February, 2016 - May 14, 2019 (Latest version) A short note on Poisson tail bounds

The goal of this short note is to provide a proof and references for the "folklore fact" that Poisson random variables enjoy good concentration bounds – namely, subexponential. Thanks to [Gautam Kamath](http://www.gautamkamath.com/) for bringing the topic to my attention, and making me realize I originally had neither of the two.

May 2019: Further thanks to Vitaly Feldman for pointing out a typo in the statement of [Theorem 1.](#page-0-0)

Let $h: [-1, \infty) \to \mathbb{R}$ be the function defined by $h(u) \stackrel{\text{def}}{=} 2^{\frac{(1+u)\ln(1+u)-u}{u^2}}$.

Theorem 1. Let $X \sim \text{Poisson}(\lambda)$, for some parameter $\lambda > 0$. Then, for any $x > 0$, we have

$$
\Pr[X \ge \lambda + x] \le e^{-\frac{x^2}{2\lambda}h\left(\frac{x}{\lambda}\right)}\tag{1}
$$

and, for any $0 < x < \lambda$ *,*

$$
\Pr[X \le \lambda - x] \le e^{-\frac{x^2}{2\lambda}h\left(-\frac{x}{\lambda}\right)}.
$$
\n⁽²⁾

In particular, this implies that $Pr[X \ge \lambda + x]$, $Pr[X \le \lambda - x] \le e^{-\frac{x^2}{2(\lambda + x)}}$, for $x > 0$; from which

$$
\Pr[|X - \lambda| \ge x] \le 2e^{-\frac{x^2}{2(\lambda + x)}}, \qquad x > 0. \tag{3}
$$

Proof. Equations [\(1\)](#page-0-1) and [\(2\)](#page-0-2) are proven in [Fact 5](#page-1-0) and [Fact 6,](#page-1-1) respectively. We show how they imply [\(3\)](#page-0-3). By [Fact 3,](#page-0-4) it is the case that, for every $x > 0$, $h(\frac{x}{\lambda}) \ge \frac{1}{1+\frac{x}{\lambda}}$, or equivalently $\frac{x^2}{2\lambda}$ $\frac{x^2}{2\lambda}h(\frac{x}{\lambda}) \geq \frac{x^2}{2(\lambda+\lambda)}$ $\frac{x^2}{2(\lambda+x)}$. Thus, from [\(1\)](#page-0-1) we get $Pr[X \ge \lambda + x] \le exp(-\frac{x^2}{2\lambda})$ $\frac{x^2}{2\lambda}h(\frac{x}{\lambda})\leq \exp(-\frac{x^2}{2(\lambda+\lambda)}$ $\frac{x^2}{2(\lambda+x)}$). Similarly, for any $0 < x < \lambda$ we have $\frac{x^2}{2\lambda} > \frac{x^2}{2(\lambda + 1)}$ $\frac{x^2}{2(\lambda+x)}$, which with [\(2\)](#page-0-2) and [Fact 2](#page-0-5) implies Pr[$X \leq \lambda - x$] \leq $\exp(-\frac{x^2}{2\lambda})$ $\frac{x^2}{2\lambda}h\left(-\frac{x}{\lambda}\right) \le \exp\left(-\frac{x^2}{2\lambda}\right)$ $\frac{x^2}{2\lambda}h(0)) = \exp(-\frac{x^2}{2\lambda})$ $\frac{x^2}{2\lambda}$) \leq exp $\left(-\frac{x^2}{2(\lambda+\lambda)}\right)$ $rac{x^2}{2(\lambda+x)}$).

Thus, we are left with proving [Fact 5](#page-1-0) and [Fact 6,](#page-1-1) which we do next.

1 Establishing [\(1\)](#page-0-1) **and** [\(2\)](#page-0-2)

Fact 2. We have $h(-1) = 2$, $h(0) = 1$, and *h* decreasing on $[-1, \infty)$ with $\lim_{u \to \infty} h(u) = 0$. In particular, $h \geq 0$.

Proof. The first two properties are immediate by continuity, as, for $u \notin \{-1, 0\}$,

$$
h(u) = 2\frac{(1+u)\ln(1+u) - u}{u^2} \xrightarrow[u \to -1]{u \to -1} 2\frac{0 - (-1)}{(-1)^2} = 2
$$

$$
h(u) = 2\frac{(1+u)\ln(1+u) - u}{u^2} = 2\frac{(1+u)(u - \frac{u^2}{2} + o(u^2)) - u}{u^2} = 2\frac{\frac{u^2}{2} + o(u^2)}{u^2} \xrightarrow[u \to 0]{u \to 0} 1
$$

The third property follows from differentiating the function on $(-1,0) \cup (0,\infty)$ and showing its derivative is negative; or, more cleverly, following [\[Pol15,](#page-2-0) Exercise 14, (ii)]. The fourth (which together with the third implies the last) directly comes from observing that $h(u) \sim_{u \to \infty} \frac{2 \ln u}{u}$. \Box

Fact 3. For any $u \geq 0$, we have $h(u) \geq \frac{1}{1+u}$.

