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Abstract. This work addresses real time implementation of the Simultaneous Localization and Map
Building (SLAM) algorithm. It presents optimal algorithms that consider the special form of the
matrices and a new compressed filter that can significantly reduce the computation requirements when
working in local areas or with high frequency external sensors. It is shown that by extending the
standard Kalman filter models the information gained in a local area can be maintained with a cost
~O(Na

2), where Na is the number of landmarks in the local area, and then transferred to the overall
map in only one iteration at full SLAM computational cost. Additional simplifications are also
presented that are very close to optimal when an appropriate map representation is used. Finally the
algorithms are validated with experimental results obtained with a standard vehicle running in a
completely unstructured outdoor environment.

1 Introduction
Reliable localization is an essential component of any autonomous vehicle system. The basic
navigation loop is based on dead reckoning sensors that predict high frequency vehicle
manoeuvres and low frequency absolute sensors that bound positioning errors [1]. The problem of
localization given a map of the environment or estimating the map knowing the vehicle position
has been addressed and solved using a number of different approaches [2, 3, 4, 5]. A related
problem is when both, the map and the vehicle position are not known. In this problem, vehicle
and map estimates are highly correlated and cannot be obtained independently of one another [6].
This problem is usually known as Simultaneous Localization and Map Building (SLAM) and was
originally introduced in [7-8]. During the past three years significant progress has been made
towards the solution of the SLAM problem. A number of different approaches have been
presented to address this problem. In [9] and [10] a probabilistic approach is presented to solve the
localization problem or the map building problem when the map or position of the vehicle
respectively is known. This approach is based on the approximation of the probability density
functions with samples, also called particles. This idea was originally introduced in [11] as a
bootstrap filter but has been more commonly known as the particle filter. In this case no
assumption needs to be made on the particular model and sensor distributions. The algorithm is
suitable to handle multi-modal distribution. This makes possible to start the robot in a completely
unknown position. At the same time it allows for the solution of the “kidnapped robot” problem, a
robot that has been suddenly moved to another position without being told. This approach has
been applied very successfully to a number indoor navigation application, in particular in [12].
Due to the high computation requirements this method has not been used for real time SLAM yet,
although work is in progress to overcome this limitation.
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One of the most appealing approaches to solve the real time localization problem is by modelling
the environment and sensors and assuming errors with Gaussian distributions. Then very efficient
algorithms, such as Kalman filters, can be used to solve this problem in compact and elegant
manner [13]. These algorithms require the mobile robot to always be localized within certain
bounds, meaning that it is not possible to address the initialisation or the “kidnapped robot”
problem. This is not an issue for many industrial applications, [14,15,16], where large machines
weighing many tonnes operate autonomously. In fact, in these applications the navigation system
has to be designed with enough integrity in order to avoid, or at least recognize such faults and
provide for appropriate safety procedures, [1]. For these applications the Kalman filter with
Gaussian assumptions is the preferred approach to achieve the degree of integrity required in such
environments.

Kalman filter methods can also be extended to perform simultaneous localization and map
building. There have been several applications of this technology in a number of different
environments, such as indoors [17,18], underwater [19,20], and outdoors [21,22]. One of the main
problems with the SLAM algorithm has been the computational requirements. It is well known
that the complexity of the SLAM algorithm can be reduced to ~O (N2) [8], N being the number of
landmarks in the map. For long duration missions the number of landmarks will increase and
eventually computer resources will not be sufficient to update the map in real time. This N2

scaling problem arises because each landmark is correlated to all other landmarks. The correlation
appears since the observation of a new landmark is obtained with a sensor mounted on the mobile
robot and thus the landmark location error will be correlated with the error in the vehicle location
and the errors in other landmarks of the map. This correlation is of fundamental importance for the
long-term convergence of the algorithm [6], and needs to be maintained for the full duration of the
mission. Leonard et. al. [19], addressed the computational issues splitting the global map into a
number of sub-maps, each with their own vehicle track. They present an approximation technique
to address the update of the covariance in the transition between maps. Although they present
impressive experimental results there is no proof of the consistency of the approach or estimation
of the conservatism of the covariance over-bounding strategy.

This paper addresses real time implementation of SLAM with a set of optimal algorithms that
significantly reduce the computational requirement without introducing any penalties in the
accuracy of the results. A compressed algorithm is presented to store and maintain all the
information gathered in a local area with a cost proportional to the square of the number of
landmarks in the area. This information can then be transferred to the rest of the global map with a
cost of at most similar to full SLAM but in only one iteration. These results are demonstrated
theoretically and with experimental results. Finally sub-optimal simplifications are presented to
update the covariance matrix of the states. With this approach the total computational cost of the
algorithm can be made proportional to N. It is also shown that by using a relative map
representation the algorithm become very close to optimal. The convergence and accuracy of the
algorithm are tested in large outdoor environments with more than 500 states.

The paper is organized as follows. Section 2 presents the basic modelling background required to
introduce the algorithms. Section 3 presents the optimisation of SLAM in the prediction and
update stages. In particular the compression algorithm is presented with further details given in the
appendix sections. Section 4 introduces the SLAM simplification and proofs of the consistency of
the algorithm. It also presents the relative map representation used to make the algorithm proposed
very close to optimal. The experimental results of using the proposed algorithm in unstructured
outdoor environments are presented in section 5. Finally 6 presents the conclusions with proposed
future research areas.
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2 Simultaneous Localization and Map Building (SLAM)
When absolute position information is not available it is still possible to navigate with small errors
for long periods of time. The SLAM algorithm use dead reckoning and relative observation to
estimate the position of the vehicle and to build and maintain a navigation map. The mobile robot
is equipped with dead reckoning capabilities and an external sensor capable of measuring relative
distance of the vehicle to the environment as shown in Figure 1 . The steering control α, and the
speed υc are used with the kinematic model to predict the position of the vehicle. In this case the
external sensor returns range and bearing information to the different features Bi(i=1..n). This
information is obtained with respect to the vehicle coordinates (xl,yl), that is ( ) ( , )z k r β= , where r

is the distance from the beacon to the range sensor, β is the sensor bearing measured with respect
to the vehicle coordinate frame.
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Figure 1 Vehicle coordinate system

Considering that the vehicle is controlled through a demanded velocity vc and steering angle α the
process model that predicts the trajectory of the centre of the back axle is given by
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Where L is the distance between wheel axles and γ is noise as defined in (53). The observation
equation relating the vehicle states to the observations is
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where z is the observation vector, ( ),i ix y is the coordinates of the landmarks, xL , yL and φL are the

vehicle states defined at the external sensor location and γh the noise as defined in (53).

In the case where multiple observation are obtained the observation vector will have the form:

1

m

z

Z

z

 
 

=  
 
 

" (3)

The Extended Kalman Filter (EKF) equations to solve this estimation problem are presented in
Appendix A. In this section we present the extension of the models to address the SLAM problem.

