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Active learning is a type of sequential design for supervised machine
learning, in which the learning algorithm sequentially requests the labels of
selected instances from a large pool of unlabeled data points. The objective is
to produce a classifier of relatively low risk, as measured under the 0-1loss,
ideally using fewer label requests than the number of random labeled data
points sufficient to achieve the same. This work investigates the potential
uses of surrogate loss functions in the context of active learning. Specifically,
it presents an active learning algorithm based on an arbitrary classification-
calibrated surrogate loss function, along with an analysis of the number of
label requests sufficient for the classifier returned by the algorithm to achieve
a given risk under the 0-1 loss. Interestingly, these results cannot be obtained
by simply optimizing the surrogate risk via active learning to an extent suf-
ficient to provide a guarantee on the 0-1 loss, as is common practice in the
analysis of surrogate losses for passive learning. Some of the resultshave
additional implications for the use of surrogate losses in passive learning.

1. Introduction. In supervised machine learning, we are tasked with learning
a classifier whose probability of making a mistake (i.e., error rate) is small. The
study of when it is possible to learn an accurate classifier via a computationally
efficient algorithm, and how to go about doing so, is a subtle and difficult topic,
owing largely to nonconvexity of the loss function: namely, the0-1 loss. While
there is certainly an active literature on developing computationally efficient meth-
ods that succeed at this task, even under various noise conditions, it seems fair
to say that at present, many of these advances have not yet reached the level of
robustness, efficiency, and simplicity required for most applications. In the mean
time, practitioners have turned to various heuristics in the design of practicallearn-
ing methods, in attempts to circumvent these tough computational problems. One
of the most common such heuristics is the use of a convexsurrogateloss function
in place of the0-1 loss in various optimizations performed by the learning method.
The convexity of the surrogate loss allows these optimizations to be performedeffi-
ciently, so that the methods can be applied within a reasonable execution time, even
with only modest computational resources. Although classifiers arrived at in this
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way are not always guaranteed to be good classifiers when performance is mea-
sured under the0-1 loss, in practice this heuristic has often proven quite effective.
In light of this fact, most modern learning methods either explicitly make use of
a surrogate loss in the formulation of optimization problems (e.g., SVM), or im-
plicitly optimize a surrogate loss via iterative descent (e.g., AdaBoost). Indeed, the
choice of a surrogate loss is often as fundamental a part of the processof approach-
ing a learning problem as the choice of hypothesis class or learning bias. Thus it
seems essential that we come to some understanding of how best to make use of
surrogate losses in the design of learning methods, so that in the favorablescenario
that this heuristic actually does work, we have methods taking full advantageof it.

In this work, we are primarily interested in how best to use surrogate lossesin
the context ofactive learning, which is a type of sequential design in which the
learning algorithm is presented with a large pool of unlabeled data points (i.e.,
only the covariates are observable), and can sequentially request to observe the
labels (response variables) of individual instances from the pool. Theobjective in
active learning is to produce a classifier of low error rate while accessinga smaller
number of labels than would be required for a method based on random labeled
data points (i.e.,passive learning) to achieve the same. We take as our starting
point that we have already committed to use a given surrogate loss, and we restrict
our attention to just those scenarios in which this heuristic actuallydoeswork. We
are then interested in how best to make use of the surrogate loss toward the goal of
producing a classifier with relatively small error rate. To be clear, we focus on the
case where the minimizer of the surrogate risk also minimizes the error rate, andis
contained in our function class.

We construct an active learning strategy based on optimizing the empirical sur-
rogate risk over increasingly focused subsets of the instance space, and derive
bounds on the number of label requests the method requires to achieve a given
error rate. Interestingly, we find that the basic approach of optimizing the surrogate
risk via active learning to a sufficient extent to guarantee small error rategenerally
does not lead to as strong of results. In fact, the method our results apply totypi-
cally does notoptimize the surrogate risk (even in the limit). The insight leading to
this algorithm is that, if we are truly only interested in achieving low0-1 loss, then
once we have identified thesignof the optimal function at a given point, we need
not optimize the value of the function at that point any further, and can therefore
focus the label requests elsewhere. As a byproduct of this analysis, we find this
insight has implications for the use of certain surrogate losses in passive learning
as well, though to a lesser extent.

Most of the mathematical tools used in this analysis are inspired by recently-
developed techniques for the study of active learning [18, 19, 25], in conjunction
with the results of Bartlett, Jordan, and McAuliffe [6] bounding the excess er-
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ror rate in terms of the excess surrogate risk, and the works of Koltchinskii [ 23]
and Bartlett, Bousquet, and Mendelson [7] on localized Rademacher complexity
bounds.

1.1. Related Work. There are many previous works on the topic of surrogate
losses in the context of passive learning. Perhaps the most relevant to our results
below are the work of Bartlett, Jordan, and McAuliffe [6] and the related work of
Zhang [38]. These develop a general theory for converting results on excess risk
under the surrogate loss into results on excess risk under the0-1 loss. Below, we
describe the conclusions of that work in detail, and we build on many of the basic
definitions and insights pioneered in these works.

Another related line of research, initiated by Audibert and Tsybakov [2], stud-
ies “plug-in rules,” which make use of regression estimates obtained by optimiz-
ing a surrogate loss, and are then rounded to{−1,+1} values to obtain classi-
fiers. They prove results under smoothness assumptions on the actual regression
function, which (remarkably) are oftenbetter than the known results for methods
that directly optimize the0-1 loss. Under similar conditions, Minsker [28] studies
an analogous active learning method, which again makes use of a surrogate loss,
and obtains improvements in label complexity compared to the passive learning
method of Audibert and Tsybakov [2]; again, the results for this method based on
a surrogate loss are actually better than those derived from existing active learn-
ing methods designed to directly optimize the0-1 loss. The works of Audibert and
Tsybakov [2] and Minsker [28] raise interesting questions about whether the gen-
eral analyses of methods that optimize the0-1 loss remain tight under complexity
assumptions on the regression function, and potentially also about the design of
optimal methods for classification when assumptions are phrased in terms of the
regression function.

In the present work, we focus our attention on scenarios where the main purpose
of using the surrogate loss is to ease the computational problems associated with
minimizing an empirical risk, so that our statistical results are typically strongest
when the surrogate loss is the0-1 loss itself. Thus, in the specific scenarios studied
by Minsker [28], our results are generally not optimal; rather, the main strength
of our analysis lies in its generality. In this sense, our results are more closely
related to those of Bartlett, Jordan, and McAuliffe [6] and Zhang [38] than to those
of Audibert and Tsybakov [2] and Minsker [28]. That said, we note that several
important elements of the design and analysis of the active learning method below
are already present to some extent in the work of Minsker [28].

There are several interesting works on active learning methods that optimize a
general loss function. Beygelzimer, Dasgupta, and Langford [8] and Koltchinskii
[25] have both proposed active learning methods, and analyzed the number of la-
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bel requests the methods make before achieving a given excess risk forthat loss
function. The former method is based on importance weighted sampling, while the
latter makes clear an interesting connection to local Rademacher complexities. One
natural idea for approaching the problem of active learning with a surrogate loss is
to run one of these methods with the surrogate loss. The results of Bartlett, Jordan,
and McAuliffe [6] allow us to determine a sufficiently small valueγ such that any
function with excess surrogate risk at mostγ has excess error rate at mostε. Thus,
by evaluating the established bounds on the number of label requests sufficient for
these active learning methods to achieve excess surrogate riskγ, we immediately
have a result on the number of label requests sufficient for them to achieve excess
error rateε. This is a common strategy to constructing and analyzing passive learn-
ing algorithms that make use of a surrogate loss. However, as we discuss below,
this strategy does not generally lead to the best behavior in active learning, and
often will not be much better than simply using a related passive learning method.
Instead, we propose a new method that typically does not optimize the surrogate
risk, but makes use of it in a different way so as to achieve stronger results when
performance is measured under the0-1 loss.

2. Definitions. Let (X ,BX ) be a measurable space, whereX is called the
instance space; for convenience, we suppose this is a standard Borel space. Let
Y = {−1,+1}, and equip the spaceX × Y with its productσ-algebra:B =
BX ⊗2Y . Let R̄ = R∪{−∞,∞}, letF∗ denote the set of all measurable functions
g : X → R̄, and letF ⊆ F∗, whereF is called thefunction class. Throughout, we
fix a distributionPXY overX × Y, and we denote byP the marginal distribution
of PXY overX . In the analysis below, we make the usual simplifying assumption
that the events and functions in the definitions and proofs are indeed measurable.
In most cases, this holds under simple conditions onF andPXY [see e.g.,34];
when this is not the case, we may turn to outer probabilities. However, we will not
discuss these technical issues further.

For anyh ∈ F∗, and any distributionP overX × Y, denote theerror rate by
er(h;P ) = P ((x, y) : sign(h(x)) 6= y); whenP = PXY , we abbreviate this as
er(h) = er(h;PXY ). Also, letη(X;P ) be a version ofP(Y = 1|X), for (X,Y ) ∼
P ; whenP = PXY , abbreviate this asη(X) = η(X;PXY ). In particular, note
thater(h;P ) is minimized at anyh with sign(h(x)) = sign(η(x;P )− 1/2) for all
x ∈ X . In this work, we will also be interested in certain conditional distributions
and modifications of functions, specified as follows. For any measurableU ⊆ X
withP(U) > 0, define the probability measurePU (·) = PXY (·|U×Y) = PXY (·∩
U × Y)/P(U): that is,PU is the conditional distribution of(X,Y ) ∼ PXY given
thatX ∈ U . Also, for anyh, g ∈ F∗, define the spliced functionhU ,g(x) =
h(x)1U (x) + g(x)1X\U (x). For a setH ⊆ F∗, denoteHU ,g = {hU ,g : h ∈ H}.
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For anyH ⊆ F∗, define theregion of sign-disagreementDIS(H) = {x ∈ X :
∃h, g ∈ H s.t.sign(h(x)) 6= sign(g(x))}, and theregion of value-disagreement
DISF(H) = {x ∈ X : ∃h, g ∈ H s.t.h(x) 6= g(x)}, and denote byDIS(H) =
DIS(H) × Y andDISF(H) = DISF(H) × Y. Additionally, we denote by[H] =
{f ∈ F∗ : ∀x ∈ X , infh∈H h(x) ≤ f(x) ≤ suph∈H h(x)} the minimal bracket
set containingH.

Our interest here is learning from data, so letZ = {(X1, Y1), (X2, Y2), . . .}
denote a sequence of independentPXY -distributed random variables, referred to
as thelabeled datasequence, while{X1, X2, . . .} is referred to as theunlabeled
data sequence. Form ∈ N, we also denoteZm = {(X1, Y1), . . . , (Xm, Ym)}.
Throughout, we will letδ ∈ (0, 1/4) denote an arbitrary confidence parameter,
which will be referenced in the methods and theorem statements.

Theactive learningprotocol is defined as follows. An active learning algorithm
is initially permitted access to the sequenceX1, X2, . . . of unlabeled data. It may
then select an indexi1 ∈ N andrequestto observeYi1 ; after observingYi1 , it may
select another indexi2 ∈ N, request to observeYi2 , and so on. After a number
of such label requests not exceeding some specified budgetn, the algorithm halts
and returns a function̂h ∈ F∗. Formally, this protocol specifies a type of map-
ping that maps the random variableZ to a functionĥ, whereĥ is conditionally
independent ofZ givenX1, X2, . . . and (i1, Yi1), (i2, Yi2), . . . , (in, Yin), where
eachik is conditionally independent ofZ andik+1, . . . , in givenX1, X2, . . . and
(i1, Yi1), . . . , (ik−1, Yik−1

).

2.1. Surrogate Loss Functions for Classification.Throughout, we letℓ : R̄→
[0,∞] denote an arbitrarysurrogate loss function; we will primarily be interested
in functionsℓ that satisfy certain conditions discussed below. To simplify some
statements below, it will be convenient to supposez ∈ R ⇒ ℓ(z) < ∞. For any
g ∈ F∗ and distributionP overX × Y, let Rℓ(g;P ) = E [ℓ(g(X)Y )], where
(X,Y ) ∼ P ; in the caseP = PXY , abbreviateRℓ(g) = Rℓ(g;PXY ). Also define
ℓ̄ = 1 ∨ supx∈X suph∈F maxy∈{−1,+1} ℓ(yh(x)); we will generally supposēℓ <
∞. In practice, this is more often a constraint onF than onℓ; that is, we could have
ℓ unbounded, but due to some normalization of the functionsh ∈ F , ℓ is bounded
on the corresponding set of values.

Throughout this work, we will be interested in loss functionsℓwhose point-wise
minimizer necessarily also optimizes the0-1 loss. This property was nicely char-
acterized by Bartlett, Jordan, and McAuliffe [6] as follows. Forη0 ∈ [0, 1], define
ℓ⋆(η0) = infz∈R̄(η0ℓ(z)+(1−η0)ℓ(−z)), andℓ⋆−(η0) = infz∈R̄:z(2η0−1)≤0(η0ℓ(z)
+(1− η0)ℓ(−z)).

DEFINITION 1. The lossℓ is classification-calibratedif, ∀η0 ∈ [0, 1] \ {1/2},
ℓ⋆−(η0) > ℓ⋆(η0). ⋄
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In our context, forX ∼ P, ℓ⋆(η(X)) represents the minimum value of the
conditionalℓ-risk atX, so thatE[ℓ⋆(η(X))] = infh∈F∗ Rℓ(h), while ℓ⋆−(η(X))
represents the minimum conditionalℓ-risk atX, subject to having a sub-optimal
conditional error rate atX: i.e., sign(h(X)) 6= sign(η(X) − 1/2). Thus, being
classification-calibrated implies the minimizer of the conditionalℓ-risk atX nec-
essarily has the same sign as the minimizer of the conditional error rate atX.
Since we are only interested here in usingℓ as a reasonable surrogate for the0-1
loss, throughout the work below we supposeℓ is classification-calibrated.

Though not strictly necessary for our results below, it will be convenient for us
to suppose that, for allη0 ∈ [0, 1], this infimum valueℓ⋆(η0) is actuallyobtainedas
η0ℓ(z

⋆(η0)) + (1− η0)ℓ(−z⋆(η0)) for somez⋆(η0) ∈ R̄ (not necessarily unique).
For instance, this is the case for any nonincreasing right-continuousℓ, or contin-
uous and convexℓ, which include most of the cases we are interested in using as
surrogate losses anyway. The proofs can be modified in a natural way tohandle the
general case, simply substituting anyz with conditional risk sufficiently close to
the minimum value. For any distributionP , denotef⋆P (x) = z⋆(η(x;P )) for all
x ∈ X . In particular, note thatf⋆P obtainsRℓ(f

⋆
P ;P ) = infg∈F∗ Rℓ(g;P ). When

P = PXY , we abbreviate this asf⋆ = f⋆PXY
. Furthermore, ifℓ is classification-

calibrated, thensign(f⋆P (x)) = sign(η(x;P )− 1/2) for all x ∈ X with η(x;P ) 6=
1/2, and henceer(f⋆P ;P ) = infh∈F∗ er(h;P ) as well.

For any distributionP overX × Y, and anyh, g ∈ F∗, define theloss distance

Dℓ(h, g;P ) =

√

E

[

(ℓ(h(X)Y )− ℓ(g(X)Y ))2
]

, where(X,Y ) ∼ P . Also define

theloss diameterof a classH ⊆ F∗ asDℓ(H;P ) = suph,g∈HDℓ(h, g;P ), and the
ℓ-risk ε-minimal set ofH asH(ε; ℓ, P ) = {h ∈ H : Rℓ(h;P )−infg∈HRℓ(g;P ) ≤
ε}. WhenP = PXY , we abbreviate these asDℓ(h, g) = Dℓ(h, g;PXY ), Dℓ(H) =
Dℓ(H;PXY ), andH(ε; ℓ) = H(ε; ℓ,PXY ). Also, for anyh ∈ F∗, abbreviate
hU = hU ,f⋆ , and for anyH ⊆ F∗, defineHU = {hU : h ∈ H}.

We additionally define related quantities for the0-1 loss, as follows. Define the
distance∆P (h, g) = P(x : sign(h(x)) 6= sign(g(x))) andradiusradius(H;P ) =
suph∈H∆P (h, f

⋆
P ). Also define theε-minimal set ofH asH(ε; 01, P ) = {h ∈

H : er(h;P ) − infg∈H er(g;P ) ≤ ε}, and for r > 0, define ther-ball cen-
tered ath in H by BH,P (h, r) = {g ∈ H : ∆P (h, g) ≤ r}. WhenP = PXY ,
we abbreviate these as∆(h, g) = ∆PXY

(h, g), radius(H) = radius(H;PXY ),
H(ε; 01) = H(ε; 01,PXY ), andBH(h, r) = BH,PXY

(h, r); whenH = F , further
abbreviateB(h, r) = BF (h, r).

We will be interested in transforming results concerning the excess surrogate
risk into results on the excess error rate. As such, we will make use of the following
abstract transformation.
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DEFINITION 2. For any distributionP overX × Y, and anyε ∈ [0, 1], define

Γℓ(ε;P ) = sup{γ > 0 : F∗(γ; ℓ, P ) ⊆ F∗(ε; 01, P )} ∪ {0}.

