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ABSTRACT

Clouds commonly store Virtual Machine (VM) images on
networked storage. This poses a serious potential scalability
bottleneck as launching a single fresh VM instance requires,
at minimum, several hundred MB of network reads. As
this bottleneck occurs most severely during read-intensive
launching of new VMs, we focus on scalably minimizing time
to boot a VM and load its critical applications.

While effective scalable P2P streaming techniques for Video
on Demand (VOD) scenarios where blocks arrive in-order
and at constant rate are available, no techniques address
scalable large-executable streaming. VM execution is non-

deterministic, divergent, variable rate, and cannot miss blocks.

VMTORRENT introduces a novel combination of block prior-
itization, profile-based execution prefetch, on-demand fetch,
and decoupling of VM image presentation from underlying
data-stream. VMTORRENT provides the first complete and
effective solution to this growing scalability problem that is
based on making better use of existing capacity, instead of
throwing more hardware at it.

Supported by analytic modeling, we present comprehen-
sive experimental evaluation of VMTORRENT on real systems
at scale, demonstrating the effectiveness of VMTORRENT.
We find that VMTORRENT supports comparable execution
time to that achieved using local disk. VMTORRENT main-
tains this performance while scaling to 100 instances, pro-
viding up to 11z speedup over current state-of-the-art and
30z over traditional network storage.

Categories and Subject Descriptors

C.2.4 [Computer-Communication Networks]:
Distributed Systems— Distributed applications
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1. INTRODUCTION

Traditionally, wvirtual machine monitors (VMMs)' have
run virtual machines (VMs) off locally stored VM images.
By combining host-level virtualization with modern network-
ing and data center facilities, the cloud computing paradigm
has enabled a wide range of new applications for VM tech-
nology. Both virtualized public (e.g., Amazon EC2, Mi-
crosoft Hyper-V cloud) and private (e.g., Cisco UCS, IBM
Cloudburst, Oracle Exalogic Elastic Cloud) Infrastructure
as a Service (IaaS) clouds have enabled businesses to move
their operations from applications (e.g., compute node, web-
server, user desktop) running on dedicated hardware to shared
infrastructure on which wvirtual servers, virtual appliances,
and wirtual desktops run. Doing so enables more efficient
hardware utilization, easier management, and quicker fail-
ure recovery.

However, to realize these benefits, VMs may often need
to be launched on machines that have not been pre-loaded
with a copy of the corresponding VM image. By far the
most common cloud setup stores VM images remotely on
either storage area network (SAN) or network-attached stor-
age (NAS), as either primary or secondary storage Systems
utilizing the network for primary storage employ a remote
file system abstraction to stream VM images directly from
network storage (e.g., Amazon EC2/EBS). Systems utiliz-
ing the network as secondary storage, must first download a
VM’s complete virtual disk image (e.g., OpenStack Glance,
Amazon EC2/S3) to local primary storage before the VM
can run. In either case, attempts to launch large numbers of
fresh VM instances run straight into a network bottleneck.

1.1 The Network Bottleneck

Depending on the VM, and whether network storage is
primary or secondary, hundreds of MB to several GB of VM
image reads must pass over the network to launch even a
single fresh VM instance. In the private cloud, this problem
has proven sufficiently common to earn the moniker “boot
storm”. Likewise, users of OpenStack, open source software
for building private and public clouds, have reported that
“scale limits are due to simultaneous loading rather than to-
tal number of nodes” [16]. In response, at least one recent
developer proposal has been made to replace or supplement
VM launch architecture for greater scalability [14]. More-
over, with the advent of spot-pricing schemes that encourage
the unpredictable launch of large temporary VM deploy-

! Also known as hypervisors.
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Figure 1: Image access pattern. Win7/PowerPoint.

ments and cross-cloud VM ensemble migration, this issue

will likely become more significant for the public clouds?.
Commercial solutions have addressed this network bottle-

neck to storage by throwing hardware at it: over-provisioning

SAN/NAS, adding flash based storage [2], solid state drives [1],

and other in-network hardware caches. However, often this
approach becomes prohibitively expensive at current scales,
and cloud sizes look to only increase in the future.

1.2 VMTorrent

VMTORRENT aims to scalably minimize time needed
for cloud-based VMs to boot and load critical applica-
tions. Realizing this goal will improve both virtual desktop
user experience and virtual server/appliance deployment.

VMTORRENT addresses this challenge by recognizing its
similarity to that of data distribution. The networking com-
munity has developed highly effective scalable peer-to-peer
(P2P) techniques for both bulk data download (e.g., Bit-
Torrent) and streaming strictly-ordered data (e.g., Video
on Demand). However, the space in between these two ex-
tremes has been left open. No techniques exist for scalably
streaming partially structured data such as that shown in
Figure 1, which plots the clustering of disk accesses in both
space (y-axis) and time (z-axis) for a representative run of
a PowerPoint application on a Windows 7 VM. This is, per-
haps, because up until recently, there has been little appli-
cation for such generalization. Cloud-based virtual machine
image execution provides that motivation.

We provide the first P2P approach to the general problem
of streaming large files whose access patterns are not strictly
structured like video. VMTORRENT leverages the structure
of individual VM images® in a straightforward way to rad-
ically increase the number of VMs which may be efficiently
launched on a given hardware configuration. VMTORRENT
applies to both IaaS public and private clouds, Virtual Desk-
top Infrastructure (VDI), and is VMM agnostic.

1.3 Contributions

In this paper, we make the following contributions:

1. Decouple P2P-delivery from stream presentation:
Instead of requiring applications purpose-written for P2P
data streams, VM TORRENT makes the P2P data stream trans-
parent to applications by using the same file system abstrac-
tion as traditional remote file systems - allowing almost any
application to easily use P2P-streamed data (Section 2.1).

2. Profile-based image streaming: We introduce novel

2Regrettably, we cannot currently quantify the size and
scope of this problem, as cloud providers are reluctant to
provide access to their data due to its commercial value.
3VMTORRENT naturally handles VM images comprising
guest OS and applications. However, our techniques re-
quire modification for persistent VM images that diverge
over time. While many, if not most, VMs are either non-
persistent or non-divergent, we provide discussion of how
divergent images may be handled in Section 2.3.
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mechansims enabling effective VM image streaming by prefetch-

ing pieces based on VM image profiling and utilization of
piece selection policies that balance cache misses against
swarm efficiency (Section 2.2).

3. Model profile-based P2P image streaming: We ex-
press the expected playback pattern of a given VM image
in terms of a small set of parameters - including network
speed, image size, and number of instances launched - pro-
viding a concrete foundation for discussing design choices
and extrapolating performance (Section 3).

