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Abstract. Most approaches to classifying media content assume a fixed,
closed vocabulary of labels. In contrast, we advocate machine learning
approaches which take advantage of the millions of free-form tags obtain-
able via online crowd-sourcing platforms and social tagging websites. The
use of such open vocabularies presents learning challenges due to typo-
graphical errors, synonymy, and a potentially unbounded set of tag la-
bels. In this work, we present a new approach that organizes these noisy
tags into well-behaved semantic classes using topic modeling, and learn to
predict tags accurately using a mixture of topic classes. This method can
utilize an arbitrary open vocabulary of tags, reduces training time by 94%
compared to learning from these tags directly, and achieves comparable
performance for classification and superior performance for retrieval. We
also demonstrate that on open vocabulary tasks, human evaluations are
essential for measuring the true performance of tag classifiers, which tra-
ditional evaluation methods will consistently underestimate. We focus
on the domain of tagging music clips, and demonstrate our results using
data collected with a human computation game called TagATune.

Keywords: Human Computation, Music Information Retrieval, Tag-
ging Algorithms, Topic Modeling

1 Introduction

Over the years, the Internet has become a vast repository of multimedia objects,
organized in a rich and complex way through tagging activities. Consider music
as a prime example of this phenomenon. Many applications have been developed
to collect tags for music over the Web. For example, Last.fm is collaborative so-
cial tagging network which collects users’ listening habits and roughly 2 million
tags (e.g., “acoustic,” “reggae,” “sad,” “violin”) per month [12]. Consider also
the proliferation of human computation systems, where people contribute tags
as a by-product of doing a task they are naturally motivated to perform, such
as playing causal web games. TagATune [14] is a prime example of this, collect-
ing tags for music by asking two players to describe their given music clip to
each other with tags, and then guess whether the music clips given to them are
the same or different. Since deployment, TagATune has collected over a million
annotations from tens of thousands of players.
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In order to effectively organize and retrieve the ever-growing collection of mu-
sic over the Web, many so-called music taggers have been developed [2, 10, 24] to
automatically annotate music. Most previous work has assumed that the labels
used to train music taggers come from a small fixed vocabulary and are devoid of
errors, which greatly simplifies the learning task. In contrast, we advocate using
tags collected by collaborative tagging websites and human computation games,
since they leverage the effort and detailed domain knowledge of many enthusias-
tic individuals. However, such tags are noisy, i.e., they can be misspelled, overly
specific, irrelevant to content (e.g., “albums I own”), and virtually unlimited in
scope. This creates three main learning challenges: (1) over-fragmentation, since
many of the enormous number of tags are synonymous or semantically equiva-
lent, (2) sparsity, since most tags are only associated with a few examples, and
(3) scalability issues, since it is computationally inefficient to train a classifier
for each of thousands (or millions) of tags.

In this work, we present a new technique for classifying multimedia objects
by tags that is scalable (i.e., makes full use of noisy, open-vocabulary labels that
are freely available on the Web) and efficient (i.e., the training time remains rea-
sonably short as the tag vocabulary grows). The main idea behind our approach
is to organize these noisy tags into well-behaved semantic classes using a topic
model [4], and learn to predict tags accurately using a mixture of topic classes.
Using the TagATune [14] dataset as a case study, we compare the tags generated
by our topic-based approach against a traditional baseline of predicting each tag
independently with a binary classifier. These methods are evaluated in terms of
both tag annotation and music retrieval performance. We also highlight a key
limitation of traditional evaluation methods—comparing against a ground truth
label set—which is especially severe for open-vocabulary tasks. Specifically, using
the results from several Mechanical Turk studies, we show that human evalua-
tions are essential for measuring the true performance of music taggers, which
traditional evaluation methods will consistently underestimate.

2 Background

The ultimate goal of music tagging is to enable the automatic annotation of large
collections of music, such that users can then browse, organize, and retrieve music
in an semantic way. Although tag-based search querying is arguably one of the
most intuitive methods for retrieving music, until very recently [2, 10, 24], most
retrieval methods have focused on querying metadata such as artist or album
title [28], similarity to an audio input query [6–8], or a small fixed set of category
labels based on genre [26], mood [23], or instrument [9]. The lack of focus on
music retrieval by rich and diverse semantic tags is partly due to a historical
lack of labeled data for training music tagging systems.