Also, for anyγ ∈ [0,∞), define the inverse

Eℓ(γ;P ) = inf {ε > 0 : γ ≤ Γℓ(ε;P )} .

WhenP = PXY , abbreviateΓℓ(ε) = Γℓ(ε;PXY ) andEℓ(γ) = Eℓ(γ;PXY ).
⋄

By definition, for classification-calibratedℓ, Γℓ has the property that

(1) ∀h ∈ F∗, ∀ε ∈ [0, 1], Rℓ(h)− Rℓ(f
⋆) < Γℓ(ε) =⇒ er(h)− er(f⋆) ≤ ε.

In fact,Γℓ is defined to be maximal with this property, in thatanyΓ′
ℓ for which (1)

is satisfied must haveΓ′
ℓ(ε) ≤ Γℓ(ε) for all ε ∈ [0, 1].

In our context, we will typically be interested in calculating lower bounds onΓℓ

for any particular scenario of interest. Bartlett, Jordan, and McAuliffe [6] studied
various lower bounds of this type. Specifically, forζ ∈ [−1, 1], defineψ̃ℓ(ζ) =

ℓ⋆−

(

1+ζ
2

)

−ℓ⋆
(

1+ζ
2

)

, and letψℓ be the largest convex lower bound ofψ̃ℓ on [0, 1],

which is well-defined in this context [6]. Bartlett, Jordan, and McAuliffe [6] show
ψℓ is continuous and nondecreasing on(0, 1), and in fact thatx 7→ ψℓ (x) /x is
nondecreasing on(0,∞). They also show everyh ∈ F∗ hasψℓ(er(h)− er(f⋆)) ≤
Rℓ(h) − Rℓ(f

⋆), so thatψℓ ≤ Γℓ, and they find this inequality can be tight for
a particular choice ofPXY . They further study more subtle relationships between
excessℓ-risk and excess error rate holding for any classification-calibratedℓ. In
particular, following the same argument as in the proof of their Theorem 3, one
can show that ifℓ is classification-calibrated, everyh ∈ F∗ satisfies

∆(h, f⋆) · ψℓ

(

er(h)− er(f⋆)

2∆(h, f⋆)

)

≤ Rℓ(h)− Rℓ(f
⋆).

The implication of this in our context is the following. Fix any nondecreasing func-
tionΨℓ : [0, 1]→ [0,∞) such that∀ε ≥ 0,

(2) Ψℓ(ε) ≤ radius(F∗(ε; 01))ψℓ

(

ε

2radius(F∗(ε; 01))

)

.

Any h ∈ F∗ with Rℓ(h)−Rℓ(f
⋆) < Ψℓ(ε) also has∆(h, f⋆)ψℓ

(

er(h)−er(f⋆)
2∆(h,f⋆)

)

<

Ψℓ(ε); combined with the fact thatx 7→ ψℓ(x)/x is nondecreasing on(0,∞), this

implies radius(F∗(er(h) − er(f⋆); 01))ψℓ

(

er(h)−er(f⋆)
2radius(F∗(er(h)−er(f⋆);01))

)

< Ψℓ(ε);
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this meansΨℓ(er(h)− er(f⋆)) < Ψℓ(ε), and monotonicity ofΨℓ implieser(h)−
er(f⋆) < ε. Altogether, this impliesΨℓ(ε) ≤ Γℓ(ε). In fact, though we do not
present the details here, with only minor modifications to the proofs below, when
f⋆ ∈ F , all of our results involvingΓℓ(ε) will also hold while replacingΓℓ(ε) with
any nondecreasingΨ′

ℓ such that∀ε ≥ 0,

(3) Ψ′
ℓ(ε) ≤ radius(F(ε; 01))ψℓ

(

ε

2radius(F(ε; 01))

)

,

which can sometimes lead to tighter results.
Some of our stronger results below will be stated for a restricted family of losses,

originally explored by Bartlett, Jordan, and McAuliffe [6]: namely, smooth losses
whose convexity is quantified by a polynomial. Specifically, this restriction is char-
acterized by the following condition.

CONDITION 3. F is convex, with∀x ∈ X , supf∈F |f(x)| ≤ B̄ for some
constantB̄ ∈ (0,∞), and there exists a pseudometricdℓ : [−B̄, B̄]2 → [0, d̄ℓ]
for some constant̄dℓ ∈ (0,∞), and constantsL,Cℓ ∈ (0,∞) and rℓ ∈ (0,∞]
such that∀x, y ∈ [−B̄, B̄], |ℓ(x) − ℓ(y)| ≤ Ldℓ(x, y) and the function̄δℓ(ε)
= inf

{

1
2ℓ(x) +

1
2ℓ(y)− ℓ(12x+ 1

2y) : x, y ∈ [−B̄, B̄], dℓ(x, y) ≥ ε
}

∪ {∞} sat-
isfies∀ε ∈ (0, 1), δ̄ℓ(ε) ≥ Cℓε

rℓ . ⋄

In particular, note that ifF is convex, the functions inF are uniformly bounded,
andℓ is continuous, Condition3 is always satisfied (though possibly withrℓ =∞).

2.2. A Few Examples of Loss Functions.Here we briefly mention a few loss
functions ℓ in common practical use, all of which are classification-calibrated.
These examples are taken directly from the work of Bartlett, Jordan, and McAuliffe
[6], which additionally discusses many other interesting examples of classification-
calibrated loss functions and their correspondingψℓ functions.

Example 1. The exponential lossis specified asℓ(x) = e−x. This loss func-
tion appears in many contexts in machine learning; for instance, the popular Ad-
aBoost method can be viewed as an algorithm that greedily optimizes the expo-
nential loss [13]. Bartlett, Jordan, and McAuliffe [6] show that under the expo-
nential loss,ψℓ(x) = 1 −

√
1− x2, which is tightly approximated byx2/2 for

smallx. They also show this loss satisfies the conditions onℓ in Condition3 with
dℓ(x, y) = |x− y|, L = eB̄, Cℓ = e−B̄/8, andrℓ = 2.

Example 2. Thehinge loss, specified asℓ(x) = max {1− x, 0}, is another com-
mon surrogate loss in machine learning practice today. For instance, it is used in
the objective of the Support Vector Machine (along with a regularization term)
[10]. Bartlett, Jordan, and McAuliffe [6] show that for the hinge loss,ψℓ(x) = |x|.
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The hinge loss is Lipschitz continuous, with Lipschitz constant1. However, for the
remaining conditions onℓ in Condition3, anyx, y ≤ 1 have 1

2ℓ(x) +
1
2ℓ(y) =

ℓ(12x+ 1
2y), so that̄δℓ(ε) = 0; hence,rℓ =∞ is required.

Example 3. Thequadratic loss(or squared loss), specified asℓ(x) = (1− x)2, is
often used in so-calledplug-inclassifiers [2], which approach the problem of learn-
ing a classifier by estimating the regression functionE[Y |X = x] = 2η(x) − 1,
and then taking the sign of this estimator to get a binary classifier. The quadratic
loss has the convenient property that for any distributionP overX × Y, f⋆P (·) =
2η(·;P )− 1, so that it is straightforward to describe the set of distributionsP sat-
isfying the assumptionf⋆P ∈ F ; for this reason, we will make use of the quadratic
loss in constructing many of our illustrative examples below. Bartlett, Jordan,and
McAuliffe [ 6] show that for the quadratic loss,ψℓ(x) = x2. They also show the
quadratic loss satisfies the conditions onℓ in Condition3, with L = 2(B̄ + 1),
Cℓ = 1/4, andrℓ = 2. In fact, they study the general family of lossesℓ(x) =
|1 − x|p, for p ∈ (1,∞), and show thatψℓ(x) andrℓ exhibit a range of behaviors
varying withp.

Example 4. Thetruncated quadratic lossis specified asℓ(x) = (max{1−x, 0})2.
Bartlett, Jordan, and McAuliffe [6] show that in this case,ψℓ(x) = x2. They also
show that, under the pseudometricdℓ(a, b) = |min{a, 1} − min{b, 1}|, the trun-
cated quadratic loss satisfies the conditions onℓ in Condition3, withL = 2(B̄+1),
Cℓ = 1/4, andrℓ = 2.

2.3. Empirical ℓ-Risk Minimization. For anym ∈ N, g : X → R̄, andS =
{(x1, y1), . . . , (xm, ym)} ∈ (X × Y)m, define theempiricalℓ-risk asRℓ(g;S) =
m−1

∑m
i=1 ℓ(g(xi)yi). At times it will be convenient to keep track of the indices

for a subsequence ofZ, and for this reason we also overload the notation, so
that for anyQ = {(i1, y1), . . . , (im, ym)} ∈ (N × Y)m, we defineS[Q] =
{(Xi1 , y1), . . . , (Xim , ym)} andRℓ(g;Q) = Rℓ(g;S[Q]). For completeness, we
also generally defineRℓ(g; ∅) = 0. The method of empiricalℓ-risk minimization,
here denoted byERMℓ(H,Zm), is characterized by the property that it returns
ĥ = argminh∈HRℓ(h;Zm). This is a well-studied and classical passive learning
method, presently in popular use in applications, and as such it will serve asour
baseline for passive learning methods.

2.4. Localized Sample Complexities.The derivation of localized excess risk
bounds can essentially be motivated as follows. Suppose we are interestedin bound-
ing the excessℓ-risk ofERMℓ(H,Zm). Further suppose we have a coarse guaran-
teeUℓ(H,m) on the excessℓ-risk of the ĥ returned byERMℓ(H,Zm): that is,
Rℓ(ĥ) − Rℓ(f

⋆) ≤ Uℓ(H,m). In some sense, this guarantee identifies a setH′ ⊆
H of functions that a priori have thepotential to be returned byERMℓ(H,Zm)
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(namely,H′ = H(Uℓ(H,m); ℓ)), while those inH \H′ do not. With this informa-
tion in hand, we can think ofH′ as a kind ofeffectivefunction class, and we can
then think ofERMℓ(H,Zm) as equivalent toERMℓ(H′,Zm). We may then repeat
this same reasoning forERMℓ(H′,Zm), calculatingUℓ(H′,m) to determine a set
H′′ = H′(Uℓ(H′,m); ℓ) ⊆ H′ of potential return values forthis empirical mini-
mizer, so thatERMℓ(H′,Zm) = ERMℓ(H′′,Zm), and so on. This repeats until
we identify a fixed-point setH(∞) of functions such thatH(∞)(Uℓ(H(∞),m); ℓ)
= H(∞), so that no further reduction is possible. Following this chain of reasoning
back to the beginning, we find thatERMℓ(H,Zm) = ERMℓ(H(∞),Zm), so that
the function̂h returned byERMℓ(H,Zm) has excessℓ-risk at mostUℓ(H(∞),m),
which may be significantly smaller thanUℓ(H,m), depending on how refined the
originalUℓ(H,m) bound was.

To formalize this fixed-point argument forERMℓ(H,Zm), Koltchinskii [23]
makes use of the following quantities to define the coarse boundUℓ(H,m) [see
also7, 15]. For anyH ⊆ [F ], m ∈ N, s ∈ [1,∞), and any distributionP on
X × Y, lettingQ ∼ Pm, define

φℓ(H;m,P ) = E

[

sup
h,g∈H

(Rℓ(h;P )− Rℓ(g;P ))− (Rℓ(h;Q)− Rℓ(g;Q))

]

,

Ūℓ(H;P,m, s) = K̄1φℓ(H;m,P ) + K̄2Dℓ(H;P )
√

s

m
+
K̄3ℓ̄s

m
,

Ũℓ(H;P,m, s) = K̃

(

φℓ(H;m,P ) + Dℓ(H;P )
√

s

m
+
ℓ̄s

m

)

,

whereK̄1, K̄2, K̄3, andK̃ are appropriately chosen constants.
We will be interested in having access to these quantities in the context of our

algorithms; however, sincePXY is not directly accessible to the algorithm, we
will need to approximate these by data-dependent estimators. Toward this end,
we define the following quantities, again taken from the work of Koltchinskii
[23]. For ε > 0, let Zε = {j ∈ Z : 2j ≥ ε}. For anyH ⊆ [F ], q ∈ N,
andS = {(x1, y1), . . . , (xq, yq)} ∈ (X × {−1,+1})q, let H(ε; ℓ, S) = {h ∈
H : Rℓ(h;S) − infg∈HRℓ(g;S) ≤ ε}; then for any sequenceΞ = {ξk}qk=1 ∈
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{−1,+1}q, and anys ∈ [1,∞), define

φ̂ℓ(H;S,Ξ) = sup
h,g∈H

1

q

q
∑

k=1

ξk · (ℓ(h(xk)yk)− ℓ(g(xk)yk)) ,

D̂ℓ(H;S)2 = sup
h,g∈H

1

q

q
∑

k=1

(ℓ(h(xk)yk)− ℓ(g(xk)yk))2 ,

Ûℓ(H;S,Ξ, s) = 12φ̂ℓ(H;S,Ξ) + 34D̂ℓ(H;S)
√

s

q
+

752ℓ̄s

q
.

For completeness, definêφℓ(H; ∅, ∅) = D̂ℓ(H; ∅) = 0, and Ûℓ(H; ∅, ∅, s) =
752ℓ̄s.

The above quantities (with appropriate choices ofK̄1, K̄2, K̄3, andK̃) can be
formally related to each other and to the excessℓ-risk of functions inH via the
following general result; this variant is due to Koltchinskii [23].

LEMMA 4. For anyH ⊆ [F ], s ∈ [1,∞), distributionP overX × Y, and
anym ∈ N, if Q ∼ Pm andΞ = {ξ1, . . . , ξm} ∼ Uniform({−1,+1})m are
independent, andh∗ ∈ H hasRℓ(h

∗;P ) = infh∈HRℓ(h;P ), then with probability
at least1− 6e−s, the following claims hold.

∀h ∈ H,Rℓ(h;P )− Rℓ(h
∗;P ) ≤ Rℓ(h;Q)− Rℓ(h

∗;Q) + Ūℓ(H;P,m, s),
∀h ∈ H,Rℓ(h;Q)− inf

g∈H
Rℓ(g;Q) ≤ Rℓ(h;P )− Rℓ(h

∗;P ) + Ūℓ(H;P,m, s),

Ūℓ(H;P,m, s) < Ûℓ(H;Q,Ξ, s) < Ũℓ(H;P,m, s).

⋄

We typically expect thēU , Û , andŨ quantities to be roughly within constant fac-
tors of each other. Following Koltchinskii [23] and Gińe and Koltchinskii [15], we
can use this result to derive localized bounds on the number of samples sufficient
for ERMℓ(H,Zm) to achieve a given excessℓ-risk. Specifically, forH ⊆ [F ],
distributionP overX × Y, valuesγ, γ1, γ2 ≥ 0, s ∈ [1,∞), and any function
s : (0,∞)2 → [1,∞), define the following quantities.

M̄ℓ(γ1, γ2;H, P, s) = min
{

m ∈ N : Ūℓ(H(γ2; ℓ, P );P,m, s) < γ1
}

,

M̄ℓ(γ;H, P, s) = sup
γ′≥γ

M̄ℓ(γ
′/2, γ′;H, P, s(γ, γ′)),

M̃ℓ(γ1, γ2;H, P, s) = min
{

m ∈ N : Ũℓ(H(γ2; ℓ, P );P,m, s) ≤ γ1
}

,

M̃ℓ(γ;H, P, s) = sup
γ′≥γ

M̃ℓ(γ
′/2, γ′;H, P, s(γ, γ′)).
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These quantities are well-defined forγ1, γ2, γ > 0 whenlimm→∞ φℓ(H;m,P ) =
0. In other cases, for completeness, we define them to be∞.

In particular, the quantitȳMℓ(γ;F ,PXY , s) is used in Theorem6 below to
quantify the performance ofERMℓ(F ,Zm). The primary practical challenge in
calculatingM̄ℓ(γ;H, P, s) is handling theφℓ(H(γ′; ℓ, P );m,P ) quantity. In the
literature, the typical (only?) way such calculations are approached is byfirst de-
riving a bound onφℓ(H′;m,P ) for everyH′ ⊆ H in terms of some natural mea-
sure of complexity for the full classH (e.g., entropy numbers) and some very basic
measure of complexity forH′: most oftenDℓ(H′;P ) and sometimes a seminorm
of an envelope function forH′. After this, one then proceeds to bound these basic
measures of complexity for the specific subsetsH(γ′; ℓ, P ), as a function ofγ′.
Composing these two results is then sufficient to boundφℓ(H(γ′; ℓ, P );m,P ). For
instance, bounds based on an entropy integral tend to follow this strategy.This
approach effectively decomposes the problem of calculating the complexityof
H(γ′; ℓ, P ) into the problem of calculating the complexity ofH and the problem
of calculating some much more basic properties ofH(γ′; ℓ, P ). See [6, 15, 23, 35],
or Section5 below, for several explicit examples of this technique.