Proof. Consider the function $g: [0, \infty) \to \mathbb{R}$ defined by $g(u) = (1 + u)h(u)$. We then have $g(0) = 1$, and $g(u) \sim_u \to \infty$ 2 ln *u* $\longrightarrow \infty$. Moreover, by differentiation(s) (and tedious computations), one can show that *g* is increasing on $[0, \infty)$, which implies the claim. \Box

We follow the outline of [\[Pol15,](#page-2-0) Exercise 15]. For a random variable *X*, we denote by *M* its momentgenerating function, i.e. $M_X: \theta \in \mathbb{R} \to \mathbb{E}\left[e^{\theta X}\right]$ (provided it is well-defined). In what follows, X is a random variable following a $Poisson(\lambda)$ distribution.

Fact 4. We have $M_X(\theta) = e^{\lambda(e^{\theta}-1)}$ for every $\theta \in \mathbb{R}$.

Proof. This is a standard fact, we give the derivation for completeness. For any $\theta \in \mathbb{R}$,

$$
M_X(\theta) = \mathbb{E}\left[e^{\theta X}\right] = e^{-\lambda} \sum_{n=0}^{\infty} e^{\theta n} \frac{\lambda^n}{n!} = e^{-\lambda} \sum_{n=0}^{\infty} \frac{(e^{\theta} \lambda)^n}{n!} = e^{-\lambda} e^{e^{\theta} \lambda} = e^{\lambda (e^{\theta} - 1)}.
$$

Fact 5. For any $x > 0$, $Pr[X \ge \lambda + x] \le e^{-\frac{x^2}{2\lambda}h(\frac{x}{\lambda})}$.

Proof. Fix $x > 0$. For any $\theta \in \mathbb{R}$,

$$
\Pr[X \ge \lambda + x] = \Pr\left[e^{\theta X} \ge e^{\theta(\lambda + x)}\right] = \Pr\left[e^{\theta(X - \lambda - x)} \ge 1\right] \le \mathbb{E}\left[e^{\theta(X - \lambda - x)}\right]
$$

recalling that if *Y* is a discrete random variable taking values in N, $Pr[Y > 0] = Pr[Y \ge 1] = \sum_{n=1}^{\infty} Pr[Y = n] \le \sum_{n=1}^{\infty} Pr[Y = n] = \mathbb{E}[Y]$. Rearranging the terms and taking the infimum over all $\theta > 0$, we have $\sum_{n=1}^{\infty} n \Pr[Y = n] = \mathbb{E}[Y]$. Rearranging the terms and taking the infimum over all $\theta > 0$, we have

$$
\Pr[X \ge \lambda + x] \le \inf_{\theta > 0} \mathbb{E}\left[e^{\theta X}\right] e^{-\theta(\lambda + x)} = \inf_{\theta > 0} e^{\lambda(e^{\theta} - 1)} e^{-\theta(\lambda + x)}
$$
\n
$$
= \inf_{\theta > 0} e^{\lambda(e^{\theta} - 1) - \theta(\lambda + x)} = e^{\inf_{\theta > 0} (\lambda(e^{\theta} - 1) - \theta(\lambda + x))}.
$$
\n(Fact 4)

It is a simple matter of calculus to find that $\inf_{\theta>0} (\lambda(e^{\theta}-1)-\theta(\lambda+x))$ is attained for $\theta^* \stackrel{\text{def}}{=} \ln(1+\frac{x}{\lambda}) > 0$, from which

$$
\Pr[X \ge \lambda + x] \le e^{\lambda (e^{\theta^*} - 1) - \theta^* (\lambda + x)} = e^{-\lambda ((1 + \frac{x}{\lambda}) \ln(1 + \frac{x}{\lambda}) - \frac{x}{\lambda})} = e^{-\frac{x^2}{2\lambda} h\left(\frac{x}{\lambda}\right)}
$$

as claimed.

Fact 6. For any $0 < x < \lambda$, Pr $[X \leq \lambda - x] \leq e^{-\frac{x^2}{2\lambda}h(-\frac{x}{\lambda})} \leq e^{-\frac{x^2}{2\lambda}}$.

Proof. Fix $0 < x < \lambda$. As before, for any $\theta \in \mathbb{R}$,

$$
\Pr[X \le \lambda - x] = \Pr\left[e^{\theta X} \le e^{\theta(\lambda - x)}\right] = \Pr\left[e^{\theta(\lambda - x - X)} \ge 1\right] \le \mathbb{E}\left[e^{-\theta X}\right] e^{\theta(\lambda - x)}.
$$

Rearranging the terms and taking the infimum over all $\theta > 0$, we have

$$
\Pr[X \le \lambda - x] \le \inf_{\theta > 0} \mathbb{E}\left[e^{-\theta X}\right] e^{\theta(\lambda - x)} = \inf_{\theta > 0} e^{\lambda(e^{-\theta} - 1)} e^{\theta(\lambda - x)} \tag{Fact 4}
$$
\n
$$
= e^{\inf_{\theta > 0} (\lambda(e^{-\theta} - 1) + \theta(\lambda - x))}.
$$

