
A Dependency Parser for Tweets

Lingpeng Kong Nathan Schneider Swabha Swayamdipta
Archna Bhatia Chris Dyer Noah A. Smith

Language Technologies Institute
Carnegie Mellon University
Pittsburgh, PA 15213, USA

{lingpenk,nschneid,swabha,archna,cdyer,nasmith}@cs.cmu.edu

Abstract

We describe a new dependency parser for
English tweets, TWEEBOPARSER. The
parser builds on several contributions: new
syntactic annotations for a corpus of tweets
(TWEEBANK), with conventions informed
by the domain; adaptations to a statistical
parsing algorithm; and a new approach to
exploiting out-of-domain Penn Treebank
data. Our experiments show that the parser
achieves over 80% unlabeled attachment
accuracy on our new, high-quality test set
and measure the benefit of our contribu-
tions.

Our dataset and parser can be found at
http://www.ark.cs.cmu.edu/TweetNLP.

1 Introduction

In contrast to the edited, standardized language of
traditional publications such as news reports, social
media text closely represents language as it is used
by people in their everyday lives. These informal
texts, which account for ever larger proportions of
written content, are of considerable interest to re-
searchers, with applications such as sentiment anal-
ysis (Greene and Resnik, 2009; Kouloumpis et al.,
2011). However, their often nonstandard content
makes them challenging for traditional NLP tools.
Among the tools currently available for tweets are
a POS tagger (Gimpel et al., 2011; Owoputi et al.,
2013) and a named entity recognizer (Ritter et al.,
2011)—but not a parser.

Important steps have been taken. The English
Web Treebank (Bies et al., 2012) represents an
annotation effort on web text—which likely lies
somewhere between newspaper text and social me-
dia messages in formality and care of editing—that
was sufficient to support a shared task (Petrov and
McDonald, 2012). Foster et al. (2011b) annotated
a small test set of tweets to evaluate parsers trained

on the Penn Treebank (Marcus et al., 1993), aug-
mented using semi-supervision and in-domain data.
Others, such as Soni et al. (2014), have used exist-
ing Penn Treebank–trained models on tweets.

In this work, we argue that the Penn Treebank
approach to annotation—while well-matched to
edited genres like newswire—is poorly suited to
more informal genres. Our starting point is that
rapid, small-scale annotation efforts performed
by imperfectly-trained annotators should provide
enough evidence to train an effective parser. We
see this starting point as a necessity, given observa-
tions about the rapidly changing nature of tweets
(Eisenstein, 2013), the attested difficulties of do-
main adaptation for parsing (Dredze et al., 2007),
and the expense of creating Penn Treebank–style
annotations (Marcus et al., 1993).

This paper presents TWEEBOPARSER, the first
syntactic dependency parser designed explicitly for
English tweets. We developed this parser follow-
ing current best practices in empirical NLP: we
annotate a corpus (TWEEBANK) and train the pa-
rameters of a statistical parsing algorithm. Our
research contributions include:
• a survey of key challenges posed by syntactic

analysis of tweets (by humans or machines) and
decisions motivated by those challenges and by
our limited annotation-resource scenario (§2);

• our annotation process and quantitative mea-
sures of the quality of the annotations (§3);

• adaptations to a statistical dependency parsing
algorithm to make it fully compatible with the
above, and also to exploit information from out-
of-domain data cheaply and without a strong
commitment (§4); and

• an experimental analysis of the parser’s unla-
beled attachment accuracy—which surpasses
80%—and contributions of various important
components (§5).

The dataset and parser can be found at http://www.
ark.cs.cmu.edu/TweetNLP.

2 Annotation Challenges

Before describing our annotated corpus of tweets
(§3), we illustrate some of the challenges of syn-
tactic analysis they present. These challenges moti-
vate an approach to annotation that diverges signif-
icantly from conventional approaches to treebank-
ing. Figure 1 presents a single example illustrating
four of these: token selection, multiword expres-
sions, multiple roots, and structure within noun
phrases. We discuss each in turn.

2.1 Token Selection

Many elements in tweets have no syntactic function.
These include, in many cases, hashtags, URLs, and
emoticons. For example:

RT @justinbieber : now Hailee get a twitter

The retweet discourse marker, username, and colon
should not, we argue, be included in the syntactic
analysis. By contrast, consider:

Got #college admissions questions ? Ask them
tonight during #CampusChat I’m looking

forward to advice from @collegevisit
http://bit.ly/cchOTk

Here, both the hashtags and the at-mentioned user-
name are syntactically part of the utterances, while
the punctuation and the hyperlink are not. In the
example of Figure 1, the unselected tokens include
several punctuation tokens and the final token #be-
lieber, which marks the topic of the tweet.

Typically, dependency parsing evaluations ig-
nore punctuation token attachment (Buchholz and
Marsi, 2006), and we believe it is a waste of an-
notator (and parser) time to decide how to attach
punctuation and other non-syntactic tokens. Ma
et al. (2014) recently proposed to treat punctua-
tion as context features rather than dependents, and
found that this led to state-of-the-art performance
in a transition-based parser. A small adaptation
to our graph-based parsing approach, described in
§4.2, allows a similar treatment.

Our approach to annotation (§3) forces annota-
tors to explicitly select tokens that have a syntactic
function. 75.6% tokens were selected by the anno-
tators. Against the annotators’ gold standard, we
found that a simple rule-based filter for usernames,
hashtags, punctuation, and retweet tokens achieves
95.2% (with gold-standard POS tags) and 95.1%
(with automatic POS tags) average accuracy in the
task of selecting tokens with a syntactic function
in a ten-fold cross-validation experiment. To take

context into account, we developed a first-order
sequence model and found that it achieves 97.4%
average accuracy (again, ten-fold cross-validated)
with either gold-standard or automatic POS tags.
Features include POS; shape features that recog-
nize the retweet marker, hashtags, usernames, and
hyperlinks; capitalization; and a binary feature
for tokens that include punctuation. We trained
the model using the structured perceptron (Collins,
2002).