4. VMTORRENT prototype: Implemented and deployed on
two different hardware testbeds. We measure performance
on a variety of VM /workload combinations, using up to 100
physical client peers. We find VMTORRENT delivers up to
an 11z speedup over a standard P2P approach that does
not incorporate profiling and a 30x speedup over tradi-
tional remote file system approaches. VMTORRENT provides
equivalent performance to that of local disk execution for all
workload sizes (Section 4).

2. SYSTEM DESIGN

VMTORRENT’s design incorporates two novel features:

1. It decouples the P2P-delivery from data stream presen-
tation mechanism - allowing hypervisors to access this data
stream as if it were stored locally.

2. It introduces novel profile-based prefetch - allowing VM
images to be scalably streamed with a P2P swarm

To decouple the delivery from the data stream, vMTOR~
RENT utilizes a custom file system server (FS) that effec-
tively virtualizes the VM image. Through a user-level file
system front-end, FS provides the appearance of a com-
pletely local VM image, while servicing VMM reads and
writes by connecting to a network backend (Section 2.1).

This decoupling allows us to make that network backend
one which utilizes P2P techniques for scalable download.
However, current P2P techniques, such as bulk download
and Video on Demand (VOD), are not well suited to VM
image streaming. Thus our custom P2P manager (P2PM)
incorporates novel piece selection policies, based on VM im-
age access profiling, in order to serve the FS (Section 2.2).

Figure 2 illustrates the operation of the system. As the
VM starts to execute, (1) the VMM tries to access the disk
image in response to the guest’s virtual disk accesses. If a
block is not yet present (a cache miss), then (2) FS requests
that block from P2PM. Meanwhile, (3) based on incoming
FS requests, P2PM fetches and, based on VM image profiles,
prefetches image pieces. (4) Concurrently, P2PM uploads
local pieces to other swarm members in response to their
requests. P2PM stores each piece locally and (5) passes the
file blocks comprising this piece to the file server as they are
requested by the VMM (6). The file server handles incom-
ing write requests using copy-on-write to local storage or
memory, while P2PM retains the unmodified original block
to share with peers.

VMTORRENT instances are intended to run as close to the
VMM as possible, replacing the primary data store. To in-
tegrate with a cloud orchestration platform, the hypervi-
sor must be redirected from the former VM image location
mounted on primary storage to the FS mount which con-
nects both to network storage (via a dedicated VMTORRENT
seed instance deployed on/near the network storage) and
other peers. The only requirement for applications using
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Figure 2: vimTorrent architecture

VMTORRENT is that they tolerate occasional high-latency
operations on files - currently non-uncommon for accesses
through traditional remote file systems.

2.1 File Server

The VMTORRENT FS is responsible for providing read and
write access to the guest VM’s disk image. F'S operates simi-
larly to traditional remote file systems: the F'S root directory
is mounted in a designated location, making its files visible
to the system. All disk accesses performed to the sub-tree
under that mount point are intercepted by the operating sys-
tem and delegated to F'S. In this way F'S enables a standard
file system view that is indistinguishable from that of other
common remote file systems such as NFS and CIFS, and
with similar latency properties - making VMTORRENT both
fully transparent to the VMM and inter-operable with the
SAN/NAS compatible hypervisors used in today’s clouds.

When a new guest VM is launched, FS creates a place-
holder file for that VM’s disk image, which from the VMM’s
view of the file system is indistinguishable from a complete
local copy of the image. However, initially this file is empty;
its content is gradually streamed in from the P2P network.
As soon as the local placeholder is present F'S can begin to
serve requests to access the data - even if no data is yet
present. For requested blocks that have been prefetched
(cache hits), the server will respond immediately. However,
if the VMM suffers a cache miss, attempting to access blocks
that are not yet present, F'S will issue demand requests for
these blocks to P2PM which will stall until the needed blocks
have been received from the swarm.

2.2 P2P Manager

To support smooth VM execution, P2PM needs to provide
low-latency delivery of requested pieces to FS. This requires
both proportionally many cache hits and minimally delayed
network delivery on cache misses.

2.2.1 Applicability of P2P VOD

P2P VOD streaming [18] addresses the first of these two
(proportionally many cache hits) by dividing its bandwidth
between pieces needed urgently and random pieces from else-
where in the video. Since pieces of a video are almost always
accessed sequentially, it is trivial to determine the active
playback window (those pieces needed immediately to en-
sure smooth playback) when the video is encoded with a
constant bit rate (CBR).

However, this sequentiality proves a double-edged sword.
Should requests be restricted to only pieces in the playback
window, all VOD peers starting at the same time will re-
quest the exact same small set of pieces from the seed(s).
In such a case, there will be little piece diversity amongst
peers, meaning that they have little to share with one an-
other. Hence, swarming efficiency (the effective upload rate
offered by the swarm) - and thereby scalability - drops dra-
matically. To avoid this and ensure sufficient piece diversity,
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VOD techniques add random piece requests. There is rel-
atively little downside to devoting a fraction of bandwidth
to random prefetches, as all pieces in the video stream will
eventually be used.

2.2.2 The Challenge of VM Image Streaming

P2PM pursues a similar strategy. However, VM image
streaming faces issues CBR video streaming does not.

e Sparsity: the large majority of a VM image may never be
accessed in a complete execution cycle (see Table 2). Thus,
randomly downloaded pieces will likely never be of use, the
bandwidth used to obtain them being entirely wasted.

e Stochasticity: VM image playback varies dynamically
and sometimes unpredictably as different workloads execute.
We have found that the set of blocks accessed and the order
of access varies from run to run - even when executing the
same workload on the same machine. This makes predicting
the VM’s “playback window” challenging.

e Rate wvariability: VM image access rates vary drasti-
cally during the course of execution. Sequences for boot,
login, and application startup consist of one or more highly-
intense spikes in read request rates, interspersed by periods
of almost no image I/O activity. This is as, if not more, chal-
lenging than optimizing P2P variable bit rate (VBR) video
delivery - a problem that is currently not well understood.

e Ezxecution sensitivity: P2P VOD can tolerate piece de-
livery failure of individual blocks and still continue correct
playback. However, correct VM image execution requires
every requested piece be obtained and thus must stall on
even a single cache miss.

These factors combine with one another to pose a much
greater challenge that that of CBR video streaming. Spar-
sity and stochasticity together imply that a successful VM
image streaming system must predict future accesses and
do so well - as false positive mispredictions will most likely
never be used. Stochasticity combined with execution sen-
sitivity makes cache misses likely and expensive (compared
to the unlikely and individually un-impactful VOD missed
deadlines). Rate variability requires the development of new
analytic models and, combined with execution sensitivity,
forces the optimal P2P piece selection policy to vary depen-
dent on the expected upcoming access rate from the current
playback point.