A variety of machine learning methods have been applied to music classifica-
tion, such as logistic regression [1], support vector machines [17, 18], boosting [2],
and other probabilistic models [10, 24]. All of these approaches employ binary
classifiers—one per label—to map audio features directly to a limited number
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(tens to few hundreds) of tag labels independently. This is in contrast to the
TagATune data set used in this paper, which has over 30,000 clips, over 10,000
unique tags collected from tens of thousands of users.

The drawback of learning to tag music from open-vocabulary training data
is that it is noisy1, by which we mean the over-fragmentation of the label space
due to synonyms (“serene” vs. “mellow”), misspellings (“chello”) and compound
phrases (“guitar plucking”). Synonyms and misspellings cause music that be-
longs to the same class to be labeled differently, and compound phrases are
often overly descriptive. All of these phenomena can lead to label sparsity, i.e.,
very few training examples for a given tag label.

It is possible to design data collection mechanisms to minimize such label
noise in the first place. One obvious approach is to impose a controlled vo-
cabulary, as in the Listen Game [25] which limits the set of tags to 159 labels
pre-defined by experts. A second approach is to collect tags by allowing play-
ers to enter free-form text, but filter out the ones that have not been verified
by multiple users, or that are associated with too few examples. For example,
of the 73,000 tags acquired through the music tagging game MajorMiner [20],
only 43 were used in the 2009 MIREX benchmark competition to train music
taggers [15]. Similarly, the Magnatagatune data set [14] retains only tags that
are associated with more than 2 annotators and 50 examples. Some recent work
has attempted to mitigate these problems by distinguishing between content rel-
evant and irrelevant tags [11], or by discovering higher-level concepts using tag
co-occurrence statistics [13, 16]. However, none of these works explore the use of
these higher-level concepts in training music annotation or retrieval systems.

3 Problem Formulation

Assume we are given as training data a set of N music clips C = {c1, . . . , cN}
each of which has been annotated by humans using tags T = {t1, . . . , tV } from
a vocabulary of size V . Each music clip ci = (ai, xi) is represented as a tuple,
where ai ∈ ZV is a the ground truth tag vector containing the frequency of each
tag in T that has been used to annotate the music clip by humans, and xi ∈ RM

is a vector of M real-valued acoustic features, which describes the characteristics
of the audio signal itself.

The goal of music annotation is to learn a function f̂ : X × T → R, which
maps the acoustic features of each music clip to a set of scores that indicate
the relevance of each tag for that clip. Having learned this function, music clips
can be retrieved for a search query q by rank ordering the distances between
the query vector (which has value 1 at position j if the tag tj is present in the
search query, 0 otherwise) and the tag probability vector for each clip. Following
[24], we measure these “distances” using KL divergence, which is a common
information-theoretic measure of the difference between two distributions.

1 We use noise to refer to the challenging side-effects of open tagging described here,
which differs slightly from the common interpretation of mislabeled training data.
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(a) Training Phase (b) Inference phase

Fig. 1. The training and inference phases of the proposed approach.

3.1 Topic Method (Proposed Approach)

We propose a new method for automatically tagging music clips, by first map-
ping from the music clip’s audio features to a small number of semantic classes
(which account for all tags in the vocabulary), and then generating output tags
based on these classes. Training involves learning classes, or “topics,” with their
associated tag distributions, and the mapping from audio features to a topic
class distribution. An overview of the approach is presented in Figure 1.

Training Phase. As depicted in Figure 1(a), training is a two-stage process.
First, we induce a topic model [4, 22] using the ground truth tags associated with
each music clip in the training set. The topic model allows us to infer distribution
over topics for each music clip in the training set, which we use to replace the
tags as training labels. Second, we train a classifier that can predict topic class
distributions directly from audio features.

