Are Decomposition Slices Clones?

Keith Gallagher
Computer Science Department
Loyola Collegein Maryland

4501 N. Charles St. Baltimore, MD. 21210 USA

kbg@cs.loyola.edu

Abstract

When computing program slices on all variables in a sys-
tem, we observed that many of these slices are the same.
This leads to the question: Are we looking at software
clones? We discuss the genesis of this phenomena and
present some of the data observations that led to the ques-
tion. The answer to our query is not immediately clear. We
end by presenting arguments both pro and con. Support-
ing the affirmative, we observed that some slice-clones are
evidently the result of the usual genesis of software clones:
failure to note appropriate abstractions. Also, slice-clones
assist in program comprehension by coalescing into one
program fragment the computations on many different vari-
ables. Opposing the proposition, we note that slice-clones
do not arise due to programmer intent or the copying of ex-
isting idioms.

KEYWORDS. SOFTWARE MAINTENANCE, SOFTWARE
COMPREHENSION, CLONE DETECTION, PROGRAM SLIC-
ING, DECOMPOSITION SLICING

1. Introduction

The detection of software clones is an important software
comprehension and evolution activity. What is a clone?
Baxter, et al., [2] say that a clone is “a program frag-
ment that [is] identical to another fragment.” The Detec-
tion of Software Clones website [1] declares that a clone
“is a parametrized copy [in which] [v]ariable names and
function calls have been renamed and/or types have been
changed...or a copy with further modification [in which]
[s]tatements have been added or removed.” Krinke [9] uses
the term “similar code.” Ducasse, et al. [5] use the term
“duplicated code,” Komondoor and Horwitz [8] also use the
term “duplicated code” and use “clone” as an instance of
duplicated code. Mayrand, et al., [11] use metrics to find

Lucas Layman
Computer Science Department
North Carolina State University

Raleigh, NC 27695-8206
Imlayma2@unity.ncsu.edu

“an exact copy or a mutant of another function in the sys-
tem.”

Baxter, et al., [2] list some possible causes of clones:

e Code reuse by copying pre-existing idioms

Coding styles
Instantiation of definitional computations
Failure to identify/use abstract data types
Performance enhancement
Accidents

Once clones are detected, they can be systematically
removed by any number of methods. Parametrized func-
tion/method invocations and in-line replacement via macros
are just 2 replacement techniques. The benefit to a software
engineer involved in understanding, changing, reverse en-
gineering, or refactoring code is evident. Multiple uses of
cloned code do not need to be discovered then changed as
one maintenance task; one abstraction gives insight to many
apparently unrelated program computations.

We have constructed a graph depicting the relationship of
decomposition slices of a program (in a process described
below), and use this as a basis for our discussion of whether
decomposition slices can help identify software clones. A
program slice of program p on variable v, or set of vari-
ables, at statement n yields the portions of the program that
contributed to the value of v just before statement n is ex-
ecuted [13]. The pair (v,n) is called a slicing criterion.
Slices can be approximated automatically on source pro-
grams by analyzing data flow and control flow. Surveys of
program slicing may be found in [3, 4, 12]. A decomposi-
tion slice [7] does not depend on statement numbers. It is
the union of a collection of slices, which is still a program
slice [13].

2 Observations

We have some observed data, reported in another
venue [6]. A brief reprise follows. A decomposition slice

captures all relevant computations involving a given vari-
able. Computing the decomposition slice for each variable
in the program forms a graph, using the partial ordering in-
duced by proper subset inclusion. An edge from A to B
means B C A and there is no C, suchthat B C C C A.
Figure 1 is the decomposition slice graph of a differencing
program. It has 95 nodes and 364 edges.

Each node in the graph represents the decomposition
slice on a particular variable, v. The node displays the name
of the function the variable is in followed by the variable
name. It also displays the “size” of the slice, which is the
cardinality of the set of statements that constitute the slice.
Larger sets will be toward the top of the graph; smaller sets
will be lower; edges point downward. Every variable or
programmer defined constant (enumor t ypedef value)
generates a slice, as do unused global variables included in
library header files. This is the cause of the “fan out” at the
bottom of Figure 1. These decomposition slices do not have
any executable statements. There are 29 of these “empty”
slices. Removing them and the incident edges lowers the
count to 66 nodes and 161 edges. (The resulting graph is
not shown.)