Perhaps counter-intuitively, if the expected upcoming ac-
cess rates will exceed that of the network, then it may be bet-
ter for a peer to randomize its requests - since it will have to
stall anyway - and increase the swarm capacity. Conversely,
when upcoming access rates are slightly lower than that of
the network, the optimal strategy may be to exploit the
swarm to obtain pieces within the upcoming playback win-
dow instead - since potentially costly stalls may be avoided.

We begin addressing this wide set of challenges by first
introducing simple profiling techniques for playback window
prediction (Section 2.2.3) and playback window randomized



piece selection policies to balance swarm efficiency against
cache misses (Section 2.2.4).

2.2.3 Profiling

The first goal of profiling is to mitigate image sparsity by
identifying which pieces are highly unlikely ever to be ac-
cessed and blacklist them from ever being prefetched. Since
the majority of pieces are never accessed, only those that
have been seen in at least one profiled run will be entered
into the profile. The second goal of profiling is support cal-
culation of the VM playback window, a pre-requisite for ef-
fective prefetching.

In this work, we took a straightforward approach to build-
ing a profile. Each profile built was specific to both a VM
image and a workload. For each image/workload pair, we
ran the workload one or more times from boot through shut-
down. Through FS, in each run we tracked which image
pieces were accessed and when. For each piece that showed
up in at least one run, we averaged the times at which it
appeared and ordered the pieces accordingly from earliest
to latest. The profile produced comprised this ordered list
of rows, each row containing average appearance time, piece
index, and proportion of runs in which that piece appeared.

The advantages of this approach are several.

e These profiles are inexpensive/quick to construct. A single-
run profile can be created in the time it takes to execute the
workload once and can support reasonably accurate play-
back window prediction. Multi-run profiles help further.

e Such profiles are compact. Both single and multi-run pro-
files created this way are of negligible size (<512KB before
compression), especially when compared to that of the cor-
responding VM images. This compactness facilitates either
pre-loading or distributing many profiles on the fly.

e They can produce very low overhead playback window
predictions. Utilizing a single profile, the playback window
will simply be the list of pieces highest in the profile that
have not yet been either used or cached.

e They can be used as building blocks for more sophisti-
cated prediction. The playback window prediction compo-
nent may track which of several profiles best matches the
current execution pattern and uses the current best match,
or some weighted combination of the top several matches.

e Finally, they are conceptually simple - both facilitating
manual inspection and serving as a baseline for future work.

This approach does have clear limitations. The playback
window predictions we produce are not optimal. More-
over, potentially significant information is lost in the av-
eraging process. Future work might be able to preserve
more of this information without increasing the profile size
too dramatically. Finally, these profiles are specific to each
image/workload combination. More general profiling tech-
niques may analyze common access sequences across work-
loads, or utilize guest file system level information to gener-
alize across similar VM images.

2.24 Piece Selection

The goal of the VMTORRENT piece selection policy is to
balance the need to (1) minimize cache misses and (2) maz-
imize swarm efficiency.

In this work, motivated by execution sensitivity, we have
chosen to give cache misses absolute priority over prefetches
(although prefetches already in-progress will not be pre-

292

empted). To provide some piece diversity, we utilize a window-
randomized selection policy that picks one of the first k
pieces in the predicted playback window to request. This
window size k is a tunable parameter that attempts to bal-
ance the urgency of pieces against the need for sufficient peer
diversity. If a large k is chosen, pieces fail to be prefetched
in the order of predicted use, resulting in expensive cache
misses. On the other hand, the choice of an overly small
k will damage swarm efficiency, leading to scalability prob-
lems since too little piece diversity will be achieved. Conse-
quently, as the number of peers decreases or the workload
diversity increases, the optimal k will tend to be lower (since
the pressure on centralized servers is lower and the relative
piece diversity in the network greater) and vice-versa.

2.3 VMTorrent’s Place in the Cloud

VMTORRENT targets a very specific problem - getting those
parts of the VM image needed by VMMs to those VMMs
with minimal delay. VMTORRENT handles writes through
copy-on-write to a local cache residing within the F'S front-
end. These changes disappear unless copied back across the
network by some other mechanism. VMTORRENT’s design
focuses on scenarios in which a single unchanging (or in-
frequently changed) image needs to be rapidly scaled up
and down. Examples of such images include standardized
software development environments, front-end servers for
traditional tiered web applications, pre-configured compute
nodes, or standardized user desktop environments in which
transactional user data and customizations are stored in a
traditional network file system which the guest VM is pre-
configured to access [10].

However, this choice by no means restricts VM TORRENT’S
applicability to only such scenarios. By tracking those blocks
that have been modified and saving these along with other
image metadata to the SAN/NAS, we can support data
write-back within the VM while still preserving P2P fetch
for those majority of unchanged blocks in the VM image
(particularly those encoding the boot sequence and applica-
tions). We can further extend our technique using mecha-
nisms such as Content-Based Block Caching [21], along the
lines described in [31].

3. MODEL

The primary goal of this section is to capture the essential
dynamics of P2P VM image streaming. We aim to thereby
explain our design and experimental results, extrapolate VM-
TORRENT’s performance outside of our experimental setting
for sensitivity testing, provide performance bounds, and rig-
orously define our objective function.

A VM image streaming system’s designer has (at least)
two critical choices - that of piece selection policy 1 and dis-
tribution model ¢. The selection policy specifies the order
and timing of piece requests originating from a given peer -
clearly critical in determining whether playback will progress
or stall at any given moment. The distribution model de-
termines which nodes provide upload capacity. One central-
ized source will run out of upload capacity as the number
of peers grows, while the raw upload capacity of P2P distri-
bution scales with the number of peers. Of particular inter-
est is that the selection policy may effect the comparative
performance of different distribution models. Section 3.1
presents two simplified policy models, while Section 3.2 con-
siders fully centralized and fully decentralized distributions.



These policy and distribution model choices combine with
parameters drawn from the cloud setting and particular VM
image to form a complete description of the VM image stream-
ing scenario. These parameters are: the service wait time
between peer request and receipt of first download bit (W),
network speed (rnet), piece size (S), and the ideal VM im-
age playback function M(¢) (in bytes accessed by time t)
modeling the total image size accessed by hypervisor exe-
cuting on a fully memory-cached image*. Given these, our
goal is to express the average playback process P(t) of a
VMTORRENT instance (peer).

With P, we can now rigorously define the objective spec-
ified in Section 1 as

mwin{ PyY(A) - MY(A) } (1)
where A is the total number of bytes accessed from boot
through workload completion.

