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for modeling fMRI time series data called Hidden Process Models (HPMs). Like
several earlier models for fMRI analysis, Hidden Process Models assume that the observed data is generated
by a sequence of underlying mental processes that may be triggered by stimuli. HPMs go beyond these earlier
models by allowing for processes whose timing may be unknown, and that might not be directly tied to
specific stimuli. HPMs provide a principled, probabilistic framework for simultaneously learning the
contribution of each process to the observed data, as well as the timing and identities of each instantiated
process. They also provide a framework for evaluating and selecting among competing models that assume
different numbers and types of underlying mental processes. We describe the HPM framework and its
learning and inference algorithms, and present experimental results demonstrating its use on simulated and
real fMRI data. Our experiments compare several models of the data using cross-validated data log-likelihood
in an fMRI study involving overlapping mental processes whose timings are not fully known.

© 2009 Elsevier Inc. All rights reserved.
Introduction
Hidden Process Models (HPMs) are a new method for the analysis
of fMRI time series data based on the assumption that the fMRI data is
generated by a set of mental processes. HPMsmodel each process with
parameters that define both the spatial-temporal signature of fMRI
activation generated by the process over some window of time (e.g. a
hemodynamic response function (HRF)), and a probability distribu-
tion on the onset time of the process relative to some external event
(e.g., a stimulus presentation or behavioral response). By including a
probability distribution over process start times, HPMs allow the
study of processes whose onset is uncertain and that may vary from
trial to trial. HPMs assume these processes combine linearly when
they overlap, and the sum of the HRFs from the active processes
defines the mean of a Gaussian probability distribution over observed
fMRI data. We present both a learning algorithm to train HPMs from
fMRI data, and an inference algorithm that applies an HPM to infer the
probable identities and start times of processes to explain additional
).
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observed data. The HPM learning algorithm resolves uncertainty
about process identities and start times in the training data, while
simultaneously estimating the parameters of the processes (the
spatial-temporal signature and timing distribution). This probabilistic
framework also provides an opportunity for principled comparison of
competing models of the cognitive processes involved in a particular
fMRI experiment.

Hidden Process Models build on a variety of work on fMRI analysis,
combining aspects of hemodynamic response function estimation and
mental chronometry. A linear systems approach for estimating HRFs is
described in Boynton et al. (1996), and Dale and Buckner (1997)
describe how to deal with overlapping hemodynamic responses when
times and identities of the underlying processes are fully observed.
More recently, the problem of asynchronous HRF estimation, in which
the stimuli might not align with the image acquisition rate, was
addressed in Ciuciu et al. (2003). The major difference between these
approaches and HPMs is that all of these methods assume processes
generating the HRFs are fully known in advance, as are their onset
times, whereas HPMs can estimate HRFs even when there is
uncertainty about when the HRF begins.

The field of mental chronometry is concerned with decomposing a
cognitive task into its component processing stages. Traditionally,
mental chronometry has relied on behavioral data such as measured
reaction times, but studies have shown that functional MRI can also be
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used to address this problem (Menon et al., 1998; Formisano and
Goebel, 2003). Henson et al. (2002) and Liao et al. (2002) have also
proposed methods for estimating the HRF and its latency that uses the
temporal derivative of an assumed form for the HRF. While these
works are not focused on identifying hidden processes, the estimation
techniques they describe could potentially be incorporated into the
HPM framework.

The use of classification techniques from the field of machine
learning is becoming widespread in the fMRI domain (see Haynes and
Rees, 2006 for an overview). Classifiers have been used to predict group
membership for particular participants (e.g. drug-addict vs. control, in
Zhang et al., 2005), and a variety of mental states (Kamitani and Tong,
2005; Mitchell et al., 2004; Cox and Savoy, 2003; Haxby et al., 2001).
HPMs can also be used for classification, but in a more general setting.
Whereas the above classification methods assume that the mental
processes being classified do not overlap in time, and that their timings
are fully known during both training and testing, HPMs remove both of
these restrictions. Finally, the current paper also extends preliminary
work on HPMs reported in Hutchinson et al. (2006).

Dynamic Bayesian Networks (DBNs) (Murphy, 2002) are another
class of models widely used in machine learning that can be applied to
fMRI analysis. Hidden Markov models (HMMs) (Rabiner, 1989) are a
type of DBN. HPMs are actually DBNs as well, although it is
cumbersome to express HPMs in the standard DBN notation. An
example of a DBN that has been used for the spatial-temporal analysis
of fMRI is Faisan et al. (2007), which presents hiddenMarkovmultiple
event sequence models (HMMESMs). HMMESMs use data that has
been pre-processed into a series of spikes for each voxel, which are
candidates for association with hemodynamic events. In contrast, we
estimate a spatial-temporal response to each process (similar to a
hemodynamic event). Additionally, where we estimate a probability
distribution over the lag between stimulus and activation, HMMESMs
use an optimized, but fixed activation lag. Finally, HMMESMs have
only been used to detect activation associated with stimuli, and not to
investigate hidden processes.

One of the most widely used methods for analyzing fMRI data is
SPM (Friston, 2003). An advantage of SPM is that it produces maps
describing the activation throughout the brain in response to
particular stimuli. A disadvantage of SPM is that it is massively
univariate, performing independent statistical tests for each voxel. In
fact, it has been shown that some mental states cannot be detected
with univariate techniques, but require multivariate analysis instead
(Kamitani and Tong, 2005). HPMs are a multivariate technique that
employs data from all voxels, for example, to estimate the onset times
of processes. The learned parameters of the HRF for each process can
also generate maps to describe the activity over the brain when that
process is active (e.g. the average over time of the response for each
voxel). This type of map is different from the ones produced by SPM,
but still potentially useful.

The ideas discussed in Poldrack (2006) are also relevant to HPMs,
especially in interpreting models that include processes that are not
well understood. That paper reviews the idea of ‘reverse inference’,
and the caveats associated with it. Reverse inference occurs when
activity of a brain region is taken to imply the engagement of a
cognitive process shown in other studies to be associated with that
brain region. This line of reasoning is more useful when the region of
interest is highly selective for the cognitive process in question. This
paper speaks directly to the problem of interpreting unsupervised
processes from the parameters of their estimated hemodynamic
response functions in HPMs. Also relevant is the companion paper to
Poldrack (2006), Henson (2006), which discusses conditions under
which we can distinguish between competing cognitive theories that
differ in the presence/absence of a cognitive process.

The major contributions of HPMs are the ability to study cognitive
processes whose onset times are unknown, the ability to compare
different theories of cognitive behavior in a principled way, and the
ability to do classification in the presence of overlapping processes. In
all of these tasks, HPM parameters can also be used to enhance our
understanding of the model.

This paper proceeds as follows. Section 2 introduces HPMs
formally, including the algorithms for inference and learning. Section
3 provides results on real and synthetic datasets, and Section 4
discusses these results.

Materials and methods

We first present real and synthetic datasets to which we have
applied HPMs so that we may use them as examples in the following
section. We then describe the HPM formalism and algorithms.

Data acquisition and pre-processing

Experiment 1: sentence–picture verification
We applied HPMs to an fMRI dataset collected while participants

viewed and compared pictures and sentences. In this dataset, 13
normal participants were presented with a sequence of 40 trials
(Keller et al., 2001). In half of the trials participants were shown a
picture (involving vertical arrangements of the symbols ⁎, +, and $)
for 4 s followed by a blank screen for 4 s, followed by a sentence (e.g.
“The star is above the plus.”) for 4 s. Participants were given 4 s to
press a button indicating whether the sentence correctly described
the picture. The participants then rested for 15 s before the next trial
began. In the other half of the trials the sentence was presented first
and the picture second, using the same timing.

Imaging was carried out on a 3.0 T G.E. Signa scanner. A T2⁎-
weighted, single-shot spiral pulse sequence was used with
TR=500 ms, TE=18 ms, 50° flip angle. This sequence allowed us to
acquire 8 oblique axial slices every 500 ms, with an in-plane
resolution of 3.125 mm and a slice thickness of 3.2 mm, resulting in
approximately 5000 voxels per participant. The 8 slices were chosen
to cover areas of the brain believed to be relevant to the task at hand.
More specifically, the eight oblique-axial slices collected in each TR
were acquired in two separate non-contiguous four-slice volumes, one
positioned superiorly to cover superior parietal and prefrontal areas,
and one positioned inferiorly to allow coverage of inferior frontal,
posterior temporal, and occipital areas. The spacing between these
volumes varied across participants and depended upon individual
anatomy. Each participant was also annotated with anatomical
regions of interest (ROIs). The data were preprocessed to remove
artifacts due to headmotion and signal drift using the FIASCO program
by Eddy et al. (1998).