In the first stage of training, we use Latent Dirichlet Allocation (LDA) [4],
a common topic modeling approach. LDA is a hierarchical probabilistic model
that describes a process for generating constituents of an entity (e.g., words
of a document, musical notes in a score, or pixels in an image) from a set of
latent class variables called topics. In our case, constituents are tags and an
entity is the semantic description of a music clip (i.e., set of tags). Figure 2(a)
shows an example model of 10 topics induced from music annotations collected
by TagATune. Figure 2(b) and Figure 2(c) show the topic distributions for two
very distinct music clips and their ground truth annotations (in the caption;
note synonyms and typos among the tags entered by users). The music clip from
Figure 2(b) is associated with both topic 4 (classical violin) and topic 10 (female
opera singer). The music clip from Figure 2(c) is associated with both topic 7
(flute) and topic 8 (quiet ambient music).

In the second stage of training, we learn a function that maps the audio fea-
tures for a given music clip to its topic distribution. For this we use a maximum
entropy (MaxEnt) classifier [5], which is a multinomial generalization of logis-
tic regression. We use the LDA and MaxEnt implementations in the MALLET
toolkit2, with a slight modification of the optimization procedure [29] which en-
ables us to train a MaxEnt model from class distributions rather than a single
class label. We refer to this as the Topic Method.
2 http://mallet.cs.umass.edu
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1 electronic beat fast drums synth dance beats jazz
2 male choir man vocal male vocal vocals choral singing
3 indian drums sitar eastern drum tribal oriental middle eastern
4 classical violin strings cello violins classic slow orchestra
5 guitar slow strings classical country harp solo soft
6 classical harpsichord fast solo strings harpsicord classic harp
7 flute classical flutes slow oboe classic clarinet wind
8 ambient slow quiet synth new age soft electronic weird
9 rock guitar loud metal drums hard rock male fast
10 opera female woman vocal female vocal singing female voice vocals

(a) Topic Model
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(c) chimes, new age, spooky,
flute, quiet, whistle, fluety, ambi-
ent, soft, high pitch, bells

Fig. 2. An example LDA model of 10 topic classes learned over music tags, and the
representation of two sample music clips annotations by topic distribution.

Our approach tells an interesting generative story about how players of
TagATune might decide on tags for the music they are listening to. According
to the model, each listener has a latent topic structure in mind when thinking of
how to describe the music. Given a music clip, the player first selects a topic ac-
cording to the topic distribution for that clip (as determined by audio features),
and then selects a tag according to the posterior distribution of the chosen top-
ics. Under this interpretation, our goal in learning a topic model over tags is to
discover the topic structure that the players use to generate tags for music, so
that we can leverage a similar topic structure to automatically tag new music.

Inference Phase. Figure 1(b) depicts the process of generating tags for
novel music clips. Given the audio features xi for a test clip ci, the trained
MaxEnt classifier is used to predict a topic distribution for that clip. Based
on this predicted topic distribution, each tag tj is then given a relevance score
P (tj |xi) which is its expected probability over all topics:

P (tj |xi) =
K∑

k=1

P (tj |yk)P (yk|xi),

where j = 1, . . . , V ranges over the tag vocabulary, and k = 1, . . . ,K ranges over
all topic classes in the model.
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3.2 Tag Method (Baseline)

To evaluate the efficiency and accuracy of our method, we compare it against an
approach that predicts P (tj |xi) directly using a set of binary logistic regression
classifiers (one per tag). This second approach is consistent with previous ap-
proaches to music tagging with closed vocabularies [1, 17, 18, 2, 10, 24]. We refer
to it as the Tag Method. In some experiments we also compare against a method
that assigns tags randomly.

4 Data Set

The data is collected via a two-player online game called called TagATune [14].
Figure 3 shows the interface of TagATune. In this game, two players are given
either the same or different music clips, and are asked to describe their given
music clip. Upon reviewing each other’s description, they must guess if the music
clips are the same or different.

