Motion Prediction in a high-speed, dynamic
environment

Yu Sheng!, Yonghai Wu?, Wenfei Wang, Chengguo Guo

1 College of Computer Science and Technology, Zhejiang University
mintbaggio@hotmail.com
2 College of Mechanical and Energy Engineering, Zhejiang University
liunian@zju.edu.cn

Abstract. The immanent existence of system latency greatly affects the
control behavior of a closed-loop system. In order to reduce the influence
induced by latency, this paper proposes a systematic method based on
neural network to predict the motion of objects in a high-speed, dynamic,
and competitive environment. We apply this method to the competition
of RoboCup Small Size League, and implement different approaches for
different types of objects. The predictor improves the performance of our
control system, and it has been successfully tested at several RoboCup
competitions with our ZJUNlict team.

1 Introduction

The time elapsed between deciding to take an action and perceiving its
consequences is called the control latency, or delay [1]. The latency of a
system is always unavoidable, and determined by the inherent attribute
of it. To a closed-loop control system, the control precision is influenced
by the latency because the decision is made based on the outdated per-
ception.

For a system with a demand of reacting as precisely as possible, its
past information is not suitable for control planning any more. We should
predict the future information, at the time when the control command
arrives at the plant and is executed.

The concept of motion prediction was first introduced by Helmholtz
when trying to understand how humans localize visual objects [2]. In
this paper, we will propose our method to predict on the testing field of
RoboCup Small Size League Competition.

1.1 Testing domain

We use ZJUNIict, a team competing in the RoboCup Small Size League,
as the research platform. RoboCup is an international joint project to

promote Al robotics, and related fields [3]. Small Size League, also known
as F'180 league, is one of its league divisions. In a Small Size soccer match,
both teams have five robots, each of which must physically fit inside a
cylinder with a diameter of 180mm and a height of 150mm. Devices
are permitted to dribble or kick the ball as long as they conform to the
F180 rules. The competition field is approximately 4.9 x 3.4m rectangular
field, with an orange golf ball acting as the soccer ball. Teams use the
global overhead vision as their primary sensors. Figure 1 shows a common
competing environment in a F180 game.

For our team, there is a permanent latency of about 5 frames, that
is 165ms. When moving fast, our robot runs at a maximum speed of up
to 2m/s. Consequently, the difference between the actual position and
perceiving position grows up to 33cm.

Fig. 1. A picture from RoboCup 2004, Lisbon

In order to gain a good control effect, a method using neural network
to predict the motion of the object is designed and implemented in our
system. Tested on the research platform, our method successfully elimi-
nate the effect of system latency. The excellent control effect helps us to
win the runner-up of China RoboCup 2004 Small Size League competi-
tion, and be qualified for RoboCup 2004 and 2005 successively.

1.2 Paper Overview

The next section describes the system architecture of ZJUNIict to better
understand the robotic soccer environment. Section 3 explains the for-

mation of latency, and how to measure it. Then we illustrate the method
of motion prediction we design to correct the errors induced by latency,
and present the experimental result. Finally, the work of this paper is
summarized and the future work is highlighted.

2 System Architecture

2.1 Total System Introduction

Our system is closed-loop, and mainly contains 3 parts. Firstly, the vision
subsystem. It is the primary sensor of our system. It consists of two video
cameras fixed above the field, each of which runs at a rate of 30H Z, and
an off-the-field computer to process the data received from the cameras.
The output of this subsystem is the positions of robots and the ball in the
field. Secondly, Al subsystem retrieves the data generated by vision sub-
system through network, and generates and sends the command executed
by the robots through wireless communication. Thirdly, motion control
subsystem interprets and execute the commands it receives from the Al
one, making the robot behaves such as traveling, dribbling, or kicking.
Similarly, the consequence of executing these commands is captured by
the vision module, so begins the new cycle. Figure 2 shows the overall
system components of ZJUNlict.

Two Overhead
Video Cameras

4
Motion Control .
Subsystem on Vision
Robot Subsystem on PC

»
\ Al Subsystem
on PC

Fig. 2. System architecture of our team ZJUNlict

What this paper occupies is located in Al subsystem, so we will detail
it in the next section.