3.1 Policy Model

For the sake of simplicity, we consider only strict de-
mand fetching and in-order profile based prefetching in this
section. These scenarios are covered, respectively, by Sec-
tions 3.1.1 and 3.1.2 which express P(t) in terms of the
quantities defined above and one additional term, the ef-
fective peer download rate r. r describes a peer’s effective
download as a function of ry.:, W, .S, and n.

3.1.1 Demand

We begin by considering the policy ¥demana Where peers
only fetch blocks as they are needed. The playback that
occurs in a very short time-span will either be the number
of bytes a fully-memory cached version would achieve from
the current playback point y:, or, if the effective peer rate
was insufficient to sustain this, the amount that could be
streamed in this time

P(t + dt) — P(t) = min(M (ys + dt) — M(y.),rdt) . (2)

The current playback point itself is determined by first cal-
culating the number of bytes played back, which is simply
P(t). We then compute the corresponding time y; that a
fully-memory cached version would have accessed that same
number of bytes by inverting M

ye = M7 (P(1)).

Equation (2) can be easily manipulated to express P(t) in
differential form (playback rate)

P(t+dt) — P(t) rdt M(y: +dt) — M(y:)

dt = min("r, dt

) 3)

P ) = min(r, M (4)

= at i (yt)) -

3.1.2 In-Order Profile Prefetch

To incorporate the impact of prefetching, we add a buffer
to our model. In any period during which the access rate
is lower than the effective rate, content will be buffered. In
periods where the access rate is higher than the effective
rate, buffered accesses can make up (some) of the difference.

41t is trivial to obtain M during profiling so long as the pro-
filed hardware matches the streaming hardware, although,
as for profiling, a new M must be produced for each
VM /workload pair.
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Denoting the buffer as B(t), we can express the buffer’s evo-
lution as a continuous-time Lindley process

B(t+dt) = [(B(t) +rdt) — (M(ye +dt) = M(y))]" . (5)

We then adapt the demand model shown in equation (4)
to include the extra content added from the buffer B(t) to
that available from the network

P B(t) dM

= ——(t) = mi — () - 6
(1) = min(r+ 222, S () (6)
Since dt is infinitesimal and the buffer size cannot be nega-
tive, we may re-write Equation 6 as the more intuitive

dM

() if B(t)>0

dP
E(t)

. (7)
min(r, = (41))

The reader will note that this model describes a simplified
situation in which (a) demand fetches always take prece-
dence over prefetches, (b) prefetched pieces are always im-
mediately utilizable (i.e., perfect prediction). Assumption
(a) accurately reflects our choice (Section 2.2.4) to deter-
ministically prioritize demand over prefetch. We make as-
sumption (b) as modeling the dynamics of prefetched pieces
that cannot be immediately utilized becomes quite compli-
cated. Consequently, the playback function produced by this
model will provide an upper bound on actual performance.

3.2 Distribution Model

Sections 3.2.1 and 3.2.2 provide approximations for r as
for the centralized and P2P scenarios, respectively.

3.2.1 Centralized

We begin by assuming the server splits available band-
width r,.¢ evenly among the n peers. For a server, the
service wait time W combines two potential factors: net-
work round-trip time (RTT) and the time until the serving
peer has a piece ready. This latter component represents
server congestion and grows very slowly in its first phase
after which it spikes sharply [39]. Accordingly, the time
needed for a single peer to obtain a single piece is simply the
service wait time plus the time for the download to complete

(8)

Assuming that the hypervisor will not issue new read and
write requests while it blocks on those previously issued®,
the effective peer download rate r is

if B(t)=0.

Tnet

tpiccc - Wcs (n) + S/ n

S_, N TnetS

= e = WealW) 5 = 7= Sy 1 8)
9)

322 P2P

Assuming that the network provides full bi-sectional band-
width allowing any pair of peers to exchange data at rpet, by
the pigeonhole principle each peer should be able to down-
load at rate rpe:. Additionally, peers each maintain a fixed
number of connections with other peers which does not grow
with n. Consequently, unlike in the server case, the wait

SIn practice, the hypervisor may issue several read requests
simultaneously. However, these requests are for consecutive
byte ranges (thus falling within the same one or two pieces)
the vast majority of the time in our experience.
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time W will not depend directly on n. Here W is an inverse
function of piece diversity d: the higher d, the shorter the
wait until one of the fixed number of peers has that piece
available. However, d itself is a function of n,¢ and the
fetch/prefetch policy 1. As in modeling VOD, as the num-
ber of peers increases, the time needed to achieve high piece
diversity under a given fetch/prefetch scheme 1) will become
increasingly significant [29]. Thus the time to download one
piece from the swarm is

PQP(d(w, n, t) + i

net

(10)

tpiece =

giving the effective swarm rate

TnetS
TWEtWP2P(d(w7 n, t)) + S .

However, our architecture does utilize a dedicated network
storage seed. Consequently, the rate a VMTORRENT peer in
swarming mode should expect is the swarm rate plus the
rate given in Equation (9)

(11)

Tswarm =

TnetS TnetS
r= +

TnetWpap(d(¥,n, 1)) +5 n(=5tWes(n) +5)

This equation provides an analytic basis for our decision to
utilize a window-randomized piece selection policy (which
decreases W,2p) instead of an in-order piece selection policy.

5 (12)

4. EXPERIMENTAL EVALUATION

We implement a prototype version of VMTORRENT for
Linux hosts and conduct extensive experimental evaluation.
Our foremost aim is to determine VMTORRENT’s efficacy in
providing quick and scalable VM distribution and execution.
Our primary assessment metric is completion time Pil(A):
the time that it takes to execute a VM /workload.

4.1 Experimental Setup

Our prototype, shown in Figure 3, comprises a user-space
file server tightly integrated with a P2P client. This im-
plementation is capable of transparent operation with any
VMM /guest VM combination, and without requiring any
changes to the VMM or guest VMs.

Our file server builds on bindfs [3], a FUSE [35]-based
file system for directory mirroring. The server provides a
virtual file system that stores a locally modifiable copy of the
guest VM image. While a user-level file server potentially

®Note that for n = 1, d = 0 (since there are no other peers)
TnetS

1mply1ng Wpr = OO0, Tswarm = 07 and r = m'
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introduces performance penalties over that of a kernel-based
implementation, we show this overhead is sufficiently low for
our purposes (Section 4.3).

Our prototype’s P2P component is built on top of the
libtorrent 0.15.5 [25] library. Like most BitTorrent clients,
libtorrent optimizes its piece selection policy to maximize
file download throughput. Since our goal is to minimize the
delay for downloading particular pieces needed for the VM
execution, we modify libtorrent’s default rarest-first piece
selection policy to support the low-latency prioritized piece
download VMTORRENT requires (Section 2.2.4).