There exist several human computation games [20, 25] that collect tags for
music that are based on the output-agreement mechanism (a.k.a. the ESP Game
[27] mechanism), where two players must match on a tag in order for that tag
to become a valid label for a music clip. In our previous work [14], we have
showed that output-agreement games, although effective for image annotation,
are restrictive for music data: there are so many ways to describe music and
sounds that players often have a difficult time agreeing on any tags. In TagATune,
the problem of agreement is alleviated by allowing players to communicate with
each other. Furthermore, by requiring that the players guess whether the music
are the same or different based on each other’s tags, the quality and validity of
the tags are ensured. The downside of opening up the communication between
players is that the tags entered are more noisy.

Fig. 3. A screen shot of the TagATune user interface.
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Fig. 4. Characteristics of the TagATune data set.

Figure 4 shows the characteristics of the TagATune dataset. Figure 4(a) is a
rank frequency plot showing the number of music clips that have a certain num-
ber of ground truth tags. The plot reveals a disparity in the number of ground
truth tags each music clip has – a majority of the clips (1,500+) have under
10, approximately 1,300 music clips have only 1 or 2, and very few have a large
set (100+). This creates a problem in our evaluation – many of the generated
tags that are relevant for the clip may be missing from the ground truth tags,
and therefore will be considered incorrect. Figure 4(b) is a rank frequency plot
showing the number of tags that have a certain number of music clips available
to them as training examples. The plot shows that the vast majority of the tags
have few music clips to use as training examples, while a small number of tags are
endowed with a large number of examples. This highlights the aforementioned
sparsity problem that emerges when tags are used directly as labels, a problem
that is addressed by our proposed method.

We did a small amount of pre-processing on a subset of the data set, tok-
enizing tags, removing punctuation and four extremely common tags that are
not related to the content of the music, i.e. “yes,” “no,” “same,” “diff”. In order
to accommodate the baseline Tag Method, which requires a sufficient number
of training examples for each binary classification task, we also eliminated tags
that have fewer than 20 training music clips. This reduces the number of music
clips from 31,867 to 31,251, the total number of ground truth tags from 949,138
to 699,440, and the number of unique ground truth tags from 14,506 to 854.
Note that we are throwing away a substantial amount of tag data in order to
accommodate the baseline Tag Method. A key motivation for using our Topic
Method is that we do not need to throw away any tags at all. Rare tags, i.e. tags
that are associated with only one or two music clips, can still be grouped into a
topic, and used in the annotation and retrieval process.

Each of the 31,251 music clips is 29 seconds in duration, and is represented
by a set of ground truth tags collected via the TagATune game, as well as a
set of content-based (spectral and temporal) audio features extracted using the
technique described in [19].
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5 Experiments

We conducted several experiments guided by five central questions about our
proposed approach. (1) Feasibility : given a set of noisy music tags, is it possible to
learn a low-dimensional representation of the tag space that is both semantically
meaningful and predictable by music features? (2) Efficiency : how does training
time compare against the baseline method? (3) Annotation Performance: how
accurate are the generated tags? (4) Retrieval Performance: how well do the
generated tags facilitate music retrieval? (5) Human Evaluation: to what extent
are the performance evaluations a reflection of the true performance of the music
taggers? All results are averaged over five folds using cross-validation.

5.1 Feasibility

Table 1 (on the next page) shows the top 10 words for each topic learned by LDA
with the number of topics fixed at 10, 20 and 30. In general, the topics are able to
capture meaningful groupings of tags, e.g., synonyms (e.g., “choir/choral/cho-
rus” or “male/man/male vocal”), misspellings (e.g., “harpsichord/harpsicord”
or “cello/chello”), and associations (e.g., “indian/drums/sitar/eastern/oriental”
or “rock/guitar/loud/metal”). As we increase the number of topics, new seman-
tic grouping appear that were not captured by models which use a fewer number
of topics. For example, in 20-topic model, topic 3 (which describes soft classical
music), topic 13 (which describes jazz), and topic 17 (which describes rap, hip-
hop and reggae) are new topics that are not evident in the model with only 10
topics. We also observe some repetition or refinement of topics as the number
of topic increases (e.g., topics 8, 25 and 27 in the 30-topic model all describe
slightly different variations on female vocal music).