2.2 Multiword Expressions
We consider multiword expressions (MWEs) of
two kinds. The first, proper names, have been
widely modeled for information extraction pur-
poses, and even incorporated into parsing (Finkel
and Manning, 2009). (An example found in Fig-
ure 1 is LA Times.) The second, lexical idioms,
have been a “pain in the neck” for many years (Sag
et al., 2002) and have recently received shallow
treatment in NLP (Baldwin and Kim, 2010; Con-
stant and Sigogne, 2011; Schneider et al., 2014).
Constant et al. (2012), Green et al. (2012), Candito
and Constant (2014), and Le Roux et al. (2014)
considered MWEs in parsing. Figure 1 provides
LA Times and All the Rage as examples.

Penn Treebank–style syntactic analysis (and de-
pendency representations derived from it) does
not give first-class treatment to this phenomenon,
though there is precedent for marking multiword
lexical units and certain kinds of idiomatic relation-
ships (Hajič et al., 2012; Abeillé et al., 2003).1

We argue that internal analysis of MWEs is not
critical for many downstream applications, and
therefore annotators should not expend energy on
developing and respecting conventions (or mak-
ing arbitrary decisions) within syntactically opaque
or idiosyncratic units. We therefore allow annota-
tors to decide to group words as explicit MWEs,
including: proper names (Justin Bieber, World
Series), noncompositional or entrenched nominal
compounds (belly button, grilled cheese), connec-
tives (as well as), prepositions (out of), adverbials
(so far), and idioms (giving up, make sure).

From an annotator’s perspective, a MWE func-
tions as a single node in the dependency parse,
with no internal structure. For idioms whose in-
ternal syntax is easily characterized, the parse can
be used to capture compositional structure, an at-

1The popular Stanford typed dependencies (de Marneffe
and Manning, 2008) scheme includes a special dependency
type for multiwords, though this is only applied to a small list.

Helvetica font or similar (such as Arial). No italics. The current gray color for unselected tokens is fine.

#1385F0#17AD3F

#C82506

#FA9F1B

ROOT

COORD MWE
multiword expressionscoordination noun phrase internal structure

multiple roots

OMG I <3 the Biebs & want to have his babies ! —> LA

Times :

Social Media … #belieber

NOUN PHRASE
INTERNAL STRUCTURE

NOUN PHRASE  
INTERNAL STRUCTURE

OMG I ♥ the Biebs & want to have his babies ! —> LA Times : Teen Pop Star Heartthrob is All the Rage on Social Media … #belieber

ROOT MULTIPLE ROOTS

COORD

ROOT

MWE MWE

ROOT

ROOT

… #belieber

Helvetica font or similar (such as Arial). No italics. The current gray color for unselected tokens is fine.

#1385F0#17AD3F

#C82506

#FA9F1B

ROOT

COORD MWE
multiword expressionscoordination noun phrase internal structure

multiple roots

OMG I <3 the Biebs & want to have his babies ! —> LA

Times :

Social Media … #belieber

NOUN PHRASE
INTERNAL STRUCTURE

NOUN PHRASE  
INTERNAL STRUCTURE

OMG I ♥ the Biebs & want to have his babies ! —> LA Times : Teen Pop Star Heartthrob is All the Rage on Social Media … #belieber

ROOT MULTIPLE ROOTS

COORD

ROOT

MWE MWE

ROOT

ROOT

… #belieber

Figure 1: Parse tree for a (constructed) example illustrating annotation challenges discussed in §2. Colors highlight token
selection (gray; §2.1), multiword expressions (blue; §2.2), multiple roots (red; §2.3), coordination (dotted arcs, green; §3.2), and
noun phrase internal structure (orange; §2.4). The internal structure of multiword expressions (dashed arcs below the sentence)
was predicted automatically by a parser, as described in §2.2.

tractive property from the perspective of semantic
processing.

To allow training a fairly conventional statisti-
cal dependency parser from these annotations, we
find it expedient to apply an automatic conversion
to the MWE annotations, in the spirit of Johnson
(1998). We apply an existing dependency parser,
the first-order TurboParser (Martins et al., 2009)
trained on the Penn Treebank, to parse each MWE
independently, assigning structures like those for
LA Times and All the Rage in Figure 1. Arcs
involving the MWE in the annotation are then re-
connected to the MWE-internal root, so that the re-
sulting tree respects the original tokenization. The
MWE-internal arcs are given a special label so that
the transformation can be reversed and MWEs re-
constructed from parser output.

2.3 Multiple Roots

For news text such as that found in the Penn Tree-
bank, sentence segmentation is generally consid-
ered a very easy task (Reynar and Ratnaparkhi,
1997). Tweets, however, often contain multiple
sentences or fragments, which we call “utterances,”
each with its own syntactic root disconnected from
the others. The selected tokens in Figure 1 com-
prise four utterances.

Our approach to annotation allows multiple ut-
terances to emerge directly from the connectedness
properties of the graph implied by an annotator’s
decisions. Our parser allows multiple attachments
to the “wall” symbol, so that multi-rooted analyses
can be predicted.

2.4 Noun Phrase Internal Structure

A potentially important drawback of deriving de-
pendency structures from phrase-structure annota-
tions, as is typically done using the Penn Treebank,
is that flat annotations lead to loss of information.
This is especially notable for noun phrases in the
Penn Treebank (Vadas and Curran, 2007). Consider
Teen Pop Star Heartthrob in Figure 1; Penn Tree-
bank conventions would label this as a single NP

with four NN children and no internal structure. De-
pendency conversion tools would likely attach the
first three words in the NP to Heartthrob. Direct de-
pendency annotation (rather than phrase-structure
annotation followed by automatic conversion) al-
lows a richer treatment of such structures, which is
potentially important for semantic analysis (Vecchi
et al., 2013).

3 A Twitter Dependency Corpus

In this section, we describe the TWEEBANK cor-
pus, highlighting data selection (§3.1), the annota-
tion process (§3.2), important convention choices
(§3.3), and measures of quality (§3.4).

3.1 Data Selection
We added manual dependency parses to 929 tweets
(12,318 tokens) drawn from the POS-tagged Twit-
ter corpus of Owoputi et al. (2013), which are tok-
enized and contain manually annotated POS tags.

Owoputi et al.’s data consists of two parts. The
first, originally annotated by Gimpel et al. (2011),
consists of tweets sampled from a particular day,
October 27, 2010—this is known as OCT27. Due
to concerns about overfitting to phenomena specific
to that day (e.g., tweets about a particular sports
game), Owoputi et al. (2013) created a new set of
547 tweets (DAILY547) consisting of one random
English tweet per day from January 2011 through
June 2012.

