
Improving Visual Impact Analysis

Matthew Hutchins1 and Keith Gallagher2

CSIRO Mathematical and Information Sciences
GPO Box 664, Canberra, ACT 2601, Australia.

Matthew.Hutchins@cmis.csiro.au, Keith.Gallagher@cmis.csiro.au

Abstract
Visual impact analysis is a software visualisation tech-

nique that lets software maintainers judge the impact of
proposed changes and plan maintenance accordingly. An
existing CASE tool uses a directed acyclic graph display
derived from decomposition slicing of a program for visual
impact analysis. In this paper, we analyse the graph dis-
play and show that it is semantically ambiguous and fails
to show important information. We propose requirements
for an improved display based on a definition of “interfer-
ence” between variables in a maintenance context. The
design for a new display is presented, with a series of
examples to illustrate its effectiveness. The display is
focused on providing a straightforward method to analyse
the impact of changes.

1. Introduction

The Surgeon's Assistant [2] is a CASE tool that uses
program slicing [1, 6, 7] to assist maintainers and develop-
ers of C programs. Specifically, the tool enforces a mainte-
nance model based on the use of decomposition slices of a
program [3]. A decomposition slice on a variable is the set
of all program statements that contribute to the computa-
tion of the variable. It is a generalisation of a program slice,
in that it depends only on the variable, and not on a particu-
lar point in the program. The Surgeon's Assistant uses
decomposition slices to analyse and limit the scope of
changes to the program. Once a variable is selected for
maintenance, the source code of the program is decom-
posed into a minimal changeable set of statements and its
unchangeable complement. A context sensitive editor

allows changes only to the changeable parts. The slice-
based decomposition ensures that the changes only affect
the computation of the selected variable and any that
directly depend on it, all others are guaranteed to be unaf-
fected. As a result, only the changed portion of the code
needs to be tested, and no other regression testing is neces-
sary.

The Surgeon's Assistant incorporates a Decomposition
Slice Display System that presents a visual representation
of the decomposition slices of the program to the main-
tainer. The display uses a tool called VCG [5] to show the
slices as nodes in a directed, acyclic graph. An example is
shown in Figure 1. The edges of the graph represent the

strong dependence relation between variables, which is
equivalent to the containment relation on the associated
slices. That is, a variablea is strongly dependent onb
(there is an edge froma to b) only if the decomposition
slice ona is a superset of the slice onb. In this case, the
computation ofa relies on the computation ofb, so any

1. The authors wish to acknowledge that part of this work was carried
out within the Cooperative Research Centre for Advanced Computational
Systems established under the Australian Government’s Cooperative Re-
search Centres Program.
2. On sabbatical leave from Loyola College in Maryland, USA.

Figure 1: Strong dependence graph
for variance program.

change tob could potentially affecta. Hence, the graph
provides the maintainer with a tool to carry out visual
impact analysis [2]. The position of a node within the graph
offers an indication of the complexity of maintenance on a
particular variable. A variable with a node that has no
incoming edges (shown at the top of the graph) will have
no impact on other variables, while a variable at the bottom
of the graph may affect most or even all of the other varia-
bles. The facility for visual impact analysis is enhanced by
the ability to interactively manipulate the graph, for exam-
ple by selecting a variable and highlighting all those that
depend on it.

Although an improvement over a strictly textual presen-
tation of the slices, the strong dependence graph has some
weaknesses, and this paper reports on an investigation into
an improved visual display for the Surgeon's Assistant.
Section 2 presents some observations about the graph dis-
play, leading to a set of requirements for an improved dis-
play discussed in Section 3. Section 4 presents the design
for a new display, and a series of examples are given in
Section 5.

2. Observations on the strong dependence
graph

2.1 The strong dependence relation

Decomposition slicing can be thought of as a total func-
tion from the variables of a program to sets of statements
from the program. The function is notonto: not every set of
statements represents a decomposition slice. It is also not
one-to-one: sometimes, two or more variables have the
same decomposition slice. The nodes in the strong depend-
ence graph are labelled with the names of variables, but
there is some ambiguity as to whether they represent varia-
bles or their associated slices. The ambiguity is an issue for
variables that have equivalent slices. Gallagher and O'Brien
[4] report on a method for reducing the complexity of
strong dependence graphs by collapsing the equivalent var-
iables into a single node with a thickened border. This rep-
resents a semantic shift from showing variables to showing
decomposition slices.

