
MONKEYSORT

K. B. Gallagher∗

Department of Computer Science

University of Durham
South Road

Durham, DH1 3LE
United Kingdom

k.b.gallagher@durham.ac.uk www.durham.ac.uk/k.b.gallagher

Abstract

Monkeysort is a pedagogical program that turns the usual concern of efficiency upside
down by attempting to be as “dumb” as possible, yet still correct. In this program,
whose inner workings are accessible to all students, monkeysort exhibits significant
ideas that are central to computer science: partial correctness, generate-and-test so-
lutions to NP-hard problems, Stirling’s approximation of n!, and subtle applications
of the use of permutations. It also demonstrates central software engineering ideas:
integer overflow; the use of coverage tools; CPU monitoring tools; and timing anal-
ysis approaches more sophisticated than mere statement counting. An appropriately
tailored classroom discussion of monkeysort can be used as fodder for graduate stu-
dent homeworks, or to illustrate to the non-scientist exactly what it is that Computer
Scientists do.

1 INTRODUCTION

Teaching sophisticated computing ideas to lower division Computer Science Majors is a daunting
task. While it seems that most students require concrete examples as an introduction to a
concept, finding examples that are accessible to their current abilities is a challenge. Indeed,
it is these ideas that attracted us to the discipline of computing, so finding such examples is
paramount to instruct, and captivate, novices.

Partial correctness is one of these sophisticated ideas: If a program stops then it has solved
the problem correctly, but it may never stop. The second captivating idea is the “generate-and-
test” solution being the best known solution for NP-complete problems. To this end we present
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an accessible problem that illustrates partial correctness by using a generate-and-test solution.
Actually, the solution is worse than generate-and-test for it merely guesses and tests; thus it is
likely that a particular incorrect solution may be guessed and rejected more than once.

This paper presents what amounts to a lesson plan: a problem; an initial discussion of what
the solution might look like; a solution; and a discussion of that particular implementation. The
discussion can be tailored to the audience by omitting some of the more arcane points. I have
used this discussion in courses that range from required general education courses for liberal
arts students to graduate courses on software specification. Its themes are eminently suited to
algorithm analysis courses at any level.

In the following discussion, please carefully note the use Computer Science jargon that should
be adapted to the level of audience. For instance, below, I use “satisfies the postcondition”
which makes sense to those of us in the discipline, but would only serve to befuddle the unini-
tiate. Here is a list of the some of the jargon used in this paper: rearrangement, criteria,
functional, implementation, specification, indices, satisfies the postcondition, algebraically, ad-
dresses, permutation, randomly, algorithm, entry condition, while-statement, partial correctness,
assert(ion), conjunct(ion), and guard. This list also serves as a reminder of how much jargon we
casually use, and of the care we must take when talking to novices.

2 THE PROBLEM AND INITIAL DISCUSSION

The problem is the “usual suspect:” sorting an array of integers.
One way to discuss and define sorting an array of values is to view the result as a rearrangement

of the input values such that the sorting criteria is satisfied. Rearrangement gives a nice functional
view of the sorting process, while not focusing on a particular algorithm; i.e., rearrange the values
so that they are in order without regard to a particular technique. So an early observation is that
sorting is merely a (particular) rearrangement of the inputs that need not be tied to a particular
implementation.

Then we jot down a specification: a[i] ≤ a[i+1], with suitable bounds on the indices. Noting
that if only a[i] ≤ a[i+1] is required, then assigning 0 to every element satisfies the postcondition
and leads to the simple observation that the input matters, so we had better say something about
the inputs when we write the specification.

Algebraically, we can say that a[π(i)] ≤ a[π(i + 1)] for a permutation π of the array indices
1. . . n. In this formulation, the elements of the array are not swapped; the indices are reordered.
To write the classical sort (i.e.; rearrange the elements, not the addresses), we would have to
write something like b = π(a) and b(i) ≤ b(i + 1).

With this in mind, a naive solution is to merely generate all possible permutations (ways
of reordering) of the input and check to see if the permutation is sorted. Any permutation
can viewed as a possible ordering of the indices that might be a solution. It is generating the
permutations that is the genesis of this particular solution.



