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Characterizing Optimal Rates for Lossy Coding
with Finite-Dimensional Metrics

Liu Yang, Steve Hanneke, and Jaime Carbonell

Abstract—We investigate the minimum expected number of
bits sufficient to encode a random variable X while still being
able to recover an approximation of X with expected distance
from X at most D: that is, the optimal rate at distortion D, in
a one-shot coding setting. We find this quantity is related to the
entropy of a Voronoi partition of the values of X based on a
maximal D-packing.

Index Terms—Quantization, Lossy Coding, Binary Codes,
Bayesian Learning, Active Learning

I. I NTRODUCTION

I N this work, we study the fundamental complexity of lossy
coding. We are particularly interested in identifying a key

quantity that characterizes the expected number of bits (called
the rate) required to encode a random variable so that we may
recover an approximation within expected distanceD (called
thedistortion). This topic is a generalization of the well-known
analysis of exact coding by Shannon [1], where it is known that
the optimal expected number of bits is precisely characterized
by the entropy. There are many problems in which exact
coding is not practical or not possible, so that lossy coding
becomes necessary: particularly for random variables taking
values in uncountably infinite spaces. The topic of code lengths
for lossy coding is interesting, both for its direct applications
to compression, and also as a general setting in which to derive
lower bounds for specializations of the setting.

There is much existing work on lossy binary codes. In the
present work, we are interested in a “one-shot” analysis of
lossy coding [2], in which we wish to encode a single random
variable, in contrast to the analysis of “asymptotic” source
coding [3], in which one wishes to simultaneously encode
a sequence of random variables. Of particular relevance to
the one-shot coding problem is the analysis ofquantization
methods that balancedistortion with entropy [2], [4], [5].
In particular, it is now well-known that this approach can
yield codes that respect a distortion contraint while nearly
minimizing the rate, so that there are near-optimal codes of
this type [2]. Thus, we have an alternative way to think of
the optimal rate, in terms of the rate of the best distortion-
constrained quantization method. While this is interesting, in
that it allows us to restrict our focus in the design of effective
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coding techniques, it is not as directly helpful if we wish to
understand the behavior of the optimal rate itself. That is,
since we do not have an explicit description of the optimal
quantizer, it may often be difficult to study the behavior of its
rate under various interesting conditions. There exist classic
results lower bounding the achievable rates, most notably
the famous Shannon lower bound [6], which under certain
restrictions on the source and the distortion metric, is known to
be fairly tight in theasymptoticanalysis of source coding [7].
However, there are few general results explicitly and tightly
characterizing the (non-asymptotic) optimal rates for one-shot
coding. In particular, to our knowledge, only a few special-case
calculations of the exact value of this optimal rate have been
explicitly carried out, such as vectors of independent Bernoulli
or Gaussian random variables [3].

Below, we discuss a particular distortion-constrained quan-
tizer, based on a Voronoi partition induced by a maximal
packing. We are interested in theentropy of this quantizer,
as a quantity used to characterize the optimal rate for codes
of a given distortion. While it is clear that this entropy upper
bounds the optimal rate, as this is the case forany distortion-
constrained quantizer [2], the novelty of our analysis liesin
noting the remarkable fact that the entropy of any quantizer
constructed in this way alsolower boundsthe optimal rate.
In particular, this provides a method for approximately cal-
culating the optimal rate without the need to optimize over
all possible quantizers. Our result is general, in that it applies
to an arbitrary distribution and an arbitrary distortion measure
from a general class of finite-dimensional pseudo-metrics.This
generality is noteworthy, as it leads to interesting applications
in statistical learning theory, which we describe below.

Our analysis is closely related to various notions that arise
in the study ofǫ-entropy [8], [9], in that we are concerned with
the entropy of a Voronoi partition induced by anǫ-cover. The
notion of ǫ-entropy has been related to the optimal rates for a
given distortion (under a slightly different model than studied
here) [8], [9]. However, there are some important distinctions,
perhaps the most significant of which is that calculating the
ǫ-entropy requires a prohibitive optimization of the entropy
over all ǫ-covers; in contrast, the entropy term in our analysis
can be calculated based onany maximal ǫ-packing (which is
a particular type ofǫ-cover). Maximal ǫ-packings are easy
to construct by greedily adding arbitrary new elements to
the packing that areǫ-far from all elements already added;
thus, there is always a straightforward algorithmic approach
to applying our results.0000-0000/00$00.00c© 2010 IEEE
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II. D EFINITIONS

We supposeX ∗ is an arbitrary (nonempty) set, equipped
with a separable pseudo-metricρ : X ∗ × X ∗ → [0,∞). 1 We
supposeX ∗ is accompanied by its Borelσ-algebra induced by
ρ. There is additionally a (nonempty, measurable) setX ⊆ X ∗,
and we denote bȳρ = sup

h1,h2∈X

ρ(h1, h2). Finally, there is

a probability measureπ with π(X ) = 1, and anX -valued
random variableX with distributionπ, referred to here as the
“target.” As the distribution is essentially arbitrary, the results
below will hold for any π.