The containment relation on decomposition slices is a
partial order (it is transitive, reflexive and antisymmetric).
The strong dependence graph display exploits this structure
to lay out the graph neatly and reduce the number of edges
required. No edges are shown from a node to itself, and no
edges are shown when the relationship can be deduced
from transitivity. This is a strength of the display, as it sig-
nificantly reduces the visual complexity, as shown in
Figure 2.

Because the slicing function is not one-to-one, the
strong dependence relation between variables is not a par-
tial order (it is not antisymmetric). Once again, this intro-
duces ambiguity into the display. Should dependence edges
be shown between equivalent variables? How should
equivalent variables be organised vertically? (Vertical lay-
out is normally used to reinforce the transitive containment
relation.)

These observations represent fairly minor weaknesses in
the graph display that probably don't affect the comprehen-
sion of the display by the maintainer, but do have a signifi-
cant impact on the extendibility of the display. This
investigation was initiated by a desire to include an extra
relation (weak dependence) in the graph. To add a new
relation to the graph, however, requires a firm semantics for
what is shown already, and can also invalidate the
“implied” information in the graph, such as the transitive
dependence.

2.2 The weak dependence relation

When two variables have decomposition slices that con-
tain statements in common, the variables are said to be
weakly dependent. Variables that have equivalent slices are
weakly dependent, as are any pair of variables where one is
strongly dependent on the other. Two variables that are
mutually dependent on a third are also weakly dependent.
It is possible for variables to be weakly dependent without
there being a strong dependence involved, as illustrated by
the three decomposition slices of the simple program in
Figure 3. All of the slices have statements 1,2,4 and 8 in
common, but no slice completely contains any other. The
strong dependence graph for this program is shown in
Figure 4. Obviously, the strong dependence graph does not
capture the relationship between these variables. In particu-

(a) Complete graph (b) Simplified graph

Figure 2: Reducing edges in a strong
dependence graph

lar, maintenance on any one of these variables could be
affected by the others. This example does not invalidate the
decomposition approach to maintenance, as long as
unchangeability is allowed to dominate changeability. To
make a change to variablex, the slices onv anda would be
made unchangeable, leaving only statement 5 free to be
changed. The problem is in the display, in that it suggests
that the whole of the decomposition slice onx should be
changeable, when in fact the weak dependence prevents
this.

A potential solution to this display problem is to include
an additional set of distinct edges on the graph to indicate
weak dependence. As described above, however, the prop-
erties of the strong and weak dependence relations make
them incompatible. Weak dependence is not necessarily
transitive, so all edges would have to be included. It is sym-
metric, so edges would have to be undirected (or bidirec-

tional). This would conflict with the layout requirements
derived from the strong dependence relation, creating a
messy graph with many edge crossings. A further compli-
cation arises from the preponderance of weak dependence.
In any graph with a single “minimal” node, all of the varia-
bles will be weakly dependent on each other, because they
will all have some code in common. This sort of depend-
ence does not provide the maintainer with any new infor-
mation, however. The important goal is to capture the
“hidden” weak dependence that is not implied by the
strong dependence graph.

3. Requirements for an improved display

3.1 The interference relation

The key requirement for a new display is that it closely
address the task of maintenance on a selected variable. In
the context of the program decomposition model of the
Surgeon's Assistant, the key question the maintainer must
have answered is: “if I need to change the computation of
this variable, what computations must I be prepared to
change, what computations must I leave unchanged, what
computations could interfere with the change, and what
computations can I safely ignore.” To illustrate this ques-
tion, consider the slices illustrated in this strong depend-
ence graph:

Supposev needs to be changed, then:

• every statement inv is a statement inx, so any change
to v is a change tox. Therefore,x must be changeable.

• the statements inw are a subset of the statements inv,
but can not be changed. At most, the statements in the
difference between slicesv andw can be changed.

• if v andz are equivalent slices, then any change tov is
a change toz, and soz must be changeable.

• slicesv andz have at least all of the statements inw in
common. If that's all they have in common, then
slice z can be safely ignored. As long asw is
unchangeable, no change can affectz.