Experiment 2: synthetic data
The synthetic data was created to roughly imitate the experiment

described above, andwas used to evaluate HPMs against ground truth.
We created datasets using two synthetic processes (ViewPicture and
ReadSentence), and three processes (adding Decide). For each
experiment, all of the voxels responded to all of the processes. It is
unlikely that all the voxels in the brainwould respond to all processes
in an experiment, but wewished to test HPMs in the most challenging
setting possible: maximal spatial-temporal overlap among the HRFs of
different processes.

For each dataset, the HRF for each process was generated by
convolving a boxcar function indicating the presence of the stimulus
with a gamma function (following Boynton et al., 1996) with
parameters {a, τ, n} of the form

h tð Þ= a4
t
τ

� �n−1
exp −t

τ

� �
τ n−1ð Þ! :

The parameters for the gamma functions were {8.22, 1.08, 3} for
ViewPicture, {8, 2.1, 2} for ReadSentence, and {7.5, 1.3, 3}. The



Fig. 2. Two-process synthetic data: a single voxel timecourse for two trials, with and
without noise. The first trial is a picture followed by a sentence; the second trial is the
reverse.
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processes' gamma functions were convolved with a 4-second boxcar,
matching the experiment timeline. These responses are shown in
Fig. 1.

The ViewPicture and ReadSentence processes had offset values
of {0, 1}, meaning their onsets could be delayed 0 or 1 image (0 or
0.5 s) from their corresponding stimuli. The Decide process had
offset values of {0, 1, 2, 3, 4, 5}, meaning its onset could be delayed
0–5 images (0–2.5 s) from its corresponding stimulus, which in
each case was the second stimulus presentation, whether it was a
picture or a sentence.

To generate the data for a new trial in the two-process dataset,
we first chose which stimulus would come first (picture or
sentence). We required that there be an equal number of picture-
first and sentence-first trials. When a picture stimulus occurred, we
randomly selected an offset from the ViewPicture offsets and added
it to the stimulus onset time to get the process start time. Then we
added the ViewPicture HRF (over all voxels) to the synthetic data
beginning at that start time. Sentences were dealt with similarly,
where overlapping HRFs summed linearly. Finally, we added
Gaussian noise with mean 0 and standard deviation 2.5 to every
voxel at every time point. The three-process dataset was generated
similarly, except that each trial included a Decide process as well,
whose onset was randomly chosen and added to the second
stimulus onset time to get the process start time. Fig. 2 shows the
timecourse of a single voxel for two trials from the two-process
dataset (with and without noise), and Fig. 3 shows the same for the
three-process dataset. In both cases, the first trial is a picture
followed by a sentence; the second trial is the reverse. The same
general process was used to generate four-process data.

HPM formalism

A Hidden Process Model is a description of a probability
distribution over an fMRI time series, represented in terms of a
set of processes, and a specification of their instantiations. HPMs
assume the observed time series data is generated by a collection of
hidden process instances. Each process instance is active during
some time interval, and influences the observed data only during
this interval. Process instances inherit properties from general
process descriptions. The timing of process instances depends on
timing parameters of the general process it instantiates, plus a fixed
timing landmark derived from input stimuli. If multiple process
instances are simultaneously active at any point in time, then their
contributions sum linearly to determine their joint influence on the
observed data. Fig. 4 depicts an HPM for synthetic sentence–picture
data.

HPMs make a few key assumptions, some of which may be relaxed
in future iterations of the framework. For instance, the current version
of HPMs uses a pre-specified and fixed duration for the response
signature of a process. Additionally, the process offsets are discrete
Fig. 1. Noise-free hemodynamic response functions of the processes in the synthetic
data.
and tied to specific images. Finally, we adopt the commonly used
linearity assumption in fMRI and sum the response signatures of
overlapping process instances to predict the signal.

More formally, we consider the problem setting in which we
are given observed data Y, a T×V matrix consisting of V time
series, each of length T. For example, these may be the time series
of fMRI activation at V different voxels in the brain. The observed
data Y is assumed to be generated nondeterministically by some
system. We use an HPM to model this system. Let us begin by
defining processes:

Definition 1
A process π is a tuple 〈W, Θ, Ω, d〉 d is a scalar called the duration of π,
which specifies the length of the interval during which π is active. W is a
d×V matrix called the response signature of π, which specifies the
influence of π on the observed data at each of d time points, in each of
the V observed time series. Θ is a vector of parameters that defines a
multinomial distribution over a discrete-valued random variable which
governs the timing of π, and which takes on values from a set of integers
Ω. The set of all processes is denoted by ⋄.

The set of values in Ω is defined by the designer of the HPM, and
the length of Θ is the same as the chosen length of Ω. As we will see
below, the parameters Θ can be learned from data.

We will use the notation Ω(π) to refer to the parameter Ω for a
particular process π. More generally, we adopt the convention that f
(x) refers to the parameter f affiliated with entity x.

Each process represents a general procedure which may be
instantiated multiple times over the time series. For example, in the
sentence–picture fMRI study described above, we can hypothesize
general cognitive processes such as ReadSentence, ViewPicture, and
Fig. 3. Three-process synthetic data: a single voxel timecourse for two trials, with and
without noise. The first trial is a picture followed by a sentence; the second trial is the
reverse. The second peak in each trial is higher than in Fig. 2 because the three-process
data includes activation for the Decide process.



Fig. 4. Example HPM for synthetic 2-process, 2-voxel data. Each process has a duration d, possible offsets Ω and their probabilities Θ, and a response signature W over time (on the
horizontal axis) and space (voxels v1 and v2). They are instantiated 4 times in the configuration c. The start time of a process instance i is its landmark λ plus its offset o. The
predicted mean of the data is the sum of the contributions of each process instance at each time point. (The response signatures are contrived rather than realistic in order to more
clearly show linearity.)
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Decide, each of which is instantiated once for each trial. The
instantiation of a process at a particular time is called a process instance,
defined as follows:

Definition 2
A process instance i is a tuple 〈π, λ, O〉, where π identifies a process as
defined above, λ is a known scalar called a timing landmark that refers
to a particular point in the time series, and O is an integer random
variable called the offset, which takes on values in Ω(π). The time at
which process instance i begins is defined to be λ+O. The multinomial
distribution governing O is defined by Θ(π). The duration of i is given by
d(π), and the response signature is W(π).

The timing landmark λ is a timepoint in the trial, typically
associated with an event in the experiment design. For example,
the timing landmark for a process instances in the sentence–
picture verification task may be the times at which stimuli are
presented. λ specifies roughly when the process instance will
begin, subject to some variability depending on its offset O, which
in turn depends on its process identity π. More specifically, the
process starts at t=λ+O, where O is a random variable whose
distribution is a property of the process π. In contrast, the
particular value of O is a property of the instance. That is, while
there may be slight variation in the offset times of ReadSentence
instances, we assume that in general the amount of time between
a sentence stimulus (the landmark) and the beginning of the
ReadSentence cognitive process follows the same distribution for
each instance of the ReadSentence process.

We consider process instances that may generate the data in
ordered sets, rather than as individual entities. This allows us to use
knowledge of the experiment design to constrain the model. We refer
to each possible set of process instances as a configuration.
Definition 3
A configuration c of length L is a set of process instances {i1…iL}, in which
all parameters for all instances ({λ, π, O}) are fully-specified.

In HPMs, the latent random variable of interest is an indicator
variable defining which of the set of configurations is correct. Given a
configuration c={i1…iL} the probability distribution over each
observed data point ytv in the observed data Y is defined by the
Normal distribution:

ytvfN μtv cð Þ;σ2
v

� � ð1Þ

where σ2
v is the variance characterizing the time-independent, voxel-

dependent noise distribution associated with the vth time series, and
where

μ tv cð Þ=
X
iac

Xd π ið Þð Þ

τ = 0

δ λ ið Þ+O ið Þ= t−τð Þwτv π ið Þð Þ: ð2Þ

Here δ dð Þ is an indicator functionwhose value is 1 if its argument is
true, and 0 otherwise. wτv(π(i)) is the element of the response
signature W associated with process π(i), for data series v, and for the
τth time step in the interval during which i is instantiated.

Eq. (2) says that the mean of the Normal distribution governing
observed data point ytv is the sum of single contributions from each
process instance whose interval of activation includes time t. In
particular, the δ dð Þ expression is non-zero only when the start time
(λ(i)+O(i)) of process instance i is exactly τ time steps before t, in
which case we add the element of the response signature W(π(i)) at
the appropriate delay (π) to the mean at time t. This expression
captures a linear system assumption that if multiple processes are
simultaneously active, their contributions to the data sum linearly.
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To some extent, this assumption holds for fMRI data (Boynton et al.,
1996) and is widely used in fMRI data analysis.