Under this framework the vehicle starts at an unknown position with given uncertainty and obtains
measurements of the environment relative to its location. This information is used to
incrementally build and maintain a navigation map and to localize with respect to this map. The
system will detect new features at the beginning of the mission and when the vehicle explores new
areas. Once these features become reliable and stable they are incorporated into the map becoming
part of the state vector.

The state vector is now given by:
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where (x,y,φ)L and (x,y)i are the states of the vehicle and features incorporated into the map
respectively. Since this environment is consider to be static the dynamic model that includes the
new states becomes:

( ) ( )( )
( ) ( )
1

1

L L

I I

X k f X k

X k X k

g+ = +

+ =
(5)

It is important to remarks that the landmarks are assumed to be static. Then the Jacobian matrix
for the extended system is

1

3 3 3 2 2
1 , ,
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x xN Nx N

f
JF

x
IX

I

J R R I R

#
∂È ˘∆ ∆È ˘∂ Í ˙∂= = Í ˙Í ˙ ∆∂ Î ˚∆Í ˙Î ˚

Œ ∆Œ Œ

(6)

The observations zr and zβ are obtained from a range and bearing sensor relative to the vehicle
position and orientation. The observation equation given in equation (2) is a function of the states
of the vehicle and the states representing the position of the landmark. The Jacobian matrix of the
vector h with respect to the variables (xL,yL, φL, xi, yi) can be evaluated using:
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(7)

This Jacobian will always have a large number of null elements since only a few landmarks will
be observed and validated at a given time. For example, when only one feature is observed the
Jacobian has the following form:

2 2 2 2

0 0 0 ... 0 ... 0 0

1 0 0 ... 0 ... 0 0

rz x y x y
X
z y x y x

X
b

∂ D D D DÈ ˘ È ˘- -Í ˙ Í ˙∂ D D D DÍ ˙ = Í ˙∂ D D D DÍ ˙ Í ˙- - -Í ˙ Í ˙D D D DÎ ˚∂Î ˚

(8)

where ( ) ( ) ( ) ( )2 2
, ,L i L ix x x y y y x yD = - D = - D = D + D .

These models can then be used with a standard EKF algorithm to build and maintain a navigation
map of the environment and to track the position of the vehicle.

3 Optimization of SLAM
Under the SLAM framework the size of the state vector is equal to the number of the vehicle
states plus twice the number of landmarks, that is 2N+3 = M. This is valid when working with
point landmarks in 2-D environments. In most SLAM applications the number of vehicle states
will be insignificant with respect to the number of landmarks. The number of landmarks will grow
with the area of operation making the standard filter computation impracticable for on-line
applications.

In this work we present a series of optimizations in the prediction and update stages that reduce
the complexity of the SLAM algorithm from ~O(M3) to ~O(M2). Then a compressed filter is
presented to reduce the real time computation requirement to ~O(2Na

2), being Na the landmarks in
the local area. This will also make the SLAM algorithm extremely efficient while the vehicle
remains navigation in this area since the computation complexity becomes independent of the size
of the global map. These algorithms do not make any approximations and the results are exactly
equivalent to a full SLAM implementation.

3.1 Standard Algorithm Optimization

3.1.1 Prediction stage

Considering the zeros in the Jacobian matrix of Equation (6) the prediction Equation (55) can be
written:

11 121 1

21 22 2

3 3 3 2 2 2
1

3 3 3 2 2 2
11 12 21 12 22
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, , ,
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T T
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J P J Q

P PI I

J R R I R

P R P R P P P R

∆∆ È ˘È ˘ ∆ È ˘È ˘
◊ ◊ + = ◊ ◊ +Í ˙Í ˙ Í ˙Í ˙ ∆ ∆∆ ∆Î ˚ Î ˚ Î ˚Î ˚

Œ ∆Œ Œ

Œ Œ = Œ

(9)

Performing the matrix operations explicitly the following result is obtained:
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It can be proved that the evaluation of this matrix requires approximately only 9M
multiplications. In general, more than one prediction step is executed between 2 update steps.
This is due to the fact that the prediction stage is usually driven by high frequency sensors
information that acts as inputs to the dynamic model of the vehicle and needs to be evaluated in
order to control the vehicle. The low frequency external sensors report the observation used in the
estimation stage of the EKF. This information is processed at much lower frequency. For
example, the steering angle and wheel speed can be sampled every 20 milliseconds but the laser
frames can be obtained with a sample time of 200 milliseconds. In this case we have a ratio of
approximately 10 prediction steps to one update step. The compact form for 2 prediction steps
can be obtained using the results given in equation (10):
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+ + ◊ ◊

(11)

By considering the special form of the matrix involved in SLAM the prediction equation can be
rewritten:
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Finally the prediction equations for 2 steps becomes
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where

( ) ( )
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From the previous considerations, in the case of n prediction steps without an update, the modified
covariance matrix is
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where
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1

1 1 1 1 1
0
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n

i

G G k n J k i J k n J k
-

=
= = + = + - ◊ ◊’ (16)

For this vehicle model, the evaluation of G1 requires n products of matrixes of dimension 3x3.
Considering that the major computational cost of the evaluation of this matrix is the calculation of
P12 (or P21), this simplification can substantially reduced the computation requirement in the
prediction stage. For n prediction steps the complexity will be approximately 27n+9M, that is
smaller than the direct calculation n times, which is greater than nM9. In this case M is the number
of landmarks plus the number of vehicle states.

27 9 1
,

9

n M
M n

n M n

◊ + ◊ ª >>
◊ ◊

(17)

In Equation (15) P11 needs to be evaluated for every prediction step since the quality of the
estimated position is required all the time. P22 remains constant between updates. The calculation
of P12 (or P21) is evaluated only before the estimation procedure using Equation (15).

3.1.2 Update Stage

Since only a few features associated with the state vector are observed at a given time, the matrix
H will have a large number of zeros. When only one feature is incorporated into the observation
vector we have:

( )
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(18)

At a give time k the Kalman gain matrix W requires the evaluation of PHT

1 1 2 2

3 2
1 2,

T T T

Mx Mx

P H P H P H

P R P R

◊ = ◊ + ◊

Œ Œ
(19)

It can be proved that the evaluation will require 10M multiplications. Using the previous result,
the matrix S and W can be evaluated with a cost of approximately 20M

2*2

1 2

T

T Mx

S H P H R R

W P H S R-

= ◊ ◊ + Œ
= ◊ ◊ Œ

(20)
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The cost of the state update operation is proportional to M. The main computational requirement is
in the evaluation of the covariance update where complexity is ~O (M2).