The majority of our results come from deployment of
VMTORRENT on the University of Utah’s Emulab network
testbed [40]. Each experiment consists of multiple hosts and
an initial server which stays in the system for the duration
of the experiment. The hosts are selected from a pool of
160 “d710” machines at the University of Utah’s Emulab
installation. Each host was equipped with a 64-bit 2.4 GHz
Quad-Core Intel Xeon X5530 CPU, 12GB RAM, and a Bar-
racuda ES.2 SATA 3.0- Gbps/7200-RPM/250- GB local disk.
The hosts run 64-bit Ubuntu 10.04.1 LTS with a modified
2.6.32-24 Linux kernel provided by Emulab. The hosts use
VMware Workstation 7.1.0 build-261024 as the VMM. All
experiment control and logging are conducted on a separate
control network interface.

As this testbed only provides for 100 Mbps LAN connec-
tivity, slow for today’s production environments, we supple-
ment these results with ongoing experiments from Prince-
ton’s recently deployed VICCI (1 Gbps) testbed [32]. The
VICCI testbed consists of 70 Dell R410 PowerEdge servers,
each with 2 Intel Xeon X5650 CPUs and 48GB RAM. How-
ever, unlike Emulab, VICCI does not provide bare-metal ac-
cess. Instead VMTORRENT instances run in virtual contain-
ers and have access to only a fraction of the overall system
resources. Likewise network capacity is shared communally
among the simultaneous experiments of multiple investiga-
tors and there is no separate control network.

4.2 Methodology

To study the system’s scalability, we vary the number n of
concurrent physical machines hosting VMTORRENT instances
(peers) from 2 to 100. For each set of parameters, we present
the results averaged over several trials.

We consider the performance of the four scenarios pro-
duced by combining piece selection policies {demand, pro-
file-based prefetch} and distribution models {centralized,
P2P}, plus that of image access from local spinning disk.

1. cs_d: centralized distribution, demand policy.
2. cs_p: centralized distribution, profile policy.
3. p2p_d: P2P distribution, demand policy.

4. p2p_p: P2P distribution, window-randomized profile pol-
icy (window size k = 300).

5. local: Pre-distributed on local spinning disk.

Comparing p2p_p against local is helpful in providing in-
sight as to whether and how well a given cloud setup can sup-
port virtualized execution. However, our main comparison
is p2p_p against cs_d, and p2p_d, which represent, respec-
tively, the standard and current state-of-the-art solutions in
this domain vis-a-viz scalability (Section 5).

Running trials at scale for centralized distribution took
the lion’s share of our hardware time. Since our model pre-



[ Workload [ OS Type | Description

Boot-Shutdown | All Boot, login, and shutdown.
Latex Linux Compile 30-page Latex document,
view result in PDF viewer.
DocEdit Linux Create new OpenOffice document
save, reopen, edit, spell-check.
PowerPoint ‘Windows View PowerPoint slide-show.
Multimedia Windows Play 30 second music file.
Table 1: Workloads.

[ VvM | Size | A (access to complete workload) [ %
Fedora 4.2GB 320 MB- 360 MB 8-9%
Ubuntu | 3.9GB 235 MB- 400 MB 6-10%
Win7 4.3GB 295 MB- 350 MB 7-8%

Table 2: Virtual machines.

dicts that cs_d and cs_p converge as n increases - an in-
tuitive result as opportunity for prefetch becomes negligible
when server bandwidth is saturated, we chose to run only
cs_d for all scaling experiments, as it is by far more widely-
deployed than cs_p.

We use two profiles for our experiments per VM /workload
combination: a small profile and a large profile. The small
profile uses just one sample run. It simply lists the order
in which blocks are accessed for the first time in the sample
run. The large profile is built using 1000 runs. As both the
small and large profiles are of negligible size (<512K), we
pre-distribute them.

For simplicity, our evaluation focuses on non-persistent
VM sets, but this by no means restricts VMTORRENT’S ap-
plicability. Section 2.3 provides further discussion. For the
same reason, we run identical workloads on each peer as we
wished to focus on scalability, not playback-window predic-
tion. That said, our results indicate that the greater piece
diversity produced by running mixed workload sets, might
well offset the increased cache-miss rates of using a less ac-
curate profile (see Sections 4.4 and 4.5).

Unless otherwise noted, we normalize our results with re-
spect to M the fully memory-cached playback function. M
provides a theoretical best-case scenario as neither network
nor disk I/O is incurred (Section 3).

4.2.1 VMs and Workloads

For our experiments we used a set of workload scenar-
ios designed to simulate common short VDI user workloads.
Table 1 lists the usage scenarios for our experiments. These
scenarios represent different user activities on desktop vir-
tual appliances. Each benchmark consists of first booting
the guest VM, then executing a script that performs a de-
sired workload by mimicking user actions and finally shut-
down the guest VM. To automate the execution of these
benchmarks, we configured guest VMs to auto-login once
booted, and then execute a script that selects the appropri-
ate workload to run.

While the set of workloads we could explore in this work
were necessarily limited, we believe the results produced ap-
ply to both longer VDI workloads, as well as those run on
virtual servers and virtual appliances. For each of these,
as we will shortly see, the boot and login sequence poses
the greatest challenge in both latency and volume of image
access. Consequently, shorter workloads provide the most
challenging test with respect to our objective function. vM-
TORRENT’s performance on longer workloads should only
exceed that of shorter ones. Moreover, the workloads we ex-
amine (e.g., Latex compile, playing a music file) possess the
same essential characteristics of those involved in launching
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virtual servers and appliances: boot and load critical appli-
cations. Likewise, the VDI workload set contains both I/0O-
intensive interactive and CPU/RAM-intensive batch work-
loads, corresponding to those seen by virtual servers and
appliances (e.g., interactive webserver workload, batch pro-
cessing workload).

In Table 2, we list VM size, the range of A (the total
number of bytes accessed from boot through workload com-
pletion) across the workloads considered, and percentage of
A in total image size.

4.3 Baseline Performance

We begin our investigation by exploring the performance
that can be expected for a single peer, n = 1. Our goals
in this section are to (1) check our model predictions using
quantitative evaluation on actual experimental parameters
and (2) provide intuition as to how 100 Mbps and 1 Gbps
network rates are likely to affect baseline performance by
examining the bounds produced by our model.

For n = 1, there is no distinction between distribution
method (as there are no peers to share with). Indeed in
this case both our centralized and P2P distribution models
predict the same effective rate

TnetS
T'neths (1) + S

(refer to Equations (9), (12) and Footnote 5).

Accordingly in this sub-section, the only design variable
is selection policy. We examine the policies demand and
in-order profile. We utilize in-order, instead of window-
randomized, prefetching here as we are concerned with bound-
ing performance and in-order provides the our best predic-
tion mechanism.

r =

(13)

4.3.1 Experimental Parameters

As mentioned above, n = 1 and rpe: = {100 Gbps, 1M bps}.
M and A were collected during profiling for each combina-
tion of VM and workload. The piece size S used for all ex-
periments was 16 KB, which leaves only We.(1) undefined.