Our corpus is drawn roughly equally from
OCT27 and DAILY547.2 Despite its obvious tem-
poral skew, there is no reason to believe this sample
is otherwise biased; our experiments in §5 suggest
that this property is important.

3.2 Annotation
Unlike a typical treebanking project, which may
take years and involve thousands of person-hours
of work by linguists, most of TWEEBANK was built
in a day by two dozen annotators, most of whom
had only cursory training in the annotation scheme.

2This results from a long-term goal to fully annotate both.

(1) RT @FRIENDSHlP : Friendship is love without
kissing ...
Friendship > is < love < without < kissing

(2) bieber is an alien ! :O he went down to earth .
bieber > is** < alien < an
he > [went down]** < to < earth

(3) RT @YourFavWhiteGuy : Helppp meeeee . I’mmm
meltiiinngggg → http://twitpic.com/316cjg
Helppp** < meeeee
I’mmm** < meltiiinngggg

Figure 2: Examples of GFL annotations from the corpus.

Our annotators used the Graph Fragment Lan-
guage (GFL), a text-based notation that facilitates
keyboard entry of parses (Schneider et al., 2013). A
Python Flask web application allows the annotator
to validate and visualize each parse (Mordowanec
et al., 2014). Some examples are shown in Fig-
ure 2. Note that all of the challenges in §2 are
handled easily by GFL notation: “retweet” infor-
mation, punctuation, and a URL are not selected by
virtue of their exclusion from the GFL expression;
in (2) went down is annotated as a MWE using
GFL’s square bracket notation; in (3) the tokens
are grouped into two utterances whose roots are
marked by the ** symbol.

Schneider et al.’s GFL offers some additional fea-
tures, only some of which we made use of in this
project. One important feature allows an annotator
to leave the parse underspecified in some ways. We
allowed our annotators to make use of this feature;
however, we excluded from our training and test-
ing data any parse that was incomplete (i.e., any
parse that contained multiple disconnected frag-
ments with no explicit root, excluding unselected
tokens). Learning to parse from incomplete anno-
tations is a fascinating topic explored in the past
(Hwa, 2001; Pereira and Schabes, 1992) and, in the
case of tweets, left for future work.

An important feature of GFL that we did use is
special notation for coordination structures. For
the coordination structure in Figure 1, for example,
the notation is:

$a :: {♥ want} :: {&}

where $a creates a new node in the parse tree as it is
visualized for the annotator, and this new node at-
taches to the syntactic parent of the conjoined struc-
ture, avoiding the classic forced choice between
coordinator and conjunct as parent. For learning to
parse, we transform GFL’s coordination structures
into specially-labeled dependency parses collaps-
ing nodes like $a with the coordinator and labeling

the attachments specially for postprocessing, fol-
lowing Schneider et al. (2013). In our evaluation
(§5), these are treated like other attachments.

3.3 Annotation Conventions

A wide range of dependency conventions are in use;
in many cases these are conversion conventions
specifying how dependency trees can be derived
from phrase-structure trees. For English, the most
popular are due to Yamada and Matsumoto (2003)
and de Marneffe and Manning (2008), known as
“Yamada-Matsumoto” (YM) and “Stanford” depen-
dencies, respectively. The main differences be-
tween them are in whether the auxiliary is the par-
ent of the main verb (or vice versa) and whether the
preposition or its argument heads a prepositional
phrase (Elming et al., 2013).

A full discussion of our annotation conventions
is out of scope. We largely followed the conven-
tions suggested by Schneider et al. (2013), which in
turn are close to those of YM. Auxiliary verbs are
parents of main verbs, and prepositions are parents
of their arguments. The key differences from YM
are in coordination structures (discussed in §3.2;
YM makes the first conjunct the head) and posses-
sive structures, in which the possessor is the child
of the clitic, which is the child of the semantic head,
e.g., the > king > ’s > horses.

3.4 Intrinsic Quality

Our approach to developing this initial corpus of
syntactically annotated tweets was informed by an
aversion to making the perfect the enemy of the
good; that is, we sought enough data of sufficient
quality to build a usable parser within a relatively
short amount of time. If our research goals had
been to develop a replicable process for annotation,
more training and more quality control would have
been called for. Under our budgeted time and anno-
tator resources, this overhead was simply too costly.
Nonetheless, we performed a few analyses that give
a general picture of the quality of the annotations.

Inter-annotator agreement. 170 of the tweets
were annotated by multiple users. By the softCom-
Prec measure (Schneider et al., 2013),3 the agree-
ment rate on dependencies is above 90%.

Expert linguistic judgment. A linguist co-
author examined a stratified sample (balanced

3softComPrec is a generalization of attachment accuracy
that handles unselected tokens and MWEs.

across annotators) of 60 annotations and rated their
quality on a 5-point scale. 30 annotations were
deemed to have “no obvious errors,” 15 only minor
errors, 3 a major error (i.e., clear violation of an-
notation guidelines),4 4 a major error and at least
one minor error, and 8 as containing multiple major
errors. Thus, 75% are judged as having no major
errors. We found this encouraging, considering that
this sample is skewed in favor of people who anno-
tated less (including many of the less experienced
and/or lower-proficiency annotators).

Pairwise ranking. For 170 of the doubly anno-
tated tweets, an experienced annotator examined
whether one or the other was markedly better. In
100 cases the two annotations were of comparable
quality (neither was obviously better) and did not
contain any obvious major errors. In only 7 pairs
did both of the annotations contain a serious error.

Qualitatively, we found several unsurprising
sources of error or disagreement, including em-
bedded/subordinate clauses, subject-auxiliary in-
version, predeterminers, and adverbial modifiers
following a modal/auxiliary verb and a main verb.
Clarification of the conventions, or even explicit
rule-based checking in the validation step, might
lead to quality improvements in further annotation
efforts.

4 Parsing Algorithm

For parsing, we start with TurboParser, which is
open-source and has been found to perform well on
a range of parsing problems in different languages
(Martins et al., 2013; Kong and Smith, 2014). The
underlying model allows for flexible incorporation
of new features and changes to specification in the
output space. We briefly review the key ideas in
TurboParser (§4.1), then describe decoder modifi-
cations required for our problem (§4.2). We then
discuss features we added to TurboParser (§4.3).