It is again straightforward to check, e.g. by differentiation, that $\inf_{\theta>0} (\lambda(e^{-\theta}-1)+\theta(\lambda-x))$ is attained for $\theta^* \stackrel{\text{def}}{=} -\ln(1-\frac{x}{\lambda}) > 0$, from which

$$
\Pr[X \le \lambda - x] \le e^{\lambda (e^{-\theta^*} - 1) + \theta^* (\lambda - x)} = e^{-x - (\lambda - x) \ln(1 - \frac{x}{\lambda})} = e^{-\lambda ((1 - \frac{x}{\lambda}) \ln(1 - \frac{x}{\lambda}) + \frac{x}{\lambda})} = e^{-\frac{x^2}{2\lambda}h\left(-\frac{x}{\lambda}\right)}
$$

as claimed. The last step is to observe that, by [Fact 2,](#page-0-5) $e^{-\frac{x^2}{2\lambda}h(-\frac{x}{\lambda})} \leq e^{-\frac{x^2}{2\lambda}h(0)} = e^{-\frac{x^2}{2\lambda}}$.

 \Box

 \Box

 \Box

2 An alternative proof of [\(1\)](#page-0-1)

Recall that if $(Y^{(n)})_{n\geq 1}$ is a sequence of independent random variables such that $Y^{(n)}$ follows a $\text{Bin}(n, \frac{\lambda}{n})$ distribution, then $(Y^{(n)})_{n\geq 1}$ $(Y^{(n)})_{n\geq 1}$ $(Y^{(n)})_{n\geq 1}$ converges in law to X, a random variable with Poisson(λ) distribution.¹ In particular, since convergence in law corresponds to pointwise convergence of distribution functions, this implies that, for any $t \in \mathbb{R}$,

$$
\Pr\left[Y^{(n)} \ge t\right] \xrightarrow[n \to \infty]{} \Pr[X \ge t].\tag{4}
$$

For any fixed $n \geq 1$, we can by definition write $Y^{(n)}$ as $Y^{(n)} = \sum_{k=1}^{n} Y_k^{(n)}$ $Y_k^{(n)}$, where $Y_1^{(n)}, \ldots, Y_n^{(n)}$ are i.i.d. random variables with Bern $\left(\frac{\lambda}{n}\right)$ distribution. Note that $\mathbb{E}[Y^{(n)}] = \lambda$ and $\text{Var}[Y^{(n)}] = \lambda(1 - \frac{\lambda}{n}) \leq \lambda$. As $\mathbb{E}\big[Y_k^{(n)}$ $\begin{bmatrix} n \ k \end{bmatrix} = \frac{\lambda}{n}$ and $|Y_k^{(n)}|$ $|f_k^{(n)}| \leq 1$ for all $1 \leq k \leq n$, we can apply Bennett's inequality ([\[BLM13,](#page-2-1) Chapter 2], [\[Pol15,](#page-2-0) Chapter 2.5]), to obtain, for any $t \geq 0$,

$$
\Pr\left[Y^{(n)} \ge \lambda + x\right] = \Pr\left[Y^{(n)} \ge \mathbb{E}\left[Y^{(n)}\right] + x\right] \le e^{-\frac{x^2}{2\lambda}h\left(\frac{x}{\lambda}\right)}
$$

Taking the limit as *n* goes to ∞ , we obtain by [\(4\)](#page-2-2) that $Pr[X \ge \lambda + x] \le e^{-\frac{x^2}{2\lambda}h(\frac{x}{\lambda})}$, re-establishing [\(1\)](#page-0-1).

Remark 7. We note that a qualitatively similar statement (yet quantitatively weaker) can be obtained by observing that Poisson distributions are in particular (discrete) log-concave, and that any log-concave (discrete or continuous) has subexponential tail [\[An95\]](#page-2-3).

Remark 8*.* As another way to establish the result, we refer the reader to [\[Gol17,](#page-2-4) Proposition 11.15], where bounds on individual summands of the Poisson tails are obtained. From there, one can attempt to derive [Theorem 1,](#page-0-0) specifically [\(3\)](#page-0-3).

References

- [An95] M. Y. An. Log-concave probability distributions: Theory and statistical testing. Technical Report Economics Working Paper Archive at WUSTL, Washington University at St. Louis, 1995. [7](#page-2-5)
- [BLM13] S. Boucheron, G. Lugosi, and P. Massart. *Concentration Inequalities: A Nonasymptotic Theory of Independence*. OUP Oxford, 2013. [2](#page-2-2)
- [Gol17] Oded Goldreich. *Introduction to Property Testing*. Forthcoming, 2017. Preliminary version accessible at <http://www.wisdom.weizmann.ac.il/~oded/pt-intro.html> (accessed 02-23-2017). [8](#page-2-6)
- [Pol15] David Pollard. MiniEmpirical. <http://www.stat.yale.edu/~pollard/Books/Mini/>, 2015. Manuscript (accessed 02-23-2017). [1,](#page-0-5) [1,](#page-0-4) [2,](#page-2-2) 0

⁰This approach is inspired by $[Pol15, Exercise 16]$ $[Pol15, Exercise 16]$.