It was difficult to know exactly how many topics can succinctly capture the
concepts underlying the music in our data set. Therefore, in all our experiments
we empirically tested how well the topic distribution and the best topic can be
predicted using audio features, fixing the number of topics at 10, 20, 30, 40, and
50. Figure 5 summarizes the results. We evaluated performance using several
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Fig. 5. Results showing how well topic distributions or the best topic can be predicted
from audio features. The metrics include accuracy and average rank of the most relevant
topic, and KL divergence between the assigned and predicted topic distribution.
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10 Topics
1 electronic beat fast drums synth dance beats jazz electro modern
2 male choir man vocal male vocal vocals choral singing male voice pop
3 indian drums sitar eastern drum tribal oriental middle eastern foreign fast
4 classical violin strings cello violins classic slow orchestra string solo
5 guitar slow strings classical country harp solo soft quiet acoustic
6 classical harpsichord fast solo strings harpsicord classic harp baroque organ
7 flute classical flutes slow oboe classic clarinet wind pipe soft
8 ambient slow quiet synth new age soft electronic weird dark low
9 rock guitar loud metal drums hard rock male fast heavy male vocal

10 opera female woman vocal female vocal singing female voice vocals female vocals voice

20 Topics
1 indian sitar eastern oriental strings middle eastern foreign guitar arabic india
2 flute classical flutes oboe slow classic pipe wind woodwind horn
3 slow quiet soft classical solo silence low calm silent very quiet
4 male male vocal man vocal male voice pop vocals singing male vocals guitar
5 cello violin classical strings solo slow classic string violins viola
6 opera female woman classical vocal singing female opera female vocal female voice operatic
7 female woman vocal female vocal singing female voice vocals female vocals pop voice
8 guitar country blues folk irish banjo fiddle celtic harmonica fast
9 guitar slow classical strings harp solo classical guitar soft acoustic spanish

10 electronic synth beat electro ambient weird new age drums electric slow
11 drums drum beat beats tribal percussion indian fast jungle bongos
12 fast beat electronic dance drums beats synth electro trance loud
13 jazz jazzy drums sax bass funky guitar funk trumpet clapping
14 ambient slow synth new age electronic weird quiet soft dark drone
15 classical violin strings violins classic orchestra slow string fast cello
16 harpsichord classical harpsicord strings baroque harp classic fast medieval harps
17 rap talking hip hop voice reggae male male voice man speaking voices
18 classical fast solo organ classic slow soft quick upbeat light
19 choir choral opera chant chorus vocal vocals singing voices chanting
20 rock guitar loud metal hard rock drums fast heavy electric guitar heavy metal

30 Topics
1 choir choral opera chant chorus vocal male chanting vocals singing
2 classical solo classic oboe fast slow clarinet horns soft flute
3 rap organ talking hip hop voice speaking man male voice male man talking
4 rock metal loud guitar hard rock heavy fast heavy metal male punk
5 guitar classical slow strings solo classical guitar acoustic soft harp spanish
6 cello violin classical strings solo slow classic string violins chello
7 violin classical strings violins classic slow cello string orchestra baroque

*8 female woman female vocal vocal female voice pop singing female vocals vocals voice
9 bells chimes bell whistling xylophone whistle chime weird high pitch gong

10 ambient slow synth new age electronic soft spacey instrumental quiet airy
11 rock guitar drums loud electric guitar fast pop guitars electric bass
12 slow soft quiet solo classical sad calm mellow very slow low
13 water birds ambient rain nature ocean waves new age wind slow
14 irish violin fiddle celtic folk strings clapping medieval country violins
15 electronic synth beat electro weird electric drums ambient modern fast
16 indian sitar eastern middle eastern oriental strings arabic guitar india foreign
17 drums drum beat beats tribal percussion indian fast jungle bongos
18 classical strings violin orchestra violins classic orchestral string baroque fast
19 quiet slow soft classical silence low very quiet silent calm solo
20 flute classical flutes slow wind woodwind classic soft wind instrument violin
21 guitar country blues banjo folk harmonica bluegrass acoustic twangy fast
22 male man male vocal vocal male voice pop singing vocals male vocals voice
23 jazz jazzy drums sax funky funk bass guitar trumpet reggae
24 harp strings guitar dulcimer classical sitar slow string oriental plucking