Figure 3: Three slices of a program illus-
trating weak dependence. 1,2

1. Thanks to Arun Lakhotia for the program.
2. Slices generated and displayed byunravel
(http://hissa.ncsl.nist.gov/~jimmy/
unravel.html).

Figure 4: Strong dependence graph for
the program in Figure 3.

v

x

w

?

z

• there could be statements in bothv andz that are not
in w. In this case,z interferes with maintenance onv.
The maintainer will have to decide to either modifyv
without changing the statements inz, or makez
changeable also.

From this example, we derive the following general def-
inition of interference between variables: variablea inter-
feres with variableb if and only if a is not strongly
dependent onb andb is not strongly dependent ona, but
the intersection of the decomposition slices ona andb is
not a subset of the union of the decomposition slices of the
variables that are strongly dependent on, but not equivalent
to, b. Put more simply, the decomposition slices ona andb
have statements in common that are not explained by the
strong dependence relation applied tob. To repeat, this is
“interference” in the sense that the maintainer will need to
consider and make a decision about any interfering varia-
bles before making a change. The interference relation is
different from both the strong and weak dependence rela-
tions. It is not necessarily symmetric nor transitive.

3.2 Requirements derived from interference

Based on the maintenance question and the analysis of
interference in the previous section, we derive the follow-
ing requirements for an improved display:

• show the set of variables from the program.

• between each pair of variables, show the relationships
that affect maintenance: equivalence, strong depend-
ence, interference.

• for each variable, show the set of variables that will
need to be considered during maintenance on that
variable.

• highlight a set of variables selected for maintenance,
and their relationships to the other variables.

3.3 Scalability

One of the most significant problems faced by this or
any other system using software visualisation is the issue of
scalability — the decomposition slice display must scale
up to larger systems. The strong dependence graphs gener-
ated by VCG are reasonably effective up to around two
hundred nodes, especially when explored interactively. It is
an important requirement of any new display to at least not
do any worse than this.

Although we offer no general solution to the scalability
problem, two approaches to managing some of the com-
plexity of the display are: show or hide information on
demand in semantically significant units, and collapse

semantically related items to make compound items. Based
on these heuristics, the following mechanisms can be used
to control the display:

• any variable, or all of the variables from particular
procedures, can be included or excluded on request.

• variables with “empty” slices (those of size three, as
discussed by Gallagher and O’Brien [4]) can be
excluded on request.

• variables that have no interesting relationship to the
current selection can be excluded on request.

• equivalent variables from the same procedure can be
grouped into a single item.

• the slices ofall of the variables from a particular pro-
cedure can be grouped into a single item.

4. An alternate display

4.1 Basic design

In response to these requirements we have designed a
new display for the Surgeon’s Assistant that focuses on
answering the maintenance question asked in Section 3.2.
An example is shown in Figure 5, along with a strong
dependence graph for comparison. (The example, and the
apparent discrepancies between the new display and the
graph, are discussed in Section 5.1.) The general features
of the design are:

• variables are shown in rectangular “nodes” arranged
diagonally down the display.

• the nodes are labelled with a procedure and variable
name.

• grouped variables are indicated textually with a
description in braces (no grouped variables appear in
Figure 5).

• each variable has an “interference line” that (concep-
tually) enters the node from the right and leaves
through the top.

• the interference lines for each pair of variables inter-
sect precisely once.

• at the intersection for each pair, a symbol indicates
the maintenance relationship between them (no sym-
bol appears when there is no relationship). The sym-
bols are discussed in Section 4.3.

• the variables are sorted so that (where possible) inter-
ference “flows” in from the right and out the top.
Sorting is discussed in Section 4.2.

• additional interference symbols appear to the left of
the nodes, indicating the relationship with the current
selection.

• the display is controlled using the mechanisms
described in Section 3.3. In particular, grouping only
occurs within the same procedure.

4.2 Sorting variables

One of the key goals of the display was to sort the varia-
bles to simplify answering the maintenance question. In
short, the answer is: “When making a change to a variable,
look right to see what variables will interfere with the
change, andlook up to see what variables will be affected
by the change.” Unfortunately, the interference relation is

not an order, so correct sorting turns out to be impossible in
some cases. The solution we have adopted is to sort the var-
iables according to strong dependence, which is almost a
partial order (with the exception of equivalent variables),
and then perform one pass of interchanges to correct for the
interference relation where possible. This provides a dis-
play where the “look right, look up” rule works in most
cases. The remaining cases of “backwards” interference are
highlighted in the display.