3.2 Compressed Filter

In this section we demonstrate that it is not necessary to perform a full SLAM update when
working in a local area. This is a fundamental contribution because it reduces the computational
requirement of the SLAM algorithm to the order of the number of features in the vicinity of the
vehicle; independent of the size of the global map. A common scenario is to have a mobile robot
moving in an area and observing features within this area. This situation is shown in Figure 2
where the vehicle is operating in a local area A. The rest of the map is part of the global area B.

� �

Figure 2 Local and Global areas

This approach will present significant advantages when the vehicle navigates for long periods of
time in a local area or when the external information is available at high rate. Although high
frequency external sensors are desirable to reduce position error growth, they also introduce a high
computational cost in the SLAM algorithm. For example a laser sensor can return 2-D information
at frequencies of 4 to 30 Hz. To incorporate this information using the full SLAM algorithm will
require to update M states at 30 Hz. In this work we show that while working in a local area
observing local landmarks we can preserve all the information processing a SLAM algorithm of
the order of the number of landmarks in the local area. When the vehicle departs from this area,
the information acquired can be propagated to the global landmarks without loss of information.
This will also allow incorporating high frequency external information with very low
computational cost. Another important implication is that the global map will not be required to
update sequentially at the same rate of the local map.

3.2.1 Update step

Consider the states divided in 2 groups

2 3 2 2 3, , , ,A BA N N N
A B A B

B

X
X X R X R X R N N N

X
+ -È ˘

= Œ Œ Œ = +Í ˙
Î ˚

The states XA can be initially selected as all the states representing landmarks in an area of a
certain size surrounding the vehicle. The states representing the vehicle pose are also included in
XA. Assume that for a period of time the observations obtained are only related with the states XA

and do not involve states of XB, that is

( ) ( )Ah X h X= (21)

Then at a given time k

( ) ( ) ( )
[ ]0

, a
A B A BX X k X X k

h h h h
H H

X X X X X= =

È ˘∂ ∂ ∂ ∂= = = =Í ˙∂ ∂ ∂ ∂Î ˚
(22)
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Considering the zeros of the matrix H the Kalman gain matrix W is evaluated as follows

1
1

1

aa ab

ba bb

T
T aa a

T
ba a

T T
a aa a

T
a aa a

T
aT aa a

T
bba a

P P
P

P P

P H
P H

P H

H P H H P H

S H P H R

WP H S
W P H S

WP H S

-
-

-

È ˘
= Í ˙
Î ˚

È ˘◊
◊ = Í ˙◊Î ˚

◊ ◊ = ◊ ◊

= ◊ ◊ +

È ˘◊ ◊ È ˘
= ◊ ◊ = =Í ˙ Í ˙◊ ◊ Î ˚Î ˚

(23)

From these equations it is possible to see that

1. The Jacobian matrix Ha has no dependence on the states XB.

2. The innovation covariance matrix S and Kalman gain Wa are function of Paa and
Ha. They do not have any dependence on Pbb, Pab, Pba and Xb.

The update term dP of the covariance matrix can then be evaluated

( )
aa aa abT

T
ab ba ab

P P P
dP W S W

P P P

k x
x k
◊ ◊ ◊È ˘

= ◊ ◊ == Í ˙◊ ◊ ◊Î ˚
(24)

with 1 andT
a a aaH S H Pk x k-= ◊ ◊ = ◊ .

In the previous demonstration the time subindexes were neglected for clarity of the presentation.
These indexes are now incorporated to present the recursive update equations. The covariance
matrix after one update is

( ) ( )

( )

( )
( )

1, 1 1, ( 1, )

( 1, 1) ( 1, ) ( 1, ) ( 1, )

( 1, 1) ( 1, ) ( ) ( 1, ) ( ) ( 1, )

( 1, 1) ( 1, ) ( 1, ) ( 1, )

aa aa aa aa

T
abab ab ab

bb bb ba ab

P k k P k k dP k k

P k k P k k P k k k P k k

P k k P k k k P k k I k P k k

P k k P k k P k k k P k k

k

x x
k

+ + = + - +

+ + = + - + ◊ ◊ +

+ + = + - ◊ + = - ◊ +

+ + = + - + ◊ ◊ +

(25)

And the covariance variation after t consecutive updates:

( )
( , ) ( 1) ( , )

( , ) ( , ) ( , ) 1 ( , )
ab ab

bb bb ba ab

P k t k t k t P k k

P k t k t P k k P k k k t P k ky
+ + = F + - ◊

+ + = - ◊ + - ◊
(26)

with
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( ) ( ) ( ) ( )

( )

( ) ( ) ( 1) .... ( ) ( )

( ) ( 1) ( ) ( 1)

( 1) , ( 1) 0

k t

i k

k t
T

i k

k t I k t I k t I k I i

k t i i i

k I k

x x x x

y k

y

+

=
+

=

F + = - + ◊ - + - ◊ ◊ - = -

+ = F - ◊ ◊F -

F - = - =

’

Â (27)

The evaluation of the matrices ( ) , ( )k t k tyF + + can be done recursive according to:

( )( ) ( ) ( 1)

( ) ( 1) ( 1) ( ) ( 1)T

k t I k t k t

k t k t k t k t k t

x
y y k

F + = - + ◊F + -

+ = + - +F + - ◊ + ◊F + -
(28)

with 2 2( ), ( ), ( ), ( ) a aN Ni i i i Ry k x ¥F Œ .

During long term navigation missions, the number of states in Xa will be in general much smaller
than the total number of states in the global map, that is Na<<Nb<M. The matrixes andk kx k are

sparse and the calculation of ( ) and ( )k kyF has complexity ~O( 2
aN ).

It is noteworthy that Xb, Pab, Pba and Pbb are not needed when the vehicle is navigating in a local
region ‘looking’ only at the states Xa. It is only required when the vehicle enters a new region. The
evaluation of Xb, Pbb, Pab and Pba can then be done in one iteration with full SLAM computational
cost using the compressed expressions.

The estimates Xb can be updated after t update steps using

( , ) ( , ) ( , ) ( )b b baX k t k t X k t k P k k k tq+ + = + - ◊ + (29)

with
1

1( ) ( 1) ( ) ( ) ( )
k t

T T
a

i k

k t i H i S i iq J
+ -

-

=

+ = F - ◊ ◊ ◊Â , m the number of observations, in this case range

and bearing, 2 2 2 2( ) , ( ) , ( ) , ( ) and ( )Na m m Na Na m Na m m
ak R Z k R k R H k R S k Rq ¥ ¥ ¥ ¥Œ Œ F Œ Œ Œ .

Similarly, since Ha is a sparse matrix, the evaluation cost of the matrix θ is proportional to Na. The
derivation of these equations is presented in Appendix B.