Another technique often (though not always) used in conjunction with the above
strategy when deriving explicit rates of convergence is to relaxDℓ(H(γ′; ℓ, P );P )
to Dℓ(F∗(γ′; ℓ, P );P ) or Dℓ([H](γ′; ℓ, P );P ). This relaxation can sometimes be
a source of slack; however, in many interesting cases, such as for certain lossesℓ
[e.g.,6], or even certain noise conditions [e.g.,27, 33], this relaxed quantity can
still lead to nearly tight bounds.

For our purposes, it will be convenient to make these common techniques ex-
plicit in the results. In later sections, this will make the benefits of our proposed
methods more explicit, while still allowing us to state results in a form abstract
enough to capture the variety of specific complexity measures most often used in
conjunction with the above approach. Toward this end, we have the following def-
inition.

DEFINITION 5. For every distributionP overX × Y, let φ̊ℓ(σ,H;m,P ) be
a quantity defined for everyσ ∈ [0,∞], H ⊆ [F ], andm ∈ N, such that the
following conditions are satisfied whenf⋆P ∈ H.

If 0 ≤ σ ≤ σ′,H ⊆ H′ ⊆ [F ],U ⊆ X , andm′ ≤ m,
thenφ̊ℓ(σ,HU ,f⋆

P
;m,P ) ≤ φ̊ℓ(σ′,H′;m′, P ).(4)

∀σ ≥ Dℓ(H;P ), φℓ(H;m,P ) ≤ φ̊ℓ(σ,H;m,P ).(5)

⋄

For instance, most bounds based on entropy integrals can be made to satisfy this.
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See Section5.3for explicit examples of quantities̊φℓ from the literature that satisfy
this definition. Given a function̊φℓ of this type, we define the following quantity
for m ∈ N, s ∈ [1,∞), ζ ∈ [0,∞],H ⊆ [F ], and a distributionP overX × Y.

Ůℓ(H, ζ;P,m, s)

= K̃

(

φ̊ℓ(Dℓ([H](ζ; ℓ, P );P ),H;m,P ) + Dℓ([H](ζ; ℓ, P );P )
√

s

m
+
ℓ̄s

m

)

.

Note that whenf⋆P ∈ H, sinceDℓ([H](γ; ℓ, P );P ) ≥ Dℓ(H(γ; ℓ, P );P ), Defini-
tion 5 impliesφℓ(H(γ; ℓ, P );m,P ) ≤ φ̊ℓ(Dℓ([H](γ; ℓ, P );P ),H(γ; ℓ, P );P,m),
and furthermoreH(γ; ℓ, P ) ⊆ H so that̊φℓ(Dℓ([H](γ; ℓ, P );P ),H(γ; ℓ, P );P,m)
≤ φ̊ℓ(Dℓ([H](γ; ℓ, P );P ),H;P,m). Thus,

(6) Ũℓ(H(γ; ℓ, P );P,m, s) ≤ Ůℓ(H(γ; ℓ, P ), γ;P,m, s) ≤ Ůℓ(H, γ;P,m, s).

Furthermore, whenf⋆P ∈ H, for any measurableU ⊆ U ′ ⊆ X , anyγ′ ≥ γ ≥ 0,
and anyH′ ⊆ [F ] withH ⊆ H′,

(7) Ůℓ(HU ,f⋆
P
, γ;P,m, s) ≤ Ůℓ(H′

U ′,f⋆
P
, γ′;P,m, s).

Note that the fact that we useDℓ([H](γ; ℓ, P );P ) instead ofDℓ(H(γ; ℓ, P );P ) in
the definition ofŮℓ is crucial for these inequalities to hold; specifically, it is not
necessarily true thatDℓ(HU ,f⋆

P
(γ; ℓ, P );P ) ≤ Dℓ(HU ′,f⋆

P
(γ; ℓ, P );P ), but it is

always the case that[HU ,f⋆
P
](γ; ℓ, P ) ⊆ [HU ′,f⋆

P
](γ; ℓ, P ) whenf⋆P ∈ [H], so that

Dℓ([HU ,f⋆
P
](γ; ℓ, P );P ) ≤ Dℓ([HU ′,f⋆

P
](γ; ℓ, P );P ).

Finally, for H ⊆ [F ], distributionP overX × Y, valuesγ, γ1, γ2 ≥ 0, s ∈
[1,∞), and any functions : (0,∞)2 → [1,∞), define

M̊ℓ(γ1, γ2;H, P, s) = min
{

m ∈ N : Ůℓ(H, γ2;P,m, s) ≤ γ1
}

,

M̊ℓ(γ;H, P, s) = sup
γ′≥γ

M̊ℓ(γ
′/2, γ′;H, P, s(γ, γ′)).

For completeness, define̊Mℓ(γ1, γ2;H, P, s) = ∞ whenŮℓ(H, γ2;P,m, s) > γ1
for everym ∈ N.

It will often be convenient to isolate the terms in̊Uℓ when inverting for a suffi-
cientm, thus arriving at an upper bound on̊Mℓ. Specifically, define

Ṁℓ(γ1, γ2;H, P, s) = min

{

m ∈ N : Dℓ([H](γ2; ℓ, P );P )
√

s

m
+
ℓ̄s

m
≤ γ1

}

,

M̈ℓ(γ1, γ2;H, P ) = min
{

m ∈ N : φ̊ℓ (Dℓ([H](γ2; ℓ, P );P ),H;P,m) ≤ γ1
}

.
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This way, forc̃ = 1/(2K̃), we have

(8) M̊ℓ(γ1, γ2;H, P, s) ≤ max
{

M̈ℓ(c̃γ1, γ2;H, P ), Ṁℓ(c̃γ1, γ2;H, P, s)
}

.

Also note that we clearly have

(9) Ṁℓ(γ1, γ2;H, P, s) ≤ s ·max

{

4Dℓ([H](γ2; ℓ, P ); ℓ, P )2
γ21

,
2ℓ̄

γ1

}

,

so that, in the task of bounding̊Mℓ, we can simply focus on bounding̈Mℓ.
We will express our main abstract results below in terms of the incremental

valuesM̊ℓ(γ1, γ2;H,PXY , s); the quantityM̊ℓ(γ;H,PXY , s) will also be useful
in deriving analogous results forERMℓ. Whenf⋆P ∈ H, (6) implies

(10) M̄ℓ(γ;H, P, s) ≤ M̃ℓ(γ;H, P, s) ≤ M̊ℓ(γ;H, P, s).

3. Methods Based on Optimizing the Surrogate Risk. Perhaps the simplest
way to make use of a surrogate loss function is to try to optimizeRℓ(h) overh ∈ F ,
until identifying h ∈ F with Rℓ(h) − Rℓ(f

⋆) < Γℓ(ε), at which point we are
guaranteeder(h) − er(f⋆) ≤ ε. In this section, we briefly discuss some known
results for this basic idea, along with a comment on the potential drawbacks ofthis
approach for active learning.

3.1. Passive Learning: Empirical Risk Minimization.In the context of passive
learning, the method ofempirical ℓ-risk minimizationis one of the most-studied
methods for optimizingRℓ(h) overh ∈ F . Based on Lemma4 and the above def-
initions, one can derive a bound on the number of labeled data pointsm sufficient
for ERMℓ(F ,Zm) to achieve a given excess error rate. Specifically, the following
theorem is due to Koltchinskii [23] (slightly modified here, following Gińe and
Koltchinskii [15], to allow for generals functions). It will serve as our baseline for
comparison in the applications below.

THEOREM 6. If f⋆ ∈ F ands : (0,∞)2 → [1,∞) is nonincreasing in its first
argument, then for anym ≥ M̄ℓ(Γℓ(ε);F ,PXY , s), on an eventEm(Γℓ(ε)) of
probability at least1 −∑j∈ZΓℓ(ε)

6e−s(Γℓ(ε),2
j), ERMℓ(F ,Zm) produces a func-

tion ĥ such thater(ĥ)− er(f⋆) ≤ ε. ⋄

3.2. Negative Results for Active Learning.As mentioned, there are several ac-
tive learning methods designed to optimize a general loss function [8, 25]. How-
ever, it turns out that for many interesting loss functions, the number of labels
required for active learning to achieve a given excess surrogate riskvalue is not
significantly smaller than that sufficient for passive learning byERMℓ.
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Specifically, consider a problem withX = {x0, x1}, let z ∈ (0, 1/2) be a con-
stant, and forε ∈ (0, z), let P({x1}) = ε/(2z), P({x0}) = 1 − P({x1}), and
supposeF andℓ are such that forη(x1) = 1/2 + z and anyη(x0) ∈ [4/6, 5/6],
we havef⋆ ∈ F . For this problem, any functionh with sign(h(x1)) 6= +1
has er(h) − er(f⋆) ≥ ε, so thatΓℓ(ε) ≤ (ε/(2z))(ℓ⋆−(η(x1)) − ℓ⋆(η(x1)));
when ℓ is classification-calibrated and̄ℓ < ∞, this is cε, for someℓ-dependent
c ∈ (0,∞). Any functionh with Rℓ(h)−Rℓ(f

⋆) ≤ cε for this problem must have
Rℓ(h;P{x0}) − Rℓ(f

⋆;P{x0}) ≤ cε/P({x0}) = O(ε). Existing results of Han-
neke and Yang [21] (with a slight modification to rescale forη(x0) ∈ [4/6, 5/6])
imply that, for many classification-calibrated lossesℓ, the minimax optimal num-
ber of labels sufficient for an active learning algorithm to achieve this isΘ(1/ε).
Hanneke and Yang [21] specifically show this for lossesℓ that are strictly posi-
tive, decreasing, strictly convex, and twice differentiable with continuoussecond
derivative; however, that result can easily be extended to a wide variety of other
classification-calibrated losses, such as the quadratic loss, which satisfythese con-
ditions in a neighborhood of0. It is also known [6] (see also below) that for many
such losses (specifically, those satisfying Condition3 with rℓ = 2), Θ(1/ε) ran-
dom labeled samples are sufficient forERMℓ to achieve this same guarantee, so
that results that only bound the surrogate risk of the function produced by an active
learning method in this scenario can be at most a constant factor smaller than those
provable for passive learning methods.

In the next section, we provide an active learning algorithm and a general anal-
ysis of its performance which, in the special case described above, guarantees ex-
cess error rate less thanε with high probability, using a number of label requests
O(log(1/ε) log log(1/ε)). The implication is that, to identify the improvements
achievable by active learning with a surrogate loss, it is not sufficient to merely
analyze the surrogate risk of the function produced by a given active learning algo-
rithm. Indeed, since we are not particularly interested in the surrogate riskitself, we
may even consider active learning algorithms that do not actually optimizeRℓ(h)
overh ∈ F (even in the limit).

4. Alternative Use of the Surrogate Loss. Given that we are interested inℓ
only insofar as it helps us to optimize the error rate with computational efficiency,
we should ask whether there is a method that sometimes makes more effective use
of ℓ in terms of optimizing the error rate, while maintaining essentially the same
computational advantages. The following method is essentially a relaxation of the
methods of Koltchinskii [25] and Hanneke [20]. Similar results should also hold for
analogous relaxations of the related methods of Balcan, Beygelzimer, and Langford
[3], Dasgupta, Hsu, and Monteleoni [11], Balcan, Beygelzimer, and Langford [4],
and Beygelzimer, Dasgupta, and Langford [8].
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Algorithm 1:
Input: surrogate lossℓ, unlabeled sample budgetu, labeled sample budgetn
Output: classifier̂h

0.V ← F ,Q← ∅,m← 0, t← 0, k ← 1,m1 ← 0, γ̂1 ← ℓ̄
1. Whilem < u andt < n
2. m← m+ 1
3. If Xm ∈ DIS(V )
4. Request labelYm and letQ← Q ∪ {(m,Ym)}, t← t+ 1

5. If log2(m−mk) ∈ N andT̂ℓ(V ;Q,m, k) |Q|∨1
m−mk

≤ γ̂k/2
6. γ̂k+1 ← T̂ℓ(V ;Q,m, k) |Q|∨1

m−mk
,mk+1 ← m

7. V ←
{

h ∈ V : Rℓ(h;Q)− infg∈V Rℓ(g;Q) ≤ T̂ℓ(V ;Q,m, k)
}

8. Q← ∅, k ← k + 1
9. Return̂h = argminh∈V Rℓ(h;Q)

In practice, the setV can be maintained implicitly, simply by keeping track of
the constraints (Step 7) that define it; then the condition in Step 3 can be checked by
solving two constraint satisfaction problems (one for each sign), and the final ĥ can
be found as the solution of a constrained optimization problem. The quantityT̂ℓ in
Algorithm 1 can be defined in one of several possible ways. In our context, we con-
sider the following definition. Let{ξ′k}k∈N denote independent Rademacher ran-
dom variables (i.e., uniform in{−1,+1}), also independent fromZ; these should
be considered internal random bits used by the algorithm, which is therefore a
randomized algorithm. For anyq ∈ N ∪ {0} andQ = {(i1, y1), . . . , (iq, yq)} ∈
(N × {−1,+1})q, let S[Q] = {(Xi1 , y1), . . . , (Xiq , yq)}, Ξ[Q] = {ξ′ik}

q
k=1. For

s ∈ [1,∞), define

Ûℓ(H;Q, s) = Ûℓ(H;S[Q],Ξ[Q], s).

Then we can define the quantitŷTℓ in the method above as

(11) T̂ℓ(H;Q,m, k) = Ûℓ(H;Q, ŝ(γ̂k,m−mk)),

for someŝ : (0,∞) × N → [1,∞). This definition has the appealing property
that it allows us to interpret the update in Step 7 in two complementary ways: as
comparing the empirical risks of functions inV under the conditional distribution
given the region of disagreementPDIS(V ), and as comparing the empirical risks of
the functions inVDIS(V ) under the original distributionPXY .

For convenience, we will also suppose the functionŝ in (11) satisfies,∀γ > 0
andm ∈ N,

(12) ŝ(γ,m) = ŝ(2⌈log2(γ)⌉,m),
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so that we can effectively roundγ to a power of2.
We have the following theorem, which represents our main abstract result. The

proof is included in AppendixA.

THEOREM 7. For eachj ≥ −⌈log2(ℓ̄)⌉, let sj(·) = ŝ(2−j , ·), for ŝ satisfying
(12), letFj = F(Eℓ(2

1−j); 01)DIS(F(Eℓ(21−j);01)), Uj = DIS(Fj), and letuj ∈ N

satisfylog2(uj) ∈ N and

(13) uj ≥ M̊ℓ(2
−j−2, 21−j ;Fj ,PXY , sj(uj)).

Supposef⋆ ∈ F . For anyε ∈ (0, 1), ands ∈ [1,∞), if

u ≥
⌊log2(2/Γℓ(ε))⌋

∑

j=−⌈log2(ℓ̄)⌉

uj and n ≥ s+ 2e

⌊log2(2/Γℓ(ε))⌋
∑

j=−⌈log2(ℓ̄)⌉

P(Uj)uj ,

then, with argumentsℓ, u, andn, Algorithm 1 uses at mostu unlabeled samples
and makes at mostn label requests, and with probability at least

1− 2−s −
⌊log2(2/Γℓ(ε))⌋

∑

j=−⌈log2(ℓ̄)⌉

log2(uj)
∑

i=1

6e−sj(2
i),

returns a function̂h with er(ĥ)− er(f⋆) ≤ ε. ⋄

The number of label requests indicated by Theorem7 can often (though not
always) be significantly smaller than the number of random labeled data points
sufficient forERMℓ to achieve the same, as indicated by Theorem6. This is typi-
cally the case whenP(Uj) → 0 asj → ∞. When this is the case, the number of
labels requested by the algorithm is sublinear in the number of unlabeled samples
it processes; below, we will derive more explicit results for certain typesof func-
tion classesF , by characterizing the rate at whichP(Uj) vanishes in terms of a
complexity measure known as the disagreement coefficient.

For the purpose of calculating the values̊Mℓ in Theorem7, it is sometimes
convenient to use the alternative interpretation of Algorithm 1, in terms of sampling
Q from the conditional distributionPDIS(V ). Specifically, the following lemma
allows us to replace calculations in terms ofFj andPXY with calculations in
terms ofF(Eℓ(2

1−j); 01) andPDIS(Fj). Its proof is included in AppendixA

LEMMA 8. Let φ̊ℓ be any function satisfying Definition5. LetP be any dis-
tribution overX × Y. For any measurableU ⊆ X × Y with P (U) > 0, define
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PU (·) = P (·|U). Also, for anyσ ≥ 0,H ⊆ [F ], andm ∈ N, if P
(

DISF(H)
)

> 0,
define

(14) φ̊′ℓ(σ,H;m,P ) =

32






inf

U=U ′×Y:
U ′⊇DISF(H)

P (U)φ̊ℓ
(

σ
√

P (U)
,H; ⌈(1/2)P (U)m⌉, PU

)

+
ℓ̄

m
+ σ

√

1

m






,

and otherwise define̊φ′ℓ(σ,H;m,P ) = 0. Then the function̊φ′ℓ also satisfies Defi-
nition 5. ⋄

Plugging thisφ̊′ℓ function into Theorem7 immediately yields the following
corollary, the proof of which is included in AppendixA.

