
February, 2016 - May 14, 2019 (Latest version) A short note on Poisson tail bounds

The goal of this short note is to provide a proof and references for the “folklore fact” that Poisson random
variables enjoy good concentration bounds – namely, subexponential. Thanks to Gautam Kamath for bringing
the topic to my attention, and making me realize I originally had neither of the two.
May 2019: Further thanks to Vitaly Feldman for pointing out a typo in the statement of Theorem 1.

Let h : [−1,∞)→ R be the function defined by h(u) def= 2 (1+u) ln(1+u)−u
u2 .

Theorem 1. Let X ∼ Poisson(λ), for some parameter λ > 0. Then, for any x > 0, we have

Pr[X ≥ λ+ x ] ≤ e−
x2
2λh( xλ ) (1)

and, for any 0 < x < λ,
Pr[X ≤ λ− x ] ≤ e−

x2
2λh(− xλ ). (2)

In particular, this implies that Pr[X ≥ λ+ x ] ,Pr[X ≤ λ− x ] ≤ e−
x2

2(λ+x) , for x > 0; from which

Pr[ |X − λ| ≥ x ] ≤ 2e−
x2

2(λ+x) , x > 0. (3)

Proof. Equations (1) and (2) are proven in Fact 5 and Fact 6, respectively. We show how they imply (3).
By Fact 3, it is the case that, for every x > 0, h

(
x
λ

)
≥ 1

1+ x
λ
, or equivalently x2

2λh
(
x
λ

)
≥ x2

2(λ+x) . Thus, from (1)
we get Pr[X ≥ λ+ x ] ≤ exp(−x2

2λh
(
x
λ

)
) ≤ exp(− x2

2(λ+x) ).
Similarly, for any 0 < x < λ we have x2

2λ > x2

2(λ+x) , which with (2) and Fact 2 implies Pr[X ≤ λ− x ] ≤
exp(−x2

2λh
(
−xλ
)
) ≤ exp(−x2

2λh(0)) = exp(−x2

2λ ) ≤ exp(− x2

2(λ+x) ).

Thus, we are left with proving Fact 5 and Fact 6, which we do next.

1 Establishing (1) and (2)
Fact 2. We have h(−1) = 2, h(0) = 1, and h decreasing on [−1,∞) with limu→∞ h(u) = 0. In particular,
h ≥ 0.

Proof. The first two properties are immediate by continuity, as, for u /∈ {−1, 0},

h(u) = 2(1 + u) ln(1 + u)− u
u2 −−−−→

u→−1
20− (−1)

(−1)2 = 2

h(u) = 2(1 + u) ln(1 + u)− u
u2 = 2

(1 + u)(u− u2

2 + o(u2))− u
u2 = 2

u2

2 + o(u2)
u2 −−−→

u→0
1

The third property follows from differentiating the function on (−1, 0) ∪ (0,∞) and showing its derivative is
negative; or, more cleverly, following [Pol15, Exercise 14, (ii)]. The fourth (which together with the third
implies the last) directly comes from observing that h(u)∼u→∞ 2 lnu

u .

Fact 3. For any u ≥ 0, we have h(u) ≥ 1
1+u .

Proof. Consider the function g : [0,∞) → R defined by g(u) = (1 + u)h(u). We then have g(0) = 1, and
g(u)∼u→∞ 2 ln u −−−−→

u→∞
∞. Moreover, by differentiation(s) (and tedious computations), one can show that g

is increasing on [0,∞), which implies the claim.
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We follow the outline of [Pol15, Exercise 15]. For a random variable X, we denote by M its moment-
generating function, i.e. MX : θ ∈ R 7→ E

[
eθX

]
(provided it is well-defined). In what follows, X is a random

variable following a Poisson(λ) distribution.

Fact 4. We have MX(θ) = eλ(eθ−1) for every θ ∈ R.

Proof. This is a standard fact, we give the derivation for completeness. For any θ ∈ R,

MX(θ) = E
[
eθX

]
= e−λ

∞∑
n=0

eθn
λn

n! = e−λ
∞∑
n=0

(eθλ)n

n! = e−λee
θλ = eλ(eθ−1).

Fact 5. For any x > 0, Pr[X ≥ λ+ x ] ≤ e−
x2
2λh( xλ ).