2.2 Al Subsystem

AT subsystem makes use of the visual information in the field, and gener-
ate the commands for the robots to execute. The data from vision subsys-
tem is just the positions of each object, which is called raw data. It has
to be filtered, predicted, and recalculated for the use of Al subsystem.

Based on the information collected above, the situation in the field is
analyzed, certain predesigned tactics is chosen to produce the behavior of
each robot, and finally the path planner generates the command, which
consists of the x, y axis speed, rotation speed, as well as the possible
activation of dribbler, kicker.

3 Measurement of Latency

Before designing the predictor, it is important to measure the accurate
value of our system.

3.1 Formation of latency

There are latencies in almost each part of this system. The following
factors contribute to the formation of our system latency.

1. Vision latency. It includes camera integration time (about 10ms), time
for transmission to frame buffer (about 33ms) and main memory of
the off-the-field computer (about 40ms), and time for vision subsys-
tem (about 10ms). Thereby, the total amount of this part is approx-
imately 93ms.

2. Latency of Al subsystem. It takes about 20ms to complete the task.

3. Wireless latency. Due to buffering commands and sending data to
robots serially, the time spent on it is longer than we expect, which is
about 20ms.

4. Execution latency. It is the sum of time to interpret the commands,
which is about 10ms, plus robot reaction time.

Among the factors above, the robot reaction time is variable, and
depends on the hardware inertia, which is hard to model and calculate.
Moreover, it is the total system latency that influences the control system,
so we should find a way to measure it.

3.2 Measurement

The analysis above is just an estimate. For practical application, we have
found the following approach to measure the latency and confirm the
rightness of the estimate.

Because of the omni-wheel structure, we send to the robot a trans-
lation command that will make it travel along x axis, and a rotation
command that will make it rotate around itself. Ideally, the track will be
along the x axis. However, in fact, there will be an angle between the real
track and the z axis because of the existence of latency.

The difference between the actual orientation and ideal orientation of
the robot is constant due to the constant value of the rotation command.
We can consider the actual track and ideal track as tracks of two differ-
ent robots. The angle between them should be the orientation difference
between the two robots, which is induced by the latency, so the quotient
of the angle and the rotation speed is the value of latency. Figure 3 is the
two curves drawn by Matlab.

900 T T

—— iamge pos
/ —— design pos

800

700 / .

600 / .
500),f‘ .
400+ - 4

300 / 4

200 / .
100 / 4

0 1 1 1 1 1 1 1
-1000 -800 -600 -400 -200 0 200 400 600

Fig. 3. Curves for measuring latency: The blue curve is the track if the system has no
latency, the red one is the actual track from cameras

From the result above, we calculate the value of latency, with a result
of about 163ms.

4 Using Neural Network to predict

Kalman filter can predict well when the system is linear [4]. In F180
competition, however, even the motion of ball is nonlinear. We find that
the field’s resistance to the ball is correlated to the ball speed. When
the speed is high, the resistance is big too, and so is the acceleration.
Therefore, Kalman filter is not competent for this job.

Some teams use Extended Kalman-Bucy Filter [5] to predict nonlin-
ear system. However, a good model of the object is a prerequisite for this
approach. As it is difficult to obtain the precise motion models of robots
and ball, we propose a method that basically uses neural network, to-
gether with some other complementary approaches to predict the motion
of our robot, the ball and the opponent.

5 Prediction of Our Robot

Not similar to most other teams, our method not only makes a good
prediction, but also improves the precision of motion control.

The commands sent to our robots are logged for each cycle. So if the
robots always executed just as what the command tell them to do, the
consequences could be predicted easily. Our method is just based on this
idea.

Unfortunately, because of the inherent mechanical limitation, there
are always some variations between what we tell our robot to do and
the result gotten from the execution. We train a three layer feed-forward
neural network to learn the variations, and make the corresponding mod-
ifications to the commands sent to the robots. Then, we can easily obtain
the positions and behaviors of the robots using a linear prediction.