3.2.2 Mixed Update and Prediction Steps Sequences

Similar results are obtained for sequences of interlaced prediction and update steps:

( 1, ) ( 1, ) ( 1, 1) ( 1, )

0 0
,

0 0

,
0 0

( 1, ) ( 1, ) ( , ) ( 1, )

( 1, ) ( 1, ) ( , )

T

aa ab aa LL
aa

ba bb

a a L
a

b

T
aa aa aa aa L

ab aa ab

P k k J k k P k k J k k Q

J J J J
J J

J J I I

Q Q Q
Q Q

Q

P k k J k k P k k J k k Q

P k k J k k P k k

+ = + ◊ - - ◊ + +

È ˘ È ˘ È ˘
= = =Í ˙ Í ˙ Í ˙

Î ˚ Î ˚Î ˚
È ˘ È ˘ È ˘

= = =Í ˙ Í ˙ Í ˙
Î ˚ Î ˚Î ˚

+ = + ◊ ◊ + +

+ = + ◊ ( ), ( 1, ) ( 1, )

( 1, ) ( , )

T

ba ab

bb bb

P k k P k k

P k k P k k

+ = +
+ =

(30)



11

3.2.3 Extended Kalman Filter formulation for the Compressed filter

In order to maintain the information gathered in a local area it is necessary to extend the EKF
formulation presented in Equations (55 - 56). The following equations must be added in the
prediction and update stage of the filter to be able to propagate the information to the global map
once a full update is required:

( ) ( ) ( )
( ) ( )
( )
( )
( ) ( ) ( )

( ) ( )

, 1 1

1
Prediction step

0

0 0

( ) 1
Update step

( 1) ( ) ( 1)

aa

T

k J k k k

k k

I

k I k k

k k k k k

y y
y

x
y y k

ÏF = - ◊F -
Ô = -Ô
Ì =Ô
Ô F =Ó
Ï F = - ◊F -
Ì = +F - ◊ ◊F -ÔÓ

(31)

When a full update is required the global covariance matrix P and state X is updated with
equations (26) and (29) respectively. At this time the matrices Φ and Ψ are also re-set to the initial
values of time 0, since the next observations will be function of a given set of landmarks. 

3.2.4 Computational Cost

The computational cost for each ‘compressed’ update is evaluated for the case where three states
are used to represent the pose of the vehicle and one landmark is observed:

[ ]
1

2 5 3

2 2

11 5 5
11

0 , calculation cost (3 2)

0
= ,

0 0

T
a a

a

H S H

H H H R

S R

R

e e

k
k

k
k k

-

¥

¥

¥

¸= ◊ ◊
Ô= Œ Æ ª +˝
ÔŒ ˛

È ˘
ŒÍ ˙

Î ˚

[ ]

( )

5
1 1

2

2

0 , calculation cost 25

( ) ( ) ( 1) calculation cost 5 25

( ) ( 1) ( 1) ( ) ( 1) calculation cost 5 25

aN
aa a

a a

T
a a

P R N

k I k k N N

k k k k k N N

x k x x x

x

y y k y

¥= ◊ = Œ Æ ª ◊

F = - ◊F - Æ F ª ◊ + ◊

= - +F - ◊ ◊F - Æ ª ◊ + ◊

Further details for more efficient implementation of this approach are given in Appendix C.

The cost of the complete covariance error matrix evaluation (26) is approximately 2
a bN N◊

according to:
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( )
( )

2 2 2 2 2 2

2 2

2

, , ,

takes approximately

takes approximately

a a a b b bN N N N N N
ab bb

bb ba ab a b a b

ab ab a b

a b

R P R P R

dP P P N N N N

dP P N N

N N N

y

y

¥ ¥ ¥F Œ Œ Œ

= ◊ ◊ ◊ + ◊

= F◊ ◊

<< <

(32)

Provided that the vehicle remains for a period of time in a given area, the computational saving
will be considerable. This has important implications since in many applications it will allow the
exact implementation of SLAM in very large areas. This will be possible with the appropriate
selection of local areas. The system evaluates the location of the vehicle and the landmark of the
local map continuously at the cost of a local SLAM. Although a full update is required at a
transition, this update can be implemented as a parallel task. The only states that need to be fully
updated are the new states in the new local area. A selective update can then be done only to those
states while the full update for the rest of the map runs as a background task with lower priority.
These results are important since it demonstrates that even in very large areas the computational
limitation of SLAM can be overcame with the compression algorithm and appropriate selection of
local areas.

3.3 Map Management

It has been demonstrated that while the vehicle operates in a local area all the information
gathered can be maintained with a cost complexity proportional to the number of landmarks in this
area. The next problem to address is the selection of local areas. One convenient approach consists
of dividing the global map into rectangular regions with size at least equal to the range of the
external sensor.

The proposed method is presented in Figure 3 . When the vehicle navigates in the region r the
compressed filter includes in the group XA the vehicle states and all the states related to landmarks
that belong to region r and its eight neighbouring regions. This implies that the local states belong
to 9 regions, each of size of the range of the external sensor. The vehicle will be able to navigate
inside this region using the compressed filter. A full update will only be required when the vehicle
leaves the central region r.

r

Figure 3 Map Administration for the compressed algorithm
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Every time the vehicle moves to a new region, the active state group XA, changes to those states
that belong to the new region r and its adjacent regions. The active group always includes the
vehicle states. In addition to the swapping of the XA states, a global update is also required at full
SLAM algorithm cost.

Each region has a list of landmarks that are known to be within its boundaries. Each time a new
landmark is detected the region that owns it appends an index of the landmark definition to the list
of owned landmarks. It is not critical if the landmark belongs to this region or a close connected
region. In case of strong updates, where the estimated position of the landmarks changes
significantly, the owners of those landmarks can also be changed.

An hysteresis region is included bounding the local area r to avoid multiple map switching when
the vehicle navigates in areas close to the boundaries between the region r and surrounding areas.

If the side length of the regions are smaller that the range of the external sensor, or if the
hysteresis region is made too large, there is a chance of observing landmarks outside the defined
local area. This observation will be discarded since they cannot be associated with any local
landmarks. In such case the resulting filter will not be optimal since this information is not
incorporated into the estimates. Although these marginal landmarks will not incorporate
significant information since they are far from the vehicle, this situation can be easily avoided
with appropriate selection of the size of the regions and hysteresis band.

Figure 3 presents an example of the application of this approach. The vehicle is navigating in the
central region r and if it never leaves this region the filter will maintain its position and the local
map with a cost of a SLAM of the number of features in the local area formed by the 9 neighbour
regions. A full SLAM update is only required when the vehicle leaves the region.

4 Sub-Optimal SLAM

4.1 Algorithm Description

In this section we present a series of simplification that can further reduce the computationally
complexity of SLAM. This sub-optimal approach reduces the computational requirements by
considering a subset of navigation landmarks present in the global map. It is demonstrated that
this approach is conservative and consistent, and can generate close to optimal results when
combined with the appropriate relative map representation.