Proof. Fix x > 0. For any θ ∈ R,

Pr[X ≥ λ+ x ] = Pr
[
eθX ≥ eθ(λ+x)

]
= Pr

[
eθ(X−λ−x) ≥ 1

]
≤ E

[
eθ(X−λ−x)

]
recalling that if Y is a discrete random variable taking values in N, Pr[Y > 0 ] = Pr[Y ≥ 1 ] =

∑∞
n=1 Pr[Y = n ] ≤∑∞

n=1 nPr[Y = n ] = E[Y ]. Rearranging the terms and taking the infimum over all θ > 0, we have

Pr[X ≥ λ+ x ] ≤ inf
θ>0

E
[
eθX

]
e−θ(λ+x) = inf

θ>0
eλ(eθ−1)e−θ(λ+x) (Fact 4)

= inf
θ>0

eλ(eθ−1)−θ(λ+x) = einfθ>0(λ(eθ−1)−θ(λ+x)).

It is a simple matter of calculus to find that infθ>0(λ(eθ − 1)− θ(λ+ x)) is attained for θ∗ def= ln(1 + x
λ ) > 0,

from which

Pr[X ≥ λ+ x ] ≤ eλ(eθ
∗
−1)−θ∗(λ+x) = e−λ((1+ x

λ ) ln(1+ x
λ )− xλ ) = e−

x2
2λh( xλ )

as claimed.

Fact 6. For any 0 < x < λ, Pr[X ≤ λ− x ] ≤ e−
x2
2λh(− xλ ) ≤ e− x

2
2λ .

Proof. Fix 0 < x < λ. As before, for any θ ∈ R,

Pr[X ≤ λ− x ] = Pr
[
eθX ≤ eθ(λ−x)

]
= Pr

[
eθ(λ−x−X) ≥ 1

]
≤ E

[
e−θX

]
eθ(λ−x).

Rearranging the terms and taking the infimum over all θ > 0, we have

Pr[X ≤ λ− x ] ≤ inf
θ>0

E
[
e−θX

]
eθ(λ−x) = inf

θ>0
eλ(e−θ−1)eθ(λ−x) (Fact 4)

= einfθ>0(λ(e−θ−1)+θ(λ−x)).

It is again straightforward to check, e.g. by differentiation, that infθ>0(λ(e−θ − 1) + θ(λ− x)) is attained for
θ∗

def= − ln(1− x
λ ) > 0, from which

Pr[X ≤ λ− x ] ≤ eλ(e−θ∗
−1)+θ∗(λ−x) = e−x−(λ−x) ln(1− xλ ) = e−λ((1− xλ ) ln(1− xλ )+ x

λ ) = e−
x2
2λh(− xλ )

as claimed. The last step is to observe that, by Fact 2, e−
x2
2λh(− xλ ) ≤ e− x

2
2λh(0) = e−

x2
2λ .
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2 An alternative proof of (1)
Recall that if (Y (n))n≥1 is a sequence of independent random variables such that Y (n) follows a Bin

(
n, λn

)
distribution, then (Y (n))n≥1 converges in law to X, a random variable with Poisson(λ) distribution.1 In
particular, since convergence in law corresponds to pointwise convergence of distribution functions, this
implies that, for any t ∈ R,

Pr
[
Y (n) ≥ t

]
−−−−→
n→∞

Pr[X ≥ t ] . (4)

For any fixed n ≥ 1, we can by definition write Y (n) as Y (n) =
∑n
k=1 Y

(n)
k , where Y (n)

1 , . . . , Y
(n)
n are i.i.d.

random variables with Bern
(
λ
n

)
distribution. Note that E

[
Y (n)] = λ and Var[Y (n)] = λ(1 − λ

n ) ≤ λ. As
E
[
Y

(n)
k

]
= λ

n and |Y (n)
k | ≤ 1 for all 1 ≤ k ≤ n, we can apply Bennett’s inequality ([BLM13, Chapter 2],[Pol15,

Chapter 2.5]), to obtain, for any t ≥ 0,

Pr
[
Y (n) ≥ λ+ x

]
= Pr

[
Y (n) ≥ E

[
Y (n)

]
+ x

]
≤ e−

x2
2λh( xλ )

Taking the limit as n goes to ∞, we obtain by (4) that Pr[X ≥ λ+ x ] ≤ e−
x2
2λh( xλ ), re-establishing (1).

Remark 7. We note that a qualitatively similar statement (yet quantitatively weaker) can be obtained by
observing that Poisson distributions are in particular (discrete) log-concave, and that any log-concave (discrete
or continuous) has subexponential tail [An95].
Remark 8. As another way to establish the result, we refer the reader to [Gol17, Proposition 11.15],
where bounds on individual summands of the Poisson tails are obtained. From there, one can attempt to
derive Theorem 1, specifically (3).
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0This approach is inspired by [Pol15, Exercise 16]).
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