5.1 Neural Network

The neural network is trained to gain the relationship between the ex-
pectation and the actual consequence of executing. It has 2 input units,
5 hidden units, and 2 output units. The hidden units have a sigmoidal
transfer function, while the transfer function of the output units is linear.
We train the network with data using the standard back-propagation al-
gorithm [6] [7]. The process of training can be easily repeated if something
in the system changes.

The input vector is the command we send to the robot, given as a
format of (v, vy), and the target vector is the velocity it actually travels
in the field, with the same format as the input. The structure of the
network is depicted in figure 4 .

—0

2 2
input output
units units

QRO 00

Connection Connection

matrix matrix
Wi W2

Fig. 4. Architecture of the three-layer neural network

5.2 Training and Result

Because the symmetry of the hardware structure of our robots, we train
the network with 9 x 10 = 90 values, in an angle interval between 10°
and 170°, with a step of 20°, and a velocity interval between 200 and
2000mm/s, with a step of 200mm/s. We also measure a group of 9 * 10
data for checking the accuracy of the network like the data above, except
an angle interval between 20° and 180°. The result is favorable. Figure
5 show the comparision between the output of network and the actual
consequences of execution.

150 T T T T T T T T 150

actual y velocity
—&— neural out y velocity
100
Q
£
5
£ .
=) actual x velocity
!507 —&— neural out x velocity
3
>
0 0
200 400 600 800 1000 1200 1400 1600 1800 2000 200 400 600 800 1000 1200 1400 1600 1800 2000

X axis (Unit : mm/s) X axis (Unit : mm/s)

Fig.5. x and y velocity from output of neural network and actual vision data. The
red curve is the output of neural network, and the blue curve is the actual vision data.
The left figure depicts the curve of x velocity in different total velocities of robot, from
200mm/s to 2000mm/s, and the right describes the y one.

As we have known the relationship between the expectation and the
actual consequence, we can modify the actual command sent to the ro-
bots, making the robots behaves just as what we expect.

5.3 Linear Prediction

Consequently, there are two types of commands, one are the commands
generated by the path planner, which are used for prediction, the other are
the ones actually sent to the robots. When the robot execute commands,
its actual position and orientation should be the consequences of the
information from vision and the execution of commands during the period
of latency. Take position for example, if the robot position from vision is
(o, yo), and the commands sent during the last 5 frames (the value of
system latency) are (vg1, vy1), (Va2, Vy2), -+, (Va5, Vys5), then the actual
x coordinate should be

r=x0+ (Vg1 +Vp2+ -+ vUg5) - ¢ (1)

t in the equation above is the time of one frame, which is 33ms for
our system. The equation for y coordinate is the same as x.

6 Ball Prediction

We predict the motion of ball by dividing its behaviors in the field. When
it is rolling freely and can be captured by cameras, we use neural network
to predict. When it cannot be seen from cameras, we will check its status
of colliding with robots, and predict it by collision model.

6.1 Neural Network

When the ball is rolling freely, we train a three-layer neural network to
learn the motion of the ball just like the one mentioned in the last section,
by changing the number of input units to 6, target units to 5, and hidden
units to 7.

The input data only includes the vision data from the last six frames
for the position of the ball. In order to reduce the training work, we set
the input and output as distance. Thereby, the input data consists of six
values, which are the distance between the current frame and the other
six frames in the past, such as \/(zo — 7_6)% + (Yo — y—¢)2, thus the input
has 6 x 1 = 6 values. The output is the difference of distance between the

current position and five frames forward in the future, that is 5 x 1 =15
values.

From the output, we can use Least Square Method to generate the
motion direction of ball,and can calculate the position easily with the two
values, distance and direction.

6.2 Collision Model

The method above is valid only when the ball is rolling freely. In fact,
when competing, the ball might always be in the situation of be prevent
by robots from captured by cameras. Then, the method above is not
suitable any more, so we apply a collision model [8]to predict the motion
of ball.

The collision between robots and ball is checked for the time length
of system latency, and we use the prediction positions of robots and ball
as vision input. We divide one frame into several time steps, and check
whether the collision will happen during one step.