We can now define Hidden Process Models:

Definition 4
A Hidden Process Model, HPM, is a tuple h⋄;C; hσ2

1 N σ2
V ii, where ⋄ is a

set of processes, C is a set of candidate configurations, and σ2
v is the

variance characterizing the noise in the vth time series of Y.

Note that the set of configurations C is defined as part of the HPM
and that it is fixed in advance. Each configuration is an assignment of
timings and process types to some number of process instances. If we
think of the hypothesis space of an HPM as the number of ways that its
processes can be instantiated to influence the data, which is a very
large number if any process can occur at any time, we can see that C
restricts the hypothesis space of the model by allowing the HPM to
consider a smaller number of possibilities. These configurations
facilitate the incorporation of prior knowledge about the experiment
design like timing constraints as mentioned above. For example, if
stimulus A was presented at t=5 then there is no need to consider
configurations that allow the cognitive process associated with this
stimulus to begin at t=4. This knowledge is contained in C if none of
the configurations have an instance of process A beginning at a time
earlier than t=5. The algorithms presented below can compute the
probability of each configuration in several settings.

An HPM defines a probability distribution over the observed data Y
as follows:

P YjHPMð Þ=
X
caC

P YjHPM;C = cð ÞP C = cjHPMð Þ ð3Þ

where C is the set of candidate configurations associated with the
HPM, and C is a random variable defined over C. Notice the term P
(Y∣HPM,C=c) is defined by Eqs. (1) and (2) above. The second term is

P C = cjHMPð Þ= P π cð ÞjHPMð ÞQiac P O ið Þjπ ið Þ;HPMð ÞP
cVaC P π cVð ÞjHPMð ÞQiVacVP O iVð Þjπ iVð Þ;HPMð Þ ð4Þ

where P(π(c)|HPM) is a uniform distribution over all possible
combinations of process IDs. P(O(i)|π(i), HPM) is the multinomial
distribution defined by Θ(π(i)).

Thus, the generative model for an HPM involves first choosing a
configuration c∈C, using the distribution given by Eq. (4), then
generating values for each time series point using the configuration c
of process instances and the distribution for P(Y∣HPM,C=c) given by
Eqs. (1) and (2).

HPM algorithms

Inference: classifying configurations and process instance identities and
offsets

The basic inference problem in HPMs is to infer the posterior
distribution over the candidate configurations C of process instances,
given the HPM, and observed data Y. By Bayes theorem we have

P C = cjY;HMPð Þ= P YjC= c;HPMð ÞP C= cjHPMð ÞX
cVaC

P YjC = cV;HPMð ÞP C = cVjHPMð Þ ð5Þ

where the terms in this expression can be obtained using Eqs. (1), (2),
and (4).

Given the posterior probabilities over the configurations P
(C=c∣Y,HPM), we can easily compute the marginal probabilities
of the identities of the process instances by summing the
probabilities of the configurations in which the process instance in
question takes on the identity of interest. For instance, we can
compute the probability that the second process instance i2 in a
particular trial has identity A by:

P π i2ð Þ= Að Þ=
X
caC

δ π i2ð Þ= Að Þjcð ÞP C= cjY;HPMð Þ: ð6Þ

Note that other marginal probabilities can be obtained similarly
from the posterior distribution, such as the probabilities of particular
offsets for each process instance, or the joint probability of two
process instances having a particular pair of identities.

Learning: estimating model parameters
The learning problem in HPMs is: given an observed data sequence

Y and a set of candidate configurations, we wish to learn maximum
likelihood estimates of the HPM parameters. The set ψ of parameters
to be learned include Θ(π) and W(π) for each process π∈⋄, and σ2

v
for each time series v.

Learning from fully observed data
First consider the case in which the configuration of process

instances is fully observed in advance (i.e., all process instances,
including their offset times and process IDs, are known, so there is
only one configuration in the HPM). For example, in our sentence–
picture brain imaging experiment, we might assume there are only
two cognitive processes, ReadSentence and ViewPicture, and that a
ReadSentence process instance begins at exactly the time when the
sentence is presented to the participant, and ViewPicture begins
exactly when the picture is presented.

In such fully observable settings the problem of learning Θ(π)
reduces to a simple maximum likelihood estimate of multinomial
parameters from observed data. The problem of learning the
response signatures W(π) is more complex, because the W(π)
terms from multiple process instances jointly influence the observed
data at each time point (see Eq. 2). Solving for W(π) reduces to
solving a multiple linear regression problem to find a least squares
solution, after which it is easy to find the maximum likelihood
solution for the σ2

v . Our multiple linear regression approach in this
case is based on the GLM approach described in Dale (1999). One
complication that arises is that the regression problem can be ill
posed if the training data does not exhibit sufficient diversity in the
relative onset times of different process instances. For example, if
processes A and B always occur simultaneously with the same onset
times, then it is impossible to distinguish their relative contributions
to the observed data. In cases where the problem involves such
singularities, we use the Moore–Penrose pseudoinverse to solve the
regression problem.

Learning from partially observed data
In the more general case, the configuration of process instances

may not be fully observed, and we face a problem of learning from
incomplete data. Here we consider the general case in which we
have a set of candidate configurations in the model and we do not
know which one is correct. The configurations can have different
numbers of process instances, and differing process instance
identities and timings. If we have no knowledge at all, we can list
all possible combinations of process instances. If we do have some
knowledge, it can be incorporated into the set of configurations. For
example, in the sentence–picture brain imaging experiment, if we
assume there are three cognitive processes, ReadSentence, View-
Picture, and Decide, then while it is reasonable to assume known
offset times for ReadSentence and ViewPicture, we must treat the
offset time for Decide as unobserved. Therefore, we can set all of the
configurations to have the correct identities and timings for the first
two process instances, and the correct identity and unknown timing
for the third.
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In this case, we use an Expectation–Maximization algorithm
(Dempster et al., 1977) to obtain locally maximum likelihood
estimates of the parameters, based on the following Q function.

Q W;Wold
� �

= ECjY;Wold P Y;CjWð Þ½ � ð7Þ

The EM algorithm, which we will call Algorithm 1, finds parametersΨ
that locally maximize the Q function by iterating the following steps
until convergence. Algorithm 1 is shown in Table 1.

The update to W is the solution to a weighted least squares
problem minimizing the objective function

XV
v = 1

XT
t = 1

X
caC

−
P C = cjY;Wold
� �

2σ2
v

ytv−μtv cð Þð Þ2 ð8Þ

where μtv(c) is defined in terms of W as given in Eq. (2). We can
optionally add a regularization term r to this objective function to
penalize undesirable properties of the parameters:

XV
v = 1

XT
t = 1

X
caC

−
P C = cjY;Wold
� �

2σ2
v

ytv−μtv cð Þð Þ2 + γr: ð9Þ

Here γ weights the influence of the regularizer r in relation to the
original objective function. In our experiments, we penalized devia-
tions from temporal and spatial smoothness by setting r to the
squared difference between successive time points within the process
response signatures, summed over voxels, plus the squared difference
between adjacent voxels, summed over the time points of the process
response signatures. That is:

r=
X
πaΠ

XV
v = 1

Xd πð Þ−1

τ = 1

wv;τ + 1 πð Þ−wv;τ πð Þ� �2

+
X
πaΠ

XV−1

i = 1

XV
j = i + 1

A i; jð Þ
Xd πð Þ

τ = 1

wi;τ πð Þ−wj;τ πð Þ� �2 ð10Þ

where A is a binary V×V adjacency matrix (A(i,j) is 1 if and only if
voxel i is adjacent to voxel j, where we consider a voxel adjacent to the
26 surrounding voxels.

The updates to the remaining parameters are given by:

σ2
vp

1
T

XT
t = 1

ECjY;Wold ytv−μtv Cð Þð Þ2
h i

ð11Þ

θπ;O = op

X
caC;iac

δ π ið Þ= π1O ið Þ= oð Þp cð ÞX
caC;iVac;oVaX π ið Þð Þδ π ið Þ= π1O ið Þ= oVð Þp cð Þ ð12Þ

where p(c) is shorthand for P(C=c∣Y,Ψold).