4.1 TurboParser

Let an input sentence be denoted by x and the set
of possible dependency parses for x be denoted by
Yx. A generic linear scoring function based on a

4What we deemed major errors included, for example,
an incorrect dependency relation between an auxiliary verb
and the main verb (like ima > [have to]). Minor errors
included an incorrect attachment between two modifiers of
the same head, as in the > only > [grocery store]—the
correct annotation would have two attachments to a single
head, i.e. the > [grocery store] < only (or equivalent).

feature vector representation g is used in parsing
algorithms that seek to find:

parse∗(x) = argmax
y∈Yx

w⊺g(x,y) (1)

The score is parameterized by a vector w of
weights, which are learned from data (most com-
monly using MIRA, McDonald et al., 2005a).

The decomposition of the features into local
“parts” is a critical choice affecting the computa-
tional difficulty of solving Eq. 1. The most aggres-
sive decomposition leads to an “arc-factored” or
“first-order” model, which permits exact, efficient
solution of Eq. 1 using spanning tree algorithms
(McDonald et al., 2005b) or, with a projectivity
constraint, dynamic programming (Eisner, 1996).

Second- and third-order models have also been
introduced, typically relying on approximations,
since less-local features increase the computational
cost, sometimes to the point of NP-hardness (Mc-
Donald and Satta, 2007). TurboParser attacks the
parsing problem using a compact integer linear pro-
gramming (ILP) representation of Eq. 1 (Martins
et al., 2009), then employing alternating directions
dual decomposition (AD3; Martins et al., 2011).
This enables inclusion of second-order features
(e.g., on a word with its sibling or grandparent;
Carreras, 2007) and third-order features (e.g., a
word with its parent, grandparent, and a sibling, or
with its parent and two siblings; Koo and Collins,
2010).

For a collection of (possibly overlapping) parts
for input x, Sx (which includes the union of all
parts of all trees in Yx), we will use the following
notation. Let

g(x,y) = ∑
s∈Sx

fs(x,y), (2)

where fs only considers part s and is nonzero only
if s is present in y. In the ILP framework, each s
has a corresponding binary variable zs indicating
whether part s is included in the output. A col-
lection of constraints relating zs define the set of
feasible vectors z that correspond to valid outputs
and enfore agreement between parts that overlap.
Many different versions of these constraints have
been studied (Riedel and Clarke, 2006; Smith and
Eisner, 2008; Martins et al., 2009, 2010).

A key attraction of TurboParser is that many
overlapping parts can be handled, making use of
separate combinatorial algorithms for efficiently
handling subsets of constraints. For example, the
constraints that force z to encode a valid tree can
be exploited within the framework by making calls

to classic arborescence algorithms (Chu and Liu,
1965; Edmonds, 1967). As a result, when describ-
ing modifications to TurboParser, we need only to
explain additional constraints and features imposed
on parts.

4.2 Adapted Parse Parts

The first collection of parts we adapt are simple
arcs, each consisting of an ordered pair of indices
of words in x; arc(p,c) corresponds to the attach-
ment of xc as a child of xp (iff zarc(p,c) = 1). Our rep-
resentation explicitly excludes some tokens from
being part of the syntactic analysis (§2.1); to han-
dle this, we constrain zarc(i, j) = 0 whenever xi or x j

is excluded.
The implication is that excluded tokens are still

“visible” to feature functions that involve other
edges. For example, some conventional first-order
features consider the tokens occurring between a
parent and child. Even if a token plays no syntactic
role of its own, it might still be informative about
the syntactic relationships among other tokens. We
note three alternative methods:
1. We might remove all unselected tokens from

x before running the parser. In §5.6 we find
this method to fare 1.7–2.3% worse than our
modified decoding algorithm.

2. We might remove unselected tokens but use
them to define new features, so that they still
serve as evidence. This is the approach taken
by Ma et al. (2014) for punctuation. We judge
our simple modification to the decoding algo-
rithm to be more expedient, and leave the trans-
lation of existing context-word features into that
framework for future exploration.

3. We might incorporate the token selection deci-
sions into the parser, performing joint inference
for selection and parsing. The AD3 algorithm
within TurboParser is well-suited to this kind
of extension: z-variables for each token’s se-
lection could be added, and similar scores to
those of our token selection sequence model
(§2.1) could be integrated into parsing. Given,
however, that the sequence model achieves over
97% accuracy, and that perfect token selection
would gain only 0.1–1% in parsing accuracy (re-
ported in §5.5), we leave this option for future
work as well.

For first-order models, the above change is all
that is necessary. For second- and third-order
models, TurboParser makes use of head automata,

in particular “grand-sibling head automata” that
assign scores to word tuples of xg, its child xp,
and two of xp’s adjacent children, xc and x′c (Koo
et al., 2010). The second-order models in our
experiments include parts for sibling(p,c,c′) and
grandparent(p,c,g) and use the grand-sibling head
automaton to reason about these together. Au-
tomata for an unselected xp or xg, and transitions
that consider unselected tokens as children, are
eliminated. In order to allow the scores to depend
on unselected tokens between xc and x′c, we added
the binned counts of unselected tokens (mostly
punctuation) joint with the word form and POS
tag of xp and the POS tag of xc and x′c as features
scored in the sibling(p,c,c′) part. The changes dis-
cussed above comprise the totality of adaptations
we made to the TurboParser algorithm; we refer to
them as “parsing adaptations” in the experiments.

4.3 Additional Features

Brown clusters. Owoputi et al. (2013) found that
Brown et al. (1992) clusters served as excellent fea-
tures in Twitter POS tagging. Others have found
them useful in parsing (Koo et al., 2008) and other
tasks (Turian et al., 2010). We therefore follow
Koo et al. in incorporating Brown clusters as fea-
tures, making use of the publicly available Twitter
clusters from Owoputi et al.5 We use 4 and 6 bit
cluster representations to create features wherever
POS tags are used, and full bit strings to create
features wherever words were used.

Penn Treebank features. A potential danger of
our choice to “start from scratch” in developing
a dependency parser for Twitter is that the result-
ing annotation conventions, data, and desired out-
put are very different from dependency parses de-
rived from the Penn Treebank. Indeed, Foster et al.
(2011a) took a very different approach, applying
Penn Treebank conventions in annotation of a test
dataset for evaluation of a parser trained using Penn
Treebank trees. In §5.4, we replicate, for depen-
dencies, their finding that a Penn Treebank–trained
parser is hard to beat on their dataset, which was
not designed to be topically representative of En-
glish Twitter. When we turn to a more realistic
dataset like ours, we find the performance of the
Penn Treebank–trained parser to be poor.