*25 vocal vocals singing foreign female voices women woman voice choir
26 fast loud upbeat quick fast paced very fast happy fast tempo fast beat faster

*27 opera female woman vocal classical singing female opera female voice female vocal operatic
28 ambient slow dark weird drone low quiet synth electronic eerie
29 harpsichord classical harpsicord baroque strings classic harp medieval harps guitar
30 beat fast electronic dance drums beats synth electro trance upbeat

Table 1. Topic Model with 10, 20, and 30 topics. The topics in bold in the 20-topic
model are examples of new topics that emerge when the number of topics is increased
from 10 to 20. The topics marked by * in the 30-topic model are examples of topics
that start to repeat as the number of topics is increased.
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metrics, including accuracy and average rank of the most probable topic, as
well as the KL divergence between the ground truth topic distribution and the
predicted distribution.

Although we see a slight degradation of performance as the number of topics
increases, all models significantly outperform the random baseline, which uses
random distributions as labels for training. Moreover, even with 50 topics, the
average rank of the top topic is still around 3, which suggests that the classifier
is capable of predicting the most relevant topic, an important pre-requisite for
the generation of accurate tags.

5.2 Efficiency

A second hypothesis is that the Topic Method would be more computation-
ally efficient to train, since it learns to predict a joint topic distribution in a
reduced-dimensionality tag space (rather than a potentially limitless number
of independent classifiers). Training the Topic Method (i.e., inducing the topic
model and the training the classifier for mapping audio features to a topic distri-
bution) took anywhere from 18.3 minutes (10 topics) to 48 minutes (50 topics)
per fold, but quickly plateaus after 30 topics: . The baseline Tag Method,
by contrast, took 845.5 minutes (over 14 hours) per fold. Thus, the topic ap-
proach can reduce training time by 94% compared to the Tag Method baseline,
which confirms our belief that the proposed method will be significantly more
scalable as the size of the tag vocabulary grows, while eliminating the need to
filter low-frequency tags.

5.3 Annotation Performance

Following [10], we evaluate the accuracy of the 10 tags with the highest proba-
bilities for each music clip, using three different metrics: per-clip metric, per-tag
metric, and omission-penalizing per-tag metric.

Per-Clip Metrics. The per-clip precision@N metric measures the propor-
tion of correct tags (according to agreement with the ground truth set) amongst
the N most probable tags for each clip according to the tagger, averaged over all
the clips in the test set. The results are presented in Figure 6. The Topic Method
and baseline Tag Method both significantly outperform the random baseline, and
the Topic Method with 50 topics is indistinguishable from the Tag Method.

Per-Tag Metric. Alternatively, we can evaluate the annotation performance
by computing the precision, recall, and F-1 scores for each tag, averaged over
all the tags that are output by the algorithm (i.e. if the music tagger does not
output a tag, it is ignored). Specifically, given a tag t, we calculate its precision
Pt = ct

at
, recall Rt = ct

gt
, and and F-1 measure Ft = 2×Pt×Rt

Pt+Rt
, where gt is the

number of test music clips that have t in their ground truth sets, at is the
number of clips that are annotated with t by the tagger, and ct is the number
of clips that have been correctly annotated with the tag t by the tagger (i.e., t
is found in the ground truth set). The overall per-tag precision, recall and F-1
scores for a test set are Pt, Rt and Ft for each tag t, averaged over all tags in
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Fig. 6. Per-clip Metrics. The light-colored bars represent Topic Method with 10, 20, 30,
40 and 50 topics. The dark-colored bar represents the Tag Method. The horizontal line
represent the random baseline, and the dotted lines represent its standard deviation.
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Fig. 7. Per-tag Metrics. The light-colored bars represent Topic Method with 10, 20, 30,
40 and 50 topics. The dark-colored bar represents the Tag Method. The horizontal line
represent the random baseline, and the dotted lines represent its standard deviation.

the vocabulary. Figure 7 presents these results, showing that the Topic Method
significantly outperforms the baseline Tag Method under this set of metrics.