A code is a pair of (measurable) functions(φ, ψ). The
encoder, φ, maps any elementx ∈ X to a binary sequence
φ(x) ∈

⋃∞

q=0{0, 1}q (the codeword). The decoder, ψ, maps
any elementc ∈

⋃∞

q=0{0, 1}q to an elementψ(c) ∈ X ∗. For
any q ∈ {0, 1, . . .} and c ∈ {0, 1}q, let |c| = q denote the
length of c. A prefix-freecode is any code(φ, ψ) such that
no x1, x2 ∈ X have c(1) = φ(x1) and c(2) = φ(x2) with
c(1) 6= c(2) but ∀i ≤ |c(1)|, c

(2)
i = c

(1)
i : that is, no codeword

is a prefix of another (longer) codeword. LetPF denote the
set of all prefix-free binary codes.

Here, we consider a setting where the code(φ, ψ) may
be lossy, in the sense that for some values ofx ∈ X ,
ρ(ψ(φ(x)), x) > 0. Our objective is to design the code to
have small expected loss (in theρ sense), while maintaining
as small of an expected codeword length as possible. Formally,
we have the following definition, which essentially describes
a notion of optimality for a lossy code.

Definition 1. For any D > 0, define the optimalrate at
distortion D

R(D) = inf
{

E

[

|φ(X)|
]

: (φ, ψ) ∈ PF with

E

[

ρ
(

ψ(φ(X)),X
)]

≤ D
}

,

where the random variable in both expectations isX ∼ π.

For our analysis, we will require a notion of dimensionality
for the pseudo-metricρ. For this, we adopt the well-known
doubling dimension[10].

Definition 2. Define thedoubling dimensiond as the smallest
value d such that, for anyx ∈ X , and anyǫ > 0, the size
of the minimalǫ/2-cover of theǫ-radius ball aroundx is at
most2d.

That is, for anyx ∈ X andǫ > 0, there exists a set{xi}
2d

i=1

of 2d elements ofX such that

{x′ ∈ X : ρ(x′, x) ≤ ǫ} ⊆

2d

⋃

i=1

{x′ ∈ X : ρ(x′, xi) ≤ ǫ/2}.

Note that, as defined here,d is a constant (i.e., has no
dependence on thex or ǫ in its definition). In the analysis
below, we will always assumed < ∞. The doubling dimen-
sion has been studied for a variety of spaces, originally by
Gupta, Krauthgamer, & Lee [10], and subsequently by many
others. In particular, Bshouty, Li, & Long [11] discuss the

1The setX ∗ will not play any significant role in the analysis, except to
allow for improper learning scenarios to be a special case of our setting.

doubling dimension of spacesX of binary classifiers, in the
context of statistical learning theory.

A. Definition of Packing Entropy

Our main result concerns the relation between the optimal
rate at a given distortion with the entropy of a certain quantizer.
We now turn to defining this latter quantity.

Definition 3. For anyD > 0, defineY(D) ⊆ X as a maximal
D-packing ofX . That is, ∀x1, x2 ∈ Y(D), ρ(x1, x2) ≥ D,
and ∀x ∈ X \ Y(D), minx′∈Y(D) ρ(x, x′) < D.

For our purposes, if multiple maximalD-packings are
possible, we can choose to defineY(D) arbitrarily from among
these; the results below hold for any such choice. Recall that
any maximalD-packing ofX is also aD-cover ofX , since
otherwise we would be able to add toY(D) the x ∈ X
that escapes the cover. That is,∀x ∈ X , ∃y ∈ Y(D) s.t.
ρ(x, y) < D.

Next we define a complexity measure, a type of entropy,
which serves as our primary quantity of interest in the analysis
of R(D). It is specified in terms of a partition induced by
Y(D), defined as follows.

Definition 4. For any D > 0, define

Q(D) =

{{

x ∈ X : z = argmin
y∈Y(D)

ρ(x, y)

}

: z ∈ Y(D)

}

,

where we break ties in theargmin arbitrarily but consistently
(e.g., based on a predefined preference ordering ofY(D)).

Definition 5. For any finite (or countable) partitionS of X
into measurable regions (subsets), define theentropyof S

H(S) = −
∑

S∈S

π(S) log2 π(S).