An extension: Shared HPMs

This section presents an approach to improving the accuracy of
learned HPMs by reducing the effective number of parameters to be
estimated. In particular, we present an algorithm that discovers
Table 1
Algorithm 1 computes themaximum likelihood estimates of the HPM parameters in the
case where the true configuration of process instances is unknown

Algorithm 1

Iterate over the following two steps until the change in Q from one iteration to the next
drops below a threshold, or until a maximum number of iterations is reached.
E step: Solve for the probability distribution over the configurations of process
instances. The solution to this is given by Eq. (5).
M step:Use the distribution over configurations from the E step to obtain newparameter
estimates for W, σ2

v8v, and θπ;o8π; 8o that maximize the expected log-likelihood of the
full (observed and unobserved) data (Eq. 7), using Eqs. 8 (or 9), 11, and 12.
clusters of neighboring brain locations whose HPM parameters can be
shared, and a learning algorithm that takes advantage of these
parameter-sharing assumptions to estimate parameters more reliably.
This work is a special case of Niculescu (2005) and Niculescu et al.
(2006), which present a more general framework for incorporating
parameter sharing constraints in learning Bayesian networks.

In this section we make several simplifying assumptions from the
general HPM framework presented above. We assume the offsets O
are all 0, the types of the processes are known, and two instances of
the same type of process may not be active simultaneously. These
assumptions lead to a special case of HPMs that is equivalent to the
approach of Dale (1999) based on multivariate regression within the
General Linear Model.

Shared HPMs are an attempt to incorporate spatial domain
knowledge about fMRI datasets into the HPM framework. Specifically,
certain groups of voxels that are close together often exhibit similarly
shaped time series, but with different amplitudes. The key assumption
made by Shared HPMs is that in this case, it is reasonable to assume
that the underlying process response signatures corresponding to
these voxels are proportional to one another. (Several ideas for
exploiting spatial coherence are investigated in Mitra (2006) and
Palatucci and Mitchell (2007).)

Formally, we say that the variables (in this case voxels) Y1,…,Yv
share their process response signature parameters if there exist a
common d×K (where d is the maximum process length and K is the
number of different process types) process matrix W and amplitude
constants aiv, one for each variable v and each process i such that:

ytv
X
i

aivw t−λ ið Þð Þ;σ2

 !
: ð13Þ

Here σ2 represents the measurement variance which is also
assumed as shared across these variables (voxels). Furthermore, if we
assume the variables Y are observed across a sequence of N trials of
equal length T, we can write:

ytv
X
i

aivwt−λn ið Þi;σ2

 !
: ð14Þ

We now consider how to perform efficient maximum likelihood
estimation of the parameters of the voxels Y1,…,Yv, assuming they
share parameters as described above. The parameters to be estimated
are the base process parameters W, the scaling constants A={aiv}
(one for each voxel and process), and the common measurement
variance σ2. The log-likelihood of the model is:

l W;A;σð Þ= −NTV log σð Þ
2

− 1
2σ2 lVW ;Að Þ ð15Þ

where

lVW;Að Þ=
X
n;t;v

yntv−
X
i

aivw t−λn ið Þð Þi
 !2

ð16Þ

where yntv represents the value of in trial n and λn(i) represents the
start of process i in trial n.

It is easy to see that the function l′ does not depend on the variance
σ2 and it is a sum of squares, where the quantity inside each square is a
linear function in both W and A. Based on this observation, we
describe a method to compute themaximum likelihood estimators for
the parameters that are shared across the voxels in our set, which we
call Algorithm 2, shown in Table 2.

In general it is difficult to specify a priori which voxels share their
process response signature parameters. Algorithm 3, shown in Table 3
introduces Hierarchical Hidden Process Models, which use a nested
cross-validation hierarchical approach to both partitions of the brain



Table 2
Algorithm 2 computes the maximum likelihood estimators for parameters in Shared
HPMs

Algorithm 2

Let Y be the column vector for the values in yntv
� �

. Start with Ŵ; Â
� �

an initial random
guess, then repeat Steps 1 and 2 until they converge to the minimum of the function
lV Ŵ; Â
� �

.

STEP 1: Write lV Ŵ; Â
� �

= kjUŴ−Y kj2 where U is an NTV by Kd matrix depending on
the current estimate Â of the scaling constants. Minimize with respect to Ŵ using
ordinary least squares to get a new estimate P = UTU

� �−1
UTY .

STEP 2: Minimize l′ with respect to Â same as in Step 1.
STEP 3: Once convergence is reached by repeating the above two steps, let σ

2
=

lV Ŵ; Â
� �
NTV

.
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into clusters of voxels that will share parameters and simultaneously
estimate those parameters. For each fold of training data, the
algorithm starts by partitioning the voxels into their anatomical
ROIs. It then iteratively evaluates the current partitioning schemewith
an incremental modification to the partition created by splitting one
existing subset into 16 smaller subsets using equally spaced planes in
all three directions. If the average cross-validated log-likelihood of the
model using the new partition is higher than that of the old, the new
partition is kept. Otherwise the subset that the algorithm attempted to
split is placed into the final partition, and the algorithm iterates over
the other subsets. The final partition is used to compute a score for the
current fold of the training set, and then the process is repeated for the
other folds. Finally, a model unifying all the folds can be computed,
whose performance can be estimated from the cross-validation. (See
Table 3 for details.)

Results

In this section, we present results on both synthetic data and fMRI
data from the sentence–picture verification experiment. Our results
on synthetic data show that we can accurately recover the true
process response signatures from training data using Algorithm 1, that
we can correctly classify which of a set of configurations truly
generated the test data, and that we can reliably choose the number of
processes underlying the data. Our results on the real sentence–
picture fMRI data demonstrate the use of HPMs for model comparison
in the sentence–picture study, and give examples of the results of the
trained models, including spatial and temporal views of an estimated
response signature, and an estimated timing distribution. Finally, we
Table 3
Algorithm 3 performs nested cross-validation to partition the brain into clusters of
voxels that share their process response signature parameters and simultaneously
estimate those parameters

Algorithm 3

STEP 1: Split the examples into n folds F=F1,…,Fn.
STEP 2: For all 1≤k≤n, keep fold Fk aside and learn a model from the remaining folds
using Steps 3–5.
STEP 3: Start by partitioning all voxels in the brain into their ROIs and mark all subsets
as Not Final.
STEP 4: While there are subsets in the partition that are Not Final, take any such subset
and try to split it using equally spaced planes in all three directions (in our experiments
we split each subset into 16=4×2×2 smaller subsets). If the cross-validation average
log-likelihood of the model learned from these new subsets using Algorithm 2 (based
on folds F \Fk, where\denotes set minus) is lower than the cross-validation average log-
likelihood of the initial subset for folds in F \Fk, then mark the initial subset as Final and
discard its subsets. Otherwise remove the initial subset from the partition and replace it
with its subsets which then mark as Not Final.
STEP 5: Given the partition computed by Steps 3 and 4, based on the data points in F \Fk,
learn a Hidden Process Model that is shared for all voxels inside each subset of the
partition. Use this model to compute the log score for the examples/trials in Fk.
STEP 6: In Steps 2–4 we came up with a partition for each fold Fk. To come up with one
single model, compute a partition using Steps 3 and 4 based on all n folds together,
then, based on this partition learn a model as in Step 5 using all examples. The average
log score of this last model can be estimated by averaging the numbers obtained in Step
5 over the folds.
present results showing that Shared HPMs can improve data log-
likelihood, especially when the training set is small, and show clusters
of voxels learned by Algorithm 3.

Some of our results are compared in terms of the log-likelihood of
the data under the model. To compute the log-likelihood, we use the
log of Eq. 3 with a slight modification. Eq. 3 takes an average of the
data likelihood under each configuration, weighted by the probability
of that configuration. To compute the likelihood of the configuration,
we use Eqs. 1 and 2. Since different configurations can be active for
windows of time with different lengths, we replace inactive time-
points in μtv(c) with the mean over all trials of the training data for
timepoint t and voxel v, replacing zeros in the predicted mean where
no process instances were active. This process helps to minimize the
advantage of longer configurations over shorter ones in terms of data
log-likelihood. These log-likelihood scores can be averaged over
multiple test sets when performing cross-validation to get an estimate
of the overall performance of the model.

Synthetic data

Estimation of the hemodynamic responses
To test whether HPMs can accurately recover the true process

response signatures underlying the data, we compared the learned
response signatures to the true responses in the two and three-
process synthetic datasets. These datasets each had only 2 voxels (the
small number of voxels was chosen to easily show the learned
responses, even though the learning problem is easier with more
informative voxels). In each case, we trained the HPM on 40 trials (the
number of trials we have in the real data) using Algorithm 1. For the
synthetic data experiments we did not use regularization.

In both datasets, the identity of the process instances in each trial
was provided to the learning algorithm via the configurations, but
their timings were not. This corresponds to reasonable assumptions
about the real fMRI data. Since we know the sequence of the stimuli, it
is reasonable to assume that the process instances match that
sequence. However, we do not know the delay between the stimulus
presentation and the beginning of the cognitive process(es) asso-
ciated with it.