COROLLARY 9. For eachj ≥ −⌈log2(ℓ̄)⌉, letFj , Uj , andsj be as in Theo-
rem7, and ifP(Uj) > 0, letuj ∈ N satisfylog2(uj) ∈ N and

(15) uj ≥ 2P(Uj)−1M̊ℓ

(

2−j−8

P(Uj)
,
21−j

P(Uj)
;Fj ,PUj , sj(uj)

)

.

If P(Uj) = 0, let uj ∈ N satisfylog2(uj) ∈ N anduj ≥ K̃ℓ̄sj(uj)2
j+2. Suppose

f⋆ ∈ F . For anyε ∈ (0, 1) ands ∈ [1,∞), if

u ≥
⌊log2(2/Γℓ(ε))⌋

∑

j=−⌈log2(ℓ̄)⌉

uj and n ≥ s+ 2e

⌊log2(2/Γℓ(ε))⌋
∑

j=−⌈log2(ℓ̄)⌉

P(Uj)uj ,

then, with argumentsℓ, u, andn, Algorithm 1 uses at mostu unlabeled samples
and makes at mostn label requests, and with probability at least

1− 2−s −
⌊log2(2/Γℓ(ε))⌋

∑

j=−⌈log2(ℓ̄)⌉

log2(uj)
∑

i=1

6e−sj(2
i),

returns a function̂h with er(ĥ)− er(f⋆) ≤ ε. ⋄

Algorithm 1 can be modified in a variety of interesting ways, leading to related
methods that can be analyzed analogously. One simple modification is to use a
more involved bound to define the quantityT̂ℓ. For instance, forQ as above, and a
function ŝk : (0,∞)× N→ [1,∞), one could define

T̂ℓ(H;Q,m, k) = (3/2)q−1 inf
{

λ > 0 : ∀j ∈ Zλ,

Ûℓ

(

H
(

3q−12j−1; ℓ, S[Q]
)

;Q, ŝk
(

3q−12j−1,m−mk

))

≤ 2j−4q−1
}

,
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for which one can also prove a result similar to Lemma4 [see15, 23]. This def-
inition shares the convenient dual-interpretations property mentioned above about
Ûℓ(H;Q, ŝ(γ̂k,m−mk)); furthermore, the results above for Algorithm 1 also hold
under this definition (for appropriatêsk functions), with only minor modifications
to constants and event probabilities.

The update trigger in Step 5 can be modified in several ways, leading to interest-
ing related methods. One simple change would be replacing it withlog2(m) ∈ N,
as in the methods of Hanneke [20], which simplifies the algorithm to some ex-
tent. In most applications of interest, this still yields a result similar to Theo-
rem 7, since we might expect the value̊Mℓ(2

−j−2, 21−j ;Fj ,PXY , sj(uj)) to be
at least twice as large as̊Mℓ(2

−j−1, 22−j ;Fj−1,PXY , sj−1(uj−1)) anyway. An-
other interesting possibility is to replace the last condition in Step 5 with a check
for T̂ℓ(V ;Q,m, k) |Q|∨1

m−mk
< Γℓ(2

−k). Of course, the valueΓℓ(2
−k) is typically

not directly available to us, but we could substitute a distribution-independent
lower bound onΓℓ(2

−k), for instance based on theψℓ function of Bartlett, Jor-
dan, and McAuliffe [6]; in the active learning context, we could potentially use
unlabeled samples to estimate aP-dependent lower bound onΓℓ(2

−k), or even
diam(V )ψℓ(2

−k/2diam(V )), based on (3), wherediam(V ) = suph,g∈V ∆(h, g).

5. Applications. In this section, we apply the abstract results from above to a
few commonly-studied scenarios: namely, VC subgraph classes and entropy con-
ditions, with some additional mention of VC major classes and VC hull classes.
In the interest of making the results more concise and explicit, we express them
in terms of well-known conditions relating distances to excess risks. We also ex-
press them in terms of a lower bound onΓℓ(ε) of the type in (2), with convenient
properties that allow for closed-form expression of the results. To simplify the pre-
sentation, we often omit numerical constant factors in the inequalities below, and
for this we use the common notationf(x) . g(x) to mean thatf(x) ≤ cg(x) for
some implicit universal constantc ∈ (0,∞).

5.1. Diameter Conditions. To begin, we first state some general characteriza-
tions relating distances to excess risks; these characterizations will make it easier
to express our results more concretely below, and make for a more straightforward
comparison between results for the above methods. The following condition,intro-
duced by Mammen and Tsybakov [27] and Tsybakov [33], is a well-known noise
condition, about which there is now an extensive literature [e.g.,6, 19, 20, 23].

CONDITION 10. For somea ∈ [1,∞) andα ∈ [0, 1], for everyg ∈ F∗,

∆(g, f⋆) ≤ a (er(g)− er(f⋆))α .

⋄
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Condition10 can be equivalently expressed in terms of certain noise conditions
[6, 27, 33]. Specifically, satisfying Condition10 with someα < 1 is equivalent to
the existence of somea′ ∈ [1,∞) such that, for allε > 0,

P (x : |η(x)− 1/2| ≤ ε) ≤ a′εα/(1−α),

which is often referred to as alow noisecondition. Additionally, satisfying Condi-
tion 10with α = 1 is equivalent to having somea′ ∈ [1,∞) such that

P
(

x : |η(x)− 1/2| ≤ 1/a′
)

= 0,

often referred to as abounded noisecondition.
For simplicity, we formulate our results in terms ofa andα from Condition10.

However, for the abstract results in this section, the results remain valid under the
weaker condition that replacesF∗ by F , and adds the condition thatf⋆ ∈ F . In
fact, the specific results in this section also remain valid using this weaker condition
while additionally using (3) in place of (2), as remarked above.

An analogous condition can be defined for the surrogate loss function, as fol-
lows. Similar notions have been explored by Bartlett, Jordan, and McAuliffe[6]
and Koltchinskii [23].

CONDITION 11. For someb ∈ [1,∞) andβ ∈ [0, 1], for everyg ∈ [F ],
Dℓ (g, f

⋆;P )2 ≤ b (Rℓ(g;P )− Rℓ(f
⋆;P ))β .

⋄

Note that these conditions arealwayssatisfied forsomevalues ofa, b, α, β, since
α = β = 0 trivially satisfies the conditions. However, in more benign scenarios,
values ofα andβ strictly greater than0 can be satisfied. Furthermore, for some
loss functionsℓ, Condition11 can even be satisfieduniversally, in the sense that
a value ofβ > 0 is satisfied forall distributions. In particular, Bartlett, Jordan,
and McAuliffe [6] show that this is the case under Condition3, as stated in the
following lemma [see6, for the proof].

LEMMA 12. Suppose Condition3 is satisfied. Letβ = min{1, 2
rℓ
} and b =

(2C ′
ℓ)

−βL2, whereC ′
ℓ = Cℓ for rℓ ≥ 2, andC ′

ℓ = Cℓd̄
rℓ−2
ℓ otherwise. Thenevery

distributionP overX × Y with f⋆P ∈ [F ] satisfies Condition11 with these values
of b andβ. ⋄

Under Condition10, it is particularly straightforward to obtain bounds onΓℓ(ε)
based on a functionΨℓ(ε) satisfying (2). For instance, sincex 7→ xψℓ(1/x) is
nonincreasing on(0,∞) [6], the function

(16) Ψℓ(ε) = aεαψℓ

(

ε1−α/(2a)
)
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satisfiesΨℓ(ε) ≤ Γℓ(ε) [6]. Furthermore, for classification-calibratedℓ, Ψℓ in (16)
is strictly increasing, nonnegative, and continuous on[0, 1] [6], and hasΨℓ(0) = 0;
thus, the inverseΨ−1

ℓ (γ), defined for allγ > 0 by

(17) Ψ−1
ℓ (γ) = inf{ε > 0 : γ ≤ Ψℓ(ε)} ∪ {1},

is strictly increasing, nonnegative, and continuous on(0,Ψℓ(1)). Furthermore, one
can easily showx 7→ Ψ−1

ℓ (x)/x is nonincreasing on(0,∞). Also note that∀γ >
0,Eℓ(γ) ≤ Ψ−1

ℓ (γ).

5.2. The Disagreement Coefficient.In order to more concisely state our re-
sults, it will be convenient to boundP(DIS(H)) by a linear function ofradius(H),
for radius(H) in a given range. This type of relaxation has been used extensively
in the active learning literature [5, 8, 11, 14, 17–20, 25, 26, 32, 37], and the coef-
ficient in the linear function is typically referred to as thedisagreement coefficient.
Specifically, the following definition is due to Hanneke [17, 19]; related quantities
have been explored by Alexander [1] and Gińe and Koltchinskii [15].

DEFINITION 13. For any r0 > 0, define thedisagreement coefficientof a
functionh : X → R with respect toF underP as

θh(r0) = sup
r>r0

P(DIS(B(h, r)))

r
∨ 1.

If f⋆ ∈ F , define the disagreement coefficient of the classF asθ(r0) = θf⋆(r0).
⋄

The value ofθ(ε) has been studied and bounded for various function classes
F under various conditions onP. In many cases of interest,θ(ε) is known to be
bounded by a finite constant [5, 14, 17, 19, 26], while in other cases,θ(ε) may have
an interesting dependence onε [5, 32, 37]. The reader is referred to the works of
Hanneke [19, 20] for detailed discussions on the disagreement coefficient.

5.3. Specification of̊φℓ. Next, we recall a few well-known bounds on theφℓ
function, which leads to a more concrete instance of a functionφ̊ℓ satisfying Defi-
nition 5. Below, we letG∗ denote the set of measurable functionsg : X × Y → R̄.
Also, forG ⊆ G∗, letF(G) = supg∈G |g| denote the minimalenvelopefunction for
G, and forg ∈ G∗ let ‖g‖2P =

∫

g2dP denote the squaredL2(P ) seminorm ofg;
we will generally assumeF(G) is measurable in the discussion below.

Uniform Entropy: The first bound is based on the work of van der Vaart and Well-
ner [34]; related bounds have been studied by Giné and Koltchinskii [15], Giné,
Koltchinskii, and Wellner [16], van der Vaart and Wellner [35], and others. For a
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distributionP overX ×Y, a setG ⊆ G∗, andε ≥ 0, letN (ε,G, L2(P )) denote the
size of a minimalε-cover ofG (that is, the minimum number of balls of radius at
mostε sufficient to coverG), where distances are measured in terms of theL2(P )
pseudo-metric:(f, g) 7→ ‖f − g‖P . Forσ ≥ 0 andF ∈ G∗, define the function

J(σ,G,F) = sup
Q

∫ σ

0

√

1 + lnN (ε‖F‖Q,G, L2(Q))dε,

whereQ ranges over all finitely discrete probability measures.
Fix any distributionP overX × Y and anyH ⊆ [F ] with f⋆P ∈ H, and let

GH = {(x, y) 7→ ℓ(h(x)y) : h ∈ H},
andGH,P = {(x, y) 7→ ℓ(h(x)y)− ℓ(f⋆P (x)y) : h ∈ H}.(18)

Then, sinceJ(σ,GH,F) = J(σ,GH,P ,F), it follows from Theorem 2.1 of van der
Vaart and Wellner [34] (and a triangle inequality) that for some universal constant
c ∈ [1,∞), for anym ∈ N, F ≥ F(GH,P ), andσ ≥ Dℓ(H;P ),

φℓ(H;P,m) ≤(19)

cJ

(

σ

‖F‖P
,GH,F

)

‖F‖P





1√
m

+
J
(

σ
‖F‖P

,GH,F
)

‖F‖P ℓ̄
σ2m



 .

Based on (19), it is straightforward to define a function̊φℓ that satisfies Definition5.
Specifically, define

(20) φ̊
(1)
ℓ (σ,H;m,P ) =

inf
F≥F(GH,P )

inf
λ≥σ

cJ

(

λ

‖F‖P
,GH,F

)

‖F‖P





1√
m

+
J
(

λ
‖F‖P

,GH,F
)

‖F‖P ℓ̄
λ2m



 ,

for c as in (19). By (19), φ̊(1)ℓ satisfies (5). Also note thatm 7→ φ̊
(1)
ℓ (σ,H;m,P ) is

nonincreasing, whileσ 7→ φ̊
(1)
ℓ (σ,H;m,P ) is nondecreasing. Furthermore,H 7→

N (ε,GH, L2(Q)) is nondecreasing for allQ, so thatH 7→ J(σ,GH,F) is nonde-
creasing as well; sinceH 7→ F(GH,P ) is also nondecreasing, we see thatH 7→
φ̊
(1)
ℓ (σ,H;m,P ) is nondecreasing. Similarly, forU ⊆ X , N (ε,GHU,f⋆

P
, L2(Q))

≤ N (ε,GH, L2(Q)) for all Q, so thatJ(σ,GHU,f⋆
P
,F) ≤ J(σ,GH,F); because

F(GHU,f⋆
P
,P ) ≤ F(GH,P ), we haveφ̊(1)ℓ (σ,HU ,f⋆

P
;m,P ) ≤ φ̊

(1)
ℓ (σ,H;m,P ) as

well. Thus, to satisfy Definition5, it suffices to take̊φℓ = φ̊
(1)
ℓ .
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Bracketing Entropy: Our second bound is a classic result in empirical process the-
ory. For functionsg1 ≤ g2, a bracket[g1, g2] is the set of functionsg ∈ G∗ with
g1 ≤ g ≤ g2; [g1, g2] is called anε-bracket underL2(P ) if ‖g1 − g2‖P < ε.
ThenN[](ε,G, L2(P )) denotes the smallest number ofε-brackets (underL2(P ))
sufficient to coverG. Forσ ≥ 0, define the function

J[](σ,G, P ) =
∫ σ

0

√

1 + lnN[](ε,G, L2(P ))dε.

Fix anyH ⊆ [F ], and letGH andGH,P be as above. Then sinceJ[](σ,GH, P ) =
J[](σ,GH,P , P ), Lemma 3.4.2 of van der Vaart and Wellner [35] and a triangle
inequality imply that for some universal constantc ∈ [1,∞), for anym ∈ N and
σ ≥ Dℓ(H;P ),

(21) φℓ(H;P,m) ≤ cJ[] (σ,GH, P )
(

1√
m

+
J[] (σ,GH, P ) ℓ̄

σ2m

)

.

As-is, the right side of (21) nearly satisfies Definition5 already. Only a slight mod-
ification is required to fulfill the requirement of monotonicity inσ. Specifically,
define

(22) φ̊
(2)
ℓ (σ,H;P,m) = inf

λ≥σ
cJ[] (λ,GH, P )

(

1√
m

+
J[] (λ,GH, P ) ℓ̄

λ2m

)

,

for c as in (21). Then taking̊φℓ = φ̊
(2)
ℓ suffices to satisfy Definition5.

Since Definition5 is satisfied for both̊φ(1)ℓ andφ̊(2)ℓ , it is also satisfied for

(23) φ̊ℓ = min
{

φ̊
(1)
ℓ , φ̊

(2)
ℓ

}

.

For the remainder of this section, we supposeφ̊ℓ is defined as in (23) (for all dis-
tributionsP overX ×Y), and study the implications arising from the combination
of this definition with the abstract theorems above.

5.4. VC Subgraph Classes.For a collectionA of sets, a set{z1, . . . , zk} of
points is said to beshatteredby A if |{A ∩ {z1, . . . , zk} : A ∈ A}| = 2k. The
VC dimensionvc(A) of A is then defined as the largest integerk for which there
exist k points {z1, . . . , zk} shattered byA [36]; if no such largestk exists, we
definevc(A) = ∞. For a setG of real-valued functions, denote byvc(G) the
VC dimension of the collection{{(x, y) : y < g(x)} : g ∈ G} of subgraphs of
functions inG (called the pseudo-dimension [22, 31]); to simplify the statement
of results below, we adopt the convention that when the VC dimension of this



24 HANNEKE AND YANG

collection is0, we letvc(G) = 1. A setG is said to be a VC subgraph class if
vc(G) <∞ [35].

Because we are interested in results concerning values ofRℓ(h) − Rℓ(f
⋆), for

functionsh in certain subsetsH ⊆ [F ], we will formulate results below in terms
of vc(GH), for GH defined as above. Depending on certain properties ofℓ, these
results can often be restated directly in terms ofvc(H); for instance, this is true
whenℓ is monotone, sincevc(GH) ≤ vc(H) in that case [12, 22, 29].

The following is a well-known result for VC subgraph classes [see e.g.,35],
derived from the works of Pollard [30] and Haussler [22].

LEMMA 14. For anyG ⊆ G∗, for any measurableF ≥ F(G), for any distribu-
tionQ such that‖F‖Q > 0, for anyε ∈ (0, 1),

N (ε‖F‖Q,G, L2(Q)) ≤ A(G)
(

1

ε

)2vc(G)

.

whereA(G) . (vc(G) + 1)(16e)vc(G). ⋄

In particular, Lemma14 implies that anyG ⊆ G∗ has,∀σ ∈ (0, 1],

J (σ,G,F) ≤
∫ σ

0

√

ln(eA(G)) + 2vc(G) ln(1/ε)dε(24)

≤ 2σ
√

ln(eA(G)) +
√

8vc(G)
∫ σ

0

√

ln(1/ε)dε

= 2σ
√

ln(eA(G)) + σ
√

8vc(G) ln(1/σ) +
√

2πvc(G)erfc
(

√

ln(1/σ)
)

.