To further reduce the visual clutter and make the graph
more readable for the software comprehender, we output
only one node for each equivalent decomposition slice, us-
ing simple set equality. That is, those variables with identi-
cal statements constituting their decomposition slices were
represented by one node. Figure 2 shows the result of reduc-
ing the graph of Figure 1. The reduced graph of Figure 2 has
34 nodes and 43 edges. We also augmented the node infor-
mation to show how many other nodes are equivalent (not
readable in the Figure). The border of the node was also
widened in proportion to the number of equivalent nodes.
This Figure includes the “empty” slices at the bottom; their
inclusion yields only one node in the graph.

Due to the vagaries of the layout algorithm, the reduced
graph is rotated about the vertical axis with respect to the
graph of Figure 1. The five upper leftmost nodes of Figure 1
are the five upper rightmost nodes of Figure 2. The three
nodes to the upper right of Figure 1 are collapsed to the
single node in the upper left of Figure 2. Following the
edges from these nodes downward in Figure 1 leads to the
“fan-out” in the lower center of the figure. This fan-out
of 14 nodes is reduced to two nodes in Figure 2; and the
node reduction induces a drastic reduction in the number of
edges.

So in this small example, we reduce a graph of 95 nodes
and 364 edges to one of 34 nodes and 43 edges, a reduction
of 62% in the node count by merely noting that some slices
are the same.

2.1 What Kind of Clones Are Found?

In the following simple case of cloning, a programmer
copies and modifies a piece of code such as

for (i =1; i <10 ; i++)
a[i] =afi] * a[i];

to

for (i =0; i < 100; i++)
b[i] = b[i] * b[i];

The second fragment is easily obtained from the first by
changing the numeric constant 10 to 100 and array variable
name a to b The approach presented herein does not find
these straight syntactic copies and changes. This is because
our approach is slice-based, and program slices depend on
variables. The clone detection techniques of Baxter [2],
Krinke [9], Ducasse, et al. [5], Komondoor & Horwitz [8],
Mayrand, et al., [11] would succeed on this fragment.

What we do find are equivalent slices of the following
sort. The program slices at the last statement on variables
t and a are the same in this in-place array transposition
fragment. When two or more such fragments are located, it
is displayed in the graph as one node.

for(i =0 ; i <r ; i++) {
for(j =i +1;] <r j+t) {
t =ali][jl;
alillj] = aljllil;
a[jl[i] = t;
}
}

Note, however, if the above swapping fragment is copied
unmodified by cut-and-paste into another separate function,
it would not be detected as a duplicate by this technique.

2.2 Application to “Clone Detection Experiment”

The Detection of Software Clones website [1] defines
three clone types: (1) an exact copy: (2) a parametrized
copy; (3) a copy with further modification. The f or -
st at ement examples above are type 3. Our process finds
only a subset of the type 1 clones; we will call these slice-
clones, to differentiate the technique by which the dupli-
cates were found.

The weltab system is one of the C software suites avail-
able from the Detection of Software Clones website. It has
39 C source files that compile into 37 executables. Two files
that do not have a mai n have 41 support functions that ac-
count for a total of 27 slice-clones. Table 1 shows the node
reduction counts.

In order to do a statistical analysis of the data, we had
to pare the sample population somewhat. Graph reduction

Figure 1. The decomposition slice graph of a differencing program.

data from a previous study [6] was combined with selected
information from the weltab system shown in Table 1. In or-
der to ensure a group of independent samples, we excluded
the reduction information for files where the reduction num-
bers were duplicates of another file. For instance, all of the
r *t np were not included in the analysis since they con-
tain identical node reduction numbers, but instead a single
data set was chosen to represent the group. In cases where
the node counts were very close, e.g. canv and cnvl, the
source code was examined more closely (admittedly on a
subjective basis) to see if the code was essentially the same
with minor modifications. If they were essentially the same,
the sample with the lowest percentage of node reduction
was chosen as the representative. If there was some doubt
as to the similarity between two code files, we chose to dis-
card one (or more) of the node counts in order to prevent
skewing of the results as much as possible. We received a
final sample size of N = 31.

Performing a simple regression analysis on the number
of reduced nodes versus the number of original nodes pro-
duces some interesting results. A strong correlation exists
between the number of reduced nodes and the number of
original nodes, giving us an R? value of 89.7%. We test the
null hypothesis, Hy : § = 0, to determine if the number
of reduced nodes is independent of the number of original
nodes using a t-test. We receive a p-value < 0.005, therefore
we reject the null hypothesis and conclude that the two vari-
ables are, indeed, dependent. This conclusion, plus the high
R? value, indicates that, by knowing the number of nodes
in the original graph, we can predict with a fair amount of
confidence an approximation of the number of nodes in the
corresponding reduced graph.