Two trials of the two-process data are shown in Fig. 5, and the
learned responses for each process in each voxel are shown in Fig. 6.
Note that the learned responses are reasonably smooth, even though
this assumption was not provided to the learner. The mean squared
error between the learned and true responses averaged over time-
points, processes, and voxels is 0.2647, and the estimated standard
deviations for the voxels are 2.4182 and 2.4686 (compare with the
true value, 2.5). The EM training procedure converged in 16 iterations.
Figs. 7 and 8 are the corresponding plots for the three-process data. In
this case, the mean squared error between the learned and true
responses averaged over timepoints, processes, and voxels is 0.4427,
Fig. 5. Two trials of synthetic data for the 2-process experiment using 2 voxels. The first
trial (the left half of the time series) is a picture followed by a sentence; the second trial
is the reverse.



Fig. 8. Comparison of the learned vs. true process response signatures in the synthetic
two-process data for two voxels. The mean squared error between the learned and true
responses averaged over timepoints, processes, and voxels is 0.4427.

Fig. 6. Comparison of the learned vs. true process response signatures in the two-
process data for two voxels. The mean squared error between the learned and true
responses averaged over timepoints, processes, and voxels is 0.2647.

Table 4
For each training set, the table shows the average (over 30 runs) test set log-likelihood
of each of 3 HPMs (with 2, 3, and 4 processes) on each of 3 synthetic data sets
(generated with 2, 3, and 4 processes)
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and the estimated standard deviations for the voxels are 2.4316 and
2.4226. The EM training procedure converged in 24 iterations.

The identifiability of the model from the data is a significant factor
in estimating the HRFs of the processes. A system is identifiable if
there is a unique set of parameters that optimally reconstructs the
data. For instance, if the cognitive processes never overlap, we can
easily deconvolve the contributions of each one. However, if two
processes are fully-overlapping every time they occur in the data,
there are an infinite number of response signature pairs that could
explain the data equally well. Note that the two-process data is
identifiable, whereas the three-process data is not.

Classification of configurations
To test whether these learned HPMs could correctly classify the

process instance configurations in a new trial, we ran a similar
experiment, again using synthetic data. In this case, the training set
was again 40 trials, and the test set consisted of 100 trials generated
independently from the same model. This time, we used 500 voxels,
all of which responded to both stimuli, in both the training and test
sets, which is a reasonable number of voxels in which we might be
interested.

The uncertainty in the process configurations in the training set
again reflected the real data. That is, the process identities were
provided in the configurations for the training data, but the timing
was unknown. In the test set however, we allowed more uncertainty,
Fig. 7. Two trials of synthetic data for the 3-process experiment using 2 voxels. The first
trial (the left half of the time series) is a picture followed by a sentence; the second trial
is the reverse.
assuming that for a new trial, we did not know the sequence of the
first two stimuli. Therefore, the third process was known to be Decide,
but the first two could be either ReadSentence followed by View-
Picture, or ViewPicture followed by ReadSentence. Based on our
knowledge of the experiment design, the first two instances could not
have the same parent process (i.e. ReadSentence followed by Read-
Sentence was not allowed). For all three instances in the test set trials,
the timing was unknown. For both the two-process and three-process
data, HPMs predicted the correct configuration on the test data with
100% accuracy.

Choosing the number of processes to model
Another interesting question to approach with synthetic data is

whether or not HPMs can be used to determine the number of
processes underlying a dataset. One might be concerned that HPMs
would be biased in favor of more and more processes by using extra
processes to fit noise in the data more closely. We do expect to fit the
training data better by using more processes, but we can use
Number of
training trials

Number of
processes
in HPM

2 process data 3 process data 4 process data

40 2 −5.64±0.00444 −7.93±0.0779 −7.72±0.0715
40 3 −7.47±0.183 −5.66±0.00391 −5.72±0.00504
40 4 −7.19±0.0776 −5.687±0.00482 −5.65±0.00381
20 2 −2.87±0.204 −3.80±0.192 − 3.70±0.606
20 3 −4.00±0.0461 −2.86±0.00597 −2.87±0.00276
20 4 −3.91±0.0319 −2.89±0.00320 −2.85±0.00364
10 2 −1.44±0.245 −2.07±0.0653 −1.96±0.0665
10 3 −1.99±0.119 −1.47±0.0231 −1.47±0.00654
10 4 1.95±0.0872 −1.49±0.0195 −1.46±0.00427
6 2 2.87±0.204 −1.32±0.0363 −1.34±0.297
6 3 4.00±0.0461 −0.923±0.0130 −0.928±0.0126
6 4 −3.91±0.0319 −0.933±0.0149 −9.21±0.00976
2 2 −3.75±0.00710 −7.223±0.0456 −4.62±0.0383
2 3 −5.36±0.0689 −6.99±0.0823 −3.96±0.0252
2 4 −5.08±0.0704 −7.002±0.0853 −3.91±0.0241

Each cell is reported as mean±standard deviation. NOTE: All values in this table
are ⁎105.



Table 5
Improvement of test-set log-likelihood for 4 models over predicting the average
training trial computed using 5-fold cross validation for 13 subjects

Participant HPM-GNB HPM-2-K HPM-2-U HPM-3-K

A 14,040±3304 12,520±1535 14,720±1970 11,780±3497
B 14,460±2555 14,580±1011 15,960±1790 7380±2439
C 12,860±4039 14,080±1794 15,460±2542 7500±1329
D 12,140±1276 13,700±943 15,720±1264 10,360±1408
E 14,340±1941 17,140±1236 17,560±1484 10,100±4909
F 16,180±3671 17,400±4064 18,040±4060 8180±1886
G 12,160±680 14,680±942 14,940±1358 5740±1820
H 14,120±1281 14,860±811 16,160±1699 7360±4634
I 11,460±2201 13,080±2572 14,260±2384 10,420±2046
J 12,140±2509 12,840±1301 14,420±3391 7960±2907
K 14,080±2983 14,620±2190 17,120±2410 8800±3044
L 17,820±2716 20,200±1580 19,980±2494 13,700±3519
M 12,940±1205 12,680±1796 14,560±1236 9240±1677

Each cell reports the mean plus or minus 1 standard deviation of the model log-
likelihood minus the naive method log-likelihood over the 5 folds.
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independent test data to evaluate whether the extra processes are
indeed fitting noise in the training data (which we would not expect
to help fit the test data) or whether the extra process contains actual
signal that helps fit the test data. In fact, there can be a slight bias, even
when using separate test data, in favor of models that allow a larger
number of possible configurations. As we show below, the impact of
this bias in our synthetic data experiments does not prevent HPMs
from recovering the correct model.

To investigate this question, we generated training sets of 40
examples each using 2, 3, and 4 processes in the same fashion as the
previous experiments. For each training set, we trained HPMs with 2,
3, and 4 processes each. Additionally, we generated test sets of 100
examples each using 2, 3, and 4 processes. Every training and test set
had 100 voxels. For each test set, we used each of the HPMs trained on
its corresponding training set to evaluate the log-likelihood of the test
data under the model. In each case, the model selected by the
algorithm based on this score was the one with the correct number of
Fig. 9. Improvement in all 13 participants (A–M in different colors) of 4 HPMs over a baseline
the mean over 5 folds of cross validation of the model log-likelihood minus the baseline log-
x-axis, the models are HPM-GNB, HPM-2-K, HPM-2-U, and HPM-3-K.
processes. We performed this experiment with independently
generated training and test sets 30 times with consistent results.
The average test-set log-likelihoods are shown in Table 4, along with
further repetitions of this experiment with decreasing training set
sizes. As expected, we see increased variability with smaller training
sets, but even for small numbers of examples, the HPM with the
highest test data log-likelihood has the same number of processes as
were used to generate the data.

When using real data instead of synthetic data, we do not have
an independent test set on which to verify the number of processes
to use. Instead, we can modify our method by using cross-
validation. We can separate the dataset into n non-overlapping
pieces, leave one of them out as the independent test set, and train
HPMs with different numbers of processes on the remaining pieces.
For each left-out piece, we can compute the log-likelihood of the
data for each HPM, and average these log-likelihoods over the left-
out pieces. This average log-likelihood is then a measure of how
well each HPM performs on unseen data. This process avoids
overfitting of the noise in the training set because the model must
do well on data it has not seen in training.