In particular, we will be interested in the quantityH(Q(D))
in the analysis below.

III. M AIN RESULT

Our main result can be summarized as follows. Note that,
since we took the distributionπ to be arbitrary in the above
definitions, this result holds forany given π.

Theorem 1. If d < ∞ and ρ̄ < ∞, then there is a constant
c = O(d) such that∀D ∈ (0, ρ̄/2),

H (Q (D log2(ρ̄/D))) − c ≤ R(D) ≤ H (Q (D)) + 1.

It should not be surprising that entropy terms play a key
role in this result, as the entropy is essential to the analysis of
exact coding [1]. Furthermore,R(D) is tightly characterized
by the minimum achievable entropy among all quantizers of
distortion at mostD [2]. The interesting aspect of Theorem 1
is that we can explicitly describe a particular quantizer with
near-optimal rate, and its entropy can be explicitly calculated
for a variety of scenarios(X , ρ, π). As for the behavior of
R(D) within the range between the upper and lower bounds of
Theorem 1, we should expect the upper bound to be tight when
high-probability subsets of the regions inQ(D) are point-wise
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Fig. 1. Plots ofH(Q(D)) as a function of1/D, for various distributionsπ
on X = R.

well-separated, whileR(D) may be much smaller (perhaps
closer to the lower bound) when this is violated to a large
degree, for reasons described in the proof below.

Although this result is stated for bounded psuedo-metrics
ρ, it also has implications for unboundedρ. In particular,
the proof of the upper bound holds as-is for unbounded
ρ. Furthermore, we can always use this lower bound to
construct a lower bound for unboundedρ, simply restricting
to a bounded subset ofX with constant probability and
calculating the lower bound for that region. For instance, to
get a lower bound forπ as a Gaussian distribution onR,
we might note thatπ([−1/2, 1/2]) times the expected loss
under theconditionalπ(·|[−1/2, 1/2]) lower bounds the total
expected loss. Thus, calculating the lower bound of Theorem1
under the conditionalπ(·|[−1/2, 1/2]) while replacingD with
D/π([−1/2, 1/2]) provides a lower bound onR(D).

To get a feel for the behavior ofH (Q (D)), we have plotted
it as a function of1/D for several distributions, in Figure 1.

IV. PROOF OFTHEOREM 1

We first state a lemma, due to Gupta, Krauthgamer, & Lee
[10], which will be useful in the proof of Theorem 1.

Lemma 1. [10] For any γ ∈ (0,∞), δ ∈ [γ,∞), andx ∈ X ,

|{x′ ∈ Y(γ) : ρ(x′, x) ≤ δ}| ≤

(

4δ

γ

)d

.

In particular, note that this lemma implies that the minimum
of ρ(x, y) over y ∈ Y(D) is alwaysachievedin Definition 4,
so thatQ(D) is well-defined.

We are now ready for the proof of Theorem 1.
Proof of Theorem 1: Throughout the proof, we will

consider a set-valued random quantityQD(X) with value
equal to the set inQ(D) containingX, and a correspondingX -
valued random quantityYD(X) with value equal the sole point
in QD(X) ∩ Y(D): that is, the target’s nearest representative
in the D-packing. Note that, by Lemma 1,|Y(D)| < ∞
for all D ∈ (0, 1). We will also adopt the usual notation
for entropy (e.g.,H(QD(X))) and conditional entropy (e.g.,
H(QD(X)|Z)) [3], both in base 2.

To establish the upper bound, we simply takeφ as the
Huffman code for the random quantityQD(X) [3], [12]. It
is well-known that the expected length of a Huffman code for

QD(X) is at mostH(QD(X))+1 (in fact, is equalH(QD(X))
when the probabilities are powers of2) [3], [12], and each
possible value ofQD(X) is assigned a unique codeword so
that we can perfectly recoverQD(X) (and thus alsoYD(X))
based onφ(X). In particular, defineψ(φ(X)) = YD(X).
Finally, recall that any maximalD-packing is also aD-
cover. Thus, since every element of the setQD(X) has
YD(X) as its closest representative inY(D), we must have
ρ(X,ψ(φ(X))) = ρ(X,YD(X)) < D. In fact, as this proof
never relies on̄ρ < ∞, this establishes the upper bound even
in the casēρ = ∞.

The proof of the lower bound is somewhat more involved,
though the overall idea is simple enough. Essentially, the
lower bound would be straightforward if the regions of
Q(D log2(ρ̄/D)) were separated by some distance, since we
could make an argument based on Fano’s inequality to say that
since anyX̂ = ψ(φ(X)) is “close” to at most one region, the
expected distance fromX is at least as large as half this inter-
region distance times a quantity proportional to the conditional
entropyH(QD(X)|φ(X)), so thatH(φ(X)) can be related to
H(QD(X)).