As discussed in Section 3.2.1, W,s has two components,
a network-delay term and a server congestion term. Since
there are no other peers and the server is dedicated, this
second term is a small constant ) representing the base
time needed for the server to processes a request

Wes(1) = RTThet + Q- (14)

Our implementation provided Q in the range of 5 x 10™*s.
The measured network RTT at 100 Mbps averaged roughly
5 x 10~ s as well. For 1 Gbps networks, bit rates should be
10x larger than at 100 Mbps, yielding RTT) gpps = 5 x 107 %s.
Substituting into Equation (14) fully defines r for both

100 Mbps and 1 Gbps.

4.3.2 Model Correspondence

With 7 defined, we can utilize M and A to quantitatively
evaluate Equations (3) and (7), respectively, to predict P
for policies demand and profile at 100 Mbps and 1 Gbps.

Figure 4 plots the cumulative delay - difference in actual
playback and memory-cached playback (P(t) — M(¢)) - (y-
axis) against time (z-axis), for one sample VM /workload
combination: an Ubuntu VM running the latex compile
and view workload (a mix of batch and interactive oper-
ations). demand plots are identified with triangle markers,
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Figure 4: Cumulative delay vs. time: Ubuntu/Latex.

while profile plots are identified with circle markers. The
model-predicted curves are those with the smallest respec-
tive marker size.

The first item to note is that the model appears to more
tightly bound demand than profile. The second is that
while the both predicated curves under-estimate the delay
seen experimentally (largest marker curves) by several sec-
onds, the curve shapes themselves match quite closely.

This first observation can be easily explained by recalling
that profile cannot predict the playback window perfectly.
As Equation (7) assumes perfect prediction, it is no surprise
that profile’s actual performance is further from that indi-
cated by the model, than that of demand for which no such
discrepancy exists.

With respect to the second observation, the difference
between measurements and model predictions could have
originated from additional delays introduced either on the
client-side, in the network, or on the server. To provide
some visibility, we instrumented VMTORRENT to track both
the delays seen by the FS and P2PM components respec-
tively. If delay was being introduced by VMTORRENT itself
(as opposed to delays introduced due to CPU/RAM sharing
between VMTORRENT and the hypervisor), this is where it
would appear.

The medium and large marker symbols denote delays re-
spectively seen by FS and P2PM in Figure 4. Examining
these, it is immediately apparent that overhead induced in-
side of the VMTORRENT implementation can be seen in the
small gap between these curves by the end of execution, but
also, that this overhead is relatively modest for a research
prototype (~2s). For demand, the unexplained difference
between model and P2PM is roughly another 3s, which we
find more than tolerable for a 66 s run (being ~5% error).

4.3.3 Access Patterns and Performance Bounds

Having validated our model’s single peer predictions against
experimental results, we now use that model to provide in-
sight into the differing performance produced from 100 Mbps
and 1 Gbps networks. Figures 5-7 plot model-predicted VM
playback (execution) progress (y-axis) over time (z-axis).
Along with the memory-cached playback M, we plot both
demand and profile policies for both network rates. We
produce one plot for each VM, all of which run the same
Boot-Shutdown workload.
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Figure 7: Win7 Playback, 100 Mbps,1 Gbps.

Several features in these plots are noteworthy. Without
profiling, even a 1 Gbps network provides insufficient band-
width for demand to stay close to local caching. However,
with profiling a 1 Gbps download rate can enable profile
to achieve essentially ideal performance (despite mispredic-
tion). Finally and most interestingly, the relative perfor-
mance of demand at 1Gbps and profile at 100 Mbps de-
pends on M. When M spikes sharply early-on and then
flattens, as it does in the boot section of both the Ubuntu
and Win7 VM images, there is relatively little opportunity
for prefetching to fill the buffer before the spike, after which
it just plays catch up on cache misses. Thus the dominant
performance factor becomes the rate at which cache misses
can be filled, giving demand at 1 Gbps a distinct advantage.
Conversely, when M increases more gradually and at a latter
time - as it does for the Fedora VM - a large playback buffer
can be prefetched, and if prefetch is reasonably accurate it
trumps the 10x difference in network speed.

4.4 Scalability

We now proceed to our primary concern, scalability. We
show the results of running: p2p_p, p2p_d, cs_d and local
where a number of clients attempt to execute a VM work-
load. We find that p2p_p both performs with roughly the
same efficiency as local and that it scales far better than
the respective current standard and state-of-the art solutions
p2p_d and cs_d.

All experiments consist of a dedicated seed with a com-
plete copy of disk image cached in memory and a set of peers
running VMTORRENT instances.

44.1 100 Mbps

We begin by exploring performance on a 100 Mbps net-
work. Figure 8 plots mean normalized run time
P7Y(A)/M~'(A) (y-axis) against the number of peers (swarm
size) (x-axis) p2p_p with a large profile (large circle marker),



p2p_p with a small profile (small circle), p2p_d (square),
cs_d (triangle) and local (dashed line). Additionally, model
curves are plotted with decreasing width bands for cs_d,
P2p_p, and p2p_d. Each sub-figure corresponds to a combi-
nation of VM and workload” described in Section 2.2.3.

Examining the cs_d plot lines, clear scalability issues have
already arisen by n = 4 at 100 Mbps and appear to grow
linearly with the swarm size, resulting in run times 40-70x
greater than the ideal memory-cached playback time (A) by
n = 100. Contrastingly, p2p_p run times for n = 100 are
only two to three times A.

The effect of utilizing randomized prefetch in combination
with P2P swarming is likewise undeniable. Naive use of P2P
by p2p_d scales significantly better than cs_d, but far worse
than p2p_p, which benefits from far greater piece diversity.
The performance advantage of p2p_p is best measured in
orders of magnitude: 4-11x better than p2p_d and 16-30x
better than cs_d.

Profile size (and implicitly prediction accuracy) appears
to be a secondary factor in determining scalability. Both
small and large profiles perform essentially the same with
respect to scaling, indicating that as n grows large, ensuring
piece diversity is the key to scalability, not perfect playback
window prediction. This result is also encouraging in that it
demonstrates a small amount of profiling can go a long way.