Real data

HPMs for model comparison
In this section, we create several HPMs for the sentence–picture

fMRI data and evaluate them in terms of the log-likelihood of the data
under each model. This evaluation is done in the context of 5-fold
cross-validation, meaning that the 40 trials are split into 5 folds of 8
trials each. Each fold is held out in turn as a test set while the models
are trained on the other 32 trials. The training was done using
Algorithm 1 with regularization, with weight γ=20. Since log-
likelihood does not have concrete units, we compare the score of each
model to the log-likelihood score achieved by the naive method of
averaging all training trials together and predicting this average trial
for each test trial.
method that predicts the average training trial for every test trial. The values plotted are
likelihood, and the error bars represent one standard deviation. From left to right on the



Table 7
Configurations for a test set trial using HPM-2-U

c π(i1) λ(i1) O(i1) π(i2) λ(i2) O(i2)

1 S 1 0 P 17 0
1 S 1 1 P 17 0
1 S 1 0 P 17 1
1 S 1 1 P 17 1
2 P 1 0 S 17 0
2 P 1 1 S 17 0
2 P 1 0 S 17 1
2 P 1 1 S 17 1

For supervised training where we assume the order of the stimuli is known, there will
be only four configurations for each training trial.

Table 8
Configurations for a test set trial under HPM-3-K

c π(i1) λ(i1) O(i1) π(i2) λ(i2) O(i2) π(i3) λ(i3) O(i3)

1 S 1 0 P 17 0 D 17 0
2 S 1 0 P 17 0 D 17 1
3 S 1 0 P 17 0 D 17 2
4 S 1 0 P 17 0 D 17 3
5 S 1 0 P 17 0 D 17 4
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Table 5 presents the improvement of 4 models over a baseline,
averaged over 5 folds of cross-validation. Fig. 9 presents the same
information graphically. The baseline is computed by predicting
the mean of the training trials for each test trial. The 4 models are
an HPM with 2 processes (ReadSentence and ViewPicture) with
non-overlapping responses (HPM-GNB), HPMs with 2 processes
(ReadSentence and ViewPicture) with known and unknown
timings for ReadSentence and ViewPicture (HPM-2-K and HPM-
2-U respectively), and an HPM with 3 processes (ReadSentence,
ViewPicture, and Decide) with known timing for ReadSentence
and ViewPicture (HPM-3-K). Note that all of the models used all
available voxels for each participant. More details of each model
are explained below.

The HPM-GNB model approximates a Gaussian Naive Bayes model
(Mitchell, 1997) through the HPM framework. It has two processes:
ReadSentence and ViewPicture. The duration of each process is 8 s (16
images) so that they may not overlap. HPM-GNB has a variance for
each voxel, and incorporates the knowledge that each trial has exactly
one instance of ReadSentence and exactly one of ViewPicture. It is the
same as HPM-2-K (presented in the next section) except that the
processes are shorter so that they may not overlap.

HPM-2-K is a 2-process HPM containing just ReadSentence and
ViewPicture, each of which has a duration of 12 s (a reasonable length
for the hemodynamic response function). The ‘K’ stands for ‘known’,
meaning that the timing of these two processes is assumed to be
known.More specifically, it is assumed that each process starts exactly
when its corresponding stimulus is presented. In other words, Ω={0}
for both processes. For a given test set trial, the configurations for
HPM-2-K are shown in Table 6. The configurations for a training set
trial are restricted to those containing the correct order of the
processes (based on the order of the stimuli).

HPM-2-U is also a 2-process HPM containing just ReadSentence
and ViewPicture. In this case though, the ‘U’ stands for ‘unknown,’
meaning that we allow a small amount of uncertainty about the start
times of the processes. In HPM-2-U, the Ω for each process is {0,1},
which translates to delays of 0 or 0.5 s (0 or 1 image) following the
relevant stimulus presentation. The configurations for the test set in
this case are in Table 7. Again, during supervised training, the
configurations for a given training trial are limited to those that
have the correct process ordering. Since the true offset for the
processes are unknown even during training, there are still 4
configurations for each training trial.

HPM-3-K adds a Decide process to the previous 2 models, also
with a duration of 12 s. The Decide process has Ω={0,1,2,3,4,5,6,7},
allowing the process to start with a delay of 0 to 3.5 s from the
second stimulus presentation. For these HPMs, we can use the
information we have about the participant's reaction time by
assuming that the Decide process must begin before the participant
pushes the button. This means that for each trial, we can also
eliminate any configurations in which the Decide process starts after
the button press; that is, any configurations for which o3 -
reaction_time. Note that this implies that different trials can have
different sets of configurations since reaction times varied from trial
to trial. If the participant did not press the button for some trial, all
offsets are considered for the Decide process. The test set
configurations for HPM-3-K for a trial with a reaction time of
2.6 s are given in Table 8. Since the nearest preceding image to the
Table 6
Configurations for a test set trial under HPM-2-K

c π(i1) λ(i1) O(i1) π(i2) λ(i2) O(i2)

1 S 1 0 P 17 0
2 P 1 0 S 17 0

i1 is the first process instance in the trial, and i2 is the second process instance. π(i), λ(i),
and O(i) are the process ID, landmark, and offset, respectively, for process instance i.
button press corresponds to offset 5, we have removed configura-
tions with o3∈ {6,7}. To do supervised training, we only use the
configurations with the correct ordering of ReadSentence and
ViewPicture.

The first thing to note about Fig. 9 is that all 4 HPMs show
significant improvement over the naive baseline method of predicting
themean training trial for all test trials.While the differences between
models for each individual subject are not all significant, the cross-
subject trend indicates that HPM-2-K slightly outperforms HPM-GNB,
implying that modeling the overlap of the ReadSentence and View-
Picture process response signatures can be advantageous. HPM-2-U
generally performs even better, indicating that it can be helpful to
allow some uncertainty as to the onset of the process instances.
Interestingly, HPM-3-K shows the least improvement over the naive
method, despite the fact that some kind of third process must be
occurring in this experiment. One possible explanation for the
relatively poor performance of this model could be that the possible
offsets for Decide are not modeled properly. Another possibility is that
the added complexity of HPM-3-K requires more training data than is
available.

Interpreting HPMs
In the previous section, we estimated how well different HPMs

would predict unseen test data using cross-validation. In this section,
we examine the parameters of the HPMs to try to understandwhat the
models are learning better. For the results below, we trained HPM-3-K
on all trials for participant L.

The learned timing distribution for the Decide process is shown in
Table 9. The distribution is similar to the distribution of reaction times
for this subject. For trials where the subject did not press the button,
the program tended to choose the last possible offset for the Decide
process.

We can also visualize the model by looking at the learned process
response signatures. Since a response signature contains parameters
over space and time, one option is to average the parameters of each
6 S 1 0 P 17 0 D 17 5
7 P 1 0 S 17 0 D 17 0
8 P 1 0 S 17 0 D 17 1
9 P 1 0 S 17 0 D 17 2
10 P 1 0 S 17 0 D 17 3
11 P 1 0 S 17 0 D 17 4
12 P 1 0 S 17 0 D 17 5

The reaction time for this trial is 2.6 s, which corresponds to offset 5 for the Decide
process, so all configurations with offsets greater than 5 for this process have been
eliminated for this trial.



Table 9
Learned timing distribution for the Decide process for participant L using HPM-3-K,
where the offset from the second stimulus ranges from 0 to 7 snaphots (0–3.5s)

Offset Θ

0 0.2713
1 0.0762
2 0.1006
3 0.1006
4 0.0762
5 0.1250
6 0.0030
7 0.2470

The Θ values are the parameters of the multinomial distribution over these offsets
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voxel over time. This valuewith respect to the ReadSentence process is
plotted for each voxel (in that voxel's location) in Fig. 10, for the
ViewPicture process in Fig. 11, and for the Decide process in Fig. 12. We
can also plot the time courses for individual voxels. For instance, the
time course of the darkest red voxel from Fig. 12 (in the top middle
slice) is shown in Fig. 13.

Improvement of data log-likelihood with Shared HPMs
In this section we report experiments on the same sentence–

picture dataset using the methods in “An extension: Shared HPMs”,
Fig. 10. The learned spatial-temporal response for the ReadSentence process in participant
values. Images are displayed in radiological convention (the left hemisphere is on the right
which attempt to share, when appropriate, process parameters across
neighboring voxels. Since the results reported in this section are
intended to be only a proof of concept for incorporating sharing of
HPM parameters across spatially contiguous voxels in HPM learning,
they are limited to data from a single human participant, consisting of
4698 voxels (participant D). For each trial, we considered only the first
32 images (16 s) of brain activity.

We model the activity in the brain using a Hidden Process Model
with two processes, ReadSentence and ViewPicture. The start time of
each process instance is assumed to be known in advance (i.e., the
offset values for each process are {0}, so each process instance begins
exactly at the landmark corresponding to the relevant stimulus). This
is equivalent to HPM-GNB from the previous section. We evaluated
the performance of the models using the average log-likelihood over
the held-out trials in a leave-two-out cross-validation approach,
where each fold contains one example in which the sentence is
presented first, and one example in which the picture is presented
first.