Sinceerfc(x) ≤ exp{−x2} for all x ≥ 0, (24) implies∀σ ∈ (0, 1],

(25) J(σ,G,F) . σ
√

vc(G)Log(1/σ).

Applying these observations to boundJ(σ,GH,P ,F) for H ⊆ [F ] andF ≥
F(GH,P ), notingJ(σ,GH,F) = J(σ,GH,P ,F) andvc(GH,P ) = vc(GH), and plug-

ging the resulting bound into (20) yields the following well-known bound onφ(1)ℓ

due to Gińe and Koltchinskii [15]. For anym ∈ N andσ > 0,

(26) φ̊
(1)
ℓ (σ,H;m,P )

. inf
λ≥σ

λ

√

√

√

√

vc(GH)Log
(

‖F(GH,P )‖P
λ

)

m
+

vc(GH)ℓ̄Log
(

‖F(GH,P )‖P
λ

)

m
.

Specifically, to arrive at (26), we relaxed theinfF≥F(GH,P ) in (20) by takingF ≥
F(GH,P ) such that‖F‖P = max{σ, ‖F(GH,P )‖P }, thus maintainingλ/‖F‖P ∈
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(0, 1] for the minimizingλ value, so that (25) remains valid; we also made use of
the fact thatLog ≥ 1, which gives usLog(‖F‖P /λ) = Log(‖F(GH,P )‖P /λ) for
this case.

In particular, (26) implies

(27) M̈ℓ(γ1, γ2;H, P )

. inf
σ≥Dℓ([H](γ2;ℓ,P );P )

(

σ2

γ21
+

ℓ̄

γ1

)

vc(GH)Log
(‖F(GH,P )‖P

σ

)

.

Following Gińe and Koltchinskii [15], for r > 0, defineBH,P (f
⋆
P , r; ℓ) = {g ∈

H : Dℓ(g, f
⋆
P ;P )

2 ≤ r}, and forr0 ≥ 0, define

τℓ(r0;H, P ) = sup
r>r0

∥

∥

∥F
(

GBH,P (f⋆
P ,r;ℓ),P

)∥

∥

∥

2

P

r
∨ 1.

WhenP = PXY , abbreviate this asτℓ(r0;H) = τℓ(r0;H,PXY ), and whenH =
F , further abbreviateτℓ(r0) = τℓ(r0;F ,PXY ). Forλ > 0, whenf⋆P ∈ H andP
satisfies Condition11, (27) implies that,

(28) sup
γ≥λ

M̈ℓ(γ/(4K̃), γ;H(γ; ℓ, P ), P )

.

(

b

λ2−β
+
ℓ̄

λ

)

vc(GH)Log
(

τℓ

(

bλβ ;H, P
))

.

Combining this observation with (6), (8), (9), (10), and Theorem6, we arrive at
a result for the sample complexity of empiricalℓ-risk minimization with a general
VC subgraph class under Conditions10 and11. Specifically, fors : (0,∞)2 →
[1,∞), whenf⋆ ∈ F , (6) implies that

M̄ℓ(Γℓ(ε);F ,PXY , s) ≤ M̃ℓ(Γℓ(ε);F ,PXY , s)

= sup
γ≥Γℓ(ε)

M̃ℓ(γ/2, γ;F(γ; ℓ),PXY , s(Γℓ(ε), γ))

≤ sup
γ≥Γℓ(ε)

M̊ℓ(γ/2, γ;F(γ; ℓ),PXY , s(Γℓ(ε), γ)).(29)

SupposingPXY satisfies Conditions10and11, applying (8), (9), and (28) to (29),

and takings(λ, γ) = Log
(

12γ
λδ

)

, we arrive at the following theorem, which is

implicit in the work of Gińe and Koltchinskii [15].
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THEOREM 15. For a universal constantc ∈ [1,∞), if PXY satisfies Condi-
tion 10 and Condition11, ℓ is classification-calibrated,f⋆ ∈ F , andΨℓ is as in
(16), then for anyε ∈ (0, 1), lettingτℓ = τℓ

(

bΨℓ(ε)
β
)

, for anym ∈ N with

(30) m ≥ c
(

b

Ψℓ(ε)2−β
+

ℓ̄

Ψℓ(ε)

)

(vc(GF )Log (τℓ) + Log (1/δ)) ,

with probability at least1−δ,ERMℓ(F ,Zm) produceŝhwith er(ĥ)−er(f⋆) ≤ ε.
⋄

As noted by Gińe and Koltchinskii [15], in the special case whenℓ is itself
the 0-1 loss, the bound in Theorem15 simplifies quite nicely, since in that case
‖F(GBF,PXY

(f⋆,r;ℓ),PXY
)‖2PXY

= P (DIS (B (f⋆, r))), so thatτℓ(r0) = θ(r0); in
this case, we also havevc(GF ) ≤ vc(F) andΨℓ(ε) = ε/2, and we can takeβ = α
andb = a, so that it suffices to have

(31) m ≥ caεα−2 (vc(F)Log (θ) + Log (1/δ)) ,

whereθ = θ (aεα) andc ∈ [1,∞) is a universal constant. It is known that this is
sometimes the minimax optimal number of samples sufficient for passive learning
[9, 19, 32].

Next, we turn to the performance of Algorithm 1 under the conditions of Theo-
rem15. Specifically, supposePXY satisfies Conditions10and11, and forγ0 ≥ 0,
define

χℓ(γ0) = sup
γ>γ0

P (DIS (B (f⋆, aEℓ (γ)
α)))

bγβ
∨ 1.

Note that‖F(GFj ,PXY
)‖2PXY

≤ ℓ̄2P
(

DIS
(

F
(

Eℓ

(

21−j
)

; 01
)))

. Thus, by (27), for
−⌈log2(ℓ̄)⌉ ≤ j ≤ ⌊log2(2/Ψℓ(ε))⌋,
(32)

M̈ℓ(2
−j−3K̃−1, 21−j ;Fj ,PXY ) .

(

b2j(2−β) + ℓ̄2j
)

vc(GF )Log
(

χℓ (Ψℓ(ε)) ℓ̄
)

.

With a little additional work to define an appropriatesj function and derive
closed-form bounds on the summations in Theorem7, we arrive at the follow-
ing theorem regarding the performance of Algorithm 1 for VC subgraph classes.
For completeness, the remaining technical details of the proof are included inAp-
pendixA

THEOREM 16. For a universal constantc ∈ [1,∞), if PXY satisfies Con-
dition 10 and Condition11, ℓ is classification-calibrated,f⋆ ∈ F , and Ψℓ is
as in (16), for any ε ∈ (0, 1), letting θ = θ (aεα), χℓ = χℓ(Ψℓ(ε)), A1 =
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vc(GF )Log(χℓℓ̄)+Log(1/δ),B1 = min
{

1
1−2(α+β−2) ,Log(ℓ̄/Ψℓ(ε))

}

, andC1 =

min
{

1
1−2(α−1) ,Log(ℓ̄/Ψℓ(ε))

}

, if

(33) u ≥ c
(

b

Ψℓ(ε)2−β
+

ℓ̄

Ψℓ(ε)

)

A1

and

(34) n ≥ cθaεα
(

b(A1 + Log(B1))B1

Ψℓ(ε)2−β
+
ℓ̄(A1 + Log(C1))C1

Ψℓ(ε)

)

,

then, with argumentsℓ, u, andn, and an appropriatês function satisfying(12),
Algorithm 1 uses at mostu unlabeled samples and makes at mostn label requests,
and with probability at least1 − δ, returns a function̂h with er(ĥ) − er(f⋆) ≤ ε.

⋄

To be clear, in specifyingB1 andC1, we have adopted the convention that1/0 =
∞ andmin{∞, x} = x for anyx ∈ R, so thatB1 andC1 are well-defined even
whenα = β = 1, orα = 1, respectively. Note that, whenα+ β < 2,B1 = O(1),
so that the asymptotic dependence onε in (34) isO

(

θεαΨℓ(ε)
β−2Log(χℓ)

)

, while
in the case ofα = β = 1, it is O (θLog(1/ε)(Log(θ) + Log(Log(1/ε)))). It is
likely that the logarithmic and constant factors can be improved in many cases
(particularly theLog(χℓℓ̄),B1, andC1 factors).

Comparing the result in Theorem16to Theorem15, we see that the condition on
u in (33) is almost identical to the condition onm in (30), aside from a change in
the logarithmic factor, so that the total number of data points needed is roughlythe
same. However, the number oflabelsindicated by (34) may often be significantly
smaller than the condition in (30), reducing it by a factor of roughlyθaεα. This
reduction is particularly strong whenθ is bounded by a finite constant. Moreover,
this is the sametypeof improvement that is known to occur whenℓ is itself the
0-1 loss [19], so that in particular these results agree with the existing analysis in
this special case, and are therefore sometimes nearly minimax [19, 32]. Regarding
the slight difference between (33) and (30) from replacingτℓ by χℓℓ̄, the effect is
somewhat mixed, and which of these is smaller may depend on the particular class
F and lossℓ; we can generally boundχℓ as a function ofθ(aεα),ψℓ, a,α, b, andβ.
In the special case ofℓ equal the0-1 loss, bothτℓ andχℓℓ̄ are equal toθ(a(ε/2)α).

We note that the valueŝs(γ,m) used in the proof of Theorem16 have a direct
dependence on the parametersb, β, a, andα from Condition11and Condition10.
Such a dependence may be undesirable for many applications, where information
about these values is not available. However, one can easily follow this same proof,

taking ŝ(2−j ,m) = Log
(

12 log2(4ℓ̄2
j)2 log2(2m)2

δ

)

instead, which only leads to an
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increase by alog log factor: specifically, replacing the factor ofA1 in (33), and
the factors(A1 + Log(B1)) and(A1 + Log(C1)) in (34), with a factor of(A1 +
Log(Log(ℓ̄/Ψℓ(ε)))). It is not clear whether it is always possible to achieve the
slightly tighter result of Theorem16 without having direct access to the valuesb,
β, a, andα in the algorithm.

In the special case whenℓ satisfies Condition3, we can derive a sometimes-
stronger result via Corollary9. Specifically, we can combine (27), (8), (9), and
Lemma 12, to get that iff⋆ ∈ F and Condition3 is satisfied, then forj ≥
−⌈log2(ℓ̄)⌉ in Corollary9,

M̊ℓ

(

2−j−8

P(Uj)
,
21−j

P(Uj)
;Fj ,PUj , s

)

(35)

.
(

b
(

2jP(Uj)
)2−β

+ 2j ℓ̄P(Uj)
)(

vc(GF )Log
(

ℓ̄2jβP(Uj)β/b
)

+ s
)

,

whereb andβ are as in Lemma12. Plugging this into Corollary9, with ŝ defined
analogous to that used in the proof of Theorem16, and bounding the summations
in the conditions foru andn in Corollary 9, we arrive at the following theorem.
The details of the proof proceed along similar lines as the proof of Theorem16,
and a sketch of the remaining technical details is included in AppendixA.

THEOREM 17. For a universal constantc ∈ [1,∞), if PXY satisfies Con-
dition 10, ℓ is classification-calibrated and satisfies Condition3, f⋆ ∈ F , Ψℓ

is as in (16), and b and β are as in Lemma12, then for anyε ∈ (0, 1), let-

ting θ = θ(aεα), A2 = vc(GF )Log
(

(

ℓ̄/b
)

(aθεα/Ψℓ(ε))
β
)

+ Log (1/δ), B2 =

min
{

1
1−2(α−1)(2−β) ,Log

(

ℓ̄/Ψℓ(ε)
)

}

, andC2 = min
{

1
1−2(α−1) ,Log

(

ℓ̄/Ψℓ(ε)
)

}

,

if

(36) u ≥ c
(

b (aθεα)1−β

Ψℓ(ε)2−β
+

ℓ̄

Ψℓ(ε)

)

A2,

and
(37)

n ≥ c
(

b(A2 + Log(B2))B2

(

aθεα

Ψℓ(ε)

)2−β

+ ℓ̄(A2 + Log(C2))C2

(

aθεα

Ψℓ(ε)

)

)

,

then, with argumentsℓ, u, andn, and an appropriatês function satisfying(12),
Algorithm 1 uses at mostu unlabeled samples and makes at mostn label requests,
and with probability at least1 − δ, returns a function̂h with er(ĥ) − er(f⋆) ≤ ε.

⋄
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Examining the asymptotic dependence onε in the above result, the sufficient

number of unlabeled samples isO

(

(θεα)1−β

Ψℓ(ε)2−βLog

(

(

θεα

Ψℓ(ε)

)β
))

, and the number

of label requests isO

(

(

θεα

Ψℓ(ε)

)2−β
Log

(

(

θεα

Ψℓ(ε)

)β
))

in the case thatα < 1, or

O
(

θ2−βLog(1/ε)Log
(

θβLog(1/ε)
))

in the case thatα = 1. This is noteworthy
in the caseα > 0 andrℓ > 2, for at least two reasons. First, the number of label
requests indicated by this result can often be smaller than that indicated by Theo-

rem16, by a factor of roughlyÕ
(

(θεα)1−β
)

; this is particularly interesting when

θ is bounded by a finite constant. The second interesting feature of this result is that
even the sufficient number ofunlabeledsamples, as indicated by (36), can often be
smaller than the number oflabeledsamples sufficient forERMℓ, as indicated by

Theorem15, again by a factor of roughlỹO
(

(θεα)1−β
)

. This indicates that, in the

case of a surrogate lossℓ satisfying Condition3 with rℓ > 2, when Theorem15 is
tight, even if we have complete access to a fully labeled data set, we may still prefer
to use Algorithm 1 rather thanERMℓ; this is somewhat surprising, since (as (37)
indicates) we expect Algorithm 1 to ignore the vast majority of the labels in this
case. That said, it is not clear whether there exist natural classification-calibrated
lossesℓ satisfying Condition3 with rℓ > 2 for which the indicated sufficient size
of m in Theorem15 is ever competitive with the known results for methods that
directly optimize the empirical0-1 risk (i.e., Theorem15with ℓ the0-1 loss); thus,
the improvements inu andn reflected by Theorem17 may simply indicate that
Algorithm 1 is, to some extent, compensating for a choice of lossℓ that would
otherwise lead to suboptimal label complexities.

We note that, as in Theorem16, the valueŝs used to obtain this result have
a direct dependence on certain values, which are typically not directly accessi-
ble in practice: in this case,a, α, and θ. However, as was the case for Theo-
rem 16, we can obtain only slightly worse results by instead takingŝ(2−j ,m) =

Log
(

12 log2(4ℓ̄2
j)2 log2(2m)2

δ

)

, which again only leads to an increase by alog log

factor: replacing the factor ofA2 in (36), and the factors(A2 + Log(B2)) and
(A2 + Log(C2)) in (37), with a factor of(A2 + Log(Log(ℓ̄/Ψℓ(ε)))). As before,
it is not clear whether the slightly tighter result of Theorem17 is always available,
without requiring direct dependence on these quantities.

5.5. Entropy Conditions. Next we turn to problems satisfying certain entropy
conditions. In particular, the following represent two commonly-studied condi-
tions, which allow for concise statement of results below.

CONDITION 18. For someq ≥ 1, ρ ∈ (0, 1), andF ≥ F(GF ,PXY
), either
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∀ε > 0,

(38) lnN[](ε‖F‖PXY
,GF , L2(PXY )) ≤ qε−2ρ,

or for all finitely discreteP , ∀ε > 0,

(39) lnN (ε‖F‖P ,GF , L2(P )) ≤ qε−2ρ.

⋄

In particular, note that whenF satisfies Condition18, for 0 ≤ σ ≤ 2‖F‖PXY
,

(40) φ̊ℓ(σ,F ;PXY ,m) . max











√
q‖F‖ρPXY

σ1−ρ

(1− ρ)m1/2
,
ℓ̄
1−ρ
1+ρ q

1
1+ρ ‖F‖

2ρ
1+ρ

PXY

(1− ρ)
2

1+ρm
1

1+ρ











.

SinceDℓ([F ]) ≤ 2‖F‖PXY
, this implies that for any numerical constantc ∈ (0, 1],

for everyγ ∈ (0,∞), if PXY satisfies Condition11, then

(41) M̈ℓ(cγ, γ;F ,PXY ) .
q‖F‖2ρPXY

(1− ρ)2 max
{

b1−ργβ(1−ρ)−2, ℓ̄1−ργ−(1+ρ)
}

.

Combined with (8), (9), (10), and Theorem6, taking s(λ, γ) = Log
(

12γ
λδ

)

, we

arrive at the following classic result [e.g.,6, 35].