However, the general case is not always so simple, as
the regions can generally be quite close to each other (even
adjacent), so that it is possible for̂X to be close to multiple
regions. Thus, the proof will first “color” the regions of
Q(D log2(ρ̄/D)) in a way that guarantees no two regions of
the same color are within distanceD log2(ρ̄/D) of each other.
Then we apply the above simple argument for each color
separately (i.e., lower bounding the expected distance from
X under the conditional given the color ofQD log

2
(ρ̄/D)(X)

by a function of the conditional entropy under the conditional),
and average over the colors to get a global lower bound. The
details follow.

Fix anyD ∈ (0, ρ̄/2), and for brevity letα = D log2(ρ̄/D).
We suppose(φ, ψ) is some prefix-free binary code.

Define a functionK : Q(α) → N such that∀Q1, Q2 ∈
Q(α),

K(Q1) = K(Q2) =⇒ inf
x1∈Q1,x2∈Q2

ρ(x1, x2) ≥ α, (1)

and supposeK has minimumH(K(Qα(X))) subject to (1).
We will refer toK(Q) as thecolor of Q.

Now we are ready to bound the expected distance from
X. Let X̂ = ψ(φ(X)), and let Qα(X̂;K) denote the set
Q ∈ Q(α) havingK(Q) = K with smallestinfx∈Q ρ(x, X̂)
(breaking ties arbitrarily). We know

E[ρ(X̂,X)] = E

[

E[ρ(X̂,X)|K(Qα(X))]
]

. (2)

Furthermore, by (1) and a triangle inequality, we know noX̂
can be closer thanα/2 to more than oneQ ∈ Q(α) of a given
color. Therefore,

E[ρ(X̂,X)|K(Qα(X))]

≥
α

2
P(Qα(X̂;K(Qα(X))) 6= Qα(X)|K(Qα(X))). (3)
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By Fano’s inequality, we have

E

[

P(Qα(X̂;K(Qα(X))) 6= Qα(X)|K(Qα(X)))
]

≥
H(Qα(X)|φ(X),K(Qα(X))) − 1

log2 |Y(α)|
. (4)

It is generally true that, for a prefix-free binary codeφ(X),
φ(X) is a lossless prefix-free binary code for itself (i.e.,
with the identity decoder), so that the classic entropy lower
bound on average code length [1], [3] impliesH(φ(X)) ≤
E[|φ(X)|]. Also, recalling thatY(α) is maximal, and therefore
also an α-cover, we have that anyQ1, Q2 ∈ Q(α) with

inf
x1∈Q1,x2∈Q2

ρ(x1, x2) ≤ α haveρ(Yα(x1), Yα(x2)) ≤ 3α (by

a triangle inequality). Therefore, Lemma 1 implies that, for
any givenQ1 ∈ Q(α), there are at most12d setsQ2 ∈ Q(α)
with inf

x1∈Q1,x2∈Q2

ρ(x1, x2) ≤ α. We therefore know there

exists a functionK′ : Q(α) → N satisfying (1) such that
max

Q∈Q(α)
K′(Q) ≤ 12d (i.e., we need at most12d colors to

satisfy (1)). That is, if we consider coloring the setsQ ∈ Q(α)
sequentially, for any givenQ1 not yet colored, there are< 12d

setsQ2 ∈ Q(α) \ {Q1} within α of it, so there must exist a
color among{1, . . . , 12d} not used by any of them, and we
can choose that forK′(Q1). In particular, by our choice ofK
to minimizeH(K(Qα(X))) subject to (1), this implies

H(K(Qα(X))) ≤ H(K′(Qα(X))) ≤ log2(12d) ≤ 4d.

Thus,

H(Qα(X)|φ(X),K(Qα(X)))

= H(Qα(X), φ(X),K(Qα(X)))

−H(φ(X)) −H(K(Qα(X))|φ(X))

≥ H(Qα(X)) −H(φ(X)) −H(K(Qα(X)))

≥ H(Qα(X)) − E [|φ(X)|] − 4d

= H(Q(α)) − E [|φ(X)|] − 4d. (5)

Thus, combining (2), (3), (4), and (5), we have

E[ρ(X̂,X)] ≥
α

2

H(Q(α)) − E [|φ(X)|] − 4d − 1

log2 |Y(α)|

≥
α

2

H(Q(α)) − E [|φ(X)|] − 4d − 1

d log2(4ρ̄/α)
,

where the last inequality follows from Lemma 1.
Thus, for any code with

E [|φ(X)|] < H(Q(α)) − 4d − 1 − 2d
log2(4ρ̄/D)

log2(ρ̄/D)
,

we haveE[ρ(X̂,X)] > D, which implies

R(D) ≥ H(Q(α)) − 4d − 1 − 2d
log2(4ρ̄/D)

log2(ρ̄/D)
.