Our experiments compared three HPM models. The first model,
which we consider a baseline, consists of a standard Hidden Process
Model (StHPM) learned independently for each voxel (or equivalently,
a standard HPM with no parameter sharing). The second model is a
Hidden Process Model where all voxels in an ROI share their Hidden
L under HPM-3-K, averaged over time. Red corresponds to higher values, blue to lower
of each slice). Anterior is higher, posterior is lower.



Fig. 11. The learned spatial-temporal response for the ViewPicture process in participant L under HPM-3-K, averaged over time. Red corresponds to higher values, blue to lower
values. Images are displayed in radiological convention (the left hemisphere is on the right of each slice). Anterior is higher, posterior is lower.
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Process parameters (ShHPM). ShHPM is learned using Algorithm 2.
The third model is a Hierarchical Hidden Process Model (HieHPM)
learned using Algorithm 3.

The first set of experiments, summarized in Table 10, compares the
three models based on their performance in the calcarine sulcus of the
visual cortex (CALC). This is one of the ROIs actively involved in this
cognitive task, containing 318 voxels for this participant. The training
set size was varied from 6 examples to all 40 examples, in increments
of two. Sharing parameters for groups of voxels proved beneficial,
especially for small training sets. As the training set size increased, the
performance of ShHPM degraded because the bias in the inaccurate
assumption that all voxels in CALC share parameters was no longer
outweighed by the corresponding reduction in the variance of the
parameter estimates. However, we will see that in other ROIs, this
assumption holds and in those cases the gains in performance may be
quite large.

As expected, the hierarchical model HieHPM performed better
than both StHPM and ShHPM because it takes advantage of shared
Hidden Process Model parameters while not making the restrictive
assumption of sharing across all voxels in a ROI. The largest
difference in performance between HieHPM and StHPM is observed
at 6 examples, in which case StHPM fails to learn a reasonable
model while the highest difference between HieHPM and ShHPM
occurs at the maximum number of examples, presumably when the
bias of ShHPM is most harmful. As the number of training examples
increases, both StHPM and HieHPM tend to perform better and
better and one can see that the marginal improvement in
performance obtained by the addition of two new examples tends
to shrink as both models approach convergence. While with an
infinite amount of data, one would expect both StHPM and HieHPM
to converge to the true model, at 40 examples, HieHPM still
outperforms the baseline model StHPM by a difference of 106 in
terms of average log-likelihood, which is an improvement of e106 in
terms of data likelihood.

Perhaps the best measure of the improvement of HieHPM over the
baseline StHPM is the number of examples needed by StHPM to
achieve the same performance as HieHPM. These results show that on
average, StHPM needs roughly 2.9 times the number of examples
needed by HieHPM in order to achieve the same level of performance
in CALC.

The last column of Table 10 displays the number of clusters into
which HieHPM partitioned CALC. At small sample sizes HieHPM uses
only one cluster of voxels and improves performance by reducing the
variance in the parameter estimates. However, as the training set size
increases, HieHPM improves by finding more and more refined
partitions. This number of shared voxel sets tends to stabilize around
60 clusters once the number of examples reaches 30, which yields an
average of more than 5 voxels per cluster in this case. For a training set



Fig. 12. The learned spatial-temporal response for the Decide process in participant L under HPM-3-K, averaged over time. Red corresponds to higher values, blue to lower values.
Images are displayed in radiological convention (the left hemisphere is on the right of each slice). Anterior is higher, posterior is lower.

Fig. 13. The time course of the darkest red voxel in Fig. 12, for the Decide process in participant L under HPM-3-K.
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Table 10
The effect of training set size on the average log-likelihood (higher numbers/lower
absolute values are better) of the three models in the calcarine sulcus of the visual
cortex (CALC), and the number of clusters into which the algorithm segmented the ROI

Trials StHPM ShHPM HieHPM Cells

6 −30497 −24020 −24020 1
8 −26631 −23983 −23983 1
10 −25548 −24018 −24018 1
12 −25085 −24079 −24084 1
14 −24817 −24172 −24081 21
16 −24658 −24287 −24048 36
18 −24554 −24329 −24061 37
20 −24474 −24359 −24073 37
22 −24393 −24365 −24062 38
24 −24326 −24351 −24047 40
26 −24268 −24337 −24032 44
28 −24212 −24307 −24012 50
30 −24164 −24274 −23984 60
32 −24121 −24246 −23958 58
34 −24097 −24237 −23952 61
36 −24063 −24207 −23931 59
38 −24035 −24188 −23921 59
40 −24024 −24182 −23918 59
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of 40 examples, the largest cluster has 41 voxels while many clusters
consist of only one voxel.

The second set of experiments (see Table 11) describes the
performance of the three models for each of the 24 individual ROIs
of the brain, and also when trained over the entire brain. While
ShHPM was biased in CALC, we see here that there are several ROIs
in which it makes sense to assume that all voxels share parameters.
In fact, in most of these regions, HieHPM finds only one cluster of
voxels. ShHPM outperforms the baseline model StHPM in 18 out of
24 ROIs while HieHPM outperforms StHPM in 23 ROIs. One may ask
how StHPM can possibly outperform HieHPM on any ROI, since
StHPM is a special case of HieHPM. The explanation is that the
hierarchical approach is subject to local minima since it is a greedy
process that does not look beyond the current potential split for a
finer grained partition. Fortunately, this problem is very rare in our
experiments.
Table 11
Performance of the three models over whole brain and in several ROIs when learned
using all 40 examples

ROI Voxels StHPM ShHPM HieHPM Cells

CALC 318 −24024 −24182 −23918 59
LDLPFC 440 −32918 −32876 −32694 11
LFEF 109 −8346 −8299 −8281 6
LIPL 134 −9889 −9820 −9820 1
LIPS 236 −17305 −17187 −17180 8
LIT 287 −21545 −21387 −21387 1
LOPER 169 −12959 −12909 −12909 1
LPPREC 153 −11246 −11145 −11145 1
LSGA 6 −441 −441 −441 1
LSPL 308 −22637 −22735 −22516 4
LT 305 −22365 −22547 −22408 18
LTRIA 113 −8436 −8385 −8385 1
RDLPFC 349 −26390 −26401 −26272 40
RFEF 68 −5258 −5223 −5223 1
RIPL 92 −7311 −7315 −7296 11
RIPS 166 −12559 −12543 −12522 20
RIT 278 −21707 −21720 −21619 42
ROPER 181 −13661 −13584 −13584 1
RPPREC 144 −10623 −10558 −10560 1
RSGA 34 −2658 −2654 −2654 1
RSPL 252 −18572 −18511 −18434 35
RT 284 −21322 −21349 −21226 24
RTRIA 57 −4230 −4208 −4208 1
SMA 215 −15830 −15788 −15757 10
Full brain 4698 −352234 −351770 −350441 299
Over the whole brain, HieHPM outperforms StHPM by 1792 in
terms of log-likelihood while ShHPM outperforms StHPM only by 464.
ShHPM also makes a restrictive sharing assumption and therefore
HieHPM emerges as the recommended approach.

As mentioned above, HieHPM automatically learns clusters of
voxels that share their process response signature parameters. Fig. 14
shows these learned clusters in slice five of the eight slices.
Neighboring voxels that were assigned by HieHPM to the same
cluster are pictured in the same color. Note that there are several very
large clusters in this picture. This may be because it makes sense to
share voxel parameters at the level of an entire ROI if the cognitive
process does not activate voxels in this ROI. However, large clusters are
also found in areas like CALC, which we know is directly involved in
visual processing.

In Fig. 15 we present the learned ReadSentence process for the
voxels in slice five of CALC. The graphs corresponding to voxels that
belong to the same cluster have the same color as in Fig. 14. For
readability, we only plot the base processes, disregarding the learned
scaling constants which specify the amplitude of the response in each
voxel within a given cluster. The increased smoothness of these
learned time courses suggest that the discontinuities from Fig. 13 may
be partially due to the sparsity of data that occurs when each voxel is
estimated independently.