4.3 Interference symbols

The design of the new display relies on a set of symbols
that capture some of the interplay between the different
relations that appear. The set we chose is illustrated in
Figure 6. The two relations of interference and strong
dependence are represented by circles and squares respec-

wc

main:nw

main:inword

main:nl

main:nc

main:c

Global:__iob

Figure 5: Strong dependence graph and
new display for word count program.

a

b

a

b

a

b

a

b

a

b

a

b

Grid symbols:

Selection symbols:

a interferes with b b interferes with a a interferes with b

b interferes with a
and

b depends on a a depends on b a & b are equivalent

a

a

a

a

a

a

a

a is selected

a interferes with selection

selection interferes with a

selection interferes with a

a interferes with selection
and

selection depends on a

a depends on selection

a depends on selection

selection depends on a
and

Figure 6: Legend for interpreting inter-
ference symbols.

tively. The square is meant to feel “stronger” than the cir-
cle. The forward and backward relations are represented by
symbols which are “negatives” of each other, and add
together to give the symbols for mutual relationships. The
backwards and mutual cases have more black “ink”,
because they are important cases that need to stand out.
The same set of symbols is used for the selection relation-
ships, with the addition of the diamond to show the actual
selection (the diamond shape is arbitrary, but easy to draw).

5. Examples

5.1 Word count

The display for a simple word count program was
shown in Figure 5. We see that there is no “hidden” inter-
ference in this program — the strong dependence graph
captures all of the action. The maximal variables
(main:nw , main:nl , main:nc) can be found using the
“look up” rule — no interference symbols appear above
them in the display. A single variable,main:inword , has
been selected for change, and we see thatmain:nw will
need to be made changeable for this maintenance to be car-
ried out, while the two equivalent variables (main:c and
Global:__iob) will interfere with the change. The two
equivalent variables appear as a single node in the graph
(labelled “global:__iob ”), but being in different pro-
cedures are not grouped in the new display. The cluster of
“empty” variables at the bottom of the graph, shown by the
node of size 3 with a thick border, have been excluded from
the new display.

5.2 Weak dependence example

The new display for the weak dependence example
described in Section 2.2 is shown in Figure 7. The display
shows what little information there is about this program:
all three variables are mutually interfering. Maintenance on
the selected variablemain:v will require a decision about
the other two variables.

5.3 Variance

The strong dependence graph for a variance program
was shown in Figure 1. The corresponding interference dis-
play is in Figure 8. This display has significantly more
information than the graph. In particular, it reveals a pattern
of interference between the six variables that appear maxi-
mal and unrelated at the top of the graph. For example,
maintenance onmain:dev will be interrupted by the oth-
ers, particularlyt1 andt2 .

5.4 Further examples

Three further examples are shown in Figure 9, Figure 10
and Figure 11. The “difall” program shows some “back-
wards” interference, where an appropriate sorting of the
variables was impossible. It also illustrates grouping of
equivalent variables in procedures. The large blocks of
strong dependence correspond to a relatively “deep” strong
dependence graph. It is difficult to separate individual vari-
ables for maintenance in this program. The “rl” example
shows a complex pattern of interference and “backwards”
interference, with relatively little strong dependence —
main ta iners beware ! The node labe l led
“Global:{ all } ” groups all of the global variables.
The “pdevdwg” example gives some indication of scalabil-
ity. The original program had over 300 variables, yet with
grouping the display fits comfortably on a printed page.
The sparse upper left area of the display shows a large set
of maximal or near maximal variables that can be changed
with relative ease. There is a large block of equivalent vari-
ables at the bottom that could cause some trouble. No vari-
ables have been selected in this example.

arun

main:x

main:a

main:v

Figure 7: New display for the weak
dependence example.

variance

main:var2

main:dev

main:var5

main:t2

main:var1

main:t1

main:i

main:var4

main:var3

main:avg

main:ssq

main:x

main:n

Figure 8: New display for the variance
program.