3 A SOLUTION

One way to generate permutations is to do it randomly. As a simple illustration, we envision
sorting a deck of cards. The following is an unusual sorting technique, for it also requires a
washtub and a broom and is as follows:

while (! deck-is-sorted)

throw cards in tub

stir with broom

pick up deck

end

The students sense that this “algorithm” may take a long time to complete, and that has the
possibility of going forever. I give this algorithm the name monkeysort. The name comes from
the observation that if one places infinitely many monkeys in front of infinitely many typewriters,
arbitrarily striking the keys, they will ultimately produce the works of Shakespeare, the Bible,
the Oxford English dictionary, etc. as one of the random sequences. The trick of monkeysort, or
the typing monkeys, is, of course, to be patient.

Next, we attempt another solution that at first blush seems better:

while (! deck-is-sorted)

pick a card, any card

pick a card, any card

swap the two selected cards

end

While it is conceptually simpler to pick only two cards to swap, we will end up observing that
there is no essential analytical difference between the 2 approaches. And having seen that, it
doesn’t really matter which one we implemented.

For both of the algorithms, noting that the negation of an entry condition of a while statement
may be asserted as true when the loop ends, we observe that if this algorithm halts, it is correct.
This example gives a gentle introduction to partial correctness and a nice example of reasoning
about programs. Thus we can add assert(deck-is-sorted) at the end of each algorithm as a
simple illustration of program reading.

I sometimes digress here to talk about this particular reading / comprehension technique. We
note that if a while statement has multiple conjuncts for the entry condition, then the first thing
that the software must do on exit is determine which of the clauses caused the exit.

while ( A & B & C & D)

...

end

assert( !( A & B & C & D) )

if (!A) ....

elseif (!B) ...

elseif (!C) ...

else ...



While this may seem obvious to those of us who have been around software a long time, I have
seen many good students nod with insight at this observation; this in turn leads to a discussion
and clear thinking about what kind of conditions should be used to guard loops, and what kind
of processing needs to be done after a loop completes.

4 THE PROGRAM

The monkeysort source is shown below. It implements the second version above: two elements are
randomly selected and swapped. The program takes one command line argument, the number
of random values to generate and sort. The output is the number of swaps that were made
before the program halted. The program serves as an introductory example of how the vector
class from the standard template library can be used. In addition, it shows how to seed the
random number generator with the system time. Note the implementation is dumber than the
pick-a-card version, for the same card can be selected twice and thus “swapped” with itself. (The
drivers are the pair who typed the source into the classroom display device, while the backseat
drivers critiqued.)

// Drivers: Humaa & Patrick

// Backseat Drivers: John,

// Andrew(2), Rachel

#include<iostream>

#include<vector>

#include<time.h>

bool CheckSort(vector<int> & a)

{

vector<int>::iterator j;

for (j=a.begin(); j != a.end()-1; j++)

{

if (*j > *(j+1))

return false;

}

return true;

}

void Transpose(vector<int> & a)

{

unsigned long int i, j, temp;

i = (int) random() % a.size();

j = (int) random() % a.size();

temp = a[i];

a[i] = a[j];



a[j] = temp;

}

main ( int argc, char* argv[])

{

vector < int > a (size);

srandom(time((time_t*)0));

int i;

int Count=0;

if (argc != 2)

{

cout << "usage is: " << argv[0]

<< " number-of-elements-to-sort \n" ;

exit (-1);

}

int size = strtol (argv[1],NULL,10);

for(i=0;i<size; i++) { a[i] =(int) random (); }

while(!CheckSort(a))

{

Transpose(a);

Count++;

}

cout << Count << endl;

}

5 EXECUTION

Now the fun begins. We run a monkeysort few times on very small values: 2, 3, and 4. For
parameter 2 the results are uninteresting, except to note that the program does indeed halt. It
also appears that about half the time that the random values are already in order. This data
supports the observation if one generates 2 random numbers, about half the time they will be in
order! We then write a shell script to run the program 100 times. Usually, the largest number
of guesses that are needed is 5, which occurs about 2-3% of the time.

We now try the program with argument 3. The number of swaps increases to a maximum
of about 35, but the program again halts. We also get 0 swaps, meaning that the numbers
are generated in order. With argument 4, the maximum number of swaps is around 300. The
program continues to halt. The processor speed is such that the return from the invocation is
immediate.



The class now believes that the program will halt. We run it with inputs 5, 6 and 7. For input
7, we usually get a maximum number of swaps of about 60,000. We also observe that sometimes
for larger values that the number of swaps may indeed be less than the number of swaps for a
smaller array. Table 1 shows some data collected for this paper.