THEOREM 19. For a universal constantc ∈ [1,∞), if PXY satisfies Condi-
tion 10 and Condition11, F andPXY satisfy Condition18, ℓ is classification-
calibrated,f⋆ ∈ F , andΨℓ is as in(16), then for anyε ∈ (0, 1) andm with

m ≥ c
q‖F‖2ρPXY

(1− ρ)2
(

b1−ρ

Ψℓ(ε)2−β(1−ρ)
+

ℓ̄1−ρ

Ψℓ(ε)1+ρ

)

+ c

(

b

Ψℓ(ε)2−β
+

ℓ̄

Ψℓ(ε)

)

Log

(

1

δ

)

,

with probability at least1−δ,ERMℓ(F ,Zm) produceŝhwith er(ĥ)−er(f⋆) ≤ ε.
⋄

Next, turning to the analysis of Algorithm 1 under these same conditions, com-
bining (41) with (8), (9), and Theorem7, we have the following result. The details
of the proof follow analogously to the proof of Theorem16, and are therefore omit-
ted for brevity.
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THEOREM 20. For a universal constantc ∈ [1,∞), if PXY satisfies Condi-
tion 10 and Condition11, F andPXY satisfy Condition18, ℓ is classification-
calibrated,f⋆ ∈ F , andΨℓ is as in (16), then for anyε ∈ (0, 1), letting B1

andC1 be as in Theorem16, B3 = min
{

1
1−2(α+β(1−ρ)−2) ,Log(ℓ̄/Ψℓ(ε))

}

, C3 =

min
{

1
1−2(α−(1+ρ)) ,Log(ℓ̄/Ψℓ(ε))

}

, andθ = θ (aεα), if

(42) u ≥ c
q‖F‖2ρPXY

(1− ρ)2
(

b1−ρ

Ψℓ(ε)2−β(1−ρ)
+

ℓ̄1−ρ

Ψℓ(ε)1+ρ

)

+ c

(

b

Ψℓ(ε)2−β
+

ℓ̄

Ψℓ(ε)

)

Log

(

1

δ

)

and

(43) n ≥ cθaεα
q‖F‖2ρPXY

(1− ρ)2
(

b1−ρB3

Ψℓ(ε)2−β(1−ρ)
+

ℓ̄1−ρC3

Ψℓ(ε)1+ρ

)

+ cθaεα
(

bB1Log(B1/δ)

Ψℓ(ε)2−β
+
ℓ̄C1Log(C1/δ)

Ψℓ(ε)

)

,

then, with argumentsℓ, u, andn, and an appropriatês function satisfying(12),
Algorithm 1 uses at mostu unlabeled samples and makes at mostn label requests,
and with probability at least1 − δ, returns a function̂h with er(ĥ) − er(f⋆) ≤ ε.

⋄

The sufficient size ofu in Theorem20 is essentially identical (up to the con-
stant factors) to the number of labels sufficient forERMℓ to achieve the same,
as indicated by Theorem19. In particular, the dependence onε in these results is
O
(

Ψℓ(ε)
β(1−ρ)−2

)

. On the other hand, whenθ(εα) = o(ε−α), the sufficient size
of n in Theorem20 doesreflect an improvement in the number of labels indicated
by Theorem19, by a factor with dependence onε of O (θεα).

As before, in the special case whenℓ satisfies Condition3, we can derive some-
times stronger results via Corollary9. In this case, we will distinguish between the
cases of (39) and (38), as we find a slightly stronger result for the former.

First, suppose (39) is satisfied for all finitely discreteP and all ε > 0, with
F ≤ ℓ̄. Then following the derivation of (41) above, combined with (9), (8), and
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Lemma12, for values ofj ≥ −⌈log2(ℓ̄)⌉ in Corollary9,

M̊ℓ

(

2−j−8

P(Uj)
,
21−j

P(Uj)
;Fj ,PUj , s

)

.
qℓ̄2ρ

(1− ρ)2
(

b1−ρ
(

2jP(Uj)
)2−β(1−ρ)

+ ℓ̄1−ρ
(

2jP(Uj)
)1+ρ

)

+
(

b
(

2jP(Uj)
)2−β

+ ℓ̄2jP(Uj)
)

s,

whereq andρ are from Lemma12. This immediately leads to the following result
by reasoning analogous to the proof of Theorem17.

THEOREM 21. For a universal constantc ∈ [1,∞), if PXY satisfies Con-
dition 10, ℓ is classification-calibrated and satisfies Condition3, f⋆ ∈ F , Ψℓ

is as in (16), b and β are as in Lemma12, and (39) is satisfied for all finitely
discreteP and all ε > 0, with F ≤ ℓ̄, then for anyε ∈ (0, 1), letting B2

and C2 be as in Theorem17, B4 = min
{

1
1−2(α−1)(2−β(1−ρ)) ,Log(ℓ̄/Ψℓ(ε))

}

,

C4 = min
{

1
1−2(α−1)(1+ρ) ,Log(ℓ̄/Ψℓ(ε))

}

, andθ = θ (aεα), if

u ≥ c
(

qℓ̄2ρ

(1− ρ)2
)

(

(

b1−ρ

Ψℓ(ε)

)(

aθεα

Ψℓ(ε)

)1−β(1−ρ)

+

(

ℓ̄1−ρ

Ψℓ(ε)

)(

aθεα

Ψℓ(ε)

)ρ
)

+ c

(

(

b

Ψℓ(ε)

)(

aθεα

Ψℓ(ε)

)1−β

+
ℓ̄

Ψℓ(ε)

)

Log(1/δ)

and

n ≥ c
(

qℓ̄2ρ

(1− ρ)2
)

(

B4b
1−ρ

(

aθεα

Ψℓ(ε)

)2−β(1−ρ)

+ C4ℓ̄
1−ρ

(

aθεα

Ψℓ(ε)

)1+ρ
)

+ c

(

B2Log(B2/δ)b

(

aθεα

Ψℓ(ε)

)2−β

+ C2Log(C2/δ)ℓ̄

(

aθεα

Ψℓ(ε)

)

)

,

then, with argumentsℓ, u, andn, and an appropriatês function satisfying(12),
Algorithm 1 uses at mostu unlabeled samples and makes at mostn label requests,
and with probability at least1 − δ, returns a function̂h with er(ĥ) − er(f⋆) ≤ ε.

⋄

Compared to Theorem20, in terms of the asymptotic dependence onε, the suffi-

cient sizes for bothu andn here may be smaller by a factor ofO
(

(θεα)1−β(1−ρ)
)

,
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which sometimes represents a significant refinement, particularly whenθ is much
smaller thanε−α. In particular, as was the case in Theorem17, when θ(ε) =
o(1/ε), the size ofu indicated by Theorem21 is smaller than the known results
for ERMℓ(F ,Zm) from Theorem19.

The case where (38) is satisfied can be treated similarly, though the result we
obtain here is slightly weaker. Specifically, for simplicity suppose (38) is satis-
fied with F = ℓ̄ constant. In this case, we haveℓ̄ ≥ F(GFj ,PUj

) as well, while

N[](εℓ̄,GFj , L2(PUj )) = N[](εℓ̄
√

P(Uj),GFj , L2(PXY )), which is no larger than
N[](εℓ̄

√

P(Uj),GF , L2(PXY )), so thatFj andPUj also satisfy (38) with F = ℓ̄;
specifically,

lnN[]

(

εℓ̄,GFj , L2(PUj )
)

≤ qP(Uj)−ρε−2ρ.

Thus, based on (41), (8), (9), and Lemma12, we have that iff⋆ ∈ F and Condi-
tion 3 is satisfied, then forj ≥ −⌈log2(ℓ̄)⌉ in Corollary9,

M̊ℓ

(

2−j−8

P(Uj)
,
21−j

P(Uj)
;Fj ,PUj , s

)

.

(

qℓ̄2ρ

(1− ρ)2
)

P(Uj)−ρ
(

b1−ρ
(

2jP(Uj)
)2−β(1−ρ)

+ ℓ̄1−ρ
(

2jP(Uj)
)1+ρ

)

+
(

b
(

2jP(Uj)
)2−β

+ ℓ̄2jP(Uj)
)

s,

whereb andβ are as in Lemma12. Combining this with Corollary9 and reasoning
analogously to the proof of Theorem17, we have the following result.

THEOREM 22. For a universal constantc ∈ [1,∞), if PXY satisfies Con-
dition 10, ℓ is classification-calibrated and satisfies Condition3, f⋆ ∈ F , Ψℓ is
as in (16), b and β are as in Lemma12, and (38) is satisfied withF = ℓ̄ con-
stant, then for anyε ∈ (0, 1), letting B2 and C2 be as in Theorem17, B5 =

min
{

1
1−2(α−1)(2−β(1−ρ))−αρ ,Log

(

ℓ̄
Ψℓ(ε)

)}

, C5 = min
{

1
1−2α−1−ρ ,Log

(

ℓ̄
Ψℓ(ε)

)}

,

andθ = θ (aεα), if

u ≥ c
(

qℓ̄2ρ

(1− ρ)2
)

(

(

b1−ρ

Ψℓ(ε)1+ρ

)(

aθεα

Ψℓ(ε)

)(1−β)(1−ρ)

+
ℓ̄1−ρ

Ψℓ(ε)1+ρ

)

+ c

(

(

b

Ψℓ(ε)

)(

aθεα

Ψℓ(ε)

)1−β

+
ℓ̄

Ψℓ(ε)

)

Log(1/δ)
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and

n ≥ c
(

qℓ̄2ρ

(1− ρ)2
)

(

(

B5b
1−ρ

Ψℓ(ε)ρ

)(

aθεα

Ψℓ(ε)

)1+(1−β)(1−ρ)

+
C5ℓ̄

1−ρaθεα

Ψℓ(ε)1+ρ

)

+ c

(

bB2Log(B2/δ)

(

aθεα

Ψℓ(ε)

)2−β

+ ℓ̄C2Log(C2/δ)

(

aθεα

Ψℓ(ε)

)

)

,

then, with argumentsℓ, u, andn, and an appropriatês function satisfying(12),
Algorithm 1 uses at mostu unlabeled samples and makes at mostn label requests,
and with probability at least1 − δ, returns a function̂h with er(ĥ) − er(f⋆) ≤ ε.

⋄

In this case, compared to Theorem20, in terms of the asymptotic dependence
on ε, the sufficient sizes for bothu andn here may be smaller by a factor of

O
(

(θεα)(1−β)(1−ρ)
)

, which may sometimes be significant, though not quite as

dramatic a refinement as we found under (39) in Theorem21. As with Theorem21,
whenθ(ε) = o(1/ε), the size ofu indicated by Theorem22 is smaller than the
known results forERMℓ(F ,Zm) from Theorem19.

5.6. Remarks on VC Major and VC Hull Classes.Another widely-studied
family of function classes includesVC Major classes. Specifically, we sayG is
a VC Major class with indexd if d = vc({{z : g(z) ≥ t} : g ∈ G, t ∈ R}) < ∞.
We can derive results for VC Major classes, analogously to the above, as follows.
For brevity, we leave many of the details as an exercise for the reader. For any
VC Major classG ⊆ G∗ with index d, by reasoning similar to that of Giné and
Koltchinskii [15], one can show that ifF = ℓ̄1U ≥ F(G) for some measurable
U ⊆ X × Y, then for any distributionP andε > 0,

lnN (ε‖F‖P ,G, L2(P )) .
d

ε
log

(

ℓ̄

ε

)

log

(

1

ε

)

.

This implies that forF a VC Major class, andℓ classification-calibrated and ei-
ther nonincreasing or Lipschitz, iff⋆ ∈ F andPXY satisfies Condition10 and
Condition11, then the conditions of Theorem7 can be satisfied with the proba-

bility bound being at least1 − δ, for someu = Õ
(

θ1/2εα/2

Ψℓ(ε)2−β/2 +Ψℓ(ε)
β−2
)

and

n = Õ
(

θ3/2ε3α/2

Ψℓ(ε)2−β/2 + θεαΨℓ(ε)
β−2
)

, whereθ = θ(aεα), andÕ(·) hides logarith-

mic and constant factors. Under Condition3, withβ as in Lemma12, the conditions
of Corollary9 can be satisfied with the probability bound being at least1 − δ, for

someu = Õ

(

(

1
Ψℓ(ε)

)(

θεα

Ψℓ(ε)

)1−β/2
)

andn = Õ

(

(

θεα

Ψℓ(ε)

)2−β/2
)

.
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For example, forX = [0, 1] andF the class of all nondecreasing functions
mappingX to [−1, 1], F is a VC Major class with index1, andθ(0) ≤ 2 for all
distributionsP. Thus, for instance, ifη is nondecreasing andℓ is the quadratic loss,
thenf⋆ ∈ F , and Algorithm 1 achieves excess error rateε with high probability
for someu = Õ

(

ε2α−3
)

andn = Õ
(

ε3(α−1)
)

.
VC Major classes are contained in special tydpes ofVC Hull classes, which

are more generally defined as follows. LetC be a VC Subgraph class of func-
tions onX , with bounded envelope, and forB ∈ (0,∞), let F = Bconv(C) =
{

x 7→ B
∑

j λjhj(x) :
∑

j |λj | ≤ 1, hj ∈ C
}

denote the scaled symmetric convex

hull of C; thenF is called a VC Hull class. For instance, these spaces are of-
ten used in conjunction with the popular AdaBoost learning algorithm. One can
derive results for VC Hull classes following analogously to the above. Specifi-
cally, for a VC Hull classF = Bconv(C) with d = vc(C), if ℓ is classification-
calibrated and Lipschitz,f⋆ ∈ F , andPXY satisfies Condition10 and Con-
dition 11, then the conditions of Theorem7 can be satisfied with the probabil-

ity bound being at least1 − δ, for someu = Õ
(

(θεα)
d

d+2 Ψℓ(ε)
2β
d+2

−2
)

and

n = Õ
(

(θεα)
2d+2
d+2 Ψℓ(ε)

2β
d+2

−2
)

. Under Condition3, with β as in Lemma12, the

conditions of Corollary9 can be satisfied with the probability bound being at least

1 − δ, for someu = Õ

(

(

1
Ψℓ(ε)

)(

θεα

Ψℓ(ε)

)1− 2β
d+2

)

andn = Õ

(

(

θεα

Ψℓ(ε)

)2− 2β
d+2

)

.

However, it is not clear whether these results for VC Hull classes have any practi-
cal implications, since we do not know of any examples of VC Hull classes where
these results reflect an improvement over a more direct analysis ofERMℓ for these
scenarios.

APPENDIX A: PROOFS

PROOF OFTHEOREM 7. The proof has two main components: first, showing
that, with high probability,f⋆ ∈ V is maintained as an invariant, and second,
showing that, with high probability, the setV will be sufficiently reduced to provide
the guarantee on̂h after at most the stated number of label requests, given the value
of u is as large as stated. Both of these components are served by the following
application of Lemma4.

LetK denote the set of values ofk ∈ N obtained in Algorithm 1. LetS denote
the set of pairs(k′,m′) such thatk′ ∈ K and Algorithm 1 reaches the valuem =
m′ in Step 2 whilek = k′. For eachk ∈ K, let V (k) denote the value ofV
upon obtaining that value ofk in Algorithm 1 (either in Step 0 or Step 8), and let
Dk = DIS(V (k)). For each(k,m) ∈ S, letQm denote the value ofQ in Step 5 on
the round that Algorithm 1 obtains that value ofm.

Consider any(k,m) ∈ S. Let Lm = {(mk + 1, Ymk+1), . . . , (m,Ym)}. Note
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that∀h, g ∈ V (k),

(44) (|Qm| ∨ 1) (Rℓ(h;Qm)− Rℓ(g;Qm))

= (m−mk) (Rℓ(hDk
;Lm)− Rℓ(gDk

;Lm)) ,

and furthermore that

(45) (|Qm| ∨ 1)Ûℓ(V
(k);Qm, ŝ(γ̂k,m−mk))

= (m−mk)Ûℓ(V
(k)
Dk

;Lm, ŝ(γ̂k,m−mk)).

Applying Lemma4 under the conditional distribution givenk, V (k), mk, and
γ̂k, we have that for anym > mk, on an event of (conditional) probability at
least1 − 6e−ŝ(γ̂k,m−mk), if f⋆ ∈ V (k) and (k,m) ∈ S, then lettingûk,m =

Ûℓ

(

V
(k)
Dk

;Lm, ŝ (γ̂k,m−mk)
)

, everyhDk
∈ V (k)

Dk
has

Rℓ(hDk
)− Rℓ(f

⋆) < Rℓ(hDk
;Lm)− Rℓ(f

⋆;Lm) + ûk,m,(46)

Rℓ(hDk
;Lm)− min

gDk
∈V

(k)
Dk

Rℓ(gDk
;Lm) < Rℓ(hDk

)− Rℓ(f
⋆) + ûk,m,(47)

and furthermore

(48) ûk,m < Ũℓ

(

V
(k)
Dk

;PXY ,m−mk, ŝ (γ̂k,m−mk)
)

.