d
if

al
l

sc
an

bl
oc

ks
:o

ld
fr

on
t

sk
ip

ne
w

:o
ld

lin
e

G
lo

ba
l:_

_i
ob

sh
ow

sy
m

bo
l:p

sy
m

bo
l

G
lo

ba
l:p

rin
ts

ta
tu

s

G
lo

ba
l:a

ny
pr

in
te

d

G
lo

ba
l:{

 3
 e

q
}

sh
ow

m
ov

e:
{

3
eq

 }

sh
ow

sa
m

e:
co

un
t

sc
an

bl
oc

ks
:n

ew
la

st

sc
an

bl
oc

ks
:n

ew
lin

e

G
lo

ba
l:{

 2
 e

q
}

G
lo

ba
l:{

 2
 e

q
}

sc
an

be
fo

re
:{

 2
 e

q
}

sc
an

af
te

r:
{

2
eq

 }

sc
an

un
iq

ue
:o

ld
lin

e

sy
m

bo
lis

un
iq

ue
:p

sy
m

bo
l

lin
eo

fs
ym

bo
l:p

sy
m

bo
l

sc
an

un
iq

ue
:p

sy
m

bo
l

sc
an

bl
oc

ks
:o

ld
lin

e

sc
an

un
iq

ue
:n

ew
lin

e

tr
an

sf
or

m
:o

ld
lin

e

tr
an

sf
or

m
:n

ew
lin

e

tr
an

sf
or

m
:{

 2
 e

q
}

ne
w

no
de

:{
 3

 e
q

}

ad
ds

ym
bo

l:{
 5

 e
q

}

G
lo

ba
l:{

 3
 e

q
}

st
or

el
in

e:
lin

eb
uf

fe
r

m
at

ch
sy

m
bo

l:{
 4

 e
q

}

in
pu

ts
ca

n:
lin

eb
uf

fe
r

st
or

el
in

e:
{

3
eq

 }

in
pu

ts
ca

n:
lin

el
en

in
pu

ts
ca

n:
ch

op
en

fil
e:

{
2

eq
 }

G
lo

ba
l:n

ew
in

fo
.fi

le

G
lo

ba
l:o

ld
in

fo
.fi

le

G
lo

ba
l:{

 2
 e

q
}

in
pu

ts
ca

n:
pi

nf
o

Figure 9: Strong dependence graph and new display for textual difference program.

rl

m
ai

n:
va

r

m
ai

n:
fil

e

G
lo

ba
l:{

 a
ll

}

m
ai

n:
cm

d

is
_s

ub
sl

ic
e:

is
_p

ro
pe

r

is
_e

qs
lic

e:
is

_e
qu

al

ge
t_

de
co

m
_c

rit
er

ia
:lo

ca
l_

m
es

s m
ai

n:
i

m
ai

n:
m

es
sa

ge

m
ai

n:
t_

st
m

ts

m
ai

n:
ou

t_
pr

oc
s_

fil
e

m
ai

n:
a_

fil
e

m
ai

n:
de

fa
ul

t_
pr

oc
_f

ile

m
ai

n:
m

_f
ile

m
ai

n:
st

at
us m
ai

n:
p

m
ai

n:
fx

fin
d_

su
bs

et
s:

at
_m

es
sa

ge

fin
d_

su
bs

et
s:

j

fin
d_

su
bs

et
s:

i

fin
d_

su
bs

et
s:

{
6

eq
 }

is
_s

ub
sl

ic
e:

f

is
_s

ub
sl

ic
e:

{
2

eq
 }

fin
d_

su
bs

et
s:

n

cr
ea

te
_s

ub
se

t_
m

at
rix

:r
ow

cr
ea

te
_s

ub
se

t_
m

at
rix

:n

eq
ua

l_
su

bs
et

s:
at

_m
es

sa
ge

is
_e

qs
lic

e:
f

is
_e

qs
lic

e:
{

2
eq

 }

eq
ua

l_
su

bs
et

s:
j

eq
ua

l_
su

bs
et

s:
i

eq
ua

l_
su

bs
et

s:
n

cr
ea

te
_s

ub
se

t_
m

at
rix

:{
 3

 e
q

}

eq
ua

l_
su

bs
et

s:
{

6
eq

 }

m
ai

n:
t_

lo
ca

ls

ve
rif

y_
cr

ite
rio

n:
fil

e

ad
d_

cr
ite

rio
n:

@
rl#

17
9[

3]

ad
d_

cr
ite

rio
n:

@
rl#

17
9[

3]
.fi

le
_i

d

ad
d_

cr
ite

rio
n:

@
rl#

17
9[

3]
.n

ex
t

ad
d_

cr
ite

rio
n:

@
rl#

17
9[

3]
.s

tm
t_

no

ad
d_

cr
ite

rio
n:

cr
ite

rio
n

ad
d_

cr
ite

rio
n:

{
4

eq
 }

ge
t_

de
co

m
_c

rit
er

ia
:a

ct
_v

ar

ge
t_

de
co

m
_c

rit
er

ia
:a

ct

ge
t_

de
co

m
_c

rit
er

ia
:c

al
l

ge
t_

de
co

m
_c

rit
er

ia
:i

ge
t_

de
co

m
_c

rit
er

ia
:v

ar

ge
t_

de
co

m
_c

rit
er

ia
:{

 3
 e

q
}

ve
rif

y_
cr

ite
rio

n:
st

m
t

m
ai

n:
st

m
t

ve
rif

y_
cr

ite
rio

n:
{

2
eq

 }

m
ai

n:
pr

oc

pr
in

t_
de

co
m

_c
rit

er
ia

:c
rit

er
io

n

pr
in

t_
de

co
m

_c
rit

er
ia

:v
ar

pr
in

t_
de

co
m

_c
rit

er
ia

:p
ro

c

ke
ep

_e
dg

e:
k

Figure 10: Display for “rl” program.

p
d

ev
d

w
g

in
iti

al
iz

e:
ch

do
tr

em
:o

ut
fie

ld

do
tr

em
:o

pt
r

G
lo

ba
l:m

ax
sh

ee
t

do
tr

em
:ip

tr

ge
n_

ed
it:

na
m

e

do
tr

em
:in

fie
ld

G
lo

ba
l:t

vf
la

g

ge
tfl

d:
fie

ld ge
tfl

d:
i

ge
tfl

d:
j

ge
tfl

d:
nu

m
ch

pr
te

rr
or

:e
rr

fil
e_

na
m

e

pr
te

rr
or

:{
 2

 e
q

}

ge
n_

ed
it:

i

st
rt

ou
pp

er
:p

st
rt

ou
pp

er
:s

ge
n_

po
st

_d
ra

w
:b

uf
fe

r

ge
n_

ed
it:

tc
ag

ec
od

e

ge
t_

m
ai

l_
re

qu
es

t:b
uf

fe
r

ge
n_

ed
it:

ou
tb

uf
fe

r

fin
al

_e
ng

r_
st

at
us

:i

w
rit

e_
bp

t:i

pf
ile

2v
fil

e:
bp

te
nt

ry

ge
n_

po
st

_d
ra

w
:i

pf
ile

2v
fil

e:
m

ild
at

e

ge
td

fti
nf

o:
ca

ge
co

de

ge
td

fti
nf

o:
ca

ge
co

de
.c

o_
ad

dr
es

s

pf
ile

2v
fil

e:
xd

at
e

ge
td

fti
nf

o:
ca

ge
co

de
.c

o_
na

m
e

pf
ile

2v
fil

e:
{

2
eq

 }

ch
ec

k_
bp

t:c
rlf

pf
ile

2v
fil

e:
cy

ch
ec

k_
bp

t:{
 2

 e
q

}

pf
ile

2v
fil

e:
xr

ev

fo
un

d_
in

_b
pt

:e
nt

ry
ou

t

fo
un

d_
in

_b
pt

:c
hc

nt

fo
un

d_
in

_b
pt

:c
h

pf
ile

2v
fil

e:
xd

es

pf
ile

2v
fil

e:
yb

pf
ile

2v
fil

e:
xl

pf
ile

2v
fil

e:
xa

pp
r

pf
ile

2v
fil

e:
xr

pf
ile

2v
fil

e:
yt

pf
ile

2v
fil

e:
xv

0

pf
ile

2v
fil

e:
xv

3

pf
ile

2v
fil

e:
xv

1

pf
ile

2v
fil

e:
xv

2

ge
td

at
a:

{
6

eq
 }

G
lo

ba
l:{

 4
9

eq
 }

fil
l_

in
_b

pt
_e

nt
rie

s:
{

23
 e

q
}

m
ai

n:
{

2
eq

 }

is
w

es
t:{

 3
 e

q
}

ge
tfl

d:
{

5
eq

 }

ge
t_

m
ai

l_
re

qu
es

t:{
 8

 e
q

}

is
de

sc
:{

 3
 e

q
}

pr
oc

es
s_

re
qu

es
t:s

ta
tu

s

ge
n_

ed
it:

{
15

 e
q

}

fin
al

_e
ng

r_
st

at
us

:m
ai

l_
su

bj

w
rit

e_
bp

t:{
 2

 e
q

}

pf
ile

2v
fil

e:
{

30
 e

q
}

ge
n_

pa
rt

s_
lis

t:{
 2

 e
q

}

fo
un

d_
in

_b
pt

:{
 6

 e
q

}

ge
n_

po
st

_d
ra

w
:s

ta
tu

s

ch
ec

k_
bp

t:{
 9

 e
q

}

ge
n_

df
t_

re
l:s

ta
tu

s

ge
t_

pa
ck

ag
e:

{
17

 e
q

}

ge
td

fti
nf

o:
{

27
 e

q
}

G
lo

ba
l:m

od
e

G
lo

ba
l:a

lre
ad

y_
re

le
as

ed

G
lo

ba
l:{

 2
 e

q
}

G
lo

ba
l:c

ur
re

nt
_t

im
e

G
lo

ba
l:{

 4
 e

q
}

in
iti

al
iz

e:
im

on

in
iti

al
iz

e:
{

2
eq

 }

in
iti

al
iz

e:
bu

ffe
r

in
iti

al
iz

e:
i

in
iti

al
iz

e:
{

2
eq

 }

Figure 11: Display for “pdevdwg” program.

6. Present status, future work, conclusions

The interference display was designed as a case study in
an investigation into the application of formal methods to
display design. It is currently only implemented as a rough
prototype with a command file interface that outputs Post-
script files directly. The next step is to reimplement the dis-
play for full inclusion in the Surgeon’s Assistant CASE
tool. We have not yet performed any trials to establish the
effectiveness of the display when used in a software main-
tenance environment. Real use would suggest changes to
make the display more effective. The display has provided
further insight into the decomposition slice approach to
software maintenance, and several issues that have arisen
as a result will be investigated further.

In conclusion, we have designed a new display that we
hope will improve the effectiveness of visual impact analy-
sis. The new display was designed in response to several
weaknesses that were identified in the existing strong
dependence graph display by a systematic and formal anal-
ysis of the display semantics. Requirements for the new
display were derived by concentrating directly on the main-
tenance task and the most important question that the dis-
play needed to answer to assist with that task. As a result,
the new display provides a model of interpretation based on
a simple “look right, look up” rule. Several examples have
shown that the new display captures more information than
the strong dependence graph, and can scale up to reasona-
bly large problems.

References
[1] D. BINKLEY AND K. GALLAGHER. A survey of

program slicing. In M. Zelkowitz, editor,Advances in
Computers. Academic Press, 1996.

[2] KEITH B. GALLAGHER. Visual impact analysis. In
proceedings of the Conference on Software Maintenance,
1996.

[3] K. B. GALLAGHER AND J. R. LYLE. Using program
slicing in software maintenance.IEEE Transactions on
Software Engineering, vol. 17, no. 8, August 1991.
Pages 751–761.

[4] KEITH GALLAGHER AND LIAM O’BRIEN. Reducing
visualization complexity using decomposition slices. In
proceedings of the 1997 Software Visualization Workshop,
SoftVis97. December 1997.

[5] I. LEMKE AND G. SANDER. Visualization of Compiler
Graphs: Design Report and Documentation.
Universitat des Saarlandes, Saarbrucken, Germany, May
1994.

[6] F. TIP. A survey of programming slicing techniques.
Journal Of Programming Languages, vol. 13, no. 3,
1995. Pages 121–189.

[7] M. WEISER. Program slicing.IEEE Transactions on
Software Engineering, vol. 10, July 1984. Pages 352–
357.