Most of the computational requirements of the EKF are needed during the update process of the
error covariance matrix. Once an observation is being validated and associated to a given
landmark, the covariance error matrix of the states is updated according to

T

P P P

P W S W

= - D
D = ◊ ◊

(33)

The time subindexes are neglected when possible to simplify the equations. The state vector can
be divided in 2 groups, the Preserved “P” and the Discarded “D” states

, , , ,P DP N N N
P D P D

D

X
X X R X R X R N N N

X

È ˘
= Œ Œ Œ = +Í ˙
Î ˚

(34)

With this partition it is possible to generate conservative estimates by updating the states XD but
not updating the covariance and cross-covariance matrices corresponding to this sub-vector. The
covariance matrix can then be written in the following form:
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,PP PD PP PD T
T T

DP DD DP DD

P P P P
P P W S W

P P P P

D DÈ ˘ È ˘
= D = = ◊ ◊Í ˙ Í ˙D DÎ ˚ Î ˚

(35)

Conservative updates are obtained if the nominal update matrix ∆P is replaced by the sub-optimal
∆P*

* * *,PP PD

DP DD BB

P P
P P P P P P P

P P P

D D ∆ ∆ ∆ ∆È ˘ È ˘ È ˘
D = =D - = -D = -D +Í ˙ Í ˙ Í ˙D ∆ ∆ D ∆ DÎ ˚ Î ˚ Î ˚

(36)

It can be shown that the simplification proposed generates consistent error covariance estimates.

Demonstration: The covariance error matrix P*(k+1) can be rewritten as follows

* *( 1) ( ) ( )P k P k P P k P δ+ = − ∆ = − ∆ + (37)

where

* , 0 0PP PD PP PD

DP DP DD BB

P P P P
P P with P

P P P P
d d

D D D D ∆ ∆È ˘ È ˘ È ˘
D = =D - D = ≥ = ≥Í ˙ Í ˙ Í ˙D ∆ D D ∆ DÎ ˚ Î ˚ Î ˚

(38)

The matrices ∆P and µ are positive semi-definite since:

0

0

PP PD T
T

DP DD

T
DD D D D

P P
P W S W

P P

and P W S W

D DÈ ˘
D = = ◊ ◊ ≥Í ˙D DÎ ˚

D = ◊ ◊ ≥

(39) 

As given in equation (37), the total update is formed by the optimal update plus an additional
positive semi-definite noise matrix δ. Τhe matrix δ will increase the covariance uncertainty:

( ) ( )* 1 1P k P k d+ = + + (40)

then the sub-optimal update of P* becomes more conservative than the full update:

( ) ( ) ( )* 1 1P k P k P k+ £ + £ (41)

Finally the sub-matrices that need to be evaluated are PPP , PPD and PDP. The significance of this
result is that PDD is not evaluated. In general this matrix will be of high order since it includes
most of the landmarks.

The fundamental problem becomes the selection of the partition P and D of the state vector. The
diagonal of matrix ∆P can be evaluated on-line with low computational cost. By inspecting the
diagonal elements of ∆P we have that many terms are very small compared to the corresponding
previous covariance value in the matrix P. This indicates that the new observation does not have a
significant information contribution to this particular state. This is an indication to select a
particular state as belonging to the subset D.

The other criterion used is based on the value of the actual covariance of the state. If it is below a
given threshold, it can be a candidate for the sub-vector D.

In many practical situations a large number of landmarks can usually be associated to the sub-
vector D. This will introduce significant computational savings since PDD can potentially become
larger than PPP. The cross-correlation PPD and PDP are still maintained but are in general of lower
order as can be appreciated in Figure 4 .
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diagonal elementsDiscarded Landmarks
states

Vehicle
States

Preserved landmarks
states

Figure 4 Full covariance matrix divided into the covariance blocks corresponding to the Vehicle and
Preserved landmarks states (XP) and Discarded landmarks states (XD). The cross-correlation covariance

between the Preserved and Discarded states are fully updated as shown in grey. Finally the cross-correlation
between the elements of the states corresponding to the “Discarded landmarks” are not updated as shown in

white.

Finally the selection criteria to obtain the partition of the state vector can be given with the union
of the following Ii sets:

( ) ( ){ } ( ){ }1 1 2 2 1 2: , , , : , ,I i P i i c P i i I i P i i c I I I∪= D < ◊ = < = (42)

Then ∆P* is evaluated as follows:

( )
( ) ( )

*

*

, 0 , :

, , , :

P i j i j i I and j I

P i j P i j i j i I or j I

D = " Œ Œ

D = D " œ œ
(43)

The error covariance matrix is updated with the simplified matrix ∆P

( ) ( )* *1, 1 1,P k k P k k P+ + = + - D (44)

The practical meaning of the set I1, is that with the appropriate selection of c1 we can reject
negligible update of covariances. As mentioned before the selection of I1 requires the evaluation
of the diagonal elements of the matrix ∆P. The evaluation of the ∆P(i,i) elements requires a
number of operations proportional to the number of states instead of the quadratic relation
required for the evaluation of the complete matrix ∆P.

The second subset defined by I2 is related to the states whose covariances are small enough to be
considered practically zero. In the case of natural landmarks they become almost equivalent to
beacons at known positions. The number of elements in the set I2 will increase with time and can
eventually make the computational requirements of SLAM algorithms comparable to the standard
beacon localisation algorithms .

Finally, the magnitude of the computation saving factor depends of the size of the set I. With
appropriate exploration polices, real time mission planning, the computation requirements can be
maintained within the bounds of the on-board resources.

4.2 Relative Map representation

The sub-optimal approach presented becomes less conservative when the cross correlation
between the non relevant landmarks becomes small. This is very unlikely if an absolute reference
frame is used, that is when the vehicle, landmarks and observation are represented with respect to
a single reference frame. The cross-correlations between landmarks of different regions can be
substantially decreased by using a number of different bases and making the observation relative
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to those bases. With this representation the map becomes grouped in constellations. Each
constellation has an associated frame based on two landmarks that belong to this constellation.
The ‘base’ landmarks that define the associated frame are represented in a global frame. All the
others landmarks that belong to this constellation are defined in the local frame. For a particular
constellation, the local frame is based on the 2 base landmarks

,a b
a b

a b

x x
L L

y y

È ˘ È ˘
= =Í ˙ Í ˙
Î ˚ Î ˚

(45)

It is possible to define 2 unitary vectors that describe the orientation of the base frame:

( )
( ) ( )

11
1 2 2

12

21 12
2 2 1

22 11

1 1

, , 0

b a
b a

b ab a
b a b a

x x v
v L L

y y vL L x x y y

v v
v v v

v v

-È ˘ È ˘
= ◊ - = ◊ =Í ˙ Í ˙-- Î ˚Î ˚- + -

-È ˘ È ˘
= = =Í ˙ Í ˙
Î ˚ Î ˚

(46)

The rest of the landmarks in this particular constellation are represented using a local frame with
origin at La and axes parallel to the vectors ν1 and ν2.