For input 8 the outputs range from 9 to about 440,000. Occasionally there is a short pause
before the program halts, but halt it does. For input 9 the outputs range from about 30 to 4.3
million. During the runs when the larger values result, the pause is long enough for someone to
wonder out loud whether or not it will ever halt. But it does. For input 10, the results range
from about 700 to about 39,000,000. The pauses are getting longer. . . For 11, the pauses are
running to minutes, usually about 1-2, and as high as 6, but again, always halting. For 12, it
seems that we have run into a non-halting version; it just turns out, though, that 500 million
swaps take a long time.

6 DISCUSSION POINTS

This section notes some of the issues that can be discussed while monkeysort is grinding away.

6.1 GUESSING, PERMUTATIONS AND FUNCTIONS

One of the first questions to pose is “About how many guesses would one expect?” Since there are
n! permutations, in a strict enumeration of the solution, one might expect about n!/2 guesses.
Table 1 shows that the average number of guesses is more than n!, but this is to be expected, as
monkeysort permits multiple guesses of the same permutation. Table 2 suggests that the limit
of the average number of guesses might be approaching n!, and that the maximum seems to be
about 10∗n!. Graduate students in algorithm analysis can be given these for homework exercises.

At this point one can also discuss a permutation as a product of transpositions; that is, every
cycle (i1i2 . . . i

n
) can be written as (i1in)(i1in−1) . . . (i1i2). Since every permutation can be written

as a product of disjoint cycles, and thus a product of transpositions, monkeysort as written is not
“dumber” than another version that would generate random n-ary permutations. It is “dumber”
because it can generate a sequence of identity transpositions; and it can repeatedly generate
a previously guessed solution. The follow up question is it appropriate then, to count each
transposition as a permutation? Shouldn’t we group them into collections that are input sized?
That is, should we divide the number of transpositions by the input size to get the true number
of attempts for monkeysort?

As usual, we give the scholar’s answer of “that depends. . . ” The key to counting monkeysort’s
iterations is to note that each new transposition is applied to the result of the previous trans-
position, and not to the original ordering. Applying single transpositions to the original input
and then returning to the original state would never sort the array. Applying a single trans-
position to the result of the previous application is central to the “correctness” of monkeysort.
Moreover, since every permutation can be viewed as having the same length (by including the
identity mappings in each case) we can view monkeysort as building one permutation up (using
the previous result) and applying that mapping to the original. This is a nice application of the
concept of composition of functions.



input min avg max
4 0 33 298
5 0 164 1440
6 0 945 9144
7 0 6186 64145
8 9 47937 443701
9 28 422700 4396274

10 690 4144904 38585752
11 175 45168348 389202850
12 237627 539952999 5040709046
13 9749933 6291915902 40877452599

Table 1: The minimum, average and maximum number of guesses on 10,000 trials for inputs of
4-11; 1000 trials for 12; and 525 trials for input 13.

Another interesting point is that the expected minimum of 0 is not obtained in every instance.
To put it another way, one would expect that in rows 8 and higher of Table 1 that there would be
at least one instance in which the values were generated in order. Ten thousand random sequences
were produced and not one was already sorted! The reasonableness or unreasonableness of this
observation is another algorithm analysis homework.

input avg / n! max / n!
4 1.333 12.42
5 1.358 12.00
6 1.311 12.70
7 1.288 12.73
8 1.188 11.00
9 1.165 12.12

10 1.142 10.63
11 1.131 9.75
12 1.127 10.52
13 1.001 6.56

Table 2: average / n! and max / n! for inputs 4-13.

One way to entice students to the Computer Science is to discuss the NP-complete problems:
those whose best and known solutions are the equivalent of monkeysort. This particular solution
is NP. There are “better” ones, of course. So I then ask: Have I put myself in the Computer
Science history books by showing that P = NP ? The ensuing discussion gives a glimpse at what
Computer Scientists do; i.e., we don’t write programs all day.



Another way to look at this is to consider how difficult sorting would be if monkeysort were the
only known way to sort. What would that mean to us as scientists? This question can be viewed
in a larger context also: how long would it take to produce a telephone book if the names could
only be arranged via monkeysort? How often do we depend upon the sortedness of data in our
everyday lives? Then the difficulty of the garbage truck and other NP-hard problems becomes
manifestly evident.