We observe the small gap between p2p_p and local on
both the Ubuntu and Win7 VMs across all workloads. On
the Fedora VM this is even more pronounced with vM-
TORRENT significantly outperforming execution from local.
This occurs for the same reason noted in Section 4.3.3: Fe-
dora’s boot-and-login access pattern is very prefetch-friendly,
giving p2p_p a leg up on local. Moreover, here the effect
is multiplied since p2p_p peers have long period in which to
prefetch. While prefetching p2p_p randomizes piece requests
which increases effective bandwidth, and thereby scalabil-
ity, as predicted by Equation 12. However, when p2p_p hits
the catch-up phase, only demand requests are made (due
to our design decision to give cache misses absolute prior-
ity over prefetches), reducing the piece diversity on which
P2P scalability relies. With its relatively long and gradual
access curve, the Fedora VM maximizes p2p_p’s scalability
compared to both p2p_d and cs_d (Note the large gap in
Figure 8(a) between p2p_p and p2p_d/cs_d).

Finally, we turn to our model predictions. All model pa-
rameters needed for the model curves have been defined in
Section 4.3.1, save one - W. For cs_d, we note that even 100
nodes should be well below the server congestion threshold.
Thus we set

Wcs (n) - RTTnet + Q .

For p2p_d, our intuition suggests that piece diversity will
decline proportionally to the increase in swarm size

Whpap(demand, n) = RTThet + Qn

while for p2p_p, this decline should be less than propor-
tional, but higher than logarithmic (since randomized prefetch

"We ran into problems automating large scale experiments
on Windows 7 for both cs_d and p2p_d. The reason for
this is that Windows 7 contains an undocumented auto-
login timeout that we could not disable. Consequently,
when delay exceeded a certain threshold (roughly 3x mem-
ory cached), auto-login would fail causing the need for man-
ual intervention, which was not feasible on large test popu-
lations and skewed results for p2p_d at n = {4, 8}.

297

128 1 44 Ics_d (model)

o
o 64 —he=cs_d ’0
£ 3 o’
< p2p_d (model) ¢
.
3
v 16 “Bp2p_d R
o - * »°
‘_gv 8 p2p_p (model) ] R
”
5 4 =@=p2p p ,/
2 -’
2
1 —_——_——— =
N oY %" 9 L N XD o A
WA PP
# Peers

Figure 9: Normalized runtime vs. swarm-size (1 Gbps).

is strictly superseded by cache misses, limiting opportunity
to generate piece diversity)

WPQP(pIOfile7 n) = RTTnet + Q\/’TZ (15)

we can see that these simple functions capture the scalability
dynamics reasonably well, although for 1 < n < 16 piece
diversity is clearly over-estimated by Equation (15) - as seen
by the discrepancy in p2p_p model and observed across all
three graphs.

44.2 1Gbps

We ran 1 Gbps experiments on the VICCI testbed. Fig-
ure 9 plots normalized playback (P~*(A)/M ™ (A)) against
peer size for the Ubuntu VM /Boot-Shutdown workload. Ex-
amining the cs_d plot lines, scalability issues become appar-
ent by n = 16 at 1 Gbps (4x the number of peers for which
scalability became an issue at 100 Mbps).

Here we see that while the model curves capture the rough
shape of scalability, there are significant discrepancies. The
first major discrepancy is that p2p_p’s actual performance is
roughly 1.5x slower than predicted by the model (although
here constraint P(t) < M(t) decreases the impact of Equa-
tion (15)’s early over-estimation of piece diversity). Sec-
ondly, cs_d plots sharply higher than expected.

A study of the logs suggests this is caused by several pe-
culiarities of VICCI not possessed by Emulab. Recall from
Section 4.1 that VICCI utilizes virtual containers that share
both hardware and network resources among multiple inves-
tigators. Apparently, VICCI also suffers from irregularities
in its CPU assignment algorithm, lowering performance and
exacerbating already variable testbed behavior.

Consequently, given that we do see a correspondence here
in shape and scaling, we conclude that our model curves pro-
vide a reasonable indicator of 1 Gbps performance. Based
on this, we provide extrapolations for up to 1024 nodes and
find that p2p_p again provides significantly more scalability
than current approaches. However, at 8A this performance
leaves significant room for improvement. Thus a main chal-
lenge for future work is to develop new policies that support
better swarming efficiency - likely by relaxing our restriction
that cache-misses take absolute priority over prefetches.

4.5 Swarming Efficiency

We now study the swarming efficiency on the Ubuntu
VM running the Boot-Shutdown workload at 100 Mbps. We
measure swarming efficiency for p2p_p directly by plotting
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peer download rate r over time for swarm sizes n = 16, 100
in Figure 10.

Examining Figure 10, we see the average peer download
rate hit a peak of roughly 80 Mbps after 6s and remain rel-
atively stable thereafter (until a drop-off when the profile
is exhausted and VMTORRENT transitions to demand). Con-
trastingly, the behavior shown for 100 peers differs greatly.
Firstly, the peak rate drops to 60 Mbps - a 25% drop from
16 peers. Secondly, the startup period required to attain
the peak rate takes almost 6x longer than for the 16 peer
swarm. Finally, the rate fluctuates significantly more in the
startup phase.

These observations provide additional evidence that the
non-optimal scaling behavior stems from our decision to
give cache-misses absolute priority over prefetches. With 16
peers, the server still has more than enough capacity to fill
all demand requests while still servicing prefetch requests.
However, by 100 peers, it appears that the server must often
starve prefetch requests in order to keep up with demand re-
quests - leading to a slower, choppier buildup of the piece
diversity needed to enable peak efficiency, and ultimately
achieves a lower peak rate than that of 16 peers.

5. RELATED WORK

There are only a few studies of efficient on-demand de-
ployment of virtual appliances or machines in the local area
network (LAN). The first set of related work presented fo-
cuses on efficiently migrating - transferring and executing in-
dividual VM images, while the second set is predominantly
concerned with reduplication - scalably distributing copies
of VM images.

5.1 Migration

Internet Suspend/Resume (ISR) [23] focuses on the re-
lated problem of VM migration - suspending a VM on one
hardware platform, transferring that VM over the WAN, and
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resuming its execution at another location. While migration
faces none of the scalability concerns posed by our problem
of replicated deployment, latency until execution can pro-
ceed is of critical importance in both their domain and ours.
Their pure demand-fetch inspired the on-demand compo-
nents of both [7] and our own work. Like our own work,
ISR also leverages over-the-network pre-fetch, warming the
cache by transferring the migrating VM’s working set. How-
ever, this working set is a reactive mechanism, simply being
composed of those blocks recently accessed in the particular
execution being migrated. It provides no help in warming
the cache for tasks a user has yet to do, since those blocks lie
outside of the working set. Clark et al. [8] extends this work-
ing set concept to that of a write-able working set in order
to reduce the time needed to stop-and-copy the migrating
VM image. Contrastingly, the Collective [6], a server-based
system delivery of managed appliances to personal computer
(PC) users, takes a proactive approach to pre-fetching VMs
in order to reduce startup and execution delays. The Collec-
tive pre-fetches and fills its cache with the most frequently
accessed blocks, taken over all appliances. Our technique
takes this approach a step further, predicting future block
accesses based on profiles of block access patterns. These
profiles are built by observing previous executions of tasks
similar to that being executed by the VM.