Nonetheless, it is hard to ignore such a large
amount of high-quality syntactic data. We there-

5http://www.ark.cs.cmu.edu/TweetNLP/clusters/
50mpaths2

fore opted for a simple, stacking-inspired incor-
poration of Penn Treebank information into our
model.6 We define a feature on every candidate arc
whose value is the (quantized) score of the same arc
under a first-order model trained on the Penn Tree-
bank converted using head rules that are as close
as possible to our conventions (discussed in more
detail in §5.1). This lets a Penn Treebank model
literally “weigh in” on the parse for a tweet, and
lets the learning algorithm determine how much
consideration it deserves.

5 Experiments

Our experiments quantify the contributions of vari-
ous components of our approach.

5.1 Setup
We consider two test sets. The first, TEST-NEW,
consists of 201 tweets from our corpus annotated
by the most experienced of our annotators (one
of whom is a co-author of this work). Given very
limited data, we believe using the highest quality
data for measuring performance, and lower-quality
data for training, is a sensibly realistic choice.

Our second test set, TEST-FOSTER, is the dataset
annotated by Foster et al. (2011b), which consists
of 250 sentences. Recall that their corpus was
annotated with phrase structures according to Penn
Treebank conventions. Conversion to match our
annotation conventions was carried out as follows:
1. We used the PennConverter tool with head rule

options selected to approximate our annotation
conventions as closely as possible.7

2. An experienced annotator manually modified
the automatically converted trees by:

(a) Performing token selection (§2.1) to remove
the tokens which have no syntactic function.

(b) Grouping MWEs (§2.2). Here, most of the
MWEs are named entities such as Manch-
ester United.

(c) Attaching the roots of the utterance in tweets
to the “wall” symbol (§2.3).8

6Stacking is a machine learning method where the predic-
tions of one model are used to create features for another. The
second model may be from a different family. Stacking has
been found successful for dependency parsing by Nivre and
McDonald (2008) and Martins et al. (2008). Johansson (2013)
describes further advances that use path features.

7http://nlp.cs.lth.se/software/treebank_

converter; run with -rightBranching=false
-coordStructure=prague -prepAsHead=true
-posAsHead=true -subAsHead=true -imAsHead=true
-whAsHead=false.

8This was infrequent; their annotations split most multi-

TRAIN TEST-NEW TEST-FOSTER

tweets 717 201 < 250†

unique tweets 569 201 < 250†

tokens 9,310 2,839 2,841
selected tokens 7,015 2,158 2,366
types 3,566 1,461 1,230
utterances 1,473 429 337
multi-root tweets 398 123 60
MWEs 387 78 109

Table 1: Statistics of our datasets. (A tweet with k annotations
in the training set is counted k times for the totals of tokens,
utterances, etc.). †TEST-FOSTER contains 250 manually split
sentences. The number of tweets should be smaller but is not
recoverable from the data release.

(d) Recovering the internal structure of the noun
phrases.

(e) Fixing a difference in conventions with re-
spect to subject-auxiliary inversion.9

We consider two training sets. TRAIN-NEW con-
sists of the remaining 717 tweets from our corpus
(§3) annotated by the rest of the annotators. Some
of these tweets have annotations from multiple an-
notators; 11 annotations for tweets that also oc-
curred in TEST-NEW were excluded. TRAIN-PTB
is the conventional training set from the Penn Tree-
bank (§2–21). The PennConverter tool was used
to extract dependencies, with head rule options se-
lected to approximate our annotation conventions
as closely as possible (see footnote 7). The result-
ing annotations lack the same attention to noun
phrase–internal structure (§2.4) and handle subject-
auxiliary inversions differently than our data. Part-
of-speech tags were coarsened to be compatible
with the Twitter POS tags, using the mappings spec-
ified by Gimpel et al. (2011).

Statistics for the in-domain datasets are given in
Table 1. As we can see in the table, more than half
of the tweets in our corpus have multiple utterances.
The out-of-vocabulary rate for our TRAIN/TEST-
NEW split is 33.7% by token and 62.5% by type;
for TRAIN/TEST-FOSTER it is 41.4% and 64.6%
respectively. These are much higher than the 2.5%
and 13.2% in the standard Penn Treebank split.

All evaluations here are on unlabeled attachment
F1 scores.10 Our parser provides labels for coordi-
nation structures and MWEs (§2), but we do not
present detailed evaluations of those due to space
constraints.

utterance tweets into separate sentence-instances.
9For example, in the sentence Is he driving, we attached

he to driving while PennConverter attaches it to Is.
10Because of token selection, precision and recall may not

be equal.

5.2 Preprocessing

Because some of the tweets in our test set were
also in the training set of Owoputi et al. (2013),
we retrained their POS tagger on all the annotated
data they have minus the 201 tweets in our test
set. Its tagging accuracy was 92.8% and 88.7% on
TEST-NEW and TEST-FOSTER, respectively. The
token selection model (§2.1) achieves 97.4% on
TEST-NEW with gold or automatic POS tagging;
and on TEST-FOSTER, 99.0% and 99.5% with gold
and automatic POS tagging, respectively.

As noted in §4.3, Penn Treebank features were
developed using a first-order TurboParser trained
on TRAIN-PTB; Brown clusters were included in
computing these Penn Treebank features if they
were available in the parser to which the features
(i.e. Brown clusters) were added.

5.3 Main Parser

The second-order TurboParser described in §4,
trained on TRAIN-NEW (default hyperparameter
values), achieves 80.9% unlabeled attachment ac-
curacy on TEST-NEW and 76.1% on TEST-FOSTER.
The experiments consider variations on this main
approach, which is the version released as TWEE-
BOPARSER.

The discrepancy between the two test sets is
easily explained: as noted in §3.1, the dataset
from which our tweets are drawn was designed
to be representative of English on Twitter. Fos-
ter et al. (2011b) selected tweets from Berming-
ham and Smeaton’s (2010) corpus, which uses fifty
predefined topics like politics, business, sports,
and entertainment—in short, topics not unlike
those found in the Penn Treebank. Relative to
the Penn Treebank training set, the by-type out-
of-vocabulary rates are 45.2% for TEST-NEW and
only 21.6% for TEST-FOSTER (cf. 13.2% for the
Penn Treebank test set).