,i ia
i i

i i

x
L L

y

x
h

È ˘ È ˘
= =Í ˙ Í ˙
Î ˚ Î ˚

(47)

with

( ) ( )
( ) ( )

1 1

2 2

,

,

T

i i a i a

T

i i a i a

L L v L L v

L L v L L v

x

h

= - = - ◊

= - = - ◊
(48)

The following expression can be used to obtain the absolute coordinates from the relative
coordinate representation

1 2i a i iL L v vV h= + ◊ + ◊ (49)
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Figure 5 Local reference frame. The reference frame is formed with two landmarks. The observation are then
obtained relative to this frame.

Assuming that the external sensor returns range and bearing, the observation functions are:

( ) ( )( )

( ) ( )

cos ,sin 0

2
: object angle with respect to laser frame

: object range with respect to laser

, , , : vehicle states

i i L i i i

i i

i

i

L L L

h L X R

R

X x y

b b
pb a f

a

f f

= - - ◊ =

= + -

=

(50)

Finally

( ) ( )( )1 2 cos ,sin 0i a i i L i i ih L v v P RV h b b= + ◊ + ◊ - - ◊ = (51)

With this representation the landmark defining the bases will become the natural “Preserved”
landmarks. The observations in each constellation will be evaluated with respect to the bases and
can be considered in the limit as observation contaminated with white noise. This will make the
relative elements of the constellation uncorrelated with the other constellation relative elements.
The only landmarks that will maintain strong correlation will be the ones defining the bases that
are represented in absolute form.

5 Experimental Results
The navigation algorithms presented were tested in the outdoor environment shown in Figure 6 .
A standard utility vehicle was fitted with dead reckoning sensors and a laser range sensor as
shown in Figure 7.

The landmarks detection and extraction process is essential for SLAM. In this particular
application the most common relevant feature in the environment were trees. The profiles of trees
were extracted from the laser, as shown in Figure 8 , and the most likely centre of the trunk was



18

determined. A Kalman filter was also implemented to reduce the errors due to the different
profiles obtained when observing the trunk of the trees from different locations.

The vehicle was started at a location with known uncertainty and driven in this area for
approximately 20 minutes. Figure 9 presents the vehicle trajectory and navigation landmarks
incorporated into the relative map. This run includes all the features in the environment and the
optimisation presented in Section 3. The system built a map of the environment and localized
itself. The accuracy of this map is determined by the initial vehicle position uncertainty and the
quality of the combination of dead reckoning and external sensors. In this experimental run an
initial uncertainty in coordinates x and y was assumed. Figure 10 presents the estimated error of
the vehicle position and selected landmarks. The states corresponding to the vehicle presents
oscillatory behaviour displaying the maximum deviation farther from the initial position. This
result is expected since there is no absolute information incorporated into the process. The only
way this uncertainty can be reduced is by incorporating additional information not correlated to
the vehicle position, such as GPS position information or recognizing a beacon located at a known
position. It is also appreciated that the covariances of all the landmarks are decreasing with time.
This means that the map is learned with more accuracy while the vehicle navigates. The
theoretical limit uncertainty in the case of no additional absolute information will be the original
uncertainty vehicle location. Figure 11 presents the final estimation of the landmarks in the map. It
can be seen that after 20 minutes the estimated error of all the landmarks are below 50 cm.

The compressed algorithm was implemented using local regions of 40x40 meters square. These
regions are appropriate for the laser range sensor used in this experiment. Figure 13 shows part of
the trajectory of the vehicle with the local area composed of 9 squares surrounding the vehicle. To
verify the fact that the algorithm proposed maintains and propagates all the information obtained,
the history of the covariances of the landmarks were compared with the ones obtained with the
full SLAM algorithm. Figure 14 shows a time evolution of standard deviation of few landmarks.
The dotted line corresponds to the compressed filter and the solid line to the full SLAM. It can be
seen that the estimated error of some landmarks are not continuously updated with the compressed
filter. These landmarks are not in the local area. Once the vehicle makes a transition the system
updates all the landmark performing a full SLAM update. At this time the landmarks outside the
local area are updated in one iteration and its estimated error become exactly equal to the full
SLAM. This is clearly shown in figure 15 where at the full update time stamps both estimated
covariances become identical. Figure 16 shows the difference between full SLAM and
compressed filter estimated landmarks covariance. It can be seen that at the full update time
stamps the difference between the estimation using both algorithms becomes zero as demonstrated
in this paper. This demonstrates that while working in a local area it is possible to maintain all the
information gathered with a computational cost proportional to the number of landmarks in the
local area. This information can then be propagated to the rest of the landmarks in the map
without any loss of information.

The next set of plots present a comparison of the performance of the sub-optimal algorithm
proposed in section 4 using the relative map representation with full SLAM. Figure 17 and 18
present two runs, one using most of the states and the other with only 100 states. The plots show
that the total number of states used by the system grows with time as the vehicle explores new
areas. It is also shown the number of states used by the system in grey and the number of states
not updated with stars “*”. In the first run, very conservative values for the constant I1 and I2 were
selected so most of the states were updated with each observation. The second run corresponds to
a less conservative selection plus a limitation in the maximum number of states. Figure 18 shows
that a large number of states are not updated at every time step resulting in a significant reduction
in the computational cost of the algorithm. From Figures 19and 20 it can be seen that the accuracy
of the SLAM algorithm has not been degraded by this simplification. These Figures present the
final estimated error of all the states for both runs. It is noteworthy that only the bases are
represented in absolute form. The other states are represented in relative form and its standard
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deviation becomes much smaller. This can also be appreciated in Figures 21 and 22 that present
the estimated error history of the states selected as bases.

One important remark regarding the advantage of the relative representation with respect to the
simplification proposed: Since the bases are in absolute form they will maintain a strong
correlation with the other bases and the vehicle states. They will be more likely to be chosen as
“preserved” landmarks since the observations will have more contribution to them than the
relative states belonging to distant bases. In fact the states that will be chosen will most likely be
the bases and the states associated with the landmarks in the local constellation.

It is also important to remark that with this representation the simplification becomes less
conservative than when using the absolute representation. This can clearly be seen by looking at
the correlation coefficients for all the states in each case. This is shown in Figures 23 and 24
where the correlation of the relative and absolute map respectively is presented. In Figure 23 each
block of the diagonal corresponds to a particular constellation and the last block has the vehicle
states and the bases. The different constellations becomes de-correlated from each other and only
correlated to the first block whose cross correlation are updated by the sub-optimal algorithm
presented. These results imply that with the relative representation the cross correlation between
constellation becomes zero and the sub-optimal algorithm presented becomes close to optimal.
This is not the case for the absolute representation as shown in Figure 24 where all the states
maintained strong cross-correlations.