A final point to make regards guessing versus enumeration. We could systematically list all
of the arrangements (or perhaps assign it as homework?) and test our enumerations for order
via CheckSort. How much time does this really save? Depending on the level of the audience,
one can wade into a discussion of the how and why of constants not mattering in big-O notation.
This leads naturally to a discussion of Stirling’s approximation.

6.2 STIRLING’S APPROXIMATION

Stirling’s Approximation, also called Stirling’s Formula, shown below, which is an approximation
to n!, is a remarkable mathematical achievement. While the derivation of the approximation is
not in the scope of an elementary programming course, it does present a glimpse of how math-
ematics is used in our work. And advanced Computer Science students can indeed understand
the derivation.

n! ≈
√

2πe
(

n

e

)

n

Stirling’s Approximation gives us an estimate of how many permutations of n there are. We
simply note

n! ≈
√

2πe
(

n

e

)

n

is O(nn)

as an instance of big-O notation. Thus Stirling’s approximation suggests that there will be about
nn swaps, on average, before we get the sorted one. There is a problem: the data that we are
collecting shows that the average seems to be heading toward n!, not nn. Again, depending on
the level of the audience, I can discuss relative and absolute error estimates of the approximation,
and further emphasize that the numbers that we are using are truly small.

6.3 TOP

I open the GNU/Linux utility top in another window. From the man page we see that “top
provides an ongoing look at processor activity in real time. It displays a listing of the most
CPU-intensive tasks on the system. . . ” In the new window, we observe upward of 99% of the
CPU being used to run monkeysort, as displayed in Figure 1.

If time permits, or inclination suggests, one can digress into a discussion of the processes with
single digit process id’s: init, keventd, ksoftirqd CPU0, kwsapd, bdflush, and kupdated.
Some of these commands have man pages, others do not. Finding what they all do can be left
to enterprising students.



Figure 1: Output of top utility. Observe the Heisenberg effect of top on the CPU utilization.

6.4 COUNTING, OVERFLOW AND TIMING

On the day that this program is introduced, there is no time to show integer overflow; it does
occur, however. On the machine that I use in class it takes about an hour. On days following the
introduction of monkeysort, I will start it up with a parameter of 13 or higher just as class starts.
On days that we are lucky, we get a negative integer for the output just as class ends! Someone
notices or I point out that the Count variable is merely an int. This observation leads to a nice
discussion (in a subsequent class) about integer overflow and other integral data types: long,
unsigned, unsigned long and unsigned long long. I use this as an opportunity to inspect
the contents of /usr/include/limit.h.

In the meantime I have run monkeysort 100 times with input 13 as a background job, and
collected execution time data in a file using the Unix time command. What we end up seeing is
that about 25% of the time the output of monkeysort overflows as indicated by a negative number.
A more careful inspection of the collected timing and count data shows that an invocation of
monkeysort that took almost 5 hours to complete has a smaller output than one that took 2 hours
to complete! The phenomena of wrap-around becomes obvious, and we see that our “computer-
generated” data is worthless. I suggest changing Count to unsigned; the students note that
this buys only another hour. Similar discussion ensues regarding other data types. A student
suggests using floats. Another points out that the overflow problem doesn’t go away. We look
at MAXFLT; then write a program that prints out MAXFLT - 1. The values are the same. I point
out that an enterprising student might use the BigInt package, or something like it, that permits
unbounded integers (at a cost, of course).



It turns out that counting using the built-in arithmetic is no way to measure monkeysort. Use
of the time command improves our analysis. How do we use it? Off we go to the man pages.
Is wall clock time good enough? I run two monkeysorts on the same machine at the same time.
Clearly wall clock time is insufficient. Thankfully, the time command also permits us to measure
computation time in addition to wall clock time.

To correctly use the output of time as a measure, we must first calibrate the time used to the
number of Transpose(a) calls. Merely running a counter over an empty loop is not enough; we
have to assure that an “appropriate” number of calls to CheckSort(a) and Transpose(a) are
considered. Since we use the standard template library, this timing data is especially crucial.
Thus, we “trick” CheckSort(a) into always running halfway down the array, the average number
of comparisons it will make before it returns. We still need to attend to the time of the calls to
Transpose(a). Rather than depend on the return value of CheckSort(a), we predetermine how
many times we will need to run a loop that calls both Transpose(a) and CheckSort(a). That
is, we write a program that has calls to Transpose(a) and CheckSort(a) in the body of a for

statement, with input as the number of iterations. This program is the one we time to get the
calibration. We can then time the execution of this program a number of times (with the same
input) to get a more confident estimate of the number of swaps in relation to the time taken.
Then, and only then, can we use the output of the time command as an approximation to the
number of swaps that were required to order the array. Note how much work is required because
computers can’t count over a certain value!