Another mismatch is in the handling of utter-
ances. In our corpus, utterance segmentation
emerges from multi-rooted annotations (§2.3). Fos-
ter et al. (2011b) manually split each tweet into
utterances and treat those as separate instances in
their corpus, so that our model trained on often
multi-rooted tweets from TRAIN is being tested
only on single-rooted utterances.

5.4 Experiment: Which Training Set?

We consider the direct use of TRAIN-PTB instead
of TRAIN-NEW. Table 2 reports the results on both

Unlabeled Attachment F1 (%)
mod. POS POS as-is

TEST-NEW

Baseline 73.0 73.5
+ Brown 73.7 73.3
+ Brown & PA 72.9 73.1

TEST-FOSTER

Baseline 76.3 75.2
+ Brown 75.5 76.7
+ Brown & PA 76.9 77.0

Table 2: Performance of second-order TurboParser trained on
TRAIN-PTB, with various preprocessing options. The main
parser (§5.3) achieves 80.9% and 76.1% on the two test sets,
respectively; see §5.4 for discussion.

test sets, with various options. “Baseline” is off-
the-shelf second-order TurboParser. We consider
augmenting it with Brown cluster features (§4.3;
“+ Brown”) and then also with the parsing adapta-
tions of §4.2 (“+ Brown & PA”). Another choice
is whether to modify the POS tags at test time; the
modified version (“mod. POS”) maps at-mentions
to pronoun, and hashtags and URLs to noun.

We note that comparing these scores to our main
parser (§5.3) conflates three very important inde-
pendent variables: the amount of training data
(39,832 Penn Treebank sentences vs. 1,473 Twitter
utterances), the annotation method, and the source
of the data. However, we are encouraged that, on
what we believe is the superior test set (TEST-NEW),
our overall approach obtains a 7.8% gain with an
order of magnitude less annotated data.

5.5 Experiment: Effect of Preprocessing
Table 3 (second block, italicized) shows the per-
formance of the main parser on both test sets with
gold-standard and automatic POS tagging and to-
ken selection. On TEST-NEW, with either gold-
standard POS tags or gold-standard token selection,
performance increases by 1.1%; with both, it in-
creases by 2.3%. On TEST-FOSTER, token selec-
tion matters much less, but POS tagging accounts
for a drop of more than 6%. This is consistent with
Foster et al.’s finding: using a fine-grained Penn
Treebank–trained POS tagger (achieving around
84% accuracy on Twitter), they saw 5–8% improve-
ment in unlabeled dependency attachment accuracy
using gold-standard POS tags.

5.6 Experiment: Ablations
We ablated each key element of our main parser—
PTB features, Brown features, second order fea-
tures and decoding, and the parsing adaptations of

0.76

0.78

0.8

0.82
U

nl
ab

el
ed

 A
tta

ch
m

en
t F

1

Base
lin

e
ïP

A

ïP
TB ïP

A

ïB
row

n ïP
TB

ïB
row

n ïP
A

ïP
TB

ïB
row

n
Main

FirstïOrder
SecondïOrder

(a) TEST-NEW

0.7

0.72

0.74

0.76

U
nl

ab
el

ed
 A

tta
ch

m
en

t F
1

Base
lin

e
ïP

A

ïP
TB ïP

A

ïB
row

n ïP
TB

ïB
row

n ïP
A

ïP
TB

ïB
row

n
Main

FirstïOrder
SecondïOrder

(b) TEST-FOSTER

Figure 3: Feature ablations; these charts present the same scores shown in Table 3 and more variants of the first-order model.

Unlabeled Attachment F1 (%)
TEST-NEW TEST-FOSTER

Main parser 80.9 76.1

Gold POS and TS 83.2 82.8
Gold POS, automatic TS 82.0 82.3
Automatic POS, gold TS 82.0 76.2

Single ablations:

− PTB 80.2 72.6
− Brown 81.2 75.4
− 2nd order 80.1 75.6
− PA 79.2 73.7

Double ablations:

− PTB, − Brown 79.5 72.8
− PTB, − 2nd order 78.5 72.2
− PTB, − PA 77.4 69.6
− Brown, − 2nd order 80.7 74.5
− Brown, − PA 78.2 73.7
− 2nd order, − PA 77.7 73.5

Baselines:

Second order 76.5 70.4
First order 76.1 70.4

Table 3: Effects of gold-standard POS tagging and token
selection (TS; §5.5) and of feature ablation (§5.6). The “base-
lines” are TurboParser without the parsing adaptations in §4.2
and without Penn Treebank or Brown features. The best result
in each column is bolded. See also Figure 3.

§4.2—as well as each pair of these. These condi-
tions use automatic POS tags and token selection.
The “− PA” condition, which ablates parsing adap-
tations, is accomplished by deleting punctuation
(in training and test data) and parsing using Turbo-
Parser’s existing algorithm.

Results are shown in Table 3. Further results
with first- and second-order TurboParsers are plot-
ted in Figure 3. Notably, a 2–3% gain is obtained by
modifying the parsing algorithm, and our stacking-
inspired use of Penn Treebank data contributes in
both cases, quite a lot on TEST-FOSTER (unsur-
prisingly given that test set’s similarity to the Penn
Treebank). More surprisingly, we find that Brown

cluster features do not consistently improve perfor-
mance, at least not as instantiated here, with our
small training set.

6 Conclusion

We described TWEEBOPARSER, a dependency
parser for English tweets that achieves over 80%
unlabeled attachment score on a new, high-quality
test set. This is on par with state-of-the-art re-
ported results for news text in Turkish (77.6%;
Koo et al., 2010) and Arabic (81.1%; Martins
et al., 2011). Our contributions include impor-
tant steps taken to build the parser: a considera-
tion of the challenges of parsing tweets that in-
formed our annotation process, the resulting new
TWEEBANK corpus, adaptations to a statistical
parsing algorithm, a new approach to exploiting
data in a better-resourced domain (the Penn Tree-
bank), and experimental analysis of the decisions
we made. The dataset and parser can be found at
http://www.ark.cs.cmu.edu/TweetNLP.