Post-copy migration [15] provides another interesting point
of comparison. Instead of pre-copying a VM’s in-memory
working set in multiple rounds, post-copy migration imme-
diately begins the VM running on the target machine and
retrieves cache misses across the network (the image itself is
stored on the network and thus does not need to be trans-
ferred). With a good prediction algorithm, post-copy could
proactively prefetch those portions of the working set which
were most likely to be needed, reducing execution delay. Our
FS and profiling components mirror this strategy, but in-
stead of prefetching pages from a working set, we prefetch
pieces from an image file.

More generally, we note that prefetching is not a novel
idea. Prefetching has been used to improve storage and file
systems for many years. Known techniques rely on lever-
aging past accesses [5], application hints [30], or training
prefetching parameters using sample traces [22], to predict
future accesses. However, previous work in this space fo-
cus on finding the right trade-off between prediction accu-
racy and low (CPU and memory) overhead and exploiting
domain-specific characteristics, e.g., parallelism in storage
systems. Contrastingly, our scenario is far less constrained
by memory and focused on specific VM workloads, allowing



us to build more comprehensive and targeted access pro-
files. Further, our work focuses on not just prefetching, but
the combined problem of prefetching and data distribution
across peers to maximize performance - making predication
accuracy of lesser importance.

5.2 Reduplication

The most straightforward approach to optimizing VM de-
ployment without use of additional hardware is to sequen-
tially copy VM images to the target nodes, instead of down-
loading them in parallel. This approach is common in data
centers, which employ provisioning servers to distribute and
execute pre-customized images on-demand [26, 34]. How-
ever, sequential distribution can lead to long distribution
times and network hotspots when VM demand is high.

The work on the Collective evolved into the commercial

solution MokaFive [27]. While the internal details of MokaFive

are not available, based on publicly available materials, we
suspect scalability is achieved with this approach using a
combination of hardware over-provisioning and modifying
VM image and hypervisor - both of which are proprietary.

The Snowflock implementation [24] of the VM fork ab-
straction provides for highly efficient and scalable cloning
of VMs by building a custom application-level multicast li-
brary (mecdist) into a modified Xen hypervisor. To obtain
such performance, their approach also calls for use of modi-
fied VM images, guest OSes, and applications. Finally, the
mecdist library runs on top of IP-multicast, although they
note that to the best of their knowledge cloud providers do
not currently enable IP-multicast. Contrastingly, our ap-
proach is minimally invasive, requiring no changes to net-
work, hypervisor, VM image, guest, or applications.

IP multicast [19, 20] provides a truly scalable solution for
VM image delivery [33] - but also has several drawbacks.
Multicast is not geared towards on-demand image distribu-
tion since different peers will need only partially overlapping
sets of data (and on different schedules), and is not well
suited to delivering data to geographically distributed net-
works, e.g., multi-region data centers or corporations. Even
in a single network, multicast has significant setup overhead
and is not used by many organizations as a result [12, 17].
More recently, when Etsy attempted to utilize IP multicast
functionality to distribute large files within their network
via rsync “multicast traffic saturated the CPU on [Etsy] core
switches causing all of Etsy to be unreachable”, which led
them to utilize a P2P solution instead [13].

P2P provides an alternative to IP multicast that sidesteps
synchronization and setup issues. We are not the first to
apply P2P techniques to VM delivery. However, we have
taken a more nuanced approach in the application of P2P,
for which performance delays are best measured in seconds,
instead of minutes or hours.

Zhang et al. [41] proposes a play-on-demand solution for
desktop applications. The basic idea is to store user’s data
at a USB device, and at run time, download desktop appli-
cations using P2P (specifically, via unmodified BitTorrent
[9]). These applications are then run in a lightweight vir-
tualization environment. The downloaded images here are
not standalone VMs, making this approach of more limited
applicability. These images are orders of magnitude smaller
than those of VMs, consequently a naive application of P2P
provides adequate performance and scalability. However,
when this same approach is used to distribute VMs to stu-
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dent machines in a training environment [28] both perfor-
mance and scalability suffer - distribution taking 1-4 hours
for a 22 machine deployment on a 100 Mbps network. Chen
et al. [7] adds on-demand download to naive P2P which im-
proves performance by an order of magnitude on a some-
what larger number of machines. Yet in even fairly small
deployments, the wait until a VM can even begin execution
takes more than 20 minutes - still not nearly good enough
for deployments where time-to-use is critical. The lzcloud
project at CERN used a customized BitTorrent client to de-
ploy almost 500 10GB VM images in 23 minutes, without
on-demand download [38]. However, their base network of
1 Gbps was 10z faster than those used by [28, 7]. A general
purpose P2P distributed file system such as Shark [4] or
CFS [11] could be expected to provide similar performance
in provisioning VM images.

Contrastingly, VMTORRENT focuses on streaming perfor-
mance, instead of full-download. By incorporating profile-
based prefetch, VMTORRENT can fully execute VM tasks in
a fraction of the time required by even the best of previous
P2P approaches, and do so at scale. However, doing so is
not trivial. To obtain efficient piece exchange, VM TORRENT
seeks to balance the immediate download requirement of the
VMM with maintaining a high level of piece diversity in the
system. This approach to creating diversity is inspired by
P2P video streaming systems which use a sliding window to
download pieces needed for immediate playback, while still
acquiring non urgent pieces for diversity [37, 42].

In a complementary approach [31] examines the distribu-
tion of VMs within several small-to-medium IBM datacen-
ters, finding a high level of similarity in VM content. Their
VDN system hashes blocks and then caches them accord-
ing to hash value, enabling multiple related VM-images to
share the same content block. More efficient utilization of
the cache fronting their image store, provides for significant
performance improvement. Also related is Twitter’s Murder
system [36] which dramatically cuts down the distribution
time for software binaries by optimizing BitTorrent for the
data-center. Again, their techniques are complementary to
our own and could be used to improve the performance of our
BitTorrent backend which is based on the WAN-optimized
libtorrent library.

6. CONCLUSIONS

We have presented the design, implementation and evalu-
ation of VMTORRENT. VMTORRENT decouples P2P-delivery
from stream presentation - allowing applications to easily
use P2P-streamed data. Doing so enables scalable VM im-
age streaming - based on a combination of novel profile-
based prefetching and piece selection policies that balance
cache misses against swarm efficiency. Both our analytic
models and experimental evaluation show VMTORRENT out-
performs current techniques by orders of magnitudes
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