6.5 GCOV

The GNU/Linux test coverage program, gcov, also gives some insight into the inner workings
of monkeysort. Gcov is a simple statement counting analyzer. With appropriate compilation
switches, the code gets instrumented; after the program is run, it is then post-processed by gcov,
which produces, in its simplest version, a listing of the program with each statement preceded
by the number of times it was executed. Below is a sample of gcov output when monkeysort
is run with input 10. This version, which has quicksort and bubblesort routines, invokes the
monkeysort approach when a third parameter is sent. (The particular value of the parameter is
immaterial.) The listing gives nice empirical data for the “efficacy” of monkeysort. When the
third parameter is not sent, only quicksort and bubblesort are invoked. With a larger input
parameter, students can see the difference between O(n2) and O(n ∗ ln(n)).

// CS302.01 multiple sorts for gcov:

#include<iostream>

#include<vector>

#include<time.h>

bool CheckSort(vector<int> & a)

661756 { vector<int>::iterator j;

661756 for (j=a.begin(); j != a.end()-1; j++)

{

1158115 if (*j > *(j+1))



661755 return false;

496360 }

1 return true;

}

void Transpose(vector<int> & a)

661755 { unsigned long int i, j, temp;

661755 i = (int) random() % a.size();

661755 j = (int) random() % a.size();

661755 temp = a[i];

661755 a[i] = a[j];

661755 a[j] = temp;

}

void qsort(vector<int> & v, int left, int right)

17 { int i, last, t;

17 if (left >= right) return ;

8 t = v[right];

8 v[right] = v[left];

8 v[left] = t;

8 last = left;

8 for( i = left +1; i <=right; i++)

28 if (v[i] < v[left] )

14 {

14 t = v[i];

14 v[i] = v[++last];;

14 v[last] = t;

}

28 t = v[left];

28 v[left] = v[last];

28 v[last] = t;

8 qsort(v, left, last - 1);

8 qsort(v, last+1, right);

}

void bsort(vector<int> & v, int size)

1 {

1 for (int ii = 0; ii < size ; ii++)

{

10 for( int jj = 0 ; jj < size ; jj ++)

{

100 if ( v[jj] > v[ii])



21 {

21 int t = v[jj] ;

21 v[jj] = v[ii] ;

21 v[ii] = v[jj] ;

}

100 }

10 }

}

main ( int argc, char* argv[])

1 {

1 int size = atoi (argv[1]);

1 vector < int > orig (size);

1 vector < int > bubble (size);

1 vector < int > quick (size);

1 vector < int > monkey (size);

1 srandom(time((time_t*)0));

int i;

1 for(i=0;i<size; i++){

10 orig[i] = (int) random ();

10 }

1 bubble = quick = monkey = orig;

1 bsort( bubble, size);

1 qsort( quick, 0, size);

1 if (argc == 3)

1 {

1 int Count=0;

1 while(!CheckSort(monkey))

{

661755 Transpose(monkey);

661755 Count++;

}

1 cout << Count << endl;

}

}

The demonstration of gcov leads to other relevant observations. The first is that programs
should be empirically analyzed for “hot spots.” Then the 80-20 epigram can be invoked: 20% of
the program does 80% of the work. It is in this 20% that efficiency machinations should be done,



if at all. Another application is in a later software engineering course, in which I can insist on
at least statement coverage for the project code, as evidenced by gcov. And lastly, if not finally,
I can digress into the interesting intellectual challenges in the field of software testing.

7 CONCLUSION

Monkeysort turns out to be an interesting piece of software; indeed, a colleague, during a coffee
break conversation at a conference, convinced me it was worth reporting to the community. I
had always considered it a throw-away idea. My students have always liked it though; perhaps
I missed the subtle hint.

We are often caught up in trying to make our software more “efficient,” a vestige of days
when both CPU cycles and memory were expensive. Since they are cheap now (think of the
“wasted” CPU cycles in any organization in one day) we need not consider efficiency until it is
an engineering imperative.

Monkeysort turns the efficiency question on its head by trying to be as “dumb” possible, yet
still correct. In this explicit attempt to be dumb, significant ideas emerge.
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