Let jk = ⌊log2(1/γ̂k)⌋ for values ofk ∈ K. Then (12) impliesŝ(γ̂k,m−mk) =
sjk(m − mk). By a union bound and the law of total probability, on an event of
probability at least

1− E





∑

k∈K:γ̂k≥Γℓ(ε)/2

log2(ujk
)

∑

i=1

6e−sjk
(2i)



 ,

for every (k,m) ∈ S with γ̂k ≥ Γℓ(ε)/2, m ≤ mk + ujk , log2(m − mk) ∈
N, andf⋆ ∈ V (k), the inequalities (46), (47), and (48) hold. Call this eventE.
Note thatγ̂k ≥ Γℓ(ε)/2 implies jk ≤ ⌊log2(2/Γℓ(ε))⌋. Furthermore, since each
k ∈ K with k > 1 has γ̂k ≤ γ̂k−1/2, and γ̂1 = ℓ̄, we havejk+1 ≥ jk + 1

andjk ≥ k − ⌈log2(2ℓ̄)⌉. This implies
∑

k∈K:γ̂k≥Γℓ(ε)/2

∑log2(ujk
)

i=1 6e−sjk
(2i) ≤

∑⌊log2(2/Γℓ(ε))⌋

j=−⌈log2(ℓ̄)⌉

∑log2(uj)
i=1 6e−sj(2

i), so that eventE has probability at least

1−
⌊log2(2/Γℓ(ε))⌋

∑

j=−⌈log2(ℓ̄)⌉

log2(uj)
∑

i=1

6e−sj(2
i).
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For the remainder of this proof, we will suppose the eventE occurs.
Definej0 = −∞ andm0 = uj0 = 0. We proceed by induction, establishing the

following claims for allk ∈ K ∪ {0} havingjk ≤ ⌊log2(2/Γℓ(ε))⌋.
Claim 1: max{m ∈ N : (k,m) ∈ S}∪{mk} ≤ mk+ujk . If equality is obtained,

then we also havek + 1 ∈ K.
Claim 2: If k + 1 ∈ K, then∀h ∈ V (k+1), Rℓ(hDk+1

)− Rℓ(f
⋆) < 2γ̂k+1.

Claim 3: If k + 1 ∈ K, thenf⋆ ∈ V (k+1).

We can think ofk = 0 as a base case for this inductive proof, since then the first
claim is trivially satisfied, while the second claim is satisfied due toRℓ(hD1) ≤
ℓ̄ < 2γ̂1, and the third claim is satisfied by assumption (sinceV (1) = F). Now
suppose these three claims hold fork equalk′ − 1, for somek′ ∈ N with k′ ∈ K
andjk′ ≤ ⌊log2(2/Γℓ(ε))⌋.

If it happens that(k′,mk′ +ujk′ ) ∈ S, then by definition ofujk′ and monotonic-

ity of m 7→ Ůℓ(·, ·; ·,m, ·), we have

Ůℓ

(

Fjk′ , 2
1−jk′ ;PXY , ujk′ , sjk′

(

ujk′
))

≤ 2−jk′−2.

Plugging in the definition ofjk′ , by (12) and (7), this implies

(49) Ůℓ

(

Fjk′ , 2γ̂k′ ;PXY , ujk′ , ŝ
(

γ̂k′ , ujk′
))

≤ γ̂k′/2.

Furthermore, sincef⋆ ∈ F , Claim 2 and the definition ofEℓ(·) imply V (k′)
Dk′

⊆
[F ] (Eℓ (2γ̂k′) ; 01). Since Claim 3 and the definition ofDk′ imply sign(hDk′

) =

sign(h) for all h ∈ V (k′), we haveer(h) = er(hDk′
) for all h ∈ V (k′), so that

V (k′) ⊆ [F ] (Eℓ (2γ̂k′) ; 01); we also haveV k′ ⊆ F , so that together these imply

(50) V (k′) ⊆ F (Eℓ (2γ̂k′) ; 01) ⊆ F
(

Eℓ

(

21−jk′
)

; 01
)

.

This also impliesDk′ ⊆ DIS
(

F
(

Eℓ

(

21−jk′
)

; 01
))

. Combined with (49) and (7),
these imply

Ůℓ

(

V
(k′)
Dk′

, 2γ̂k′ ;PXY , ujk′ , ŝ
(

γ̂k′ , ujk′
)

)

≤ γ̂k′/2.

Together with (6), this implies

Ũℓ

(

V
(k′)
Dk′

(2γ̂k′ ; ℓ) ;PXY , ujk′ , ŝ
(

γ̂k′ , ujk′
)

)

≤ γ̂k′/2.

Claim 2 impliesV (k′)
Dk′

= V
(k′)
Dk′

(2γ̂k′ ; ℓ), which means

Ũℓ

(

V
(k′)
Dk′

;PXY , ujk′ , ŝ
(

γ̂k′ , ujk′
)

)

≤ γ̂k′/2.
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Sincelog2(ujk′ ) ∈ N, jk′ ≤ ⌊log2(2/Γℓ(ε))⌋, and Claim 3 impliesf⋆ ∈ V (k′),
combining the above with (48) implies that on the eventE,

Ûℓ

(

V
(k′)
Dk′

;Lmk′+ujk′
, ŝ
(

γ̂k′ , ujk′
)

)

≤ γ̂k′/2.

By (45), this also means

Ûℓ

(

V (k′);Qmk′+ujk′
, ŝ
(

γ̂k′ , ujk′
)

) |Qmk′+ujk′
| ∨ 1

ujk′
≤ γ̂k′/2.

The left hand side of this inequality is precisely the value

T̂ℓ

(

V (k′);Qmk′+ujk′
,mk′ + ujk′ , k

′
) |Qmk′+ujk′

| ∨ 1

ujk′
,

so that the condition in Step 5 of Algorithm 1 will be satisfied if and whenk = k′

andm = mk′ + ujk′ . In summary, we have shown that if(k′,mk′ + ujk′ ) ∈ S,
thenmax{m ∈ N : (k′,m) ∈ S} ∪ {mk′} = mk′ + ujk′ andk′ + 1 ∈ K.
Furthermore, since{m ∈ N : (k′,m) ∈ S} ∪ {mk′} is a sequence ofconsecutive
integers includingmk′ , if (k′,mk′ + ujk′ ) /∈ S, thenmax{m ∈ N : (k′,m) ∈
S} ∪ {mk′} < mk′ + ujk′ . In either case, we have established Claim 1 fork equal
to k′.

Next we consider Claim 2 and Claim 3. Ifk′ + 1 /∈ K, then Claim 2 and Claim
3 are trivially satisfied fork equal tok′. Otherwise, supposek′ + 1 ∈ K. Let
m′ = max{m ∈ N : (k′,m) ∈ S}∪{mk′}. By Claim 1, we havem′ ≤ mk′+ujk′ .
Furthermore,k′ + 1 ∈ K implies that the condition in Step 5 in Algorithm 1 is
satisfied fork equalk′ andm equalm′, so thatlog2(m

′ −mk′) ∈ N and

V (k′+1) =

{

h ∈ V (k′) :

Rℓ(h;Qm′)− min
g∈V (k′)

Rℓ(g;Qm′) ≤ Ûℓ

(

V (k′);Qm′ , ŝ
(

γ̂k′ ,m
′ −mk′

)

)

}

.

By (44) and the definition of̂γk′+1, this is equivalently expressed as
(51)

V (k′+1) =

{

h ∈ V (k′) : Rℓ(hDk′
;Lm′)− min

g∈V (k′)
Rℓ(gDk′

;Lm′) ≤ γ̂k′+1

}

.

By Claim 3,f⋆ ∈ V (k′); thus, (46) implies that on the eventE, everyh ∈ V (k′+1)

has

Rℓ(hDk′
)− Rℓ(f

⋆) < γ̂k′+1 + Ûℓ

(

V
(k′)
Dk′

;Lm′ , ŝ
(

γ̂k′ ,m
′ −mk′

)

)

.
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By (45), this is equivalently expressed as

Rℓ(hDk′
)− Rℓ(f

⋆) < 2γ̂k′+1.

SinceRℓ(hDk′+1
) ≤ Rℓ(hDk′

), we have established Claim 2 fork equal tok′.

Furthermore, Claim 3 impliesf⋆ ∈ V (k′), so that by (47), on the eventE, we
have

Rℓ(f
⋆;Lm′)− min

g∈V (k′)
Rℓ(gDk′

;Lm′) < Ûℓ

(

V
(k′)
Dk′

;Lm′ , ŝ
(

γ̂k′ ,m
′ −mk′

)

)

.

By (45) and the definition of̂γk′+1, the right hand side of this inequality is equal to
γ̂k′+1. In particular, combined with (51), this impliesf⋆ ∈ V (k′+1), which estab-
lishes Claim 3 fork equal tok′.

Finally, note thatjk is nondecreasing, so that the values ofk ∈ K ∪ {0} with
jk ≤ ⌊log2(2/Γℓ(ε))⌋ form a sequence of consecutive integers starting with0.
Thus, by the principle of induction, these three claims hold (on eventE) for all
k ∈ K for which jk ≤ ⌊log2(2/Γℓ(ε))⌋.

Now note that, by Claim 2, for allk ∈ K with jk−1 ≤ ⌊log2(2/Γℓ(ε))⌋,

(52) V
(k)
Dk
⊆ F∗ (Eℓ (2γ̂k) ; 01) .

Since everyh ∈ V (k) hassign(h(x)) = sign(f⋆(x)) = sign(hDk
(x)) for all

x /∈ Dk, we have that∀h ∈ V (k), er(h) = er(hDk
). Thus, sinceV (k) ⊆ F and

f⋆ ∈ F , (52) implies

(53) V (k) ⊆ F (Eℓ (2γ̂k) ; 01) .

In particular, lettingk∗ = max{k ∈ K : jk ≤ ⌊log2(2/Γℓ(ε))⌋}, if k∗ +
1 ∈ K, thenjk∗+1 > ⌊log2(2/Γℓ(ε))⌋, so thatγ̂k∗+1 < Γℓ(ε)/2, which means
Eℓ(2γ̂k∗+1) ≤ ε. Together with (53), this impliesV (k∗+1) ⊆ F∗(ε; 01). Since the
update in Step 7 always keeps at least one element inV , the functionĥ in Step
9 exists, and haŝh ∈ V (maxK) =

⋂

k∈K V (k) ⊆ V (k∗+1) ⊆ F∗(ε; 01), so that

er
(

ĥ
)

− er (f⋆) ≤ ε, as claimed.

All that remains is to bound the sizes ofu andn sufficient to guaranteek∗+1 ∈
K. By Claim 1,k∗ + 1 ∈ K would be guaranteed as long as

u ≥
k∗
∑

k=1

ujk and n ≥
mk∗+ujk∗
∑

m=mk∗+1

1Dk∗
(Xm) +

k∗−1
∑

k=1

mk+1
∑

m=mk+1

1Dk
(Xm).(54)
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Since everyk ≤ k∗ has−⌈log2(ℓ̄)⌉ ≤ jk ≤ ⌊log2(2/Γℓ(ε))⌋, and (as noted above)
jk ≥ jk−1 + 1, we have that

(55)
k∗
∑

k=1

ujk ≤
⌊log2(2/Γℓ(ε))⌋

∑

j=−⌈log2(ℓ̄)⌉

uj .

Furthermore, for allk ≤ k∗, (53) and monotonicity imply that

Dk ⊆ DIS
(

F
(

Eℓ

(

21−jk
)

; 01
))

= DIS (Fjk) = Uj ,

so that

mk∗+ujk∗
∑

m=mk∗+1

1Dk∗
(Xm) +

k∗−1
∑

k=1

mk+1
∑

m=mk+1

1Dk
(Xm)

≤
mk∗+ujk∗
∑

m=mk∗+1

1Ujk∗
(Xm) +

k∗−1
∑

k=1

mk+1
∑

m=mk+1

1Ujk
(Xm).

SinceUj is nonincreasing inj, we have that1Uj (Xm) in nonincreasing inj for all
m. Combining this with Claim 1 and the above properties ofjk, we have

mk∗+ujk∗
∑

m=mk∗+1

1Ujk∗
(Xm) +

k∗−1
∑

k=1

mk+1
∑

m=mk+1

1Ujk
(Xm)

≤
⌊log2(2/Γℓ(ε))⌋

∑

j=−⌈log2(ℓ̄)⌉

∑j

i=−⌈log2(ℓ̄)⌉
uj

∑

m=1+
∑j−1

i=−⌈log2(ℓ̄)⌉
ui

1Uj (Xm).

In summary, we have

(56)

mk∗+ujk∗
∑

m=mk∗+1

1Dk∗
(Xm) +

k∗−1
∑

k=1

mk+1
∑

m=mk+1

1Dk
(Xm)

≤
⌊log2(2/Γℓ(ε))⌋

∑

j=−⌈log2(ℓ̄)⌉

∑j

i=−⌈log2(ℓ̄)⌉
uj

∑

m=1+
∑j−1

i=−⌈log2(ℓ̄)⌉
ui

1Uj (Xm).

Note that the indicators1Uj (Xm) in the summation on the right hand side of (56)
are independent, so that a Chernoff bound implies that on an eventE′ of probability
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at least1− 2−s,
(57)

⌊log2(2/Γℓ(ε))⌋
∑

j=−⌈log2(ℓ̄)⌉

∑j

i=−⌈log2(ℓ̄)⌉
uj

∑

m=1+
∑j−1

i=−⌈log2(ℓ̄)⌉
ui

1Uj (Xm) ≤ s+ 2e

⌊log2(2/Γℓ(ε))⌋
∑

j=−⌈log2(ℓ̄)⌉

P(Uj)uj .

Combining (54), (55), (56), and (57) implies that, foru andn as in the statement
of Theorem7, on the eventE ∩ E′, we havek∗ + 1 ∈ K. A union bound implies
that the eventE ∩ E′ has probability at least

1− 2−s −
⌊log2(2/Γℓ(ε))⌋

∑

j=−⌈log2(ℓ̄)⌉

log2(uj)
∑

i=1

6e−sj(2
i),

as required.

PROOF OFLEMMA 8. If P
(

DISF(H)
)

= 0, thenφℓ(H;m,P ) = 0, so that in

this case,̊φ′ℓ trivially satisfies (5). Otherwise, supposeP
(

DISF(H)
)

> 0. By the
classic symmetrization inequaltiy [e.g.,35, Lemma 2.3.1],

φℓ(H,m, P ) ≤ 2E
[∣

∣

∣
φ̂ℓ(H;Q,Ξ[m])

∣

∣

∣

]

,

whereQ ∼ Pm andΞ[m] = {ξ1, . . . , ξm} ∼ Uniform({−1,+1}m) are indepen-
dent. Fix any measurableU ⊇ DISF(H). Then

(58) E

[∣

∣

∣
φ̂ℓ(H;Q,Ξ[m])

∣

∣

∣

]

= E

[

∣

∣

∣
φ̂ℓ(H;Q ∩ U ,Ξ[|Q∩U|])

∣

∣

∣

|Q ∩ U|
m

]

,

whereΞ[q] = {ξ1, . . . , ξq} for anyq ∈ {0, . . . ,m}. By the classic desymmetriza-
tion inequality [see e.g.,24], applied under the conditional distribution given|Q ∩
U|, the right hand side of (58) is at most
(59)

E

[

2φℓ(H, |Q ∩ U|, PU )
|Q ∩ U|
m

]

+ sup
h,g∈H

|Rℓ(h;PU )− Rℓ(g;PU )|
E

[

√

|Q ∩ U|
]

m
.

By Jensen’s inequality, the second term in (59) is at most

sup
h,g∈H

|Rℓ(h;PU )− Rℓ(g;PU )|
√

P (U)
m
≤ Dℓ(H;PU )

√

P (U)
m

= Dℓ(H;P )
√

1

m
.

Decomposing based on|Q ∩ U|, the first term in (59) is at most

(60) E

[

2φℓ(H, |Q ∩ U|, PU )
|Q ∩ U|
m

1 [|Q ∩ U| ≥ (1/2)P (U)m]

]

+ 2ℓ̄P (U)P (|Q ∩ U| < (1/2)P (U)m) .
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Since|Q∩U| ≥ (1/2)P (U)m⇒ |Q∩U| ≥ ⌈(1/2)P (U)m⌉, andφℓ(H, q, PU ) is
nonincreasing inq, the first term in (60) is at most

2φℓ(H, ⌈(1/2)P (U)m⌉, PU )E

[ |Q ∩ U|
m

]

= 2φℓ(H, ⌈(1/2)P (U)m⌉, PU )P (U),

while a Chernoff bound implies the second term in (60) is at most

2ℓ̄P (U) exp {−P (U)m/8} ≤ 16ℓ̄

m
.

Plugging back into (59), we have
(61)

φℓ(H,m, P ) ≤ 4φℓ(H, ⌈(1/2)P (U)m⌉, PU )P (U) +
32ℓ̄

m
+ 2Dℓ(H;P )

√

1

m
.

Next, note that, for anyσ ≥ Dℓ(H;P ), σ√
P (U)

≥ Dℓ(H;PU ). Also, if U = U ′×Y
for someU ′ ⊇ DISF(H), thenf⋆PU

= f⋆P , so that iff⋆P ∈ H, (5) implies

(62) φℓ(H, ⌈(1/2)P (U)m⌉, PU ) ≤ φ̊ℓ
(

σ
√

P (U)
,H; ⌈(1/2)P (U)m⌉, PU

)

.