Finally Figure 25 presents the results of a 4 km trajectory using the compressed algorithm in a
large area. In this case there are approximately 500 states in the global map and their final
estimated errors are shown in Figure 27. The system creates 18 different constellations to
implement the relative map. The cross-correlation coefficients between the different constellations
become very small as shown in Figure 26 . This run is useful to demonstrate the advantages of the
compressed algorithm since the local areas are significantly smaller than the global map. When
compared with the full SLAM implementation the algorithm generated identical results (states and
covariance) with the advantage of having very low computational requirements. For larger areas
the algorithm becomes more efficient since the cost is basically function of the number of local
landmarks. These results are important since it demonstrates even in very large areas the
computational limitation of SLAM can be overcame with the compressed algorithm and
appropriate selection of local areas.

6 Conclusion
The work presented describes an efficient algorithm for real time implementation of SLAM. In
particular a compressed algorithm was presented that is very attractive in applications where high
frequency external sensor information is available or when the vehicle navigates for long periods
of time in a local area. It is shown that the information gathered in a local area can be incorporated
into the vehicle states and the local map with a computational cost similar to a standard local
SLAM algorithm and can then be transferred to an arbitrarily large global map with the
implementation of full SLAM algorithm in only one iteration without loss of information.

A simplification to the SLAM algorithm has also been proposed with theoretical proofs of the
consistency of the approach. Furthermore, it has also been shown with experimental results that,
by using a relative map representation, the algorithm becomes very close to optimal. With this
approach the user can allocate a maximum number of landmarks, according to the computational
resources available, and the system will optimally select the ones that provide the maximum
information.
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Future work will address the extension of the compression filter results in decentralized SLAM
where different platforms can update their own map with a particular sensor and then transfer all
the information gained to the rest of the system.

The incorporation of high frequency information increases the exploration range of the SLAM
algorithm. This is also another important area of research. If no absolute position data is made
available the system will not be able to navigate for extended periods of time in new areas without
returning to known areas. Although common sensors allows SLAM to perform in significantly
large areas, two problems are of importance to extend this range: The re-registration (association)
of a known revisited area and the back-propagation of the corrections once a large loop is
traversed. The first problem looks solvable working with the geometry of the environment [25], or
using more complex data association methods [23]. The other problem is not solved yet and
subject of current research.

Appendix A

Modelling

Under the general Extended Kalman Filter (EKF) framework we can have non-linear models for
the process and observations in the form:

( ) ( ) ( ) ( )( ) ( )
( ) ( )( ) ( )
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(52)

where X are the states of the system, in this case position x, y and orientation φ. F() is a non linear
function that propagates the states based on the inputs u and the state previous value. The non-
linear observation equation h() maps the state to the observation vector z. 

The effect of the input signal noise is approximated by a linear representation

( ) ( ) ( )( ) ( ) ( ) ( )( ) ( )
( ) ( ) ( )

( ) ( ),

, ,u f

u u f

u
X X k u u k

F X k u k k k F X k u k k

k J k k

F
J

u

g g g

g g g

= =

+ + @ +

= ◊ +

∂=
∂

(53)

The matrix noise characteristics are assumed zero mean and white:
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(54)

An Extended Kalman Filter (EKF) observer based on the process and output models can be
formulated in two stages: Prediction and Update stages. The Prediction stage is required to obtain
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the predicted value of the states X and its error covariance P at time k based on the information
available up to time k-1,

( ) ( ) ( )( )
( ) ( ) ( )

1, , ,

1, , T

X k k F X k k u k

P k k J P k k J Q k

+ =

+ = ◊ ◊ +
(55)

The update stage is function of the observation model and the covariances:

( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( )( )
( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

1

1 1, ( 1) 1

1 1, ( 1) 1

1 1 1,

1, 1 1, 1 1

1, 1 1, 1 1 1

T

T

T

S k H P k k H k R k

W k P k k H k S k

k Z k h X k k

X k k X k k W k k

P k k P k k W k S k W k

J

J

-

+ = ◊ + ◊ + + +

+ = + ◊ + ◊ +

+ = + - +

+ + = + + + ◊ +

+ + = + - + ◊ + ◊ +

(56)

Where

( )
( ) ( ) ( )( )

( )
( ), ,

,
X u X k u k X X k

F h
J J k H H k

X X= =

∂ ∂= = = =
∂ ∂

(57)

are the Jacobian matrixes of the vectorial functions F(x,u) and h(x) respect to the state X and R is
the covariance matrix characterizing the noise in the observations.

Appendix B

The general form of the update for the states belonging to the global area will have the following
form

b

new old
b bX X dX= + (58)

In this section we present the evaluation of dXb to update the vector Xb after t local updates were
performed. For t=1, that is when the vector Xb is updated after one observation we have

( )( )( ) ( 1, ) ( 1) ( 1) ( 1)b adX W k h X k k Z k W k kJ= ◊ + - + = + ◊ + (59)

Since the Kalman gain matrix can be partitioned in two main components:

( )
( )

( )
a

b

W k
W k

W k

È ˘
= Í ˙
Î ˚

(60)

Then the state update can be simplified as shown :

( 1, 1) ( 1, ) ( ) ( 1)b b bX k k X k k W k kJ+ + = + - ◊ + (61)

Finally the update after t local updates were performed is:
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1
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1
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Â

Â
(62)

the expression can be simplified as follows

( , ) ( , ) ( , ) ( )b b baX k t k t X k t k P k k k tq+ + = + - ◊ + (63)

with

1
1

1

( ) ( 1) ( ) ( ) ( )

( ) a

k t
T T

a
i k

N x

k t i H i S i i

k t R

q J

q

+ -
-

=

+ = F - ◊ ◊ ◊

+ Œ

Â
(64)

Appendix C

Taking advantage of the sparseness in the local area.

As demonstrated, the maintenance of the auxiliary matrixes in the compression algorithm involves
products of matrixes with dimensions not higher than Na, being Na << N. In addition most of these
matrixes are sparse. This fact can be exploited to improve the efficiency of the algorithm. This is
important since the local updates are done at the rate of the external sensor.

To facilitate the representation of sparse matrixes a sub-matrix M* can be defined according to

( )* ,a bM M i i= , where ia and ib are integer arrays that define subsets of indexes. With this

convention the sub-matrix M* can be expressed as function of the original matrix M as follows:

( ) ( )( )*( , ) ,a bM r c M i r i c= (65)

The subset of all the valid indexes in a row or column will be indicated with the iall or with the ‘:’
symbol.