Omission-Penalizing Per-Tag Metrics. A criticism of some of the pre-
vious metrics, in particular the per-clip and per-tag precision metrics, is that
a tagger that simply outputs the most common tags (omitting rare ones) can
still perform reasonably well. Some previous work [2, 10, 24] has adopted a set
of per-tag metrics that penalize omissions of tags that could have been used to
annotate music clips in the test set. Following [10, 24], we alter tag precision Pt

to be the empirical frequency Et of the tag t in the test set if the tagger failed
to predict t for any instances at all (otherwise, Pt = ct

at
as before). Similarly, the

tag recall Rt = 0 if the tagger failed to predict t for any music clips (and Rt = ct

gt

otherwise). This specification penalizes classifiers that leave out tags, especially
rare ones. Note these metrics are upper-bounded by a quantity that depends on
the number of tags output by the algorithm. This quantity can be computed
empirically by setting the precision and recall to 1 when a tag is present, and to
Et and 0 (respectively) when a tag is omitted.

Results (Figure 8) show that for the Topic Method, performance increases
with more topics, but reaches a plateau as the number of topics approaches 50.
One possible explanation is revealed by Figure 9(a), which shows that the num-



12 Edith Law, Burr Settles, and Tom Mitchell

10 20 30 40 50 Tag

Omission Penalizing
Per−Tag Precision

P
re

ci
si

on
0.

00
0.

15
0.

30

10 20 30 40 50 Tag

Omission Penalizing
Per−Tag Precision

P
re

ci
si

on
0.

00
0.

15
0.

30

(a) Precision

10 20 30 40 50 Tag

Omission Penalizing
Per−Tag Recall

R
ec

al
l

0.
00

0.
15

0.
30

10 20 30 40 50 Tag

Omission Penalizing
Per−Tag Recall

R
ec

al
l

0.
00

0.
15

0.
30

(b) Recall

10 20 30 40 50 Tag

Omission Penalizing
Per−Tag F−1

F
−

1
0.

00
0.

15
0.

30

10 20 30 40 50 Tag

Omission Penalizing
Per−Tag F−1

F
−

1
0.

00
0.

15
0.

30

(c) F-1

Fig. 8. Omission-Penalizing Per-tag Metrics. Light-colored bars represent the Topic
Method with 10, 20, 30, 40 and 50 topics. Dark-colored bars represent the Tag Method.
Horizontal lines represent the random baseline. Grey outlines indicate upper bounds.
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Fig. 9. Tag coverage and loss of precision due to omissions.

ber of unique tags generated by the Topic Method reaches a plateau at around
this point. In additional experiments using 60 to 100 topics, we found that this
plateau persists. This might explain why the Tag Method outperforms the Topic
Method under this metric—it generates many more unique tags.

Figure 9(b), which shows precision scores for sample tags achieved by each
method, confirms this hypothesis. For the most common tags (e.g., “banjo,”
“dance,” “string”), the Topic Method achieves superior or comparable precision,
while for rarer tags (e.g., “dramatic,” “rain” etc.), the Tag Method is better and
the Topic Method receives lower scores due to omissions. Note that these low-
frequency tags contain more noise (e.g., “jungly,” “sorry”), so it could be that
the Tag Method is superior simply on its ability to output noisy tags.

5.4 Retrieval Performance

The tags generated by a music tagger can be used to facilitate retrieval. Given a
search query, music clips can be ranked by the KL divergence between the query
tag distribution and the tag probability distribution for each clip. We measure
the quality of the top 10 music clips retrieved using the mean average precision
[24] metric, M10 = 1

10

∑10
r=1

sr

r , where sr is the number of “relevant” (i.e., the
search query can be found in the ground truth set) songs at rank r.
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Fig. 10. Retrieval performance in terms of mean average precision.

Figure 10 shows the performance of the three methods under this metric.
The retrieval performance of the Topic Method with 50 topics is slightly better
than the Tag Method, but otherwise indistinguishable. Both methods perform
significantly better than random (the horizontal line).