We would also like to characterize the percentage of
node reduction over the total population of decomposition
slice graphs. To do so, we first perform a K-S Test to en-
sure the population is normal. Performing this test on the
sample population, we receive a signficance value of .189.
Since this value is greater than .005, we can conclude that
the sample population does not deviate from a normal pop-
ulation. We now conduct our t-test. From this data, we were
able to determine with 95% confidence that the true mean
percentage of node reduction is between 50.0% and 60.3%.

A simple diff on the source files where the node counts
were similar, such as the r *t np files, shows that the actual
differences between these “systems” is extremely small.
The high number of equivalent source lines strongly sug-
gests that these systems were created by cut, paste and
change.

3 TheQuestion

So the question becomes: Are slices-clones clones?

While admitting that these artifacts are identical, we go
through Baxter’s list of section 1, and add a few other ideas.
We do not discuss coding style and performance enhance-
ment, as they do not seem to apply in this context. We now
present the pro and con arguments for slice-clones as soft-
ware clones.

3.1 Pros

1. The slice-clones arose due to “instantiation of defini-
tional computations.”

Reunadap1ing ‘Scanh! ocks toldfront,
size: 94 size: 213

aquiv: 0

quiv: 2

Scanbiocks meulast
01

Scanb] ocks mewl ne.
200

equiv: 0

size:

Tineofeynba | paynbal
117
equiv: 0

SymboT Teuniqua ipeymbal
13
0

1

equiv: L

nebuffer| [atobal oidinfa.maxtine] [cransform:oldmax,
siza: 8 iza: 1
equi

Trputecan:Tinatan
£

oquiv: 1 aquiv: 0 aquiv: 0

opentila:Fitanana] [globalinauinte.file
size: B size: B
oquiv: 0

globat soldinta. F11a.
size: B

rputecanzpinfo
size: 8

Figure 2. The reduced decomposition slice graph of Figure 1.

System [Original | Reduced | Reduction]
cand 284 132 53.5%
canv 329 179 45.6%
ccibm 13 4 69.2%
ccibmx 13 4 69.2%
ccibmxp 13 4 69.2%
cnvl 329 176 46.5%
cnvla 329 175 46.8%
cprint 16 9 43.8%
cumt 318 168 47.2%
ejcn88 353 184 47.9%
fixw 268 118 56.0%
lans 349 181 48.1%
lansxx 349 181 48.1%
linecoun 133 68 48.0%
ofca 281 139 50.5%
riltmp 349 182 47.9%
r26tmp 349 182 47.9%
r51tmp 349 182 47.9%
revr 307 192 37.5%
rsum 349 182 47.9%
rSuUmMXxx 349 182 47.9%
sped 288 168 41.7%
spol 289 160 44.6%
totl 315 168 46.7%
unpr 293 128 56.3%
vedt 293 162 44.7%
vfix 293 162 44.7%
viul 289 140 51.6%
vset 195 85 56.4%
vtot 289 140 51.5%
xfix 293 162 44.7%

Table 1. weltab node reduction data

2. The slice-clones arose due to “failure to identify/use
abstract data types.”

3. The equivalent slices are not on the same variable.
4. Enhance the definition of a clone (or “duplicate code™).

5. Noting similar sized analysis output leads to a straight-
forward detection of cloned systems.

Items 1, 2, and 3 coalesce. For item 1, we note that
some definitional computations, such as the array transpo-
sition code above, involve many variables. Program slicing
demonstrates the computational relationship between these
variables in the embodied computation. This also supports
item 2, in that these computational definitions are usually
“abstractable” into functions or methods. Item 3 supplies
more on-demand information for a comprehender. Suppose
the comprehender considers a slice on a program variable.
All other variables with equivalent computations are readily
available. Such information is a by-product of our analysis.
It would seem that this assuages the information overload.
Combining these 3 items together yields a formidable ab-
straction mechanism for the comprehender.

For item 4, we argue that slice clones do indeed find du-
plicate code. While these duplicates are a proper subset of
type 1 clones, they do offer insight into the relationships
between clones. It would seem to be a good thing when
a comprehender can identify relationships, as the relation
creation in itself is an abstraction mechanism.