The first stage requires the evaluation of the matrixes κκκκ and ξξξξ

1T
a a

aa

H S H

P

k
x k

-=
=

(66)

Most of the elements of the Jacobian matrix of the observation function are zero. Assuming that
only one landmark is being observed, we can define iobs as the index subset that correspond to the
vehicle states and the observed landmark states. Then the matrix H will have the following null-
matrixes:

( )
( ) ( )( )

:, 0 \

, 0 , \

a obs

a obs

H i i i i

H j i j i i i

= " œ

= " œ
(67)

Considering that ( ) ( ), 0 , \ orobs obsi j i j i i j ik = " œ œ then evaluation of κκκκ only requires the

computation of κκκκ∗∗∗∗
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( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

1

1 1

, ,: :,
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T
a a

TT
obs obs a obs a obs a obs a obs

i j H i S H j

i i H i S H i H i S H i

k

k k

-

- -

=

= = =
(68)

Similar simplification can be done for ξ ξ ξ ξ 

( )
( ) ( )

:, 0 \

* :, :, *

aa

obs

obs aa obs

P

j j j i

i P i

x k
x
x x k

= ◊
= " œ

= =

(69)

The evaluation of the matrixes given in equation (31) can also be simplified by using a different
representation for F :

I pF = + (70)

then

( )( )( ) ( ) ( ) ( 1) ( 1) ( ) ( 1) ( )

( ) ( 1) ( ) ( 1) ( )

k I k I k I k I k k k k

k k k k k

p x p p x p x
p p x p x

F = + = - + - = + - - - -
= - - - -

(71)

The new subset iee involves all the states that were used in previous observations or predictions.
Then the following simplifications are possible:

( )
( )

( 1) :, 0

( ) :, 0

ee

obs

k j j i

k j j i

p
x

- = " œ

= " œ
(72)

Defining the two auxiliary variables λλλλ and ω:ω:ω:ω:    

( ) ( )
( )

( )
( ) ( )

( ) ( )

*

*

*

( ) ( 1)

* :, ( ) ( 1) ,

:, 0

ˆ ( 1) :,

ˆ:, :,

ˆ:, :, ( )

ee obs ee
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(73)

Finally ππππcan be updated using 

( ) ( )
( ) ( ) { }

( ) :, :,

( ) :, ( 1) :,

( ) ( 1)

obs ee obs ee

obs ee

ee obs ee

k i i i i

k j k j j i i

i k i i k

#p w

p p

» = »

= - " œ »
= » -

(74)

The array index iee takes into account the increase in the population of observed landmarks. It
includes all the observed states since the last full update. This implies that the computational of
the full update will have a computational cost proportional to Nb

2 * Ne, being Ne the number of
elements in iee and e aN N£ .
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Figure 6 Outdoor Environment used for the experimentation. This is a large area with different type of
surfaces and different levels.

Figure 7. Utility car used for the experiments. The vehicle is equipped with a Sick laser range and bearing
sensor, linear variable differential transformer sensor for the steering and back wheel velocity encoders.
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Figure 8 Tree profile and system approximation. The dots indicate the laser range and bearing returns. The
filter estimates the radius of the circumference that approximates the trunk of the tree and centre position.

Figure 9 Vehicle trajectory and landmarks. The ‘*’ shows the estimated position of objects that qualified as
landmarks for the navigation system. The dots are laser returns that are not stable enough to qualify as

landmarks. The solid line shows the 20 minutes vehicle trajectory estimation using full SLAM.
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Figure 10 History of selected state’s estimated errors. The vehicle states shows oscilatory behaviour with error
magnitude that is decreasing with time due to the learning of the environment. The landmarks always present

a exponential decreasing estimated error with a limit of the initial uncertainty of the vehicle position.
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Figure 11 Final estimated error of all states. For each state the final estimated error is presented. The
maximum error is approximately 60 cm.
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Figure 12 Constellation map and vehicle trajectory. Five constellations were formed by the algorithm. The
intersection of the bases are presented with a ‘+’ and the other side of the segment with a ‘o’. The relative
landmarks are represented with ‘*’ and its association with a base is represented with a line joining the

landmark with the origin of the relative coordinate system

Figure 13 Vehicle and local areas. This plot presents the estimated trajectory and navigation landmark
estimated position . It also shows the local region ‘r’ with its surrounding regions. The local states XA are the

ones included in the nine regions shown enclosed by a rectangle in the left button corner of the figure.
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Figure 14 Landmark estimated position error for full Slam and compressed filter. The solid line shows the
estimated error provided by the full SLAM algorithm. This algorithm updates all the landmarks with each

observation. The dotted line shows the estimated error provided by the compressed filter. The landmark that
are not in the local area are only updated when the vehicle leaves the local area. At this time a full updates is

performed and the estimated error becomes exactly equal to full SLAM
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Figure 15 Landmark estimated position error for full Slam and compressed filter (enhanced). This plot
present a cleared view the instant when the compressed algorithm performed a full update. A this time (165)
the full slam (solid line) and the compressed algorithm (solid lines with dotes) report same estimated error as

predicted.
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Figure 16 Estimated error differences between full slam and compressed filter. The estimated error
difference between both algorithms becomes identically zero when the full update is performed by the

compressed algorithm.

Figure 17 Total number of states and states used and not updated. The figure presents the total number of
states with a solid black line. This number is increasing because the vehicle is exploring new areas and

validating new landmarks. The states used by the system are represented in grey. The number of states not
used is represented with ‘*’. In this run the system used most of the states available.
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Figure 18 Total number of states and states used and not updated. In this run a maximum number of states
was fixed as constraint for the sub-optimal SLAM algorithm. This is appreciated in the grey plot where the

maximum number of states remain below a given threshold. The number of states not updated increases with
time.
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Figure 19 final estimation errors for relative and absolute states using most of the states.
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Figure 20 Final estimated error of relative and absolute states using a reduced number of states. These results
are similar to the ones using most of the states. This result shows that the proposed algorithm is not only

consistent but close to optimal when used with the appropriate map representation.
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Figure 21 estimated error history of the bases using most of the states.
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Figure 22 Estimated error history of the bases with reduced number of states
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Figure 23 Correlation coefficient for the relative representation. Each block represents the cross-correlation
coefficient of the elements of the different constellation. The block in the right corner contains the vehicle

states and all the bases. It can be seen that the cross-correlation between different constellations is very small.
It is also clear the non-zero cross-correlation between the bases and the different constellations. These

correlations are updated by the sub-optimal filter.



35

covariance coefficients

states

st
at

es

20 40 60 80 100 120 140 160 180 200 220

20

40

60

80

100

120

140

160

180

200

220

Figure 24 Correlation Coefficient for the absolute representation. In this case the map appears completely
correlated and the sub-optimal algorithm will generate consistent but more conservative results.

Figure 25 Long trajectory with Compressed SLAM. This plots present a run in a very large area that
demonstrates the benefits of the compressed algorithm. In this case 18 constellations were created.
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Figure 26 Cross correlation coefficients. The plots shows 18 constellation and a block in the right hand corner
containing the correlation coefficient for the bases and the vehicle states. It can be aprreciated that the

crosscorrelation between the relative states of the different bases is very small.
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Figure 27 Final estimated error of the 500 states. It can be seen that the maximum estimated error is below 0.7
meters.


