceedings of the 20 Annual Conference on Learning Thepry
' 2007.

H(Q(Elog2(1/€))) *_O(d) is a lower b‘?und on Fhe_query[ﬂ] — “A bound on the label complexity of agnostic activeaieing,’
complexity of learning relative to a given distribution for  in In Proceedings of the 24 International Conference on Machine

X (called aprior, in the language of Bayesian statistics),  Leaming 2007. _ o
h h h | P h ith [18] S. Dasgupta, “Coarse sample complexity bounds for a&iming,” in

rather t an the worst-case Ya ueh.'. Furt ermpre, a}s wit In Advances in Neural Information Processing Systems2085.

[15], this lower bound remains valid for learning with label

requests, since label requests are a type of binary-valued

query. Thus, we should expect a term related@Q(¢)) or

H(Q(elog,(1/€))) to appear in any tight analysis of the query

complexity of Bayesian learning with label requests.

V1. OPENPROBLEMS

In our present context, there are several interesting ques-
tions, such as whether thieg(p/D) factor in the entropy
argument of the lower bound can be removed, whether the
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in particular whether a similar result might be obtainecheiit and statistical learning theory. Her recent focus has béentheoretical

; ; ot ; ; nalysis of Bayesian active learning. She received a B@edan Electronics
assumingd < oo (€.g., in the statistical learning special Cas%hd Information Engineering in 2005 from the Hua Zhong Ursitgr of
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