SPM analysis
For comparison, we provide an SPM analysis of the sentence–

picture dataset. To detect activation in each of the conditions the
data for each participant were fit to a General Linear Model using
SPM2 software (http://www.fil.ion.ucl.ac.uk/spm/spm2.html). The
data were first corrected for slice acquisition timing using sinc-
interpolation, and then modeled using regressors for each stimulus
condition and run consisting of a box-car representing the onset
and duration of each stimulus presentation convolved with the
canonical double-gamma HRF model available in SPM2. Additional
covariates implemented a high-pass filter (cutoff at 128 s) and serial
correlations in the errors were modeled with an AR(1) process. No
spatial smoothing, resampling, or 3D motion correction of the data
were employed in SPM2, for the sake of consistency with the real
and synthetic data that were used in the Hidden Process Models.
Parameter estimates and their contrasts were evaluated on a voxel-
wise basis for statistical significance by t-tests, at a threshold of
pb0.05, corrected for multiple comparisons using Gaussian random
field theory. The activation map for participant L for the sentence
Fig. 14. Clusters learned by HieHPM in slice 5 of the brain.

http://www.fil.ion.ucl.ac.uk/spm/spm2.html


Fig. 15. Learned ReadSentence process for all voxels in slice 5 of the visual cortex.
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Fig. 16. The SPM activation map for participant L for the sentence stimuli minus fixation. Images are displayed in radiological convention (the left hemisphere is on the right
of each slice).



Fig.17. The SPMactivationmap for participant L for the picture stimuliminusfixation. Images are displayed in radiological convention (the left hemisphere is on the right of each slice).

102 R.A. Hutchinson et al. / NeuroImage 46 (2009) 87–104
stimuli (minus fixation) is shown in Fig. 16 and the corresponding
map for the picture stimuli is in Fig. 17.

Consistent with previous imaging studies of sentence–picture
verification (Carpenter et al., 1999; Reichle et al., 2000), this
participant showed activation reliably related to sentence presenta-
tion in left parietal cortex (Fig. 16, slices 1–4), consistent with the
requirement to process the visuo-spatial content of the sentences, as
well as in a network of reading-related areas including occipital cortex
(slices 5–8), left temporal cortex (Wernicke's area, slices 5–7), and left
inferior frontal gyrus (Broca's area, slices 7–8). Activation reliably
related to picture presentation was found in the same areas of left
parietal cortex in this participant (Fig. 17, slices 1–4), but there was
less evidence of activation in the left occipital–temporal–frontal
reading network for this condition.

Note the differences among the figures we have presented in
“Results”. Figs. 10, 11, and 12 show the parameters of the process
response signatures of the three processes in HPM-3-K averaged over
time for participant L. Figs. 14 and 15 show the clustering and time
courses of the process response signatures learned for participant D
under HPM-GNB. These signatures are combined based on the timing
of the process instances to predict fMRI data. Figs. 16 and 17 show
activity maps for responses to the sentence and picture stimuli for
participant L. Thesemaps show the voxels whose data are significantly
correlated with each type of stimuli. The differences among these
figures reflect the different objectives of the methods that produced
them.

Discussion

In this paper, we have presented Hidden Process Models, a
generative model for fMRI data based on a set of assumed mental
processes. We have given the formalism for the model, algorithms to
infer characteristics of the processes underlying a dataset, and
algorithms for estimating the parameters of the model from data
under various levels of uncertainty. Additionally, we presented a
preliminary approach to improve HPMs by taking advantage of the
assumption that some neighboring voxels share parameters, including
an algorithm to automatically discover sets of spatially contiguous
voxels whose HPM parameters can be shared. We presented
experimental results on synthetic data demonstrating that our
algorithms can estimate HPM parameters, classify new data, and
identify the number of processes underlying the data. We explored a
real sentence–picture verification dataset using HPMs to demonstrate
that HPMs can be used to compare different cognitive models, and to
show that sharing parameters can improve our results.

HPMs facilitate the comparison of multiple theories of the
cognitive processing underlying an fMRI experiment. Each theory
can be specified as an HPM: a set of processes, each with a timing
distribution and response signature parameters, and a set of
configurations, each specifying a possible instantiation of the
processes that may explain a window of data. The parameters of the
processes may be learned from an fMRI dataset. The models may then
be compared in terms of their data log-likelihood on a separate test
set, or using cross-validation.

Another contribution of Hidden Process Models is the ability to
estimate the spatial-temporal response to events whose timing is
uncertain. While the responses for simple processes that are closely
tied to known stimulus timings can be reasonably estimated with the
General Linear Model (Dale and Buckner, 1997) (like ViewPicture and
ReadSentence), HPMs allow processes whose onset is uncertain (like
Decide). Note that this is not equivalent to letting the GLM search for
the Decide process by running it once for each start time in the
window. HPMs allow the start time to vary according to a probability
distribution; this means that the start time can change from trial to
trial within the experiment to help model trials with varying difficulty
or strategy differences for example. In practice, we have observed that
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HPMs do indeed assign different onsets to process instances in
different trials.

In the interest of comparison and placing HPMs in the field, let
us highlight three major differences between analysis with HPMs
and analysis with SPM (Friston, 2003). A conventional analysis of
the sentence–picture data using SPM convolves the timecourse of
the sentence and picture stimuli with a canonical hemodynamic
response, evaluating the correlation of the timecourse of each voxel
with that convolved signal, and thresholding the correlations at an
appropriate level. This analysis would support claims about which
regions were activated for each type of stimulus (e.g. region R is
more active under condition S than condition P). It is not clear how
an SPM analysis would treat any of the cognitive processes
presented above with uncertain timings. The first major difference
between this SPM approach and HPM analysis is that HPMs estimate
a hemodynamic response instead of assuming a canonical form.
Secondly, HPMs allow unknown timing for cognitive processes, and
estimate parameters of a probability distribution describing the
timing. Finally, the key claim that HPMs attempt to make is
fundamentally different from that of SPM. HPMs provide evidence
for claims about competing models of the mental processes
underlying the observed sequence of fMRI activity (e.g. model M
outperforms model N). We believe that HPMs and SPM can be
complementary approaches for fMRI data analysis.

Based on our experience, we can provide a few pieces of advice to
those interested in using HPMs. First, since HPMs are an exploratory
tool, one must be careful not to jump to conclusions about the
processes learned from them. In this paper, we have named a number
of processes (ViewPicture, Decide, etc.). These names are only for
convenience. Processes are defined by their offset values, the
probability distribution over the offset values, and their response
signatures. Furthermore, the parameters learned also depend on the
configurations used for the training data. The set of configurations
associated with an HPM reflects the prior knowledge and assumptions
built into the learning algorithm; this set is part of the bias of the
model. Changing the set of configurations could result in learning
different parameters for each process. The response signature for each
process should be carefully examined to determine whether the name
it was given for convenience is a good descriptor.

A second suggestion for researchers interested in applying HPMs to
fMRI data regards the benefit of designing experiments with HPMs in
mind. HPMs perform best if the arrangement of process instances in
the data renders the processes identifiable by isolating and/or varying
the overlap between processes. For example, two processes that are
always instantiated simultaneously cannot be uniquely separated, so
this case should be avoided in the experiment design. Experiment
designs that provide natural choices for landmarks like stimulus
presentation times and behavioral data are also helpful for limiting
thewindow of possible start times for processes. For example, without
recording participants' reaction times in the picture and sentence
data, we might model the button press with a similar range of offsets
to the Decide process instead of just two offsets corresponding to the
button press, which would result in more configurations, and thus
more complexity. Finally, HPMs are of most interest for studying
processes of uncertain onset. If the timing of all processes of interest is
known to be directly tied to stimuli, there are a number of other
analysis methods that will perform just as well as HPMs.

A third note about the application of HPMs is that the main
computational complexity issue to address is the number of
configurations that must be created to encode the prior knowledge
we have from the experiment design, since adding configurations
increases the size of the linear system to be solved in training HPMs.
The number of configurations can be lessened by limiting the
number of offsets for any given process and providing the sequence
of some subset of processes (as we have done with ViewPicture and
ReadSentence).
Finally, we conclude with a discussion of future work. Hidden
Process Models show promise as a newmethod for fMRI data analysis,
and will become even more useful as they become more general. We
are working to provide more modeling options for scientists using
HPMs, including regularization options for allowing priors on the
areas of the brain in which we expect a process to be active. We are
trying to reduce the sample complexity of the model by allowing the
process response signatures to be modeled using weights on a set of
basis functions, which could significantly reduce the number of
parameters to be estimated in training an HPM. Modeling the process
response signatures with continuous functions could also allow us to
model process instance onsets at a finer temporal resolution than the
experiment TR, and potentially relax the assumption of fixed-duration
responses. We are also looking into ways to relax the linearity
assumption present in the current version of HPMs so that models can
reasonably incorporate more overlapping processes. We would of
course like to explore ways of combining data from multiple
participants, and finally, we hope to relax the simplifying assumptions
of the parameter sharing approach to accommodate uncertainty in the
onset times of the processes.
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