The condition for confirming the occurrence of collision is different
from types of robots due to various understanding of robots. For our
robot, the collision is dependent on whether the ball is in the valid drib-
bling area because the information needed is available. However, for the
opponent, the information of dribbling area is unavailable, so we consider
the occurrence of collision when the track of ball intersects that of the
opponent. Figure 6 shows the collision check of our robots and opponent.

invalid '
i ¥ o < valid
w
valid
— A‘ " % valid
invalid valid dribbling area eppoment

Fig. 6. Collision check for our robot and opponent. In the left figure, the collision is
valid only when the ball is moving towards the dribbling area of our robot. In the
right figure, the intersection of the track of opponent and ball means the occurrence of
collision. Opponent is described as a circle because we do not know its orientation.

10

We record the occurrence of collision, and the information of robot
colliding with the ball. When the ball disappears, we refer to the collision
record and predict the position of ball until it reappears.

6.3 Opponent Prediction

The prediction of opponent robots is more similar to the one of ball,
rather than our robots, because we do not have any information about
both orientation and command. Therefore, we make the prediction like
what we have done to the ball except the collision model.

7 Experimental Results

We integrate our prediction method of our robots, ball, opponent into the
ZJUNIict system. It functions well and almost eliminates the negative
effect of latency. Figure 7 and figure 8 shows the result of our robot
prediction and ball prediction.

1000

T T
actual position
—&— predict position

800 -

600 [

400

200

y axis (Unit : mm)

—200

—400
-1200 -1000 -800 -600 -400 -200 0 200
X axis (Unit : mm)

Fig. 7. Our robot prediction: Positions of our robot prediction and actual visual ones.
The value of x axis is the = coordinate, and so is y.

In our system, the average error of predicting our robot is 2.25¢m,
and that of predicting ball is 1.58cm. All the results are favorable.

11

320 T T

T T
actual displacement
neural out displacement

315

310

w

o

a
T

300

Error (Unit: mm)

N

©

3]
T

290

285
0 2 4 6 8 10 12 14 16

Times (Unit : frame)

Fig. 8. Ball prediction: A sample of displacements between predicted position and
actual visual position in successive 16 frames.

8 Conclusion and future Work

The negative effect brought by system latency makes the prediction in-
dispensable. We have successfully designed, implemented a predictor and
make use of it in the testing field of RoboCup Small Size League. The pre-
dictor implements various rules to different types of objects. As a result,
it not only compensates the system latency and improves the precision
of motion control, but also enhances the quickness of system response to
situation changes in the field.

However, there is also much work to do. One example is to identify
and predict the actions of the opponents when competing, putting forward
a high requirement of online study for opponents’ behavior. We can also
apply the predictor to higher levels of our system, where the latency might
be also long. With the completion of these work, our control system will
be more accurate and effective.

References

1. S. Behnke, A. Egorova, et al., “Predicting away Robot Control Latency”, Lecture
Notes in Computer Science, 3020 (2004) pp. 712 - 719, 2004

2. Wolpert Daniel M., Flanagan J. Randall, “Motor Prediction” Current Biology Mag-
azine, vol. 11, no. 18

3. RoboCup, http://www.robocup.org, 1998

12

4. Kalman, R. E.;, “A New Approach to Linear Filtering and Prediction Problems”,
Transaction of the ASMEJournal of Basic Engineering, pp. 35-45, 1960

5. Browning B., Bowling M., Veloso M.M. “Improbability Filtering for Rejecting False
Positives”, Proceedings of ICRA-02, the 2002 IEEE International Conference on Ro-
botics and Automation, 2002

6. Martin Hagan, H. Demtuh, M. Beale, “Neural Network Design”, PWS Publishing,
Boston, 1996

7. Rojas, Raul, “Neural Networks C A Systematic Introduction”, Springer Verlag,
Heidelberg, 1996

8. Wenfei Wang, “Research on fundamental strategy of RoboCup Soccer of Small Size
League”, bachelor thesis, Hangzhou, 2005 (in Chinese)