Combining (61) with (62), we see that̊φ′ℓ satisfies the condition (5) of Definition5.
Furthermore, by the fact that̊φℓ satisfies (4) of Definition 5, combined with the

monotonicity imposed by the infimum in the definition ofφ̊′ℓ, it is easy to check that
φ̊′ℓ also satisfies (4) of Definition5. In particular, note that anyH′′ ⊆ H′ ⊆ [F ] and
U ′′ ⊆ X haveDISF(H′′

U ′′) ⊆ DISF(H′), so that the range ofU in the infimum is
never smaller forH = H′′

U ′′ relative to that forH = H′.

PROOF OFCOROLLARY 9. Let φ̊′ℓ be as in Lemma8, and define for anym ∈
N, s ∈ [1,∞), ζ ∈ [0,∞], andH ⊆ [F ],

Ů ′
ℓ(H, ζ;PXY ,m, s)

= K̃

(

φ̊′ℓ(Dℓ([H](ζ; ℓ)),H;m,PXY ) + Dℓ([H](ζ; ℓ))
√

s

m
+
ℓ̄s

m

)

.

That is,Ů ′
ℓ is the functionŮℓ that would result from using̊φ′ℓ in place ofφ̊ℓ. Let

U = DISF(H), and supposeP(U) > 0. Then sinceDISF([H]) = DISF(H)
implies

Dℓ([H](ζ; ℓ)) = Dℓ([H](ζ; ℓ);PU )
√

P(U)
= Dℓ([H](ζ/P(U); ℓ,PU );PU )

√

P(U),
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a little algebra reveals that form ≥ 2P(U)−1,

(63) Ů ′
ℓ(H, ζ;PXY ,m, s) ≤ 33P(U)Ůℓ(H, ζ/P(U);PU , ⌈(1/2)P(U)m⌉, s).

In particular, forj ≥ −⌈log2(ℓ̄)⌉, takingH = Fj , we have (from the definition of
Fj) U = DISF(H) = DIS(H) = Uj , so that whenP(Uj) > 0, any

m ≥ 2P(Uj)−1M̊ℓ

(

2−j−2

33P(Uj)
,
21−j

P(Uj)
;Fj ,PUj , sj(m)

)

suffices to make the right side of (63) (with s = sj(m) andζ = 21−j) at most
2−j−2; in particular, this means takinguj equal to any suchm (with log2(m) ∈ N)
suffices to satisfy (13) (with theM̊ℓ in (13) defined with respect to the̊φ′ℓ function);

monotonicity ofζ 7→ M̊ℓ

(

ζ, 21−j

P(Uj)
;Fj ,PUj , sj(m)

)

implies (15) is a sufficient

condition for this. In the special case whereP(Uj) = 0, Ů ′
ℓ(Fj , 2

1−j ;PXY ,m, s)

= K̃ ℓ̄s
m , so that takinguj ≥ K̃ℓ̄sj(uj)2

j+2 suffices to satisfy (13) (again, with the
M̊ℓ in (13) defined in terms of̊φ′ℓ). Plugging these values into Theorem7 completes
the proof.

PROOF OFTHEOREM 16. For−⌈log2(ℓ̄)⌉ ≤ j ≤ ⌊log2(2/Ψℓ(ε))⌋, let sj =

Log
(

48(⌊log2(8/Ψℓ(ε))⌋−j)2

δ

)

, and defineuj = 2⌈log2(u
′
j)⌉, where

(64) u′j = c′
(

b2j(2−β) + ℓ̄2j
)

(

vc (GF ) Log
(

χℓℓ̄
)

+ sj
)

,

for an appropriate universal constantc′ ∈ [1,∞). Note that, by (32), (8), and (9),
we can choose the constantc′ so that theseuj satisfy (13) when we define

m 7→ sj(m) = Log

(

12 log2 (4uj/m)2 (⌊log2(8/Ψℓ(ε))⌋ − j)2
δ

)

.

Additionally, lets = log2(2/δ).
Next, note that

⌊log2(2/Γℓ(ε))⌋
∑

j=−⌈log2(ℓ̄)⌉

uj ≤
⌊log2(2/Ψℓ(ε))⌋

∑

j=−⌈log2(ℓ̄)⌉

uj

≤ 2c′
(

8b

Ψℓ(ε)2−β
+

4ℓ̄

Ψℓ(ε)

)(

vc (GF ) Log
(

χℓℓ̄
)

+ Log

(

48

δ

))

+ 4c′
(

2b

Ψℓ(ε)1−β
+ ℓ̄

) ⌊log2(2/Ψℓ(ε))⌋
∑

j=−⌈log2(ℓ̄)⌉

2jLog (⌊log2(8/Ψℓ(ε))⌋ − j) .(65)
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We can bound this last summation by noting that

⌊log2(2/Ψℓ(ε))⌋
∑

j=−⌈log2(ℓ̄)⌉

2jLog (⌊log2(8/Ψℓ(ε))⌋ − j)(66)

≤ 2

Ψℓ(ε)

⌊log2(2/Ψℓ(ε))⌋
∑

j=−⌈log2(ℓ̄)⌉

2j−⌊log2(2/Ψℓ(ε))⌋Log (⌊log2(8/Ψℓ(ε))⌋ − j)

≤ 2

Ψℓ(ε)

∞
∑

i=0

2−iLog (2 + i) ≤ 2

Ψℓ(ε)

∞
∑

i=0

2−i(i+ 1) =
8

Ψℓ(ε)
.

Plugging this into (65), we have that
∑⌊log2(2/Γℓ(ε))⌋

j=−⌈log2(ℓ̄)⌉
uj is at most

8c′
(

2b

Ψℓ(ε)2−β
+

ℓ̄

Ψℓ(ε)

)(

vc (GF ) Log
(

χℓℓ̄
)

+ Log

(

48e4

δ

))

.

Thus, by choosingc ≥ 160c′, anyu satisfying (33) hasu ≥∑⌊log2(2/Γℓ(ε))⌋

j=−⌈log2(ℓ̄)⌉
uj , as

required by Theorem7.
ForUj as in Theorem7, note that by Condition10and the definition ofθ,

P (Uj) = P
(

DIS
(

F
(

Eℓ

(

21−j
)

; 01
)))

≤ P
(

DIS
(

B
(

f⋆, aEℓ

(

21−j
)α
)))

≤ θmax
{

aEℓ

(

21−j
)α
, aεα

}

≤ θmax
{

aΨ−1
ℓ

(

21−j
)α
, aεα

}

.

BecauseΨℓ is strictly increasing on(0, 1), for j ≤ ⌊log2(2/Ψℓ(ε))⌋, Ψ−1
ℓ

(

21−j
)

≥ ε, so that this last expression is equal toθaΨ−1
ℓ

(

21−j
)α

. This implies

⌊log2(2/Γℓ(ε))⌋
∑

j=−⌈log2(ℓ̄)⌉

P (Uj)uj ≤
⌊log2(2/Ψℓ(ε))⌋

∑

j=−⌈log2(ℓ̄)⌉

P (Uj)uj .

⌊log2(2/Ψℓ(ε))⌋
∑

j=−⌈log2(ℓ̄)⌉

aθΨ−1
ℓ

(

21−j
)α
(

b2j(2−β) + ℓ̄2j
)

(A1 + Log(⌊log2(8/Ψℓ(ε))⌋−j)) .

(67)

We can change the order of summation in the above expression by lettingi =
⌊log2(2/Ψℓ(ε))⌋ − j and summing from0 toN = ⌈log2(ℓ̄)⌉ + ⌊log2(2/Ψℓ(ε))⌋.
In particular, since2⌊log2(2/Ψℓ(ε))⌋ ≤ 2/Ψℓ(ε), (67) is at most
(68)

N
∑

i=0

aθΨ−1
ℓ

(

21−⌊log2(2/Ψℓ(ε))⌋2i
)α
(

4b2i(β−2)

Ψℓ(ε)2−β
+

2ℓ̄2−i

Ψℓ(ε)

)

(A1 + Log(i+ 2)) .
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Sincex 7→ Ψ−1
ℓ (x)/x is nonincreasing on(0,∞),Ψ−1

ℓ

(

21−⌊log2(2/Ψℓ(ε))⌋2i
)

≤
2i+1Ψ−1

ℓ

(

2−⌊log2(2/Ψℓ(ε))⌋
)

, and sinceΨ−1
ℓ is increasing, this latter expression is

at most2i+1Ψ−1
ℓ (Ψℓ(ε)) = 2i+1ε. Thus,

(69) 4aθεα
N
∑

i=0

(

b2i(α+β−2)

Ψℓ(ε)2−β
+
ℓ̄2i(α−1)

Ψℓ(ε)

)

(A1 + Log(i+ 2)) .

In general,Log(i+2) ≤ Log(N+2), so that
∑N

i=0 2
i(α+β−2) (A1 + Log(i+ 2)) ≤

(A1+Log(N+2))(N+1) and
∑N

i=0 2
i(α−1) (A1 + Log(i+ 2)) ≤ (A1+Log(N+

2))(N + 1). Whenα + β < 2, we also have
∑N

i=0 2
i(α+β−2) ≤ ∑∞

i=0 2
i(α+β−2)

= 1
1−2(α+β−2) and

∑N
i=0 2

i(α+β−2)Log(i + 2) ≤ ∑∞
i=0 2

i(α+β−2)Log(i + 2) ≤
2

1−2(α+β−2)Log
(

1
1−2(α+β−2)

)

. Similarly, if α < 1,
∑N

i=0 2
i(α−1) ≤ ∑∞

i=0 2
i(α−1)

= 1
1−2(α−1) and likewise

∑N
i=0 2

i(α−1)Log(i + 2) ≤ ∑∞
i=0 2

i(α−1)Log(i + 2) ≤
2

1−2(α−1)Log
(

1
1−2(α−1)

)

. By combining these observations (along with a conven-

tion that 1
1−2(α−1) = ∞ whenα = 1, and 1

1−2(α+β−2) = ∞ whenα = β = 1), we
find that (69) is

. aθεα
(

b(A1 + Log(B1))B1

Ψℓ(ε)2−β
+
ℓ̄(A1 + Log(C1))C1

Ψℓ(ε)

)

.

Thus, for an appropriately large numerical constantc, anyn satisfying (34) has

n ≥ s+ 2e

⌊log2(2/Γℓ(ε))⌋
∑

j=−⌈log2(ℓ̄)⌉

P(Uj)uj ,

as required by Theorem7.
Finally, we need to show the success probability from Theorem7 is at least1−δ,

for sj ands as above. Toward this end, note that

⌊log2(2/Γℓ(ε))⌋
∑

j=−⌈log2(ℓ̄)⌉

log2(uj)
∑

i=1

6e−sj(2
i)

≤
⌊log2(2/Ψℓ(ε))⌋

∑

j=−⌈log2(ℓ̄)⌉

log2(uj)
∑

i=1

δ

2 (log2 (4uj)− i)2 (⌊log2(8/Ψℓ(ε))⌋ − j)2

=

⌊log2(2/Ψℓ(ε))⌋
∑

j=−⌈log2(ℓ̄)⌉

log2(uj)
∑

t=1

δ

2(t+ 1)2 (⌊log2(8/Ψℓ(ε))⌋ − j)2

<

⌊log2(2/Ψℓ(ε))⌋
∑

j=−⌈log2(ℓ̄)⌉

δ

2 (⌊log2(8/Ψℓ(ε))⌋ − j)2
<

∞
∑

t=1

δ

2(t+ 1)2
< δ/2.
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Noting that2−s = δ/2, we find that indeed

1− 2−s −
⌊log2(2/Γℓ(ε))⌋

∑

j=−⌈log2(ℓ̄)⌉

log2(uj)
∑

i=1

6e−sj(2
i) ≥ 1− δ.

Thus, by takinĝs to be the function satisfying (12) such that̂s(2−j , ·) = sj(·) for
all j ∈ Z, Theorem7 now implies the stated result.

PROOFSKETCH OF THEOREM 17. The proof follows analogously to that of
Theorem16, with the exception that now, for each integerj with −⌈log2(ℓ̄)⌉ ≤
j ≤ ⌊log2(2/Ψℓ(ε))⌋, we replace the definition ofu′j from (64) with the following

definition. Lettingcj = vc(GF )Log
(

(

ℓ̄/b
) (

aθ2jΨ−1
ℓ (21−j)α

)β
)

, define

u′j = c′
(

b2j(2−β)
(

aθΨ−1
ℓ (21−j)α

)1−β
+ ℓ̄2j

)

(cj + sj) ,

wherec′ ∈ [1,∞) is an appropriate universal constant, andsj is as in the proof
of Theorem16. With this substitution in place, the valuesuj ands, and functions
sj and ŝ, are then defined as in the proof of Theorem16. By (35), (9), (8), and
Lemma12, we can choose the constantc′ so that theseuj satisfy (15). By an
identical argument to that used in Theorem16, we have

1− 2−s −
⌊log2(2/Γℓ(ε))⌋

∑

j=−⌈log2(ℓ̄)⌉

log2(uj)
∑

i=1

6e−sj(2
i) ≥ 1− δ.

It remains only to show that any values ofu andn satisfying (36) and (37), respec-
tively, necessarily also satisfy the respective conditions foru andn in Corollary9.

Toward this end, note that sincex 7→ xΨ−1
ℓ (1/x) is nondecreasing on(0,∞),

we have that

⌊log2(2/Γℓ(ε))⌋
∑

j=−⌈log2(ℓ̄)⌉

uj ≤
⌊log2(2/Ψℓ(ε))⌋

∑

j=−⌈log2(ℓ̄)⌉

uj

.

(

b

(

aθεα

Ψℓ(ε)

)1−β

+ ℓ̄

)





A2

Ψℓ(ε)
+

⌊log2(2/Ψℓ(ε))⌋
∑

j=−⌈log2(ℓ̄)⌉

2jLog (⌊log2(8/Ψℓ(ε))⌋−j)





.

(

b (aθεα)1−β

Ψℓ(ε)2−β
+

ℓ̄

Ψℓ(ε)

)

A2,

where this last inequality is due to (66). Thus, for an appropriate choice ofc, anyu
satisfying (36) hasu ≥∑⌊log2(2/Γℓ(ε))⌋

j=−⌈log2(ℓ̄)⌉
uj , as required by Corollary9.
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Finally, note that forUj as in Theorem7, andij = ⌊log2(2/Ψℓ(ε))⌋ − j,

⌊log2(2/Γℓ(ε))⌋
∑

j=−⌈log2(ℓ̄)⌉

P(Uj)uj ≤
⌊log2(2/Ψℓ(ε))⌋

∑

j=−⌈log2(ℓ̄)⌉

aθΨ−1
ℓ (21−j)αuj

.

⌊log2(2/Ψℓ(ε))⌋
∑

j=−⌈log2(ℓ̄)⌉

b
(

aθ2jΨ−1
ℓ (21−j)α

)2−β
(A2 + Log (ij + 2))

+

⌊log2(2/Ψℓ(ε))⌋
∑

j=−⌈log2(ℓ̄)⌉

ℓ̄aθ2jΨ−1
ℓ (21−j)α (A2 + Log (ij + 2)) .

By changing the order of summation, now summing over values ofij from
0 to ⌊log2(2/Ψℓ(ε))⌋ + ⌈log2(ℓ̄)⌉, letting N = ⌈log2(2ℓ̄/Ψℓ(ε))⌉, and noting
2⌊log2(2/Ψℓ(ε))⌋ ≤ 2/Ψℓ(ε), andΨ−1

ℓ (2−⌊log2(2/Ψℓ(ε))⌋21+i) ≤ 21+iε for i ≥ 0,
this last expression is

.

N
∑

i=0

b

(

aθ2i(α−1)εα

Ψℓ(ε)

)2−β

(A2 + Log (i+ 2))(70)

+
N
∑

i=0

ℓ̄aθ2i(α−1)εα

Ψℓ(ε)
(A2 + Log (i+ 2)) .

Considering these sums separately, we have
∑N

i=0 2
i(α−1)(2−β)(A2+Log(i+2)) ≤

(N +1)(A2+Log(N +2)) and
∑N

i=0 2
i(α−1)(A2+Log(i+2)) ≤ (N +1)(A2+

Log(N + 2)). Whenα < 1, we also have
∑N

i=0 2
i(α−1)(2−β)(A2 + Log(i +

2)) ≤∑∞
i=0 2

i(α−1)(2−β)(A2+Log(i+2)) ≤ 2
1−2(α−1)(2−β)Log

(

1
1−2(α−1)(2−β)

)

+

1
1−2(α−1)(2−β)A2, and similarly

∑N
i=0 2

i(α−1)(A2 + Log(i + 2)) ≤ 1
1−2(α−1)A2 +

2
1−2(α−1)Log

(

1
1−2(α−1)

)

. Thus, generally
∑N

i=0 2
i(α−1)(2−β)(A2+Log(i+2)) .

B2(A2 + Log(B2)) and
∑N

i=0 2
i(α−1)(A2 + Log(i + 2)) . C2(A2 + Log(C2)).

Plugging this into (70), we find that for an appropriately large numerical constant
c, anyn satisfying (37) hasn ≥ ∑⌊log2(2/Γℓ(ε))⌋

j=−⌈log2(ℓ̄)⌉
P(Uj)uj , as required by Corol-

lary 9.
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