Acknowledgments

The authors thank the anonymous reviewers
and André Martins, Yanchuan Sim, Wang Ling,
Michael Mordowanec, and Alexander Rush for
helpful feedback, as well as the annotators Waleed
Ammar, Jason Baldridge, David Bamman, Dallas
Card, Shay Cohen, Jesse Dodge, Jeffrey Flanigan,
Dan Garrette, Lori Levin, Wang Ling, Bill Mc-
Dowell, Michael Mordowanec, Brendan O’Connor,
Rohan Ramanath, Yanchuan Sim, Liang Sun, Sam
Thomson, and Dani Yogatama. This research was
supported in part by the U. S. Army Research Lab-
oratory and the U. S. Army Research Office under
contract/grant number W911NF-10-1-0533 and by
NSF grants IIS-1054319 and IIS-1352440.

References

Anne Abeillé, Lionel Clément, and François Toussenel.
2003. Building a treebank for French. In Treebanks,
pages 165–187. Springer.

Timonthy Baldwin and Su Nam Kim. 2010. Multi-
word expressions. In Handbook of Natural Lan-
guage Processing, Second Edition. CRC Press, Tay-
lor and Francis Group.

Adam Bermingham and Alan F. Smeaton. 2010. Clas-
sifying sentiment in microblogs: Is brevity an advan-
tage? In Proc. of CIKM.

Ann Bies, Justin Mott, Colin Warner, and Seth
Kulick. 2012. English Web Treebank. Techni-
cal Report LDC2012T13, Linguistic Data Consor-
tium. URL http://www.ldc.upenn.edu/Catalog/

catalogEntry.jsp?catalogId=LDC2012T13.

Peter F Brown, Peter V Desouza, Robert L Mercer, Vin-
cent J. Della Pietra, and Jenifer C. Lai. 1992. Class-
based n-gram models of natural language. Computa-
tional Linguistics, 18(4):467–479.

Sabine Buchholz and Erwin Marsi. 2006. CoNLL-X
shared task on multilingual dependency parsing. In
Proc. of CoNLL.

Marie Candito and Matthieu Constant. 2014. Strate-
gies for contiguous multiword expression analysis
and dependency parsing. In Proc. of ACL.

Xavier Carreras. 2007. Experiments with a higher-
order projective dependency parser. In Proc. of
EMNLP-CoNLL.

Yoeng-Jin Chu and Tseng-Hong Liu. 1965. On shortest
arborescence of a directed graph. Scientia Sinica,
14(10):1396.

Michael Collins. 2002. Discriminative training meth-
ods for Hidden Markov Models: theory and ex-
periments with perceptron algorithms. In Proc. of
EMNLP.

Matthieu Constant and Anthony Sigogne. 2011. MWU-
aware part-of-speech tagging with a CRF model and
lexical resources. In Proc. of the Workshop on Multi-
word Expressions: from Parsing and Generation to
the Real World.

Matthieu Constant, Anthony Sigogne, and Patrick Wa-
trin. 2012. Discriminative strategies to integrate mul-
tiword expression recognition and parsing. In Proc.
of ACL.

Marie-Catherine de Marneffe and Christopher D. Man-
ning. 2008. The Stanford typed dependencies repre-

sentation. In Proc. of COLING Workshop on Cross-
Framework and Cross-Domain Parser Evaluation.

Mark Dredze, John Blitzer, Partha Pratim Taluk-
dar, Kuzman Ganchev, Joao Graca, and Fernando
Pereira. 2007. Frustratingly hard domain adapta-
tion for dependency parsing. In Proc. of EMNLP-
CoNLL.

Jack Edmonds. 1967. Optimum branchings. Journal
of Research of the National Bureau of Standards B,
71(233-240):160.

Jacob Eisenstein. 2013. What to do about bad language
on the internet. In Proc. of NAACL-HLT.

Jason Eisner. 1996. Three new probabilistic models
for dependency parsing: An exploration. In Proc. of
COLING.

Jakob Elming, Anders Johannsen, Sigrid Klerke,
Emanuele Lapponi, Héctor Martínez Alonso, and
Anders Søgaard. 2013. Down-stream effects of tree-
to-dependency conversions. In Proc. of NAACL-
HLT.

Jenny Rose Finkel and Christopher D. Manning. 2009.
Joint parsing and named entity recognition. In Proc
of ACL-HLT.

Jennifer Foster, Özlem Çetinoglu, Joachim Wagner,
Joseph Le Roux, Stephen Hogan, Joakim Nivre,
Deirdre Hogan, and Josef van Genabith. 2011a.
#hardtoparse: POS tagging and parsing the Twitter-
verse. In Proc. of AAAI Workshop on Analyzing Mi-
crotext.

Jennifer Foster, Özlem Çetinoğlu, Joachim Wagner,
Joseph Le Roux, Joakim Nivre, Deirdre Hogan, and
Josef van Genabith. 2011b. From news to comment:
resources and benchmarks for parsing the language
of Web 2.0. In Proc. of IJCNLP.

Kevin Gimpel, Nathan Schneider, Brendan O’Connor,
Dipanjan Das, Daniel Mills, Jacob Eisenstein,
Michael Heilman, Dani Yogatama, Jeffrey Flanigan,
and Noah A. Smith. 2011. Part-of-speech tagging
for Twitter: annotation, features, and experiments.
In Proc. of ACL-HLT.

Spence Green, Marie-Catherine de Marneffe, and
Christopher D. Manning. 2012. Parsing models for
identifying multiword expressions. Computational
Linguistics, 39(1):195–227.

Stephan Greene and Philip Resnik. 2009. Syntac-
tic packaging and implicit sentiment. In Proc. of
NAACL.

Jan Hajič, Eva Hajičová, Jarmila Panevová, Petr Sgall,
Silvie Cinková, Eva Fučíková, Marie Mikulová,
Petr Pajas, Jan Popelka, Jiří Semeckỳ, Jana
Šindlerová, Jan Štěpánek, Josef Toman, Zdeňka
Urešová, and Zdeněk Žabokrtský. 2012. Prague
Czech-English Dependency Treebank 2.0. Techni-
cal Report LDC2012T08, Linguistic Data Consor-
tium. URL http://www.ldc.upenn.edu/Catalog/

catalogEntry.jsp?catalogId=LDC2012T08.

Rebecca Hwa. 2001. Learning Probabilistic Lexical-
ized Grammars for Natural Language Processing.
Ph.D. thesis, Harvard University.