Sincelog2(4ρ̄/D)/ log2(ρ̄/D) ≤ 3, we have

R(D) ≥ H(Q(α)) − O(d).

V. A PPLICATION TO BAYESIAN ACTIVE LEARNING

As an example, in the special case of the problem of
learning a binary classifier, as studied by [13] and [14],X ∗ is
the set of all measurable classifiersh : Z → {−1,+1}, X is
called the “concept space,”X is called the “target function,”
andρ(X1,X2) = P(X1(Z) 6= X2(Z)), whereZ is someZ-
valued random variable. In particular,ρ(X1,X) is called the
“error rate” of X1.

We may then discuss alearning protocolbased on binary-
valued queries. That is, we suppose some learning machine
is able to pose yes/no questions to an oracle, and based on
the responses it proposes ahypothesisX̂. We may ask how
many such yes/no questions must the learning machine pose
(in expectation) before being able to produce a hypothesis
X̂ ∈ X ∗ with E[ρ(X̂,X)] ≤ ǫ, known as thequery complexity.

If the learning machine is allowed to posearbitrary binary-
valued queries, then this setting is precisely a special case
of the general lossy coding problem studied above. That is,
any learning machine that asks a sequence of yes/no questions
before terminating and returning somêX ∈ X ∗ can be thought
of as a binary decision tree (no = left, yes = right), with
the returnX̂ values stored in the leaf nodes. Transforming
each root-to-leaf path in the decision tree into a codeword
(left = 0, right = 1), we see that the algorithm corresponds
to a prefix-free binary code. Conversely, given any prefix-
free binary code, we can construct an algorithm based on
sequentially asking queries of the form “what is the first bit
in the codewordφ(X) for X?”, “what is the second bit in
the codewordφ(X) for X?”, etc., until we obtain a complete
codeword, at which point we return the value that codeword
decodes to. From this perspective, the query complexity is
preciselyR(ǫ).

This general problem of learning with arbitrary binary-
valued queries was studied previously by Kulkarni, Mitter,&
Tsitsiklis [15], in aminimaxanalysis (studying the worst-case
value ofX). In particular, they find that for a given distribution
for Z, the worst-case query complexity is essentially charac-
terized bylog |Y(ǫ)|. The techniques employed are actually far
more general than the classifier-learning problem, and actually
apply to any pseudo-metric space. Thus, we can abstractly
think of their work as a minimax analysis of lossy coding.

In addition to being quite interesting in their own right, the
results of Kulkarni, Mitter, & Tsitsiklis [15] have played a
significant role in the recent developments in active learning
with label requestqueries for binary classification [16]–[18],
in which the learning machine may only ask questions of the
form, “What is the valueX(z)?” for certain valuesz ∈ Z.
Since label requests can be viewed as a type of binary-valued
query, the number of label requests necessary for learning is
naturally lower bounded by the number ofarbitrary binary-
valued queries necessary for learning. We therefore always
expect to see some term relating tolog |Y(ǫ)| in any minimax
query complexity results for active learning with label requests
(though this factor is typically represented by its upper bound:
∝ V · log(1/ǫ), whereV is the VC dimension).

Similarly to how the work of Kulkarni, Mitter, & Tsit-
siklis [15] can be used to argue thatlog |Y(ǫ)| is a lower
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bound on the minimax query complexity of active learning
with label requests, Theorem 1 can be used to argue that
H(Q(ǫ log2(1/ǫ))) − O(d) is a lower bound on the query
complexity of learning relative to a given distribution for
X (called a prior, in the language of Bayesian statistics),
rather than the worst-case value ofX. Furthermore, as with
[15], this lower bound remains valid for learning with label
requests, since label requests are a type of binary-valued
query. Thus, we should expect a term related toH(Q(ǫ)) or
H(Q(ǫ log2(1/ǫ))) to appear in any tight analysis of the query
complexity of Bayesian learning with label requests.

VI. OPEN PROBLEMS

In our present context, there are several interesting ques-
tions, such as whether thelog(ρ̄/D) factor in the entropy
argument of the lower bound can be removed, whether the
additive constant in the lower bound might be improved, and
in particular whether a similar result might be obtained without
assumingd < ∞ (e.g., in the statistical learning special case,
by making a VC class assumption instead).
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