5.5 Human Evaluation

We argue that the performance metrics used so far can only approximate the
quality of the generated tags. The reason is that generated tags that cannot be
found amongst ground truth tags (due to missing tags or vocabulary mismatch)
are counted as wrong, when they might in fact be relevant but missing due to
the subtleties of using an open tag vocabulary.

In order to compare the true merit of the tag classifiers, we conducted several
Mechanical Turk experiments asking humans to evaluate the annotation and
retrieval capabilities of the Topic Method (with 50 topics), Tag Method and
Random Method. For the annotation task, we randomly selected a set of 100
music clips, and solicited evaluations from 10 unique evaluators per music clip.
For each clip, the user is given three lists of tags generated by each of the three
methods. The order of the lists is randomized each time to eliminate presentation
bias. The users are asked to (1) click the checkbox beside a tag if it describes
the music clip well, and (2) rank order their overall preference for each list.

Figure 11 shows the per-tag precision, recall and F-1 scores as well as the
per-clip precision scores for the three methods, using both ground truth set
evaluation and using human evaluators. Results show that when tags are judged
based on whether they are present in the ground truth set, performance of the
tagger is grossly underestimated for all metrics. In fact, of the predicted tags
that the users considered “appropriate” for a music clip (generated by either the
Topic Method or the Tag Method method), on average, approximately half of
them are missing from the ground truth set.

While the human-evaluated performance of the Tag Method and Topic Method
are virtually identical, when asked to rank the tag lists evaluators preferred the
the Tag Method (62.0% of votes) over the Topic Method (33.4%) or Random
(4.6%). Our hypothesis is that people prefer the Tag Method because its has
better coverage (Section 5.3). Since evaluation is based on 10 tags generated by
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Fig. 12. Mechanical Turk results for music retrieval performance.

the tagger, we conjecture that a new way of generating this set of output tags
from topic posteriors (e.g., to improve diversity) may improve in this regard.

We also conducted an experiment to evaluating retrieval performance, where
we provided each human evaluator a single-word search query and three lists
of music clips retrieved by each method. We used 100 queries and 3 evaluators
per query. Users were asked to check each music clip that they considered to be
“relevant” for the query. In addition, they are asked to rank order the three lists
in terms of their overall relevance to the query.

Figure 12 shows the mean average precision, when the ground truth tags
versus human judgment is used to evaluate the relevance of each music clip
in the retrieved set. As with annotation performance, the performance of all
methods is significantly lower when evaluated using the ground truth set than
when using human evaluations. Finally, when asked to rank music lists, users
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strongly preferred our Topic Method (59.3% of votes) over the Tag Method
(39.0%) or Random (1.7%).

6 Conclusion and Future Work

The purpose of this work is to show how tagging algorithms can be trained, in an
efficient way, to generate labels for objects (e.g., music clips) when the training
data consists of a huge vocabulary of noisy labels. Focusing on music tagging as
the domain of interest, we showed that our proposed method is both time and
data efficient, while capable of achieving comparable (or superior, in the case of
retrieval) performance to the traditional method of using tags as labels directly.
This work opens up the opportunity to leverage the huge number of tags freely
available on the Web for training annotation and retrieval systems.

Our work also exposes the problem of evaluating tags when the ground truth
sets are noisy or incomplete. Following the lines of [15], an interesting direction
would be to build a human computation game that is suited specifically for
evaluating tags, and which can become a service for evaluating any music tagger.

There have been recent advances on topic modeling [3, 21] that induce topics
not only text, but also from other metadata (e.g., audio features in our setting).
These methods may be good alternatives for training the topic distribution clas-
sifier in a one-step process as opposed to two, although our preliminary work in
this direction has so far yielded mixed results.

Finally, another potential domain for our Topic Method is birdsong classi-
fication. To date, there are not many (if any) databases that allow a birdsong
search by arbitrary tags. Given the myriad ways of describing birdsongs, it would
be difficult to train a tagger that maps from audio features to tags directly, as
most tags are likely to be associated with only a few examples. In collaboration
with Cornell’s Lab of Ornithology, we plan to use TagATune to collect birdsong
tags from the tens of thousands of “citizen scientists” and apply our techniques
to train an effective birdsong tagger and semantic search engine.
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