Richard Johansson. 2013. Training parsers on incom-
patible treebanks. In Proc. of NAACL-HLT.

Mark Johnson. 1998. PCFG models of linguistic
tree representations. Computational Linguistics,
24(4):613–632.

Lingpeng Kong and Noah A. Smith. 2014. An empiri-
cal comparison of parsing methods for Stanford de-
pendencies. ArXiv:1404.4314.

Terry Koo, Xavier Carreras, and Michael Collins. 2008.
Simple semi-supervised dependency parsing. In
Proc. of ACL.

Terry Koo and Michael Collins. 2010. Efficient third-
order dependency parsers. In Proc. of ACL.

Terry Koo, Alexander M. Rush, Michael Collins,
Tommi Jaakkola, and David Sontag. 2010. Dual de-
composition for parsing with non-projective head au-
tomata. In Proc. of EMNLP.

Efthymios Kouloumpis, Theresa Wilson, and Johanna
Moore. 2011. Twitter sentiment analysis: The good
the bad and the OMG! In Proc. of ICWSM.

Joseph Le Roux, Matthieu Constant, and Antoine
Rozenknop. 2014. Syntactic parsing and compound
recognition via dual decomposition: application to
French. In Proc. of COLING.

Ji Ma, Yue Zhang, and Jingbo Zhu. 2014. Punctua-
tion processing for projective dependency parsing.
In Proc. of ACL.

Mitchell P. Marcus, Mary Ann Marcinkiewicz, and
Beatrice Santorini. 1993. Building a large annotated
corpus of English: The Penn Treebank. Computa-
tional linguistics, 19(2):313–330.

André F.T. Martins, Miguel Almeida, and Noah A.
Smith. 2013. Turning on the turbo: Fast third-order
non-projective turbo parsers. In Proc. of ACL.

André F.T. Martins, Dipanjan Das, Noah A. Smith, and
Eric P. Xing. 2008. Stacking dependency parsers. In
Proc. of EMNLP.

André F.T. Martins, Noah A. Smith, Pedro M.Q.
Aguiar, and Mário A.T. Figueiredo. 2011. Dual de-
composition with many overlapping components. In
Proc. of EMNLP.

André F.T. Martins, Noah A. Smith, and Eric P. Xing.
2009. Concise integer linear programming formu-
lations for dependency parsing. In Proc. of ACL-
IJCNLP.

André F.T. Martins, Noah A. Smith, Eric P. Xing, Pe-
dro M.Q. Aguiar, and Mário A.T. Figueiredo. 2010.
Turbo parsers: Dependency parsing by approximate
variational inference. In Proc. of EMNLP.

Ryan McDonald, Koby Crammer, and Fernando
Pereira. 2005a. Online large-margin training of de-
pendency parsers. In Proc. of ACL.

Ryan McDonald, Fernando Pereira, Kiril Ribarov, and
Jan Hajič. 2005b. Non-projective dependency pars-
ing using spanning tree algorithms. In Proc. of HLT-
EMNLP.

Ryan McDonald and Giorgio Satta. 2007. On the com-
plexity of non-projective data-driven dependency
parsing. In Proc. of IWPT.

Michael T. Mordowanec, Nathan Schneider, Chris.
Dyer, and Noah A. Smith. 2014. Simplified depen-
dency annotations with GFL-Web. In Proc. of ACL,
demonstration track.

Joakim Nivre and Ryan McDonald. 2008. Integrat-
ing graph-based and transition-based dependency
parsers. In Proc. of ACL-HLT.

Olutobi Owoputi, Brendan O’Connor, Chris Dyer,
Kevin Gimpel, Nathan Schneider, and Noah A.
Smith. 2013. Improved part-of-speech tagging for
online conversational text with word clusters. In
Proc. of NAACL-HLT.

Fernando Pereira and Yves Schabes. 1992. Inside-
outside reestimation from partially bracketed cor-
pora. In Proc. of ACL.

Slav Petrov and Ryan McDonald. 2012. Overview of
the 2012 Shared Task on Parsing the Web. In Notes
of the First Workshop on Syntactic Analysis of Non-
Canonical Language.

Jeffrey C. Reynar and Adwait Ratnaparkhi. 1997. A
maximum entropy approach to identifying sentence
boundaries. In Proc. of ANLP.

Sebastian Riedel and James Clarke. 2006. Incremen-
tal integer linear programming for non-projective de-
pendency parsing. In Proc. of EMNLP.

Alan Ritter, Sam Clark, Mausam, and Oren Etzioni.
2011. Named entity recognition in tweets: an ex-
perimental study. In Proc. of EMNLP.

Ivan A. Sag, Timothy Baldwin, Francis Bond, Ann
Copestake, and Dan Flickinger. 2002. Multiword
expressions: A pain in the neck for NLP. In Proc. of
CICLing.

Nathan Schneider, Emily Danchik, Chris Dyer, and
Noah A. Smith. 2014. Discriminative lexical se-
mantic segmentation with gaps: Running the MWE
gamut. Transactions of the Association for Compu-
tational Linguistics, 2:193–206.

Nathan Schneider, Brendan O’Connor, Naomi Saphra,
David Bamman, Manaal Faruqui, Noah A. Smith,
Chris Dyer, and Jason Baldridge. 2013. A frame-
work for (under)specifying dependency syntax with-
out overloading annotators. In Proc. of the 7th Lin-
guistic Annotation Workshop and Interoperability
with Discourse.

David A. Smith and Jason Eisner. 2008. Dependency
parsing by belief propagation. In Proc. of EMNLP.

Sandeep Soni, Tanushree Mitra, Eric Gilbert, and Jacob
Eisenstein. 2014. Modeling factuality judgments in
social media text. In Proc. of ACL.

Joseph Turian, Lev Ratinov, and Yoshua Bengio. 2010.
Word representations: a simple and general method
for semi-supervised learning. In Proc. of ACL.

David Vadas and James Curran. 2007. Adding noun
phrase structure to the Penn Treebank. In Proc. of
ACL.

Eva Maria Vecchi, Roberto Zamparelli, and Marco Ba-
roni. 2013. Studying the recursive behaviour of
adjectival modification with compositional distribu-
tional semantics. In Proc. of EMNLP.

Hiroyasu Yamada and Yuji Matsumoto. 2003. Statis-
tical dependency analysis with support vector ma-
chines. In Proc. of IWPT.