For item 5, we suggest that the data adds another com-
plementary metric to those proposed by Mayrand, et al. [11]
and is supported by two observations. This reduction tech-
nique finds artifacts that are “bad” in Mayrand’s proposed
relative evaluation scale; it does indeed find some exact
copies. Also, the examination of the data table suggests
other artifacts that are easily checked with diff.

3.2 Cons

The list of con arguments, while shorter, carries signif-
icant weight. Given that the current imperative and object
paradigms are the only ones we have, we have to deal with
them. They cannot be wished away.

1. Some obvious clones are not detected; the technique
does not find all unmodified cut-and-paste clones in
differing functions.

2. Slice-clones were introduced by “accident,” not pro-
grammer intent.

3. Slice-clones did not arise due to “code reuse by copy-
ing pre-existing idioms.”

4. The reduction in the number of nodes is statistically
consistent and statistically significant.

Item 1 is extremely troubling, for it seems that the slice-
clone technique does not perform the activity for which
clone detection was introduced!

For items 2 and 3, the equivalent code fragments are ac-
cidental, not intentional. In fact, one could argue that these
slice-clones are essential to effective software engineering.
Given the tools we have, many variables and objects are
“glued” together to form computational entities. It is pre-
cisely this activity that creates a system. This is not cloning;
it is creating. These equivalent computations did not arise
by copying pre-existing idioms; they arose by creating id-
ioms.

Finally, the size and significance of the reductions argue
that we are currently programming with the wrong idioms.
For instance, a simple swap operation need not evidence
an intermediate variable. Linger, et al. [10] suggested a
simplea, b = b, a; fora variable swap in 1979. We
need more simple and direct ways to embody “computa-
tional definitions.” This is achievable with today’s tech-
nologies. However, this is not an argument for object ori-
entation. While objects give analysis and design insight,
they are still written much like C. And slicing objects is not
easy. This approach is also too fine-grained for today’s gi-
gantic, complicated and critical systems. Perhaps these new
idioms, whatever they are, will not even be sliceable.

4 Conclusion

The intent of this paper is polemical. We have some data,
and conversations with the researchers doing clone detec-
tion suggested the title.

The data is interesting and suggests both positive and
negative responses to the resolution. We await the response
of the community.

References

[1] Detection of software clones.
stuttgart.de/clones.

[2] 1. Baxter, A. Yahin, L. Moura, M. S. Anna, and L. Bier.
Clone detection using abstract syntax trees. In Proceed-
ings of the International Conference on Software Mainte-
nance ' 98 ICSM-98, 1998.

[3] D. Binkley and K. Gallagher. A survey of program slicing.
In M. Zelkowitz, editor, Advances in Computers. Academic
Press, 1996.

[4] A. DelLucia. Program slicing: Methods and applications.
In Proceedings of the First IEEE International \Workshop
on Source Code Analysis and Manipulation, Florence, Italy,
2001.

http://www.bauhaus-

5]

(6]

[7]

(8]

(9]

[10]

[11]

[12]

[13]

S. Ducasse, M. Reiger, and S. Demeyer. A language inde-
pendent approach for detecting duplicate code. In Proceed-
ings of the International Conference on Software Mainte-
nance’ 99 ICSM-99, 1999.

K. Gallagher and L. O’Brien. Analyzing programs via de-
composition slicing. In Proceedings of International Work-
shop on Empirical Sudies of Software Maintenance, WESS,
2001.

K. B. Gallagher and J. R. Lyle. Using program slicing in
software maintenance. |EEE Transactions on Software En-
gineering, 17(8):751-761, August 1991.

R. Komondoor and S. Horwitz. Using slicing to identify
duplication in source code. In Proceedings of the 8th Inter-
national Symposium on Satic Analysis, 2001.

J. Krinke. Identifying similar code with program depen-
dence graphs. In Proceedings of the Eighth Working Con-
ference on Reverse Engineering, 2001.

R. Linger, H. Mills, and B. Witt. Sructured Program-
ming: Theory and Practice. Addison-Wesley, Reading,
Massachusetts, 1979.

J. Mayrand, C. LeBlanc, and E.Merlo. An experiment on the
automatic detection of function clones in a software system
using metrics. In Proceedings of the International Confer-
ence on Software Maintenance ' 96 ICSM-96, 1996.

F. Tip. A survey of programming slicing techniques. Journal
Of Programming Languages, 13(3):121-189, 1995.

M. Weiser. Program slicing. |EEE Transactions on Software
Engineering, 10:352